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S-581 83 Link̈oping, Sweden
E-mail: {shesh,petfr}@ida.liu.se

Abstract. This paper presents an extension of our Mathematica- and MathCode-based symbolic-numeric framework for solving
a variety of partial differential equation (PDE) problems. The main features of our earlier work, which implemented explicit
finite-difference schemes, include the ability to handle (1) arbitrary number of dependent variables, (2) arbitrary dimensionality,
and (3) arbitrary geometry, as well as (4) developing finite-difference schemes to any desired order of approximation. In the
present paper, extensions of this framework to implicit schemes and the method of lines are discussed. While C++ code is
generated, using the MathCode system for the implicit method, Modelica code is generated for the method of lines. The latter
provides a preliminary PDE support for the Modelica language. Examples illustrating the various aspects of the solver generator
are presented.

1. Introduction

The numerical solution of partial differential equa-
tions is a very extensively researched field in the past
few decades. The reasons for this are fairly obvious,
if one considers the frequent occurrence of PDEs in
most fields of science and engineering. Furthermore,
few PDEs, especially the practically interesting ones,
are amenable to analytical solution techniques, and as a
result a wide range of numerical techniques have been
developed to study them. Given the constant increase in
the power of the digital computer, an increasing number
of these techniques have been implemented.

This paper is an extension of the symbolic-numeric
framework for the solution of PDEs that we have devel-
oped recently (see [27,25,24]). Our earlier work was
restricted to explicit finite-difference schemes, while
otherwise being fairly general: it can develop approx-
imation schemes to any desired order for PDE prob-
lems in arbitrary number of variables, dimensions and
geometries. We presented a Mathematica-based solver
generator that performs a series of symbolic transfor-
mations on the given PDE problem and employs the
MathCode translator (see [6]) to generate optimized
C++/Fortran 90 code for iteratively obtaining numeri-

cal solutions to PDEs. This framework has the obvious
advantage of combining the symbolic power of Math-
ematica and the computational efficiency of compiled
languages like C++ and Fortran into a flexible system
for generating highly efficient compiled solvers. The
present work extends the solver generator to treat of
implicit finite-difference schemes and the method of
lines.

The motivation for our work comes largely from two
independent active fields of research. Firstly, we view
our efforts as a contribution to the vast amount of work
that is going on to develop efficient numerical solvers
for PDE problems. To place our work in perspective,
we make a brief survey of related work. Diffpack
(see [2,13]) presents an object-oriented problem solv-
ing environment for numerical solution of PDE’s. It
implements finite difference as well as finite element
methods and provides C++ modules with a wide se-
lection of interchangeable and application-independent
components. ELLPACK and PELLPACK (see [22,5,
21]) are problem solving environments (PSEs) with a
high level interface language for formulating elliptic
PDE problems, that contain over 50 problem solving
modules for handling complex elliptic boundary val-
ue problems. They are implemented as a FORTRAN
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preprocessor and can handle a variety of system ge-
ometries in two dimensions (both finite difference and
finite elements), and rectangular geometries in three
dimensions (finite differences only). The main feature
of these PSEs is the reuse of powerful static modules.
They also offer help with analyzing various aspects of
the PDE problem. The description of our solving sys-
tem in later sections shows the ways in which our sys-
tem compares and contrasts with extant PSEs for han-
dling PDE problems. Briefly, our system has a range
of Mathematica modules that offer help in analyzing a
PDE problem, and we use a dynamic library of modules
that are tailored for the given PDE problem. Two more
efforts include Cogito and COMPOSE, developed at
Uppsala University, Sweden (see [15,19,26]). Both im-
plement finite-difference schemes for time dependent
problems and exploit the object-oriented technology to
develop a new kind of software library with parts that
can be flexibly combined, enhancing easy construction
and modification of programs. Cogito is a high perfor-
mance solver that comprises the three layers Parallel,
Grid and Solver, the lower two layers being Fortran
90 parallel code, while the Solver is written in C++.
COMPOSE is a C++ object-oriented system that ex-
ploits the Overture system [20] for grid generation. The
work on numerical PDE libraries is far too extensive
for us to be able to present an exhaustive review here
(see [1,11,12,17] for overviews). Our work is a con-
tribution to this important field, and distinguishes itself
by the approach we have taken, as outlined above. We
believe that Mathematica, by virtue of its flexibility and
rich and unique library of functions, is specially suit-
ed to perform certain symbolic transformations that a
general-purpose equation-solving system calls for. We
augment this feature with the computational efficiency
of C++/Fortran by employing the MathCode transla-
tor, that seamlessly integrates with Mathematica.

Secondly, we are inspired by efforts on the devel-
opment of a high-level language called Modelica for
modeling a broad class of engineering and physical sys-
tems [18,7]. Modelica is an object-oriented language
that is equation based and acausal, and presents a very
sound methodology for modeling of complex systems.
However, presently there is no simulation support avail-
able in Modelica for handling PDE problems, (howev-
er, a preliminary prototype has been developed [23]),
and only ordinary differential equations (ODEs) are
supported. With this in mind, we have worked on an
implementation of the method of lines, which is one
kind of finite difference method that transforms a PDE
into a system of coupled ODEs. In addition, the solver

generator generates Modelica code for solving the re-
sulting system of ODEs, which can be incorporated into
a Modelica program as part of a class declaration. We
thus achive a preliminary PDE support to the Modelica
language without any change in its syntax. Further, the
MathModelica system, an environment for program-
ming in the Modelica language within Mathematica is
presently available [7,9,14,16], and our solver genera-
tor can be straightforwardly integrated with this system
with a little more effort.

The results presented in this paper are the following.
We have implemented implicit finite difference meth-
ods, and give examples of implicit stencils obtained
using our solver generator, and show how we can au-
tomatically generare implicit methods to a given ap-
proximation order. We then present the solution of the
one-dimensional diffusion equation using the implicit
method, and contrast the stable solution thus obtained
with the unstable solution that one would obtain for the
same problem using the explicit method. This brings
out an advantage of the implicit method over the ex-
plicit method very clearly: we do not have to obey the
stability criteria in the former case; we also comment
on the considerations involved in choosing between ex-
plicit and implicit methods. We then discuss the im-
plementation of the method of lines that transforms a
PDE problem to an ODE one, and give an example of
Modelica code generated for the transformed problem.
The resulting code can be used in a Modelica program
as a PDE model class without any syntax extensions of
the language.

This paper is organized as follows. In Section 2 we
describe the symbolic transformations involved in im-
plementing the implicit finite-difference scheme, fol-
lowed by a description of the method of lines in Sec-
tion 3. These sections describe the symbolic and nu-
meric aspects of the solver generator in detail, and
present a few examples of applying the various tools
developed. We make some concluding remarks in Sec-
tion 4.

2. The implicit method

In the finite difference method, the independent vari-
ables are regarded as discrete and the domain becomes
a grid. The derivatives of the dependent variables then
automatically become differences between values at a
combination of these grid points; the actual combina-
tion depends on the nature of the difference approx-
imation. After such an approximation is performed,



K. Sheshadri and P. Fritzson / A general symbolic PDE solver generator: Beyond explicit schemes 227

we have no derivatives present in the system, only the
functions at the grid points; this resulting system of
relations between the values of dependent variables at
a set of neighboring grid points is referred to as the
stencil for the PDE system. Applying the stencil to all
the grid points results in a system of coupled algebraic
equations. Solution of this system of algebraic equa-
tions involves iteration from the boundaries, where the
function values and/or derivatives are known. Often,
one of the independent variables is singled out as the
marching variable, and the solution is progressed along
this direction: from the function values up to a certain
value of the marching variable, the function values at
the next value of the marching variable are computed
using the stencil.

The stencil at any grid point, as we said above, is a
relation between the values of the dependent variable
at this point and its neighbors. If the approximation
order used for the derivative with respect to the march-
ing variable is n, then the stencil has dependent vari-
ables at n + 1 values of the marching variable appear-
ing: u[i], u[i + 1], . . . , u[i + n] (where the arguments
of the dependent variable u are the discrete values of
the marching variable; we have suppressed other inde-
pendent variables to keep the notation simple). If we
can solve the stencil for u[i + n] explicitly in terms of
u[i], u[i + 1], . . . , u[i + n − 1], the difference scheme
is called explicit; otherwise, it is called implicit.

The solution method can involve more computation
in an implicit scheme than in an explicit scheme, be-
cause we have to solve a matrix system for each value
of the marching variable in the implicit case. However,
there is one definite advantage: the implicit schemes
do not have the stablity problems that often plague ex-
plicit methods. This means that there is no criterion
involving the step sizes of the independent variables
that needs to be satisfied for the resulting solution to be
stable. This can contribute to a reduction in the com-
putational complexity, since we can choose larger step
sizes for the marching variable without the danger of
an unstable solution.

In the following, we discuss various symbolic as-
pects involved in implementing implicit schemes. This
discussion parallels the one in our earlier paper on ex-
plicit schemes [24], to which we refer the reader for
further details.

2.1. Format

The general format for specifying a PDE problem to
our solver generator is the following:

testproblem={equations, geometry,
approximation specifications}
Here, equations is a list of all the equations in the

problem, namely the PDE and all the intial and bound-
ary conditions; geometry is a list that specifies the prob-
lem domain; finally, approximation specifications is a
list that contains the difference method to be used for
each member of the equations list. Each of these lists
can have arbitrary numbers of sublists depending on the
complexity of the problem. Note that with this format,
it is possible to unambiguously state any PDE problem.

We illustrate the input format with an example of
a simple one-dimensional PDE problem, the diffusion
equation:

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2
;

with an initial condition

u(x, 0) = x/2 for x < 0.15 and

u(x, t) = 1 − x/2 for x � 0.15

and boundary conditions

u(0, t) = 0 = u(1, t) for t � 0.

This problem is presented to the solver generator as
follows:
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The equations list contains all the equations in the
problem: the PDE followed by the initial and boundary
conditions. The PDE could be a single equation or
a system of equations separated by commas. In the
present case there is just one equation.

Note the slight change in format between the PDE
and the initial and boundary conditions: the latter have
to have the space/time boundary specified; the first
element in these sublists specifies the boundary, and the
remaining elements specify the conditions that hold at
this boundary.

The geometry list has as many sublists as there are
independent variables. Each of these sublists can have
a number of further sublists, if the system geometry
breaks up into disconnected subdomains in any direc-
tion. We can specify arbitrary geometries within this
format; a few examples are given in Section 2.3.

There is an element (that we call a method) in the
approximation specifications list for each element in
the equations list. In particular, the first element in
the approximation specifications list corresponds to the
PDE. This first element has only one element, since
there is only one PDE in this case, and has the form
u[x[{}, {2, 2, {0, 1}}], t[{{1, 1}}]. This is an implicit
approximation specification, and the meaning of this
format is as follows. An element {m, n, {∆x, ∆t}}
appearing as the kth argument of x, which in turn is
an argument of u, specifies the way in which the kth
derivative of u with respect to x is to be treated by the
finite-difference method: m is the approximation or-
der, and n is an integer from 0 to m + 1: n = 0 leaves
the kth derivative intact, n = 1 corresponds to forward
difference, n = m + 1 corresponds to backward dif-
ference, and n = 2 to m correspond to the various
central differences. We hereafter refer to lists such as
{m, n, {∆x, ∆t}} as basic approximation specifiers,
since they specify how the individual derivatives ap-
pearing in a PDE have to handled. The list {∆x, ∆t}
is optional: if it is absent, the method is explicit, and
its presence here indicates that we are dealing with an
implicit method. Its meaning is as follows. It contains
the instruction that, after applying the explicit differ-
ence approximation {m, n}, we should replace x by
x + ∆x and t by t + ∆t in the resulting finite differ-
ence; these replacements have the effect of making the
stencil implicit.

Note that any implicit method that involves merely
replacing every derivative in the PDE by the result of
an approximation specification like {m, n, {∆x, ∆t}}
can be expressed in the form

u1(x1{m1, n1, {∆x1, ∆x2, . . .}}, . . . ,
{mo1, no1 , {δx1, ∆x2, . . .}}],

x2[{m2, n2, {∆x1, ∆x2, . . .}}, . . . ,
{mo2, no2 , {∆x1, ∆x2, . . .}}], . . .], .

which is completely specified by a set of integers mi

and ni. As a result, we can generate all possible such
approximation specifications in an automated way, by
simply generating all possible sets of integers allowed
in the approximation specifications. The latter are fair-
ly unambiguous (for a detailed discussion see our ear-
lier paper [24]). Even the generation of a stencil by
applying such an approximation specification can be
easily automated.

The first basic approximation specifier of x in the
above example is {}: since the PDE has no first deriva-
tive of u with respect to x, the solver generator ignores
the contents of this list, so we have kept it empty; it
could instead have been {−1, 0}, for instance. How-
ever, it is important that this list be the first argument
of x even though there is no first derivative of u with
respect to x: this ensures that {2, 2, {0, 1}} (corre-
sponding to m = 2 = n, ∆x = 0 and ∆t = 0 in
{m, n, {∆x, ∆t}}), the second argument of x, is the
basic approximation specifier for the second derivative
of u with respect to x. We have {2, 2, {0, 1}} here
because we have chosen to replace the second deriva-
tive of u with respect to x by a second-order central
difference, and add to the discretized t the integer 1
(and leave the discretized x variable intact; that is,
the finite-difference approximation of the second order
space derivative is replaced by its value one time step
later) in the resulting difference, to make the method
implicit. The following example demonstrates what we
mean here:

DiscretizeImplicit[

{∂{t,1}u[x, t] = ∂{x,2}u[x, t]},
{u[x[{}, {2, 2, {0, 1}}],
t[{1, 1, {0, 0}}]]}, step]{−u[x, t] + u[x, 1 + t]

step[2]
=

1
step[1]2

(u[−1 + x, 1 + t]

−2u[x, 1 + t] + u[1 + x, 1 + t])}
It can be seen that we can’t solve the resulting stencil

for the dependent variable (u) at the highest value (t +
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1) of the marching variable, hence this is an implicit
method. (Note that in the above, step is a list of step
sizes of the discretized independent variables.)

In general, if the largest-ordered derivative with
respect to an independent variable in the equation
is L, then the number of arguments (of the form
{m, n, {∆x, δt}}) of this variable must be L, some of
which are possibly empty lists. However, if the PDE
has kth derivative appearing, then the kth basic ap-
proximation specifier of the corresponding independent
variable has to be nonempty.

A similar explanation holds for the time derivatives
in the PDE. However, one comment about the order
of arguments of u in the approximation specifications
list is in order. Some approximation specifications can
result in a finite-difference scheme, in which case one of
the independent variables acts as the marching variable.
It is important to specify the marching variable as the
last argument of u. In the present case, we have a
time-marching method, so the time variable t is the last
argument.

Finally, the same comments hold for the approxima-
tion specifications to be used for the initial and bound-
ary conditions, with just one addition: in these, the
last argument of the dependent variable is the indepen-
dent variable for which the equation of the boundary
has to be solved. Further, we also need to specify in
which subdomain of the independent variable this con-
dition holds, and this is just an integer; the latter is
specified as the last argument of the independent vari-
able in the corresponding element of the approxima-
tion specifications list. In the present example, since
these conditions have no derivatives appearing, the in-
dependent variables in the corresponding approxima-
tion specifications lists have no arguments, except the
last independent variable in each element, which has a
single-element sublist specifying an integer (= 1 in our
example of rectangular geometry).

2.2. Iteration scheme: The sweep method

The main difference between explicit and implicit
schemes is in the solution procedure. This is because in
the implicit method, the stencil does not permit a closed
form expression for the dependent variable at the latest
value of the marching variable in terms of its values at
earlier marching variable values. A variety of solution
schemes have been developed to solve the system of
algebraic equations, and we shall restrict ourselves to
just one in this paper, namely the Sweep method (see,
for instance [3]).

A brief description of the Sweep method is as fol-
lows. Suppose we are concerned with solving the prob-
lem parabolic1D, presented in Section 2.1 (α and β are
the boundary values of u in the following). The appli-
cation of the implicit method results in the following
system of equations that must be solved at every time
instant:

u[0, n + 1] = α;

(1 + 2r)u[k, n + 1] − ru[k + 1, n + 1]−
ru[k − 1, n + 1] = u[k, n];

u[K, n + 1] = β;

for k = 1, 2, . . . , K−1. Here, r = ∆t/∆x2 is the ratio
of step sizes (∆x and ∆t are, respectively, the x and t
step sizes), and K is the system size in the x-direction.
The middle equation above has three unknowns for
every k, namely u[k − 1, n + 1], u[k, n + 1] and u[k +
1, n + 1]. Now, since u[0, n + 1] is given, we can get a
relation between u[1, n + 1] and u[2, n + 1] for k = 1.
Similarly, we can get a relation between u[2, n+1] and
u[3, n + 1] for k = 2, and so on for k = 3, 4, . . . , K −
1. Suppose we assume the following form, where we
introduce the coefficients L[k] and M [k],

u[k − 1, n + 1] = L[k]u[k, n + 1] + M [k];

for the relationship between u[k−1, n+1] and u[k, n+
1]. In the same way, we can write

u[k, n + 1] =

L[k + 1]u[k + 1, n + 1] + M [k + 1];

Substituting for u[k−1, n+1] and u[k, n+1] using
these two equations in the second of the three equations
above and rearranging terms, we obtain

u[k, n + 1] =(
r

1 + 2r − rL[k]

)
u[k + 1, n + 1]

+
(

u[k, n] + rM [k]
1 + 2r − rL[k]

)
.

Comparison of the last two equations shows that we
can write

L[k + 1] =
r

1 + 2r − rL[k]
,

M [k + 1] =
u[k, n] + rM [k]
1 + 2r − rL[k]

.

These two equations serve as recursion relations for
L and M . Using these recursion relations and the
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boundary conditions, we can compute L[k] and M [k]
for all values k = 1, 2, . . . , K − 1, and from these, we
can compute u in the entire domain.

We have implemented this method in our solver gen-
erator, where Mathematica code for the function that
performs the solution procedure of the linear system
is generated. The details of this code are problem de-
pendent, and only the structure of the code can be as-
certained a priori. At this stage, the dependent vari-
ables are replaced by arrays, and the discretized equa-
tions are simply assignment statements for the array
elements. There are no symbolic manipulations left to
be done, and all assignments involve purely arithmetic
operations inside nested loops. The character and num-
ber of assignment statements in each nested loop de-
pend on the nature of the initial/boundary conditions
and the PDE. As a result, a different iteration function
is generated for each PDE problem. (Our use of the
term ‘iteration function’ is not to be confused with the
terms ‘direct’ and ‘iterative’, used to refer to solution
schemes for linear algebraic systems.) This iteration
function is specified for the particular PDE problem and
can therefore be made rather computationally efficient.
It has type declarations of all the local variables, since
we intend to generate C++ or Fortran90 code for the
iteration function using the MathCode compiler [6].

2.3. A note on system geometry

As explained in Section 2.1, we are able to describe
arbitrary domains of independent variables. We have
managed to do this by making the “independent” vari-
ables depend on one another in general. A few exam-
ples to explain this are in order.

1. A Rectangular Geometry:A geometry list of the
form

{{{x, 0, 2}}, {{y, 0, 1}}}
describes a simple rectangle of sides 2 and 1 in
the xy-plane.

2. A Circular Geometry:A geometry list of the form

{{{x,−Sqrt[1 − ŷ 2],

Sqrt[1 − ŷ 2]}}, {{y,−1, 1}}}
describes a circle of radius 1 in the xy-plane. The
following figure shows a plot of the geometry:

3. An Irregular Geometry:A geometry list of the
form

{{{x, 0, If[y � y1, x1, 1]},
{x, If[y � y1, x2, 1.0], 1.0}},
{{y, 0, 1}}, {{t, 0, t max}}}

describes an irregular geometry: x has two dis-
connected subdomains (“rectangular wells”) up
to a certain value y1 of y, and only one beyond
that.

It is clear from the above three examples that we
are able to describe fairly general geometries in this
manner. However, we should note that we can obtain
only an approximation to the true boundary of the do-
main by our approach, since we generate our domain by
choosing a subset of points from a rectangular distribu-
tion of grid points. For certain geometries (like for in-
stance one in which the nonrectangular domain bound-
ary is made of straight line segments that are parallel to
the coordinate axes) this approximation becomes exact;
for others, the accuracy improves with decreasing step
sizes in the difference scheme used.

2.4. C++ code generation

For the numerical part, we employ the Math-
Code code generator [6] which generates optimized
C++/Fortran 90 code for a suitably stated Mathematica
task. The Mathematica code generated for the iteration
function has type declarations for all the local variables,
as we mentioned in the previous section. However, the
type declaration for the iteration function itself, and for
the solution array, has to be done separately; this part is
also problem specific, since the number of arguments
for the iteration function and the array dimension de-
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pend on the problem dimensionality. We make these
declarations in the run-time part, after evaluating the
set-up part.

Once these declarations are done, we are ready to
compile and run the iteration function. The compila-
tion results in a C++/Fortran 90 code that can be run
transparently as if the code was executed within Math-
ematica. This is achieved by MathCode by loading the
generated code into a separate process and automatical-
ly generating communication code to make it callable.
We can also run the iteration function interpretively
within Mathematica before generating the C++ code.
However, the C++ code runs considerably faster, and
we get a speed enhancement by a factor of 150. We
found that the performance of the generated C++ code
was the same as that of the generated Fortran 90 code;
further, the compiled language can be specified as a
simple option (Language->“Fortran 90” or Language-
>“C++”) to the BuildCode function that is available
in the MathCode system.

2.5. Examples

We give examples of application of some Mathe-
matica modules that we have written to implement the
implicit method. For a more detailed exposition of
our solver generator, we refer the reader to our earlier
work [24].

Here is the way the implicit stencil is generated:

DiscretizeImplicit[

{∂{t,1}u[x, t] = ∂{x,2}u[x, t]},
{u[x[{}, {2, 2, {0, 1}}],
t[{1, 1, {0, 0}}]]}, step]{−u[x, t] + u[x, 1 + t]

step[2]
=

1
step[1]2

(u[−1 + x, 1 + t]−

2u[x, 1 + t] + u[1 + x, 1 + t])}
Here, step is a list of step sizes of the independent vari-
ables. If we used the same approximation specification
but with the function Discretize, which generates an
explicit stencil, here is what we would obtain:

Discretize[

{∂{t,1}u[x, t] = ∂{x,2}u[x, t]},
{u[x[{}, {2, 2, {0, 1}}],

t[{1, 1, {0, 0}}]]}, step]{−u[x, t] + u[x, 1 + t]
step[2]

=

(u[−1 + x, t] − 2u[x, t]

+u[1 + x, 1 + t])/step[1]2}
We can automate the generation of implicit approx-

imation specifications such as the one used above. We
give below an example in which we generate a set of
finite-difference approximation specifications to order
2 in x and order 1 in t. Each of these approximation
specifications is implicit: each replaces ∂{x,2}u[x, t]
by its explicit finite difference at t + 1.

We show below the iteration function using the
Sweep method (Section 2.2), generated for the one-
dimensional diffusion equation of Section 2.1.

Note that the body of the module implements the
Sweep method. The reader might notice the Mathe-
matica Round function in many parts of the module.
This function arises when we calculate the limits for
the loop variables from the geometry list in the given
problem: the round function ensures that the limits are
always integers. For example, if the system extends
from xmin to xmax in the x direction, and the number
of steps in x is nx, the integer corresponding to a val-

ue x1 of x is 1 + Round
[

(−1+nx)(x1−xmin)
x max−x min

]
. When

x1 = xmax = 1, xmin = 0, this is Round[nx],
corresponding to the upper limit in the above module.
When we execute this module, we obtain the solution
of the PDE problem. For this end, we generate a C++
code using the MathCode translator, which can be run
within Mathematica. We will not give the details here,
but only present the results.

Suppose nx and nt define the problem size, and the
lists {0, 1} and {0, t max} define the system size in
the x and t directions. The step sizes are then h =
1/(nx − 1) and τ = t max /(nt − 1), respectively, in
the x and t directions. These numbers can be specified
at runtime.
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The choice {nx, nt, t max} = {100, 100, 0.01} cor-
responds to r = ô/h2 = 0.99, which clearly violates
the criterion r � 1/2 for

Fig. 1.

an explicit method. However, we can see below that
the solution obtained by the implicit method is stable
for this choice, as expected. The following plot is the
solution for the last time slice.

The explicit method gave the following solution to
the same problem, which we show below just to bring
out the difference.

This shows us that we can obtain stable solutions
without regard to the choice of step sizes, and can thus
reach a desired value of the march variable in fewer
steps, illustrating an advantage of the implicit method
over the explicit method. This is because the stability
criterion does not arise for implicit methods. However,
there is a trade-off here. A larger step size results
in a larger truncation error, which is obviated by the
stability requirement in explicit methods. Further, for
each value of the march variable, typically one needs
to perform a larger amount of computation in implicit
methods than in explicit methods: consider for instance
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Fig. 2.

the need for solving the recursion relations for L and M
illustrated in Section 2.2; the amount of computation
is far less for explicit methods. The choice between
explicit and implicit methods is therefore determined
by considerations of truncation error and computational
efficiency.

3. The method of lines

The method of lines is a particular kind of finite-
difference method that transforms a PDE into a sys-
tem of coupled ordinary differential equations (ODEs)
(see, for example, [17]). This is achieved by discretiz-
ing all except one independent variable (usually time),
which is left intact. Consequently, the only derivatives
that remain are those with respect to this variable, and
hence the system that results is a system of ODEs. Our
motivation for implementing this method within our
solver generator comes from our desire to provide PDE
support to the Modelica language [18], that presently
supports only ODEs. Our approach here is to perform
the method of lines on a given PDE problem, and then
generate Modelica code that can be integrated into a
Modelica program as a PDE model. This doesn’t re-
quire any changes in the existing Modelica syntax, and
is therefore very straightforward.

3.1. The method

We illustrate the method of lines with the following
problem:

Note in the above that in the approximation speci-
fications part for the PDE, we have specified no dis-
cretization for the variable t. This corresponds to the
method of lines and results in a system of ODEs for the
variables {u[k, t]|k = 2, 3, . . . , K − 1}:

∂tu[k, t] = u[k − 1, t] − 2u[k, t]

+u[k + 1, t];

The above equation for k = 2, 3, . . . , K−1 becomes
a system of coupled ODEs for the K − 2 variables
u[k, t] that can be presented to an ODE solver. The
method of lines therefore becomes a particular instance
for the solver generator, with the added benefit that we
are able to describe fairly arbitrary geometries.

3.2. Modelica code generation

We treat the resulting ODE problem as a Modelica
model and generate a code for it. This is done by a se-
ries of symbolic transformations. The variable u[k, t]
becomes simply u[k]; time dependence is suppressed
since every variable in Modelica is automatically time
dependent. In the following we show how code for a
Modelica model is generated for a two-dimensional dif-
fusion equation in a simple rectangular geometry (the
problem list parabolic2D is a two-dimensional general-
ization of parabolic1D, and is not shown here),with just
three grid points in each of the two spatial directions,
while time is left undiscretized:

The spatial discretization chosen is the two dimen-
sional central difference scheme (specified in parabol-
ic2D, not shown here). This program can be compiled
by a Modelica translator (for instance the Dymola com-
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piler [4], the MathModelica compiler [9,14,16], or the
Open Source Modelica compiler [8]) and shown to give
correct results.

4. Conclusions

The solver generator that we have built is based on
a symbolic-numeric framework: we use the symbol-
ic power of Mathematica to make certain transforma-
tions on the given PDE problem, and generate code
for its numerical solution in a compiled language like
C++. This combination results in a flexible solution
tool that is also very computationally efficient. In our
earlier work [24], in which we developed this frame-
work, we implemented only explicit finite-difference
methods and stated that we could extend it to implicit
methods. In the present paper we have demonstrated
this extension.

The extension to implicit methods further strength-
ens the framework, since this gives us access to meth-
ods that are free from stability problems, thus giving
us a wider range of solution schemes to choose from.

Further, if chosen judiciously, this can also result in a
reduction in the amount of computation in many cases,
enhancing the efficiency of the solver.

We have also implemented the method of lines, and
have shown that the solver generator can generate code
for a Modelica PDE model in this case. This code
can be directly incorporated into a Modelica program
without any change in the syntax of the language. This
provides a preliminary level of PDE support to the
Modelica language, exploiting the ODE support that
already exists. However, this severely underutilizes the
possibilities of our solver generator, restricting PDE
support to the method of lines. This is a gap that we
are presently working to bridge.

The basic framework within which we have imple-
mented the various difference methods has a high de-
gree of generality, which we have discussed at length
in our earlier paper [24]: it can handle arbitrary num-
bers of dependent and independent variables, and any
approximation order and geometry. This is mainly due
to the fact that we have chosen to develop our solver
generator in Mathematica; a by-product of this choice
is that we can use the rich library of functions avail-
able in Mathematica, and the interactive and graphical
aspects of its notebook environment.

In future, we plan to work on an extended PDE sup-
port to the Modelica language. A Mathematica envi-
ronment for this language, known as MathModelica,
is presently available (see [7,9,14,16]), and we believe
that our solver generator would easily integrate with
this system. Another issue we would like to address is
to test our solver generator with realistic example prob-
lems. This requires cooperation with research groups
that work on specialized problems that involve solving
PDE systems, and we are presently pursuing this line.
Finally, we are thinking hard about the possibilities
and limitations of the solver generator in treating the
finite-element methods.
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