
Scientific Programming 11 (2003) 159–176 159
IOS Press

A performance-prediction model for PIC
applications on clusters of Symmetric
MultiProcessors: Validation with hierarchical
HPF+OpenMP implementation

Sergio Briguglioa, Beniamino Di Martinob and Gregorio Vlada

aAssociazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044, Frascati, Rome, Italy
E-mail: {briguglio,vlad}@frascati.enea.it
bDip. Ingegneria dell’Informazione, Second University of Naples, Italy
E-mail: beniamino.dimartino@unina.it

Accepted July 16, 2002

Abstract. A performance-prediction model is presented, which describes different hierarchical workload decomposition strategies
for particle in cell(PIC) codes on Clusters of Symmetric MultiProcessors. The devised workload decomposition is hierarchically
structured: a higher-level decomposition among the computational nodes, and a lower-level one among the processors of each
computational node. Several decomposition strategies are evaluated by means of the prediction model, with respect to the
memory occupancy, the parallelization efficiency and the required programming effort. Such strategies have been implemented
by integrating the high-level languages High Performance Fortran (at the inter-node stage) and OpenMP (at the intra-node one).
The details of these implementations are presented, and the experimental values of parallelization efficiency are compared with
the predicted results.

1. Introduction

Particle-in-cell (PIC) simulation consists [2] in
evolving the phase-space coordinates of a particle pop-
ulation in certain fields computed (in terms of particle
contributions) only at the points of a discrete spatial
grid and then interpolated at each particle (continuous)
position. Two main strategies have been developed
for the workload decomposition related to porting PIC
codes on distributed memory parallel systems: the do-
main decompositionstrategy and the particle decompo-
sition one. Standard domain decomposition[1,6,7,10,
11] techniques assign different portions of the physical
domain and the corresponding portions of the grid to
different computational nodes, along with the particles
that reside on them. The distribution of all the arrays
among the computational nodes gives this method an

intrinsic scalability of the maximum domain size (that
is, the maximum spatial resolution) that can be simu-
lated with the number of nodes. This makes the do-
main decompositionapproach very attractive, in princi-
ple. Two important problems with these techniques are
however represented by the communication overhead
and the need for dynamic load balancing, both associ-
ated to particle migration from one portion of the do-
main to another one. While the former problem could
possibly affect the parallelization efficiency, depending
on the effective amount of particle migration per time
step, the latter one can be by-passed, at the expense of
a deep restructuring of the original serial code and the
adoption of a message-passing approach. It is gener-
ally accepted, however, that such an approach, based
on manual partition of data, insertion of communica-
tion library calls, handling of boundary cases, is very
complicated, time consuming and error prone, and af-

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

160 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

fects the portability of the resulting program. In order
to avoid these features, it is worth to resort, for dis-
tributed architectures, to the particle decomposition[5]
technique, which is suited to be implemented, with rel-
atively little effort, by the use of high-level program-
ming languages, such as the High Performance Fortran
(HPF) [8]. Particle decomposition consists in statically
distributing the particle population among the compu-
tational nodes, while replicating the data relative to grid
quantities. As no particle has to be transferred (reas-
signed) from one computational node to another, the
communication and load-balancing problems associ-
ated to particle migration are automatically overcome.
The implementation of such a strategy with high-level
languages is then, in principle, relatively straightfor-
ward. On the opposite side, an overhead on memory
occupancy, given by the replication of data related to
the domain, and a computation overhead related to the
updating of the fields (each node manages only the par-
tial updating associated to its portion of particle popula-
tion) forbid a good scalability of the maximum domain
size with the number of nodes, and limit the efficiency
of such a technique to cases in which both memory and
computational loads on each node are dominated by the
particle-related ones.

When porting a PIC code on a hierarchical distribut
ed-shared memory system such as a cluster of SMPs, a
two-stage workload decomposition can be envisaged:
a distributed-memory level decomposition (among
the computational nodes), and a shared-memory one
(among the processors of each node). The latter
decomposition qualitatively differs from that at the
distributed-memory level. Indeed, the alternative be-
tween particle and domain decomposition no longer
corresponds to the alternative between high-level and
low-level languages: even in the framework of a do-
main decompositionapproach, particle migration from
one processor to another does not require communica-
tion, and a high-level parallel programming language
such as OpenMP [12] can still be used. Both the do-
main decompositionstrategy and the particle decompo-
sition one can then be implemented within the frame-
work of a high-level language programming and inte-
grated with the particle decompositionstrategy devised
at the distributed-memory level, looking for an optimal
balance of merits and defects.

In this paper we present a performance-prediction
model describing the above mentioned different hier-
archical workload decomposition strategies, in terms
of efficiency and memory occupancy. The prediction-
model results are compared with the experimental re-

sults from a high-level language based porting (ob-
tained with integration of HPF and OpenMP) of the Hy-
brid MHD-Gyrokinetic Code (HMGC) [3], which in-
cludes all the relevant properties of general PIC codes.

The paper is structured as follows. Section 2 de-
scribes the main computational aspects of the chosen
application. It introduces the performance-prediction
model and its application to the different decomposi-
tion strategies devised, both on distributed memory ar-
chitectures and on distributed-shared memory ones, an-
alytically modeling and predicting their main features
in terms of the expected parallelization efficiency and
memory requests. The implementation of such strate-
gies, based on integrating the HPF and OpenMP pro-
gramming environments by means of the EXTRINSIC
feature of the HPF language, is presented in Section 3.
Section 4 reports the experimental results obtained by
running the corresponding parallel versions of HMGC
on a IBM SP. Finally, the main results are summarized
in Section 5.

2. Prediction model of hierarchical workload
decompositions for PIC applications

Particle simulation [2] consists in evolving the phase-
space coordinates of a set of Npart simulation particles
(each of them in fact representing, by its weight w,
a cluster of physical particles) in the electromagnetic
fields computed, at each time step, consistently with the
particle distribution function (through the calculation
of its suited moments).

The most widely used method for particle simulation
is represented by the PIC approach. At each time step,
a PIC simulation code

– computes the electromagnetic fields only at the
points of a discrete spatial grid (field solverphase);

– interpolates the fields at the (continuous) particle
positions in order to evolve particle phase-space
coordinates (particle pushingphase);

– collects particle contribution to the required mo-
ment of the distribution function (e.g., pressure) at
the grid points to close the field equations (pres-
sure computationphase).

The condition for an accurate description of the
plasma behaviour can be written as
Nppc ≡ Npart/Ncell � 1, where Ncell is the number
of grid cells and Nppc is the average number of parti-
cle per cell. As one is typically interested in simulat-
ing small-scale turbulence, an important goal in plasma

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 161

simulation is represented by dealing with large number
of cells and, a fortiori, for the above condition on Nppc,
large number of particles. Such a goal requires resort-
ing to parallelization techniques aimed to distribute the
computational loads related to the particle population
among several processors.

Let us estimate such loads, in terms of wall-clock
time, t, and memory needed to store particle and field
arrays, M . In many concrete situations, as a matter
of fact, periodic spatial domains are considered, and
the problem admits solution in terms of normal modes.
This feature allows to solve the equations for the fields
in Fourier space. In this paper, for the sake of simplicity,
we assume that this is the case, although in the general
case the resort to finite difference methods could be
needed at least for some of the spatial coordinates. We
also assume that Fast Fourier Transform (FFT) is used
to transform electromagnetic fields from the Fourier
space to the real one, as well as the pressure field from
the real space to the Fourier one.

We can then approximate time and memory (the
pedix S means “serial”) as:

tS ≈ tFFTNcell log2 Ncell + tintNpart, (1)

MS ≈ (mfield + mpress)Ncell + mpartNpart. (2)

Here tFFT is a coefficient (with the dimensions of
a time) related to the details of the FFT algorithm,
while tint corresponds to the wall-clock time con-
sumed, per particle, by the interpolation/assignment
operations from the grid to the particle position and
viceversa. The quantities mfield, mpress and mpart are
the amounts of memory needed to store, respectively,
the real-space fields and pressure at each grid point and
the phase-space coordinates and weights for each parti-
cle. Note that, in the view of the qualitative arguments
we want to present in this Section,we have neglected, in
Eq. (1), the amount of calculations needed to solve the
field equations in the Fourier space in comparison with
that needed to transform the fields back and forth from
Fourier to real space. In the same way, in Eq. (2), we
have included the amount of memory needed to store
the Fourier harmonics of the fields into that needed to
store the real-space fields.

2.1. Decomposition strategies on distributed memory
architectures

Two main techniques have been adopted in paral-
lelizing PIC codes on distributed memoryarchitectures.
The first approach is based on the so-called domain
decomposition[10]: different portions of the physical

domain and of the corresponding grid are assigned to
nnode different computational nodes, along with the
particles that reside on them. In this way the memory
resources required to each node are reduced by a factor
equal (in an average sense) to nnode. An almost lin-
ear scaling of the attainable physical-space resolution
(more precisely, the maximum number of spatial cells)
with the number of nodes is then obtained. This can
be seen from the following expression for the memory-
per-node requirement:

MD ≈ 1
nnode (3)
[(mfield + mpress)Ncell + mpartNpart] .

From such expression we can obtain the maximum
value of Ncell (ND

cellmax
) by imposing the condition

MD ≤ M0, where M0 is the Random Access Memory
(RAM) equipment of each node. This yields

ND
cellmax

=
M0nnode

mfield + mpress + mpartNppc
(4)

≈ M0nnode

mpartNppc
,

where we have neglected the quantity mfield + mpress

in comparison with mpartNppc, because of the general
PIC condition Nppc � 1.

On the opposite side, such a decomposition tech-
nique presents two relevant problems:

– inter-node communication is required to update
the fields at the boundary between two different
portions of the domain, as well as to transfer those
particles that migrate from one domain portion to
another;

– load imbalance can occur because of particle mi-
gration.

Both problems can cause efficiency degradation for
the parallel implementation. The effect of the commu-
nication overhead can be quantified by the following
approximate evaluation of the domain decomposition
wall-clock time:

tD ≈ 1
nnode

(5)

[
tFFTNcell log2 Ncell + tintNpart + tcom

(
nnode

Ncell

) 1
3

Npart

]
,

with tcom being the communication time per real vari-
able. In the above expression, we have estimated

162 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

the fraction of particles subjected to migration from
one portion of the domain to another as the ratio be-
tween the number of boundary grid cells, proportional
to (Ncell/nnode)

2
3 , and the whole number of cells as-

signed to each node, proportional to Ncell/nnode; in
other words, we have assumed that the time-step dis-
tance covered by each particle is of the same order of
the cell size, as it is usually required by accuracy and/or
stability criteria. Such a fraction is then approximately
given by (Ncell/nnode)−

1
3 .

In terms of speed-up values, su, defined as the ratio
between the serial wall-clock time – Eq. (1) – and the
parallel one – Eq. (5), in this case –, we have

sD
u≈

nnode

(
1 +

tFFT

tint

log2 Ncell

Nppc

)

1 +
tFFT

tint

log2 Ncell

Nppc
+

tcom
tint

(
nnode

Ncell

) 1
3
.(6)

From this expression it can be seen that, in the limit
Nppc � 1, the goal of efficient parallelization impose
a limit on the number of nodes that can be used; the
condition η ≡ su/nnode > η∗ can indeed be written as

nnode <

(
1
η∗

− 1
)3(

tint

tcom

)3

(7)[
1 +

tFFT

tint

log2 Ncell

Nppc

]3
Ncell.

The load-balancing problems related to particle mi-
gration can make such estimations meaningless, unless
a dynamic load balancing is ensured at the expenses of
further computation and inter-node communication and
of a greater effort in the implementation of the parallel
version of the code.

Finally, both reassignment of migrating particles to
nodes and dynamic load balancing preclude the usage
of a high-level programming language such as HPF. A
message passinglibrary, such as MPI, has to be used
instead, involving manual partition of data, insertion
of communication library calls, handling of boundary
cases. This is generally very complicated, time con-
suming and error prone, and affects the portability of
the resulting program.

The aim of avoiding reassignment and load balanc-
ing problems and – more stringently – that of adopting
high-level parallel programming languages motivated
the development of an alternative approach, based on
particle decomposition[5]. It corresponds to replicat-
ing the whole spatial domain on each node, while dis-
tributing the particle population. No particle migrates
from one node to another, because no particle meets,

in its motion, the unphysical boundaries introduced by
domain decomposition. Moreover, load balancing is
perfectly ensured during any simulation.

On the opposite side, the memory request associated
to the grid fields, which are replicated on each node,
gives rise to a bottle-neck on the scalability of physical
resolution with nodes: even in the limit nnode → ∞, in
which each node must treat a vanishingly small num-
ber of particles, the maximum resolution that can be
reached is determined by the largest size of the (repli-
cated) grid arrays that can be stored on each node.

Similarly, a bottle-neck in the parallelization effi-
ciency is given by the updating of the electromag-
netic fields on the grid, as the related computation
(FFT included) is no longer distributed among the
nodes. Further departures from ideal memory distribu-
tion (∝ 1/nnode) and speed-up (∼ nnode) are related
to the fact that, in order to avoid competitions between
nodes updating the same element of the (replicated)
pressure array and, more generally, a very frequent
inter-node communication of the updated elements, an
auxiliary copy of this array must be distributed to each
node: because of the associative and distributive prop-
erties of the updating laws for the pressure array with
respect to the contributions of different particles, the
copy can be updated with no regard to what the other
nodes are doing; however, after the pressure computa-
tion, it will retain only the contribution of the corre-
sponding portion of the particle population. Different-
node copies have then to be summed together into the
whole-pressure array before updating the electromag-
netic fields, and this fact introduces overheads in inter-
node communication and memory requirements [5].

Such features of the particle decompositionon dis-
tributed memory architectures are summarized by the
following approximate expressions of memory-per-
node requirements, wall-clock time and speed-up:

MP ≈ (mfield+2mpress)Ncell+mpart
Npart

nnode
, (8)

tP ≈ tFFTNcell log2 Ncell + tint
Npart

nnode
+ tcom

(9)
Ncell log2 nnode,

sP
u ≈

[
nnode

(
1 +

tFFT

tint

log2 Ncell

Nppc

)]/
(10)

[
1 +

nnode

Nppc

(
tFFT

tint
log2 Ncell

+
tcom
tint

log2 nnode

)]
.

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 163

100

102

104

106

108

1 10 100 1000

N
cell

n
node

Fig. 1. Regions of allowed resolution and high efficiency (η > 50%)
in the (nnode, Ncell) space. For the domain decompositionstrat-
egy, the allowed resolution, corresponding to Eq. (4), is represented
by the area below the solid line; for the particle decomposition
case, it corresponds to Eq. (11) and the area below the dashed
line. The high-efficiency regions for the two strategies are those on
the left of the dashed-dotted line and, respectively, the dotted line.
Both lines correspond to an efficiency value η = 50%. Here we
have fixed Nppc = 64, M0 = 1024 Megabytes, mpart = 64
bytes, mfield = 48 bytes, mpress = 8 bytes, tcom/tint = 0.5,
tFFT/tint = 0.1.

In writing Eq. (8), we have taken into account the
further amount of memory related to the inclusion of
the auxiliary copy of the pressure array. Moreover, we
have assumed that the reduction of the different-node
contributions to the pressure field is performed by vec-
torized and collective minimum-cost communications,
yielding a logarithmic dependence of the communica-
tion term on nnode.

From Eqs (8) and (10), we see that the maximum
resolution (NP

cellmax
) and the condition for efficient par-

allelization (sP
u /nnode > η∗) are given, respectively,

by

NP
cellmax

=

M0nnode

(mfield + 2mpress)nnode + mpartNppc
(11)

and

log2 Ncell <

tintNppc

(
1
η∗ − 1

)
− tcomnnode log2 nnode

tFFT

(
nnode − 1

η∗

) , (12)

or

nnode <

Nppc

[(
1
η∗

− 1
)

+ 1
η∗

tFFT
tint

log2 Ncell
Nppc

]
(

tFFT

trint
log2 Ncell +

tcom
tint

log2 nnode

) . (13)

The latter condition, given in an implicit form,means
that the number of particles per cell per node is so high
that the particle computation dominates over the grid
one [5]. If such a condition is satisfied, the former
one, for the maximum resolution, essentially reduces
to that obtained for the domain decompositionstrat-
egy, Eq. (4). Figure 1 shows the regions in the space
(nnode, Ncell) characterized by allowed resolution and
high efficiency (η > η∗, with η∗ = 50%). Both the
domain decompositioncase and the particle decom-
position one are considered, for given values of the
single-node memory resources, M0, and of the other,
simulation-related, parameters that appear in Eqs (4),
(6), (11) and (12). In particular, as an example, we have
fixed Nppc = 64, M0 = 1024 Megabytes, mpart = 64
bytes, mfield = 48 bytes, mpress = 8 bytes. More-
over, on the basis of empirical estimates related to the
specific platform considered in Section 4, we assume
tcom/tint = 0.5, tFFT/tint = 0.1 (note that the same
reference to such platform will be done, in the follow-
ing, when estimating the other time ratios). We see
that, for a limited number of nodes (much lower than
the number of particles per cell), there is no reason to
adopt the much more complicate (and less efficient)
domain decompositiontechnique. This is no longer
true for higher number of nodes: particle decomposi-
tion comes out to be both inefficient and limited in res-
olution (Ncell) by memory constraints, while domain
decomposition allows efficient high-resolution simula-
tions. Note, however, that within the domain decom-
position framework, due to the strong dependence of
the efficiency on tcom/tint (see Eq. (7)) a slight in-
crease of such a parameter can imply a significant re-
duction of the high-efficiency region or even make the
high-efficiency condition incompatible with the mem-
ory constraint.

2.2. Decomposition strategies on distributed-shared
memory architectures

The increasing relevance that hierarchical distribut-
ed-shared memory architectures are assuming in High
Performance Computing requires a deeper considera-
tion of the respective merits of the two decomposition
techniques examined in the previous Section, also in
the view of adopting mixed decomposition schemes.

164 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

Let us assume that the target architecture is com-
posed by nnode computational nodes, each of them be-
ing a shared memory multiprocessor system,with nproc

processors. We still indicate the node memory resource
as M0.

The workload decomposition we consider here con-
sists in a two-stage procedure: a higher-level decom-
position among the computational nodes, and a lower-
level one among the processors of each computational
node. We have already observed that, at the inter-node,
distributed memory, level, only the particle decompo-
sition strategy can be implemented within the frame-
work of a high-level language such as HPF, while the
domain decompositionstrategy compels to resort to ex-
plicit message-passing libraries, such as MPI. At the
intra-node, shared memory, level, both techniques can
instead be developed in a high-level parallel program-
ming environment, like OpenMP.

2.2.1. Intra-node particle decomposition
The most natural intra-node parallelization strategy

for shared memory architectures consists in distribut-
ing the particle loop iterations (both for the particle-
pushing loop and for the pressure-updating one) among
different processors, without respect to the portion of
the domain in which each particle resides. For this
reason, such a technique can be referred to as a parti-
cle decompositionone. It is fully satisfactory for the
particle-pushing loop; with regard to the pressure loop,
however, caution must be payed to protect the pressure
updating from race conditions, that is to ensure mutual
exclusionamong threads accessing shared data. Such
conditions can be avoided at the expenses of memory
occupation: the computation for each update is split
among the threads into partial computations, each of
them involving only the contribution of the particles
managed by the responsible thread; then the partial re-
sults are reduced into global ones. The easiest way to
implement such a technique consists, similarly to the
inter-node particle decompositioncase, in introducing
an auxiliary array with the same dimensions and extent
as the pressure-array copy assigned to the node and
making each processor working on a separate copy of
the auxiliary array. There is no conflict, in this way,
between processors updating the same element of the
array. At the end of the loop, however, each copy con-
tains only the partial pressure due to the particles man-
aged by the owner processor. Each processor must then
add its contribution, outside the loop, to the global node
array in order to obtain the whole-node contribution.

We can conjugate this intra-node technique with the
particle decompositioninter-node strategy discussed in
the previous Section. We indicate the resulting work-
load decomposition, which distributes particles both to
nodes and processors without any reference to the por-
tion of domain they reside in, as the particle-particle
strategy. The memory-per-node requirement and the
wall-clock time can then be approximated by the fol-
lowing expressions:

MPP ≈ (mfield + 2mpress)Ncell

+mpressNcellnproc + mpart
Npart

nnode
, (14)

tPP ≈ tFFTNcell log2 Ncell + tint
Npart

nprocnnode
(15)

+trednprocNcell + tcomNcell log2 nnode,

sPP
u ≈

[
nnodenproc

(
1 +

tFFT

tint

log2 Ncell

Nppc

)]/
[
1 +

nnodenproc

Nppc

(
tF F T

tint
log2 Ncell (16)

+
tcom
tint

log2 nnode

)
+

tred
tint

nnoden
2
proc

Nppc
)

]
.

We then find, for the maximum value of Ncell al-
lowed by the memory constraint, Eq. (14), and the
condition for efficient parallelization (η > η∗, with
η ≡ su/nnodenproc) are given, respectively, by

NPP
cellmax

= (17)

M0nnode

[mfield + mpress(2 + nproc)]nnode + mpartNppc

and

log2 Ncell <

[
tintNppc

(
1
η∗

− 1
)
− nprocnnode

(trednproc + tcom log2 nnode)
]/

[
tFFT

(
nprocnnode − 1

η∗

)]
, (18)

or, in implicit form,

nnode <[
Nppc

(
1
η∗

− 1
)

+
1
η∗

tFFT

tint

log2 Ncell

Nppc

]/
(19)

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 165

100

102

104

106

108

1 10 100 1000

N
cell

n
node

resolution

efficiency

100

102

104

106

108

1 10 100 1000

N
cell

n
node

resolution

efficiency

Fig. 2. Regions of allowed resolution and high efficiency (η > 50%) for the particle-particle decomposition. The allowed resolution is
represented by the area below the resolution curves, corresponding to Eq. (17). The high-efficiency region is that on the left of the efficiency
curves, corresponding to Eq. (18). Here we have fixed tred/tint = 0.2, and the other parameters as in Fig. 1. The left frame considers the
case with nproc = 8 and three different values of the number of particles per cell: Nppc = 16 (solid lines), Nppc = 64 (dashed lines)
and Nppc = 256 (dotted lines). The right frame refers to the case with Nppc = 64 and three different values of the number of processors:
nproc = 2 (dotted lines), nproc = 4 (dashed lines) and nproc = 8 (solid lines).[

nproc

(
tFFT

tint
log2 Ncell +

tcom
tint

log2 nnode

)

+
tred
tint

n2
proc

]
.

Note that, as in the case of purely-distributed-
memory particle decompositionapproach, in the re-
gion of parameters in which the efficiency condition,
Eq. (19), is satisfied, Eq. (17) essentially reduces to
Eq. (4). Such region, however, is reduced, in compari-
son with that case, at least by a factor nproc.

Figure 2 (left) shows the regions of allowed reso-
lution and high efficiency (η > η∗, with η∗ = 50%)
for the particle-particlestrategy for three values of the
number of particles per cell, Nppc, with nproc = 8,
tred/tint = 0.2 and the other parameters as in Fig. 1.
The qualitative arguments exposed with reference to
Fig. 1 maintain their validity, although the reduction
of the efficiency region for this composed method is
apparent. Note, however, the different notion of “high
efficiency” in the two cases: speed-up ∼ nnode for
the purely-distributed-memory decomposition; speed-
up ∼ nnodenproc in the present one. Note also that
higher values of Nppc penalize the maximum achiev-
able resolution, while improving the efficiency. Vicev-
ersa, for low values of Nppc, parallelization is expected
to be very inefficient even for very low values of nnode.
Figure 2 (right) shows the same regions for Nppc = 64

and three values of nproc: nproc = 2, nproc = 4 and
nproc = 8. The maximum resolution only slightly
depends on nproc because of the quite high value of
Nppc (cf. Eq. (17)); on the opposite, because of the re-
duction term in Eq. (18), the efficiency decreases with
increasing nproc.

2.2.2. Intra-node domain decomposition
In Section 2.2.1 we have examined the main fea-

tures, in terms of memory requirements and efficiency,
of the decomposition strategies based on a particle de-
composition at the intra-node level. The main defect of
this approach is represented by the enhancement of the
memory load on each computational node. This further
load, in fact, comes out to be negligible (in comparison
with the distributed particle-array one) if the efficiency
condition is satisfied. In the general case, however, one
could be more interested in reaching the highest spatial
resolution than in getting efficient parallelization (this
is especially true for scientific, not routine, comput-
ing). In such a general situation, the terms proportional
to nproc in Eq. (17) (associated to the storage of the
pressure-array copies) put the strongest constraint on
the scalability of the problem size with nnode: an upper
limit on the allowed number of Ncell is obtained, ap-
proximately given by M0/[mfield+mpress(2+nproc)],
with no dependence on nnode.

166 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

These considerations justify the introduction of a dif-
ferent intra-node decomposition strategy, based on the
domain decompositionconcept. It consists in decom-
posing the domain and assigning different portions of
the domain and the residing particles to each processor.
The pressure loop is executed in the form of a parallel
loop over processors in which a loop over the particle
belonging to the processor is nested. Race conditions
are automatically avoided in the pressure updating, al-
though they can still occur in the sorting phase, in which
each particle is assigned to a domain portion and la-
belled by an intra-portion index. The negative impact
of such race conditions on the parallelization efficiency
can be contained by limiting the sorting phase to those
particles that have changed domain portion in the last
time step.

Load balancing can be enforced quite easily, by
adopting a finer subdivision of the domain, and adding
elementary portions to the load assigned to a given
processor until the number of particles assigned to the
processor approximately equals the average number
of particles per processor, (Npart/nnode)/nproc. Dif-
ferently from the distributed memory context, such a
load balancing does not require any communication be-
tween processors. Moreover, the increment of mem-
ory requirements is very contained (essentially limited
to the integer labels of the sorted particles), and does
not increase, as it does in the particle decomposition
intra-node approach, with the number of processors per
node.

Let us combine such a strategy with the particle
decompositiontechnique envisaged for the inter-node
level. Memory, time and speed-up will be given, in this
particle-domainapproach, by

MPD ≈ (mfield + 2mpress)Ncell (20)

+(mpart + δmpart)
Npart

nnode
,

tPD ≈ tFFTNcell log2 Ncell

+tint
Npart

nprocnnode
+ tcomNcell log2 nnode

+tsort
Npart

nnode

(
nnodenproc

Ncell

) 1
3

, (21)

sPD
u ≈ nnodenproc

(
1 +

tFFT

tint

log2 Ncell

Nppc

)/
{

1 +
nproc

tint

[
nnode

Nppc
(tFFT log2 Ncell+ (22)

tcom log2 nnode) + tsort

(
nnodenproc

Ncell

) 1
3
]}

.

Here δmpart refers to the integer-label particle ar-
rays, and tsort is related to the computation needed to
order particles according to the subdomain they belong
to (the factor (nnodenproc/Ncell)

1
3 has been introduced

assuming that the particle sorting is limited to the frac-
tion of particles that changed domain portion in the
last time step). Note that such a computation is pro-
portional to Npart/nnode, with no benefit coming from
the intra-node parallelization. This is due to the pro-
tection of critical sections from race conditions, which
serializes the computation.

The maximum value of Ncell compatible with the
memory constraint and the high-efficiency condition
(η > η∗) are then given, respectively, by

NPD
cellmax

= [M0nnode]/

[(mfield + 2mpress)nnode + (mpart (23)

+δmpart)Nppc]

and (
nprocnnode − 1

η∗

)
Nppc

tFFT

tint
log2 Ncell (24)

+
tcom
tint

nprocnnode

Nppc
log2 nnode

+
tsort
tint

(
n

1
3
noden

4
3
proc

N
1
3
cell

)
<

1
η∗

− 1.

Note that, differently from the particle-particlecase,
the efficiency condition not only puts an upper limit,
for given values of Ncell and nproc, on the number of
nodes, but also defines, for a given nnode, a lower limit
on Ncell. This is related to the last term on the left hand
side of Eq. (24), and it is due to the fact that particle
migration from one domain portion to another and the
corresponding particle-sorting (serial) computation in-
creases with the surface-to-volume ratio of the domain
portions, which is proportional to (nnodenproc/Ncell)

1
3 .

The order of magnitude of such a lower limit can be
evaluated by considering the regime in which the sort-
ing term is the dominant one:

Ncell �
(

η∗
1 − η∗

)3(
tsort
tint

)3

nnoden
4
proc. (25)

Figure 3 (left) shows the regions of allowed res-
olution and high efficiency (with η∗ = 50%) for
this “particle-domain” decomposition, at three differ-

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 167

100

102

104

106

108

1 10 100 1000

N
cell

n
node

resolution

efficiency

100

102

104

106

108

1 10 100 1000

N
cell

n
node

resolution

efficiency

Fig. 3. Curves of allowed resolution and high efficiency (η > 50%) for the particle-domaindecomposition, corresponding to Eqs (23) and (24),
respectively. We have fixed tsort/tint = 1, δmpart = 24 bytes, and the other parameters as in Fig. 2. The left frame refers to the case with
nproc = 8 and three different values of the number of particles per cell: Nppc = 16 (solid lines), Nppc = 64 (dashed lines) and Nppc = 256
(dotted lines). The right frame refers to the case with Nppc = 64 and three different values of the number of processors: nproc = 2 (dotted
lines), nproc = 4 (dashed lines) and nproc = 8 (solid lines).

ent values of Nppc. The allowed-resolution regions
and the high-efficiency ones correspond to Eq. (23) and
(24), respectively. Here we have fixed tsort/tint = 1,
δmpart = 24 bytes, and the other parameters as in
Fig. 1. With such parameters, low values on Nppc

(Nppc = 16 in this case) do not allow to get efficient re-
sults even for very low number of nodes. Note also that,
because of the reduced extent of the high-efficiency
region, once given a certain resolution level, adopting
a number of nodes higher than the required minimum
(the value corresponding to the maximum-resolution
curves in Fig. 3 is almost useless, with respect to the
speed-up values that can be obtained.

Figure 3 (right) shows the resolution and efficiency
boundaries for Nppc = 64 and three values of nproc. A
single curve is shown for the maximum resolution, as
there is no dependence on nproc in Eq. (23). The depen-
dence of the high-efficiency region extent on nproc is
due both to the replicated character of the grid computa-
tion (insensitive to nproc and, therefore, inefficient) and
to the fact that particle-sorting computation increases
with nproc, as explained with regard to Eq. (24).

3. Implementation of the decomposition strategies

In this Section we describe the implementation, on
hierarchical distributed-shared memory architectures,
of the different two-stage parallelization strategies dis-

cussed in Section 2: the particle-particledecomposi-
tion strategy and the particle-domaindecomposition
one. As stated above, such strategies, differently from
strategies involving an inter-node domain decomposi-
tion, can be implemented in the framework of high-
level languages – namely, HPF at the inter-node stage
and OpenMP at the intra-node one. Within this frame-
work, the inter-node decomposition and the intra-node
one can be integrated with negligible programming ef-
forts with the help of the HPF extrinsic procedures
HPF LOCAL. High Performance Fortran programs may
call non-HPF subprograms as extrinsic procedures[8].
This allows the programmer to use non-Fortran lan-
guage facilities, handle problems that are not efficiently
addressed by HPF, hand-tune critical kernels, or call
optimized libraries. An extrinsic procedure can be de-
fined as explicit SPMD code by specifying the local
procedure code that is to execute on each computational
node. High Performance Fortran provides a mecha-
nism for defining local procedures in a subset of HPF
that excludes only data mapping directives, which are
not relevant to local code. If a subprogram definition or
interface uses the extrinsic-kind keywordHPF LOCAL,
then the HPF compiler will assume that the subpro-
gram is coded as a local procedure. All distributed
HPF arrays passed as arguments by the caller to the
(global) extrinsic procedure interface are logically di-
vided into pieces; the local procedure executing on a
particular computational node sees an array containing

168 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

just those elements of the global array that are mapped
to that node. A call to an extrinsic procedure results in
a separate invocation of a local procedure on each node.
The execution of an extrinsic procedure consists of the
concurrent execution of a local procedure on each ex-
ecuting node. Each local procedure may terminate at
any time by executing a RETURN statement. However,
the extrinsic procedure as a whole terminates only after
every local procedure has terminated.

In our case, we will use the extrinsic mechanism to
embed the computations that can express multiple lev-
els of parallelism (inter- and intra-node) into calls to
extrinsic procedures. Each local procedure executing
on a given node will manage only the portion of the ar-
rays assigned to that node. The bodies of the extrinsics
can therein be parallelized at the intra-node, shared-
memory level, by inserting suited OpenMP directives.
The extrinsic procedures are then simply compiled by
an OpenMP compiler, while the calling HPF programs
is compiled by a HPF compiler; finally, the resulting
objects are linked by the HPF linker.

We apply such techniques to a specific PIC code,
HMGC [3], developed, in the framework of controlled
nuclear fusion research. The code consists of approx-
imatively 16,000 F77 lines distributed over more than
40 procedures. Particles move in a three-dimensional
toroidal spatial domain, described in terms of quasi-
cylindrical coordinates: the minor radius of the torus,
r, and the poloidal and toroidal angles, ϑ and ϕ, respec-
tively. Each particle is characterized by its phase-space
coordinates (real space and velocity space ones) and its
weight w.

The most relevant computational effort is concen-
trated in the loops over the particle population related,
respectively, to the pushing phase and the pressure com-
putation one. We will concentrate, in the following,
on the pressure loop, whose distribution represents the
bottle-neck in the parallelization of a PIC code (the
particle-pushing loop is indeed inherently parallel, with
no communication required by non-local accesses).

The pressure loop can be schematized by Fig. 4.
Here, n part≡ Npart is the number of particles,

and f r, f theta and f phi are nonlinear func-
tions of the corresponding real-space particle coordi-
nates, determining the indices of the closest of the
nr×nϑ×nϕ spatial grid points. Moreover,r,. . . stays
for the radial and the other, not reported, phase-space
coordinates. The pressure p at that grid point receives a
contribution from the particle determined by the func-
tion h, which takes into account the relative position
of the particle and the grid point, the velocity-space

Fig. 4.

coordinate of the particle and its weight w. In practice,
a more complicate assignment prescription is adopted,
which involves a higher number (eight) of neighbour-
ing grid points, in order to get a less noisy descrip-
tion of the pressure field. In the spirit of the present
discussion, however, we may neglect such details.

In the next sections we will discuss in detail the
decomposition strategies we adopt at the inter-node
(HPF) level and the intra-node (OpenMP) one.

3.1. Inter-node decomposition strategy

The particle decompositionapproach consists (see
Section 2.1) in statically distributing the particle-
population data among different nodes, while replicat-
ing the data relative to grid quantities. Its implementa-
tion in HPF is, in principle, relatively straightforward
and has been discussed in Ref. [5]. In particular, HPF
directives for data distribution can be applied to all the
data structures (e.g., r(n part)) related to the particle
quantities. By embedding the particle loops related to
the particle-pushing and the pressure-updating phases
into calls to extrinsic procedures, the distribution of
the loop iterations among the nodes according to the
owner computesrule applied to the distributed data is
outomatically enforced.

The updating of particle pressure at the grid points
presents two strictly linked problems: (i) such a quan-
tity is replicated, and thus must be kept consistent
among the nodes; (ii) each element of the pressure array
p takes contribution from particles that reside on differ-
ent nodes. The strategy adopted to solve this problem
relies on the associative and distributive properties of
the updating laws for the pressure array with respect
to the contributions given by every single particle: the
computation for each update is split among the nodes
into partial computations, involving the contribution of
the local particles only; then the partial results are re-
duced into global results, which are broadcasted to all
the nodes.

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 169

The scheme to handle with this “inhibitor of par-
allelism” within the loops over the particles, can be
implemented in HPF by restructuring the code in the
following way:

– the data structure that store the values of the pres-
sure, is replaced, within the bodies of the dis-
tributed loops, by a corresponding data structure
augmented by one dimension (ppar(nr, nϑ, nϕ, :)),
with extent equal to the number of available nodes;

– this temporary data structure is distributed, along
the added dimension, over the nodes; each of the
distributed “pages” will store the partial computa-
tions of the pressure, which include the contribu-
tions of the particles that are local to each node;

– at each iteration of the loop over the particles,
the contribution of the corresponding particle to
an element of the pressure array is added to the
appropriate element of the distributed page;

– at the end of the iterations, the temporary data
structure is reduced along the added and dis-
tributed dimension, and the result is assigned to
the corresponding original data structure; this is
implemented by using the HPF intrinsic reduction
function SUM.

The only need for communication is related to this
reduction and the subsequent broadcast, and thus it is
embedded in the execution of the intrinsic function. If
the underlying HPF compiler supports the implemen-
tation of highly optimized versions of the HPF intrin-
sic procedures for distributed parameters, these com-
munications are performed as vectorized and collec-
tive minimum-cost communications. The restructured
calling HPF program then looks like Fig. 5.

Note that each local procedure executes only the set
of loop iterations that access the particles local to the
node (l=1,UBOUND(r, dim=1)) and updates only
the page of p par assigned to it. At the end of the
execution of the local extrinsic procedure, all the partial
updates of the components ofp par are collected in the
global-HPF-index-spacep par, which is then reduced
to p.

3.2. Intra-node decomposition strategies

Once completed the distributed memory work de-
composition, in the framework of a particle decom-
positionapproach, the issue of the intra-node decom-
position must be addressed. Here, we assume that
each node is represented by a shared-memory multi-
processor machine, with a single thread running on

each processor. It will execute particle loops embed-
ded in local extrinsic procedures, like that described in
Section 3.1.

The natural parallelization strategy for shared mem-
ory architectures consists in distributing the work
needed to update particle coordinates among different
threads (and, then, processors), with no respect to the
portion of the domain in which each particles resides.
For this reason this workload decomposition can be re-
ferred to as a particle decomposition. OpenMP allows
for a straightforward implementation of this strategy:
the parallel do directive can be used to distribute
the loop iterations over the particles. All the variables
that are set and then used within the do loop are ex-
plicitly defined as private, with the other ones being
shared by default. The immediate intra-node par-
allelization of the pressure loop is however inhibited,
as in the inter-node case, by the updating of the array
p par. Such a computation is indeed an example of ir-
regular array-reduction operation(cf., e.g., [9]), where
the elements to be reduced are the particle coordinates
(the elements of the arrays r, theta, phi), and the
results of the reduction are the pressure values (the ele-
ments of the arrayp par). The operation is a reduction
because the updating function h has associative and
distributive properties with respect to the contributions
given by every single particle (i.e. with respect to the
quantities r(l), . . .w(l)), but it is not regular because
the indices of the updated element (j r, j theta,
j phi) are not induction variables of the loop,
but functions of it (j r = f r(r(l)), j theta =
f theta(theta(l)), j phi = f phi(phi(l))),
having the property that for two given values of the in-
duction variable l (li, lj , with li
= lj) the correspond-
ing computed values of the updating indices can be
equal: (j r,j theta,j phi)i =(j r,j theta,
j phi)j . If particles that concur to updating the same
element of the array p par are assigned to different
processors, a race conditioncan occur, if the processors
try to update the array element “simultaneously”. In
such a case, the correctness of the parallel computation
would be affected, because some of the contributions
of the concurrent particles would be retained, with the
others being lost.

In the following we discuss how this race condition
can be avoided by applying, to the parallelization of
the pressure updating loop, one of the two different
intra-node decomposition strategies presented in Sec-
tions 2.2.1 and 2.2.2 respectively.

170 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

Fig. 5.

3.2.1. Particle-particle decomposition strategy
When applying the particle decomposition technique

to the pressure loop, the simple use of the parallel
do OpenMP directive is no longer sufficient. Caution
must indeed be payed to protect the critical sectionsof
the pressure loop from race conditions, that is to ensure
mutual exclusionamong threads accessing shared data.
The most trivial solution to this problem (and the least
expensive, in terms of code restructuring effort) would
consist, in OpenMP, in enclosing the updating ofp par
by the OpenMP critical and end critical di-
rectives. The relevant portion of the pressure updat-
ing extrinsic procedure described in Section 3.1 would
assume the form, as seen in Fig. 6.

Unfortunately, the intra-node serialization induced
by the protected critical section on the shared access
to the array p par represents a bottle-neck that heav-

ily affects the performances (almost no speed-up) [4].
Such a bottle-neck can be eliminated, at the expenses
of memory occupation, by means of the strategy de-
scribed in Section 2.2.1. It relies on the associative and
distributive properties of the updating laws for the pres-
sure array with respect to the contributions given by
every single particle and consists in splitting the pres-
sure updating among processors: each processor only
computes the partial contribution of its own particles;
then the partial results are reduced into global ones.
The easiest way to implement such a strategy consists
in introducing an auxiliary array, p aux, defined as a
private variable with the same dimensions and ex-
tent as p. Each processor works on a separate copy of
the array and there is no conflict between processors
updating the same element of the array. At the end of
the loop, however, each copy of p aux contains only

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 171

Fig. 6.

Fig. 7.

the partial pressure due to the particles managed by the
owner processor. Each processor must then add its con-
tribution, outside the loop, to the global, shared, array
p par in order to obtain the whole-node contribution;
the critical directive can be used to perform such
a sum. The corresponding code section can be seen in
Fig. 7.

Note that this strategy (version v1 of the parallel
HMGC), based on the introduction of an auxiliary array,
makes the execution of the UBOUND(r,dim=1) (≈
Npart/nnode) iterations of the loop perfectly parallel.
The serial portion of the computation is limited to the
reduction of the different copies of p aux into p par.

3.2.2. Particle-domain decomposition strategy
In order to overcome the trade-off between paral-

lelization efficiency and memory requirements, at the
price of a heavier restructuring of the code and, pos-
sibly, the need of addressing load-balancing problems,

the domain decompositionstrategy (see Section 2.2.2)
can be adopted for the work distribution among the
different processors of each computational node. A
possible implementation of this strategy (version v2a)
consists in decomposing the domain along one of its
dimensions (e.g., along the radial coordinate) and is
based on the following items (each schematized by the
corresponding code excerpt):

– A particle loop is executed in order to identify the
elementary portion of the domain in which each
particle falls. The number of particles that belong
to each portion is updated inside a critical section.
Each particle is labelled, inside the same critical
section, by an index that spans the population be-
longing to the corresponding elementary domain
portion (see Fig. 8).

– The different elementary portions of the domain
are assigned to each processor. Load balancing
is enforced by adding elementary portions to a

172 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

Fig. 8.

given-processor load until the number of particles
assigned to the processor approximately equals
the average number of particles per processor,
(Npart/nnode)/nproc. Particles are then sorted
according to the processor they belong to (Fig. 9).

– The pressure loop is executed in the form of a
parallel loop over processors in which a loop over
the particle belonging to the processor is nested.
Race conditions are automatically avoided as can
be seen in Fig. 10.

Note that the load balancing is implemented within a
loop over processors. It then causes negligible compu-
tation overheads. Moreover, differently from the dis-
tributed memory context, it does not require any com-
munication between processors. Note also that the in-
crement of memory requirements is very contained (es-
sentially limited to the integer labels of the sorted parti-
cles), and does not scale with the number of processors
per node.

4. Experimental results

We have tested the composed strategies discussed in
Section 3.2, by running the corresponding HPF+Open-
MP versions of HMGC on a IBM SP parallel sys-
tem, equipped with, among the others, two 8-processor
SMP PowerPC nodes, with clock frequency of 200
MHz and 2 GB RAM, and four 2-processor SMP
Power3 nodes, with clock frequency of 200 MHz and
1 GB RAM. The HPF code has been compiled by the

IBM xlhpf compiler (an optimized native compiler for
IBM SP systems), while the extrinsic OpenMP sub-
routines have been compiled by the IBM xlf (ver.6.01)
compiler (an optimized native compiler for Fortran95
with OpenMP extensions for IBM SMP systems) un-
der the -qsmp=omp option. The resulting objects are
then linked by the HPF linker. A spatial grid with
nr × nϑ × nϕ = 32 × 16 × 8 has been considered
(Ncell = 4096). The average number of particles per
cell has been varied from Nppc = 4 to Nppc = 256,
which corresponds to Npart ranging approximately
from 16 k to 1 M .

Figure 4 (left) shows the scaling of the speed-up
of the pressure updatingprocedure for the particle-
particle decompositionstrategy (version v1) with re-
spect to the number of processors per node, nproc, at
fixed number of (8-processor) nodes, nnode = 2. Fig-
ure 4 (right) reports the values of su for the same pro-
cedure versus the number of (2-processor) nodes, at
nproc = 2. The speed-up has been defined as the ratio
between the wall-clock time yielded by the serial exe-
cution of the HPF+OpenMP version of the code and the
one obtained by the parallel execution. By “serial exe-
cution” we mean the execution obtained, on the specific
node used in the parallel executions, after performing
the HPF and OpenMP compilations with the -qnohpf
option and, respectively, without the -qsmp=omp op-
tion. Speed-up values refer only to the execution of
the section related to the updating of the (whole) pres-
sure array p (note that the expressions obtained in Sec-
tion 2.2 maintain the same form even when referred

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 173

Fig. 9.

only to the pressure-updating procedure). In agree-
ment with Eq. (16), we observe, from Fig. 4 (left), that
the speed-up values depart from the linear scaling with
nproc only for nproc greater than a certain value, which
is higher, the higher the average number of particles per
cell, Nppc, is. On the other side, a significant departure
from the linear scaling with nnode is observed, in Fig. 4
(right), only for the lowest values of Nppc, because of
the small number of nodes involved.

It is interesting to compare such results with the
model ones reported in Fig. 2. From Fig. 2 (left) we
expect, for Ncell = 4096, nnode = 2 and nproc =
8, that the cases with Nppc = 16, Nppc = 64 and
Nppc = 256 are characterized, respectively, by η <
50%, η ≈ 50% and η > 50%. Moreover, from Figs 2
(right), which refers to Nppc = 64, we see that the point
(nnode = 2, Ncell = 4096) falls in the high-efficiency
region both for nproc = 2 and nproc = 4, while it is
close to the η = 50% curve for nproc = 8. Finally,
from the same Figure we note that the high-efficiency
region for nproc = 2 extends up to nnode ≈ 10: we can

then expect that cases with nnode � 4 are all contained
in that region. All these previsions are confirmed by
the experimental results shown in Fig. 11.

Figure 12 (left) shows the scaling of the speed-up
with respect to nproc, at fixed number (nnode = 2)
of 8-processor nodes, obtained by the particle-domain
decompositionversion, v2a, of the pressure updating
procedure. Figure 12 (right) reports the values of su for
the same procedure versus the number of (2-processor)
nodes, at nproc = 2. We note that, at least for the spe-
cific application here considered, this particle-domain
decompositionstrategy can be an interesting compro-
mise between maximizing efficiency and minimizing
memory. The bottle-neck, with regard to the efficiency
performances, is represented by the critical section as-
sociated to the sorting procedure. A significant im-
provement of the efficiency can be obtained by limiting
the sorting phase (and then the critical computation) to
those particles that have changed domain portion in the
last step. This will indeed produce a reduction of the
related computation by a factor (nnodenproc/Ncell)

1
3 ,

174 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

Fig. 10.

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

n
proc

s
u

v1

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

n
node

s
u

v1

Fig. 11. Speed-up of the pressure updatingprocedure for the particle-particle decompositionversion (v1), at different values of the average
number of particles per cell, Nppc. Such quantity is plotted (left) versus the number of processors per node, at fixed number of (8-processor)
nodes, nnode = 2, and (right) versus the number of 2-processor nodes, at fixed number of processors per node, nproc = 2.

as noted with regard to Eq. (21). Figure 13 shows the
same scalings as Fig. 12 for a modified particle-domain
decompositionversion, v2b, which implements such a
selective sorting. Such results can be compared with
the model ones reported in Fig. 3. The agreement is
very satisfactory. In particular, the experimental results
show that, differently from the particle-particleframe-
work, all the cases with Ncell = 4096, nnode = 2,
nproc = 8 are characterized by low efficiency, re-
gardless, in this respect, to the number of particle per
cell, Nppc. This is consistent with the model find-

ings, Eq. (25) and Fig. 3 (left), which predict that, for
nnode = 2 and nproc = 8, Ncell = 4096 is below the
lower limit for efficient parallelization, independently
of Nppc. On the opposite, the cases with nnode = 2,
Nppc = 64 and nproc = 2 or 4 are high-efficiency ones,
as predicted on the basis of the model results shown
in Fig. 3 (right). High efficiency is in fact obtained,
consistently with the same model results, in the case
with Nppc = 64 and nproc = 2, for all the considered
values of nnode (nnode � 4).

S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors 175

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

n
proc

s
u

v2a

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
node

v2a

Fig. 12. Speed-up of the pressure updatingprocedure for the particle-domain decompositionversion, v2a, at different values of Nppc. The
left frame shows this quantity versus the number of processors per node, at fixed number of (8-processor) nodes, nnode = 2. The right frame
considers the effect of varying the number of 2-processor nodes, at fixed number of processors per node, nproc = 2.

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
proc

v2b

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
node

v2b

Fig. 13. Speed-up for the selective sortingversion, v2b, of the pressure updatingprocedure, at different values of Nppc: versus the number
of processors per node, at fixed number of (8-processor) nodes, nnode = 2 (left); versus the number of 2-processor nodes, at fixed number of
processors per node, nproc = 2 (right).

Finally, it is worth noting that only speed-up val-
ues related to the pressure-updating loop have been re-
ported in the present Section. As the parallelization of
the particle-pushing loop is trivial (and common to all
the strategies here considered), the overall results would
correspond to better (and less spread) performances.

5. Summary

We have studied the problem of porting large-scale
PIC codes on hierarchical distributed-shared memory

systems in a high-level language programming frame-
work. The devised workload decomposition consists
in a two-stage procedure: a higher-level decomposition
among the computational nodes, and a lower-level one
among the processors of each computational node.

The choice of a high-level language parallelization
(which reduces the programming efforts and increases
the portability of the resulting code) forces the adoption
of a particle decompositionstrategy at the inter-node
level. It is indeed suited to be implemented in HPF,
differently from the domain decompositionstrategy,
preferable, in principle, because of the reduced mem-

176 S. Briguglio et al. / A performance-prediction model for PIC applications on clusters of Symmetric MultiProcessors

ory requirements. At the intra-node, shared-memory,
level, both particle and domain decompositioncan be
implemented in a high-level language such as OpenMP
and integrated with the particle decompositionstrategy
devised at the distributed-memory level. Then, two dis-
tinct composed strategies – a particle-particledecom-
position and a particle-domainone – can be envisaged
for the overall parallelization. The respective merits
of such different strategies have been examined, on the
basis of simple estimates, with respect to the memory
occupancy, and the parallelization efficiency.

The implementation of each strategy has been de-
scribed in detail. It is based on integrating the HPF and
OpenMP programming environments. This task can be
accomplished, with negligible programming efforts, by
means of the HPF extrinsic procedures HPF LOCAL.

The experimental measurements of the speed-up fac-
tors obtained by each version of the code (correspond-
ing to the various decomposition strategies) at different
values of the number of particles, nodes and processors,
qualitatively confirm the model predictions, although
a more complete comparison would require tests on a
much larger cluster of SMP nodes.

It comes out that each of the composed strategy
presents merits and defects. More precisely, the
particle-particledecomposition yields, at the expense
of a little programming effort, high speed-up values,
while requiring a supplementary memory resource level
that scales with the number of processors and the size
of the spatial grid. This imposes, as the number of pro-
cessors is increased, a cut-off on the maximum size of
the spatial grid that can be simulated (that is, the max-
imum value of Ncell). On the opposite, the particle-
domaindecomposition does not introduce such a sup-
plementary need for memory, but it requires a relevant
programming effort and produces lower speed-up val-
ues. Moreover, the efficiency condition imposes, for
this strategy, a lower limit on Ncell, because the demand
for (serial) particle-sorting computation increases with
decreasing size (in terms of number of cells) of each

domain portion. Finally, both strategies yield better
performances in term of parallelization efficiency at
high values of the number of particles per cell, Nppc,
and not too large values of the number of processors
per node, nproc.

References

[1] E. Akarsu, K. Dincer, T. Haupt and G.C. Fox, Particle-
in-Cell Simulation Codes in High Performance For-
tran, in: Proc. SuperComputing ’96(IEEE, 1996),
(http://www.supercomp.org/sc96/proceedings/SC96PROC/AKARSU/
INDEX.HTM)

[2] C.K. Birdsall and A.B. Langdon, Plasma Physics via Com-
puter Simulation(McGraw-Hill, New York, 1985).

[3] S. Briguglio, G. Vlad, F. Zonca and C. Kar, Hybrid
Magnetohydrodynamic-Gyrokinetic Simulation of Toroidal
Alfvén Modes, Phys. Plasmas2 (1995), 3711–3723.

[4] B. Di Martino, S. Briguglio, G. Vlad and G. Fogaccia, Work-
load Decomposition Strategies for Shared Memory Parallel
Systems with OpenMP, to appear on Scientific Programming,
2002.

[5] B. Di Martino, S. Briguglio, G. Vlad and P. Sguazzero, Par-
allel PIC Plasma Simulation through Particle Decomposition
Techniques, Parallel Computing27(3) (2001), 295-314.

[6] R.D. Ferraro, P. Liewer and V.K. Decyk, Dynamic Load Bal-
ancing for a 2D Concurrent Plasma PIC Code, J. Comput.
Phys.109 (1993), 329-341.

[7] G.C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D.
Walker, Solving Problems on Concurrent ProcessorsPrentice
Hall, Englewood Cliffs, New Jersey, 1988.

[8] High Performance Fortran Forum: High Performance Fortran
Language Specification, Version 2.0, Rice University, 1997.

[9] J. Labarta, E. Ayguadè, J. Oliver and D. Henty, New OpenMP
Directives for Irregular Data Access Loops, Proc. of 2nd Euro-
pean Workshop on OpenMP - EWOMP’2000, 14–15 Septem-
ber, 2000, Edinburgh (UK).

[10] P.C. Liewer and V.K. Decyk, A General Concurrent Algorithm
for Plasma Particle-in-Cell Codes, J. Computational Phys85
(1989), 302–322.

[11] C.D. Norton, B.K. Szymanski and V.K. Decyk, Object Ori-
ented Parallel Computation for Plasma Simulation, Commu-
nications of ACM38(10) (1995), 88–100.

[12] OpenMP Architecture Review Board: OpenMP Fortran Ap-
plication Program Interface, ver. 1.0, October 1997.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

