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Abstract. In this paper we describe the extension of the CAPO parallelization support tool to support multilevel parallelism
based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for
directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application
that have been parallelized using our system.

1. Introduction

Parallel architectures are an instrumental tool for
the execution of computational intensive applications.
Simple and powerful programming models and envi-
ronments are required to develop and tune such parallel
applications. Current programming models offer either
library-based implementations (such as MPI [16]) or
extensions to sequential languages (directives and lan-
guage constructs) that express the available parallelism
in the application, such as OpenMP [20].

The compiler directives provided by the OpenMP
standard support a fork/join execution model in which a
program begins execution as a single process or thread.
This thread executes sequentially until a PARALLEL
construct is found. At this time, the thread creates
a team of threads and it becomes its master thread.
OpenMP allows the nesting of parallel regions, but
does not clearly address the issue of how to exploit it
efficiently.

It has become increasingly popular to combine sev-
eral programming models to exploit multiple levels of
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parallelism but at this point there are few reported re-
sults on experiences using mulitlevel OpenMP paral-
lelism. The lack of compilers supporting this feature
has been the main cause of this problem. In turn, since
the benefits of nested parallel regions are not clear, there
is little incentive for compiler developers to support it.

Some research platforms, such as the OpenMP
NanosCompiler [9], have been developed to show the
feasibility of exploiting nested parallelism in OpenMP
and to serve as testbeds for new extensions in this di-
rection. The OpenMP NanosCompiler accepts Fortran-
77 code containing OpenMP directives and generates
plain Fortran-77 code with calls to the NthLib thread
library [17] (currently implemented for the SGI Ori-
gin). In contrast to the SGI MP library, NthLib allows
for multilevel parallel execution such that inner parallel
constructs are not being serialized. The NanosCompil-
er supports several extensions to the OpenMP standard
to allow the user to control the allocation of work to the
participating threads. By supporting nested OpenMP
directives the NanosCompiler offers a convenient way
to multilevel parallelism.

We have extended the automatic parallelization tool
CAPO [13], to allow for the generation of nested Open-
MP parallel constructs and NanosCompiler extensions
in order to support multilevel shared memory paral-
lelization. CAPO automates the insertion of OpenMP
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directives with nominal user interaction to facilitate par-
allel processing on shared memory parallel machines.
It is based on CAPTools [11], a semi-automatic par-
allelization tool for the generation of message passing
codes, developed at the University of Greenwich. By
being able to generate nested directives automatically
in a reasonable amount of time we hope to gain a bet-
ter understanding of performance issues and the needs
of application programs when it comes to exploiting
multilevel parallelism. The goal of our evaluation is
threefold: We want to study the performance impact
of nested OpenMP parallelization, we discuss poten-
tial extensions to the OpenMP standard, and we iden-
tify requirements for tools to automate the multilevel
parallelization process.

The paper is organized as follows: Section 2 sum-
marizes the NanosCompiler extensions to the OpenMP
standard. Section 3 discusses the extension of CAPO to
generate multilevel parallel codes. Section 4 presents
case studies on several benchmark codes and one full
application. Section 5 gives an overview on related
work and Section 6 concludes with describing the cur-
rent project status and future plans.

2. The NanosCompiler

OpenMP provides a fork-and-join execution model
in which a program begins execution as a single pro-
cess or thread. This thread executes sequentially un-
til a PARALLEL construct is found. At this time, the
thread creates a team of threads and it becomes its mas-
ter thread. All threads execute the statements lexically
enclosed by the parallel construct. Work-sharing con-
structs (DO, SECTIONS and SINGLE) are provided
to divide the execution of the enclosed code region
among the members of a team. All threads are inde-
pendent and may synchronize at the end of each work-
sharing construct or at specific points (specified by the
BARRIER directive). Exclusive execution mode is al-
so possible through the definition of CRITICAL and
ORDERED regions. If a thread in a team encounters a
new PARALLEL construct, it creates a new team and it
becomes its master thread. OpenMP v2.0 provides the
NUM THREADS clause to restrict the number of threads
that compose the team.

The NanosCompiler extension to multilevel paral-
lelization is based on the concept of thread groups. A
group of threads is composed of a subset of the total
number of threads available in the team to run a parallel
construct. In a parallel construct, the programmer may

define the number of groups and the composition of
each one. When a thread in the current team encoun-
ters a PARALLEL construct defining groups, the thread
creates a new team and it becomes its master thread.
The new team is composed of as many threads as the
number of groups. The rest of the threads are used
to support the execution of nested parallel constructs.
In other words, the definition of groups establishes an
allocation strategy for the inner levels of parallelism.
To define groups of threads, the NanosCompiler sup-
ports the GROUPS clause extension to the PARALLEL
directive.

C$OMP PARALLEL GROUPS (gspec)
...
C$OMP END PARALLEL

Different formats for the GROUPS clause argument
gspec are allowed [10]. The simplest specifies the
number of groups and performs an equal partition of
the total number of threads to the groups:

gspec = ngroups

The argument ngroups specifies the number of
groups to be defined. This format assumes that work is
well balanced among groups and therefore all of them
receive the same number of threads to exploit inner
levels of parallelism. At runtime, the composition of
each group is determined by equally distributing the
available threads among the groups.

gspec = ngroups, weight

In this case, the user specifies the number of groups
(ngroups) and an integer vector (weight) indicating
the relative weight of the computation that each group
has to perform. From this information and the number
of threads available in the team, the threads are allo-
cated to the groups at runtime. The weight vector is
allocated by the user and its values are computed from
information available within the application itself (for
instance iteration space, computational complexity).

3. The CAPO parallelization support tool

The main goal of developing parallelization support
tools is to eliminate much of the tedious and some-
times error-prone work that is needed for manual par-
allelization of serial applications. With this in mind,
CAPO [13] was developed to automate the insertion
of OpenMP compiler directives with nominal user in-
teraction. This is achieved largely by use of the very
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accurate interprocedural analysis module from CAP-
Tools [11]. Furthermore CAPO provides a directive
browser to allow the user to examine and optimize the
directives automatically placed within the code. CAP-
Tools provides a fully interprocedural and value-based
dependence analysis engine [14] and has successful-
ly been used to parallelize a number of mesh-based
applications for distributed memory machines.

3.1. Single level parallelization

After an extensive dependence analysis CAPO in-
serts OpenMP directives into sequential Fortran code.
Details about this process can be found in [13]. The
three main steps to generate the directives can be sum-
marized as follows:

1) Identification of parallel loops and parallel re-
gion: Based on the dependence analysis infor-
mation loops are identified as serial or parallel.
The outermost parallel loops are considered for
parallelization. The dependence analysis is inter-
procedural, and the parallel regions are defined
as high up in the call tree as the analysis results
will allow it to achieve an efficient placement
of the directives. If the outermost loop contains
prohibitive dependences, the next nesting level is
considered for the insertion of directives.

2) Optimization of parallel regions and parallel
loops: The goal of this phase is to lower the
fork-and-join overhead associated with starting
parallel regions and the thread synchronization
costs. This is achieved by merging parallel re-
gions whenever possible. In addition, the syn-
chronization between successive parallel loops is
minimized by using the NOWAIT clause if the
dependence analysis shows that the loops can cor-
rectly execute asynchronously.

3) Code transformation and insertion of OpenMP
directive: This is the final stage where the
call graph is traversed to place OpenMP direc-
tives within the code. This includes the iden-
tification of variable types, such as SHARED,
PRIVATE, and REDUCTION. In addition possi-
ble THREADPRIVATE common blocks are iden-
tified and proper directives are inserted.

The transformations described above are portable to
all platforms where OpenMP parallelization is support-
ed. In addition to this, CAPO provides the possibil-
ity to generate some platform dependent extensions.
One of the extensions supported by CAPO is the SGI

NEST clause. Although the SGI compiler does not sup-
port nested parallelism, the user can exploit parallelism
across multiple loop nests in a limited manner. The
SGI compiler accepts the NEST clause on the OMP
DO directive [18]. The NEST clause requires at least 2
variables as arguments to identify indices of subsequent
DO-loops. The identified loops must be perfectly nest-
ed and no code is allowed between the identified DO
statements and the corresponding END DO statements.
The NEST clause on the OMP DO directive informs
the compiler that the entire set of iterations across the
identified loops can be executed in parallel. The com-
piler can then linearize the execution of the loop itera-
tion and divide them among the available single level
of threads. This is not nested parallelism but merely
a distribution of work in multiple dimensions within
a single level of parallelism. CAPO has the capabili-
ty to identify suitable loop nests and generate the SGI
NEST clause. We have extended this feature of CAPO
to support true nested parallelism.

3.2. Extension to multilevel parallelization

According to the OpenMP standard if a thread in
a team executing a parallel region encounters another
parallel region, it creates a new team and it becomes
the master of that new team. Our extension to Open-
MP multilevel parallelism makes use of the extensions
offered by the NanosCompiler. Currently, we limit our
approach to only two-level loop parallelism, which is of
more practical use. The approach to automatically ex-
ploit two-level parallelism is extended from the single
level parallelization and is illustrated in Fig. 1. After
performing the data dependence analysis the approach
can be summarized in the following four steps:

1) First-level loop analysis:This is essentially the
combination of the first two stages in the single
level parallelization where parallel loops and par-
allel regions are identified and optimized at the
outermost loop level.

2) Second-level loop analysis:This step involves
the identification of parallel loops and parallel
regions nested inside the parallel loops that were
identified in Step 1. These parallel loops and
parallel regions are then optimized as before but
limited to the scope defined by the first level.

3) Second-level directive insertion:This includes
code transformation and OpenMP directives in-
sertion for the second level. This step is per-
formed before inserting any directives on the first-
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Fig. 1. Steps in multilevel parallelization.

level. It ensures that a consistent picture is main-
tained for any variables and code that may be
changed during the parallelization process.

4) First-level directive insertion:Lastly code trans-
formation and OpenMP directives insertion are
performed for the outer level parallelization.
All the transformations of the last stage of
the single level parallelization are being per-
formed, with the exception that we disallow the
THREADPRIVATE directive. Compared to sin-
gle level parallelization, the two-level paralleliza-
tion process requires the additional steps indicat-
ed in the dash box in Fig. 1.

3.3. Implementation consideration

In order to maintain consistency during necessary
code transformations of the parallelization process we
need to update data dependences properly. Consider the
example where CAPO transforms an array reduction
into updates to a local variable. This is followed by
an update to the global array in a CRITICAL section
to work around the limitation on array reductions in
OpenMP v1.x. In this case the data dependence graph
needs to be updated to reflect the change due to this
transformation

When nested parallel regions are considered, the
scope of the THREADPRIVATE directive is not clear
any more, since a variable may be threadprivate for the
outer nest of parallel regions but shared for the inner
parallel regions, and the directive cannot be bound to
a specific nest level. The OpenMP specification does
not properly address this issue. Our solution is to disal-
low the THREADPRIVATE directive when nested par-

allelism is considered. In case that a variable in a non-
threadprivate common block needs to be privatized and
causes a usage conflict, the common block variables
are added to the argument list of and removed properly
from the common blocks inside the relevant subrou-
tines.

CAPO detects opportunities for software-pipelined
execution of loops where data dependences prevent par-
allelization (see [13]). Such loops are enclosed by a
parallel region. The iteration space of the loops is di-
vided up among the threads using the OMP DO di-
rective. The threads then explicitly synchronize their
execution with their neighbors. This is discussed in
greater detail in Section 4.2 and an example for a one-
dimensional pipeline is shown in Fig. 5. Setting up a
two-dimensional pipeline would involve synchroniza-
tion of threads from two different nest levels. We will
discuss the problem of two-dimensional pipelining in
one of our case studies in Section 4.2.

One of the contributions by the NanosCompiler to
support nested directives is the GROUPS clause, which
can be used to define the number of thread groups to
be created at the beginning of an outer-nest parallel
region. In our implementation, the GROUPS direc-
tive (containing a single shared variable ‘ngroups’)
is generated for all the first-level parallel regions. The
ngroups variable is placed in a common block and
can be defined by the user at run time. Although it
would be better to generate the GROUPS clause with
a weight argument based on different workloads of
parallel regions, this is not considered at the moment.

As an example, the following nested loop:

DO K = 1, NK
RHO = 1/NORMK(K)
DO J = 2, NJ

A(J,K) = A(J,K) + RHO * B(J,K)
END DO

END DO

will be transformed by CAPO into:

!$OMP PARALLEL GROUPS(ngroups)
!$OMP & PRIVATE (RHO, K)
!$OMP DO
DO K = 1, NK

RHO = 1/NORMK(K)
!$OMP PARALLEL DO PRIVATE (J)

DO J = 2, NJ
A(J,K) = A(J,K) + RHO * B(J,K)

END DO
!$OMP END PARALLEL DO
END DO
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Fig. 2. Timing results for class A benchmarks.

!$OMP END DO NOWAIT
!$OMP END PARALLEL

Note that for this loop the SGI NEST clause is not
applicable, since there is a statement between DO K
and DO J.

4. Case studies

In this section we show examples for successful
and not so successful automatic multilevel paralleliza-
tion. We have parallelized the three application bench-
marks (BT, SP, and LU) from the NAS Parallel Bench-
marks [4] and the ARC3D [22] application code using
the CAPO multilevel parallelization feature and exam-
ined its effectiveness.

In each of our experiments we generate nested Open-
MP directives and use the NanosCompiler for compi-
lation. As discussed in Sections 2 and 3, the nested
parallel code contains the GROUPS clause at the outer
level. According to the OpenMP standard, the num-
ber of executing threads can be specified at runtime
by the environment variable OMP NUM THREADS. We
introduce the environment variable NANOS GROUPS
and modify the source code to have the main routine
check the value of this variable and set the argument to
the GROUPS clause accordingly. This allows us to run
the same executable not only with different numbers of
threads, but also with different numbers of groups. We
compare the timings for different numbers of groups to
each other. Note that single level parallelization of the
outer loop corresponds to the case that the number of



182 H. Jin et al. / Automatic multilevel parallelization using OpenMP

Fig. 3. Speed-up due to nested parallelism.

executing threads is equal to the number of groups, i.e.
there is only one thread in each group. We compare
these timings to those resulting from compilation with
the native SGI compiler, which supports only the sin-
gle level OpenMP parallelization and serializes inner
parallel loops. We will also give timings for the SGI
compiler using the NEST clause which we described
in 3.1. These timings show how true multilevel paral-
lelism compares to single parallelization employing a
2-dimensional work distribution.

The timings were obtained on a SGI Origin 2000
with R12000 CPUs, 400MHz clock, and 768MB local
memory per node.

4.1. Successful multilevel parallelization: The BT and
SP benchmarks

The NAS Parallel Benchmarks BT and SP are both
simulated CFD applications with a similar structure.
They use an implicit algorithm to solve the 3D com-
pressible Navier-Stokes equations. The x, y, and z
dimensions are decoupled by usage of an Alternating
Direction Implicit (ADI) factorization method. In BT,
the resulting systems are block-tridiagonal with 5 × 5
blocks. The systems are solved sequentially along each
dimension. SP uses a diagonalization method that de-
couples each block-tridiagonal system into three inde-



H. Jin et al. / Automatic multilevel parallelization using OpenMP 183

Fig. 4. Timings of BT with varying number of groups and threads per group.

pendent scalar pentadiagonal systems that are solved
sequentially along each dimension.

A study about the effects of single level OpenMP
parallelization of the NAS Parallel Benchmarks can be
found in [12]. In our experiments we started out with
the same serial implementation of the codes that was
the basis for the single level OpenMP implementation
as described in [12]. We ran class A (64× 64× 64 grid
points), B (102 ×102× 102 grid points), and C (162×
162 × 162 grid points) for the BT and SP benchmarks.
As an example we show timings for problem class A
for both benchmarks in Fig. 2. We denote by:

– SGI OpenMP:the time for outer loop paralleliza-
tion using just the native SGI compiler,

– SGI OpenMP+NEST:The time for outer loop par-
allelization using the SGI NEST clause if applica-
ble.

– Nanos Outer:the time for outer loop paralleliza-
tion using the NanosCompiler,

– Nanos Nested:the minimal time for nested paral-
lelization using the NanosCompiler.

The programs compiled with the SGI OpenMP com-
piler scale reasonably well up to 64 threads, but do not
show any further speed-up if more threads are being
used. For a small number of threads (up to 64), the out-
er level parallel code generated by the NanosCompiler
performs about the same as the code generated by the
SGI compiler. When increasing the number of threads
from 64 to 128, the multilevel parallel code still shows
a speed-up, provided the number of groups is chosen
in an optimal way. We observed a speed-up of up to

Table 1
Thread workload for the class A problems BT and SP

# Groups Max # Iters Min # Iters

64 62 0
32 62 31
16 64 45
8 64 49
4 64 45

85% for 128 threads. In Figure 3 we show the speed-up
resulting from nested parallelization for three problem
classes of the SP and BT benchmarks.

The timings show that the SGI NEST clause is of
limited benefit. It improves the performance of the BT
benchmark slightly, but it does not help the SP bench-
mark. The time consuming routines in the two bench-
marks are the three solvers in x, y, and z-direction and
the computation of the right hand side. In case of BT,
CAPO parallelized 28 loops, 11 of which were suitable
for the NEST clause. This includes the major loops in
the three solver routines. The time consuming loops in
the calculation of the right hand side are not suitable
for the NEST clause, since they contain statements be-
tween the DO statements. The situation is a lot worse
for the SP benchmark. CAPO parallelized 31 loops.
The NEST clause could be generated for 11 of them.
The three main loops in the solver routines were not
suitable for the NEST clause, because the inner loops
are enclosed in subroutine calls. The computation of
the right hand side contains nested loops that are not
tightly nested, just like in the case of BT. The NEST
clause could only be applied to loops with a very low
workload. In this case, distributing the work in multiple
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dimensions leads to a slight decrease of performance
for a small number of threads. Neither the occurrence
of code between the DO statements nor inner loops
enclosed within subroutine calls poses an obstacle to
nested parallel regions supported by the NanosCompil-
er. For the BT benchmark CAPO parallelized 13 of the
28 parallel loops employing nested parallel regions and
the GROUPS clause. For the SP benchmark CAPO
identified 17 of the 31 parallel 31 loops, as suitable
for nested parallelism. In both benchmarks the most
time consuming loops are parallelized in two dimen-
sions. All of the nested parallel loops are at least triple
nested. The structure of the loops is such that the two
outer most loops can be parallelized. The inner parallel
loops enclose one or more inner loops and contain a
reasonably large amount of computational work.

The reason that multilevel parallelism has a positive
effect on the performance of these loops is mainly due
to the fact that load balancing between the threads is
improved. For class A, for example, the number of
iterations is typically 62. If only the outer loop is par-
allelized, using more than 62 threads will not improve
the performance any further. In the case of 64 threads,
2 of them will be idling. If, however, the second loop
level is also parallelized, all 64 threads can be put to
use. Our experiments show that by choosing the num-
ber of groups too small, the performance will actual-
ly decrease. Setting the number of groups to 1 effec-
tively moves the parallelism completely to the inner
loop, which will in most cases be less efficient than
parallelizing the outer loop.

In Table 1 we show the maximal and minimal number
of iterations (for class A) of the inner parallel loop that
a thread has to execute, depending on the number of
groups.

To give a flavor of how the performance of the multi-
level parallel code depends on the grouping of threads
we show timings for the BT benchmark on 64 threads
and varying number of groups in Fig. 4. In the figure
we indicate by NxM the situation where N groups are
being used with M threads each. The timings indicate
that good criteria to choose the number of groups are:

– Efficient granularity of the parallelism, i.e., the
number of groups has to be sufficiently large there-
by avoiding excessive parallelization overhead that
occurs when parallelism is moved to inner loop
level. In our experiments we observe that the num-
ber of groups should not be smaller than the num-
ber of threads within a group.

– The number of groups has to be small enough to
allow a good balancing of work among the threads.

An enhancement to CAPO in support of multi-
level OpenMP parallelization would be to automatical-
ly choose an appropriate number of groups based on
the workload for each thread.

4.2. The need for OpenMP extensions: The LU
benchmark

The LU application benchmark is a simulated CFD
application that uses the symmetric successive over-
relaxation (SSOR) method to solve a seven band block-
diagonal system resulting from finite-difference dis-
cretization of the 3D compressible Navier-Stokes equa-
tions by splitting it into block lower and block upper
triangular systems.

As starting point for our tests we choose the pipelined
implementation of the parallel SSOR algorithm, as de-
scribed in [12]. The example below shows the loop
structure of the lower-triangular solver in SSOR. The
lower-triangular and diagonal systems are formed in
routine JACLD and solved in routine BLTS. The index
K corresponds to the third coordinate direction.

...
DO K = KST, KEND

CALL JACLD (K)
CALL BLTS (K)

END DO
...
SUBROUTINE BLTS
...
DO J = JST, JEND

Loop\_Body (J, K)
END DO
...
RETURN
END

All of the loops involved carry data dependences that
prevent straightforward parallelization. The structure
of the loop body is such that iteration (J, K) depends
on iterations (J-1, K) and (J, K-1). There is, however,
the possibility to exploit a certain level of parallelism
by using software pipelining as described in Section
3.3. To set up a pipeline for the outer loop, thread 0
starts to work on its first chunk of data in K direction.
Once thread 0 finishes, thread 1 can start working on
its chunk for the same K and, in the meantime, thread
0 moves on to the K+1. The directives generated by
CAPO to implement the pipeline for the outer loop are
shown in Fig. 5.
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!$OMP PARALLEL PRIVATE(K,iam,numt) 
   iam = omp_get_thread_num() 
   numt = omp_get_num_threads() 
   isync(iam) = 0 
!$OMP BARRIER 

 DO K = KST, KEND 
    CALL JACLD (K) 
    CALL BLTS (K) 
 END DO 

!$OMP END PARALLEL    
   SUBROUTINE BLTS (K) 
   ... 
   if (iam .gt. 0 .and.  
        iam .lt. numt) then 
     do while(isync(iam-1) .eq. 0) 
!$OMP FLUSH(isync) 
     end do 
     isync(iam-1) = 0 
!$OMP FLUSH(isync) 
   end if 
!$OMP DO 
   DO J = JST, JEND 
     Loop_Body (J,K) 
   END DO 
!$OMP END DO nowait 
   if (iam .lt. numt) then 
     do while (isync(iam) .eq. 1) 
!$OMP FLUSH(isync) 
     end do 
     isync (iam) = 1 
!$OMP FLUSH(isync) 
   endif 
   RETURN 
   END 

Fig. 5. The one-dimensional parallel pipeline implemented in LU.

The K loop is placed inside a parallel region. Two
OpenMP library functions are called to obtain the cur-
rent thread identifier (iam) and the total number of
threads (numt). The shared array isync is used to in-
dicate the availability of data from neighboring threads.
Together with the FLUSH directive in a WHILE loop
it is used to set up the point-to-point synchronization
between threads. The first WHILE ensures that thread
iam will not start with its slice of the J loop before
the previous thread has updated its data. The second
WHILE is used to signal data availability to the next
thread.

The NanosCompiler team is currently defining and
implementing OpenMP extensions to easily express the
precedence relations that originate pipelined compu-
tations. These extensions are also valid in the scope
of nested parallelism. They are based on two compo-
nents:

– The ability to name work-sharing constructs (and
therefore reference any piece of work coming out
of it).

!$OMP PARALLEL PRIVATE(K,iam,numt) 
 

 DO K = KST, KEND 
    CALL JACLD (K) 
    CALL BLTS (K) 
 END DO 

!$OMP END PARALLEL    
   SUBROUTINE BLTS (K) 
   ... 
!$OMP DO NAME (inner_loop) 
   DO J = JST, JEND 
!$OMP PRED (inner_loop, j-1) 
     Loop_Body (J,K) 
!$OMP SUCC (inner_loop, j+1) 
   END DO 
!$OMP END DO nowait 
    … 
   RETURN 
   END 

Fig. 6. One-dimensional pipeline using directives.

– The ability to specify predecessor and successor
relationships between named work-sharing con-
structs (PRED and SUCC clauses).

This avoids the manual transformation of the loop
to access data slices and manual insertion of synchro-
nization calls. From the new directives and clauses,
the compiler automatically builds synchronization data
structures and insert synchronization actions following
the predecessor and successor relationships defined [8].
Figure 6 shows the pipelined loop from Fig. 5 when
using the new directives.

In Fig. 7 we show the timings for LU bench-
mark comparing the one-level pipelined implemen-
tation using the synchronization mechanism from
Fig. 5, the one-level pipelined implementation using the
new NanosCompiler directives, and a 2-dimensional
pipelined implementation based on MPI. The compiler
directives based implementation shows about the same
performance as the hand-coded synchronization.

The timings in Fig. 7 show that the directive based
implementation does not scale as well as a message
passing implementation of the same algorithm. The
cost of pipelining results mainly from waiting (at start-
up and termination). The message-passing version em-
ploys a 2 dimensional pipeline where the wait cost can
be greatly reduced. The use of nested OpenMP direc-
tives offers the potential to achieve similar scalability
to the message passing implementation.

There is, however, a problem in setting up a directive-
based two-dimensional pipeline. The new directives
allow synchronization of threads within one team and
synchronization between different teams.

The structure of the Loop Body depicted in Fig. 5
looks like:
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DO I = ILOW, IHIGH
DO M = 1, 5

TV(M, I, J) = V(M, I, J, K-1)
+ V(M,I,J-1,K)
+ V(M,I-1,J,K)

END DO
...
DO M = 1, 5

V(M,I,J,K)= TV(M,I,J)
END DO

END DO

If both J- and I-loop are to be parallelized employing
pipelines, a thread would need to be able to synchronize
with its neighbor in the J- and I-directions on different
nesting levels. Parallelizing the I-loop with OpenMP
directives introduces an inner parallel region, as shown
below (see also the discussion in Section 3.3):

!$OMP PARALLEL
Synchronization1

!$OMP DO
DO JT = ...

!$OMP PARALLEL
DO J = JLOW, JHIGH

Synchronization2
!$OMP DO

DO I = ILOW, IHIGH
...

END DO
!$OMP END DO NOWAIT

Synchronization2
END DO

!$OMP END PARALLEL
END DO

!$OMP END DO NOWAIT
Synchronization1

The end of the inner parallel region forces the threads
to join and destroys the multilevel pipeline mechanism.
In order to set up a 2-dimensional pipeline, two pos-
sibilities should be taken into account. The first one
is removing the implicit barrier at the end of the inner
parallel region. Such a NOWAIT clause would violate
the OpenMP standard. The second alternative is the use
of nested OMP DO directives within the same parallel
region. This is a proposed extension to the OpenMP
standard, but is not part of OpenMP at this time.

The SGI compiler provides the NEST clause, which
simply uses one level of parallelism but performs a two-
dimensional distribution of work. As discussed in 3.1,
the loops need to be tightly nested for the NEST clause
to be applicable. The loop structure of loops allowing
pipelined execution in the LU benchmark is suitable for
the SGI NEST clause. However, the SGI compiler does
not provide extensions for explicit thread synchroniza-
tion which is necessary for pipelined execution of the
loop.

As we have seen in Section 4.1, the restrictions to
application of the NEST clause greatly limit its usage
for many time consuming loops. It would be desir-
able to have these restrictions removed. Allowing nest-
ed OMP DO directives within the same parallel region
would remove these restrictions. Code between the
DO statements could be handled by having only part
of the threads executing these statements. In case that
the inner loop is enclosed in a subroutine call, more
complicated techniques, involving procedure in-lining
are necessary.

4.3. Unsuitable loop structure in ARC3D

ARC3D uses an implicit scheme to solve Euler and
Navier-Stokes equations in a three-dimensional (3D)
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Fig. 8. The schematic flowchart of the ADI solver in ARC3D.

rectilinear grid. The main component is an ADI solver,
which results from the approximate factorization of
finite difference equations. The actual implementation
of the ADI solver (subroutine STEPF3D) in the serial
ARC3D is illustrated in Fig. 8. It is very similar to the
SP benchmark.

For each time step, the solver first sets up bound-
ary conditions (BC), forms the explicit right-hand-side
(RHS) with artificial dissipation terms (FILTER3D),
and then sweeps through three directions (X, Y and Z)
to update the 5-element fields, separately. Each sweep
consists of forming and solving a series of scalar pen-
tadiagonal systems in a two-dimensional plane one at
a time. Two-dimensional arrays are created from the
3D fields and are passed into the pentadiagonal solvers
(VPENTA3 for the first 3 elements and VPENTA for the
4 and 5th elements, both originally written for vector
machines), which perform Gaussian eliminations. The
solutions are then copied back to the three-dimensional
residual fields. Between sweeps there are routines
(TKINV, NPINV and TK) to calculate and solve small,
local 5 × 5 eigensystems. Finally the solution is up-
dated for the current time step.

We ran ARC3D for two different problem sizes. In
both cases the performance dropped by 10% to 70%
when the number of groups was smaller than the num-
ber of threads, i.e. when multilevel parallelism was

used. Example timings for both problem sizes and 64
threads are given in Fig. 9. Figure 10 shows the timings
for outer level parallelism.

Even though the time consuming solver in ARC3D is
similar to the one in the SP benchmark, our approach to
automatic multilevel parallelization was not successful.
For ARC3D CAPO identified 58 parallel loops, 35 of
which were suitable for nested parallelization. 19 of
the 35 nested parallel loops had very little work in the
inner parallel loop and inefficient memory access. An
example is shown below:

!$OMP PARALLEL DO GROUPS(ngroups)
!$OMP & PRIVATE(AR,BR,CR,DR,ER)
DO K = KLOW, KUP

...
!$OMP PARALLEL DO

DO L = 2, LM
DO J = 2, JM

AR(L,J) = AR(L,J) + V(J,K,L)
BR(L,J) = BR(L,J) + V(J,K,L)
CR(L,J) = CR(L,J) + V(J,K,L)
DR(L,J) = DR(L,J) + V(J,K,L)
ER(L,J) = ER(L,J) + V(J,K,L)
CR(L,J) = CR(L,J) + 1.

END DO
END DO

END DO

Parallelizing the L loop increases the execution time
of the loop considerably due to a high number of cache
invalidations. The occurrence of many such loops in the
original ARC3D code nullifies the benefits of a better
load balance and we see no speed-up for multilevel
parallelism.

The NEST clause could be applied to the same
35 loops that were suitable for nested parallelization.
However, the NEST clause did not improve the perfor-
mance of the code.

The example of ARC3D shows that parallelizing all
loops in an application indiscriminately on two levels
with the same number of groups and the same weight
for each group may actually increase the execution
time.

CAPO provides a browser for first level directives.
The browser allows the user to examine the directives
that have been automatically placed in the code. The
user has the possibility to provide knowledge about in-
put data or code structure so that the placement of di-
rectives can be optimized. At the moment this feature
is not available for second level directives. The exam-
ple of ARC3D shows that we will need to extend the
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Fig. 9. Timings of ARC3D with varying number of thread groups for a given total of 64 threads.

CAPO directives browser so that the user can inspect
all multilevel parallel loops. This will allow optimizing
the placement of second level directives.

5. Related work

There are a number of commercial and research par-
allelizing compilers and tools that have been developed
over the years. Some of the more notable ones include
Superb [24], Polaris [6], Suif [24], KAIfls toolkit [15],
VAST/Parallel [21], and FORGexplorer [1].

Regarding OpenMP directives, most current com-
mercial and research compilers mainly support the ex-
ploitation of a single level of parallelism and spe-
cial cases of nested parallelism (e.g. double perfectly
nested loops as in the SGI MIPSpro compiler). The
KAI/Intel compiler offers, through a set of extensions
to OpenMP, work queues and an interface for inserting
application tasks before execution (WorkQueue pro-
posal [23]). The KAI/Intel proposal mainly targets dy-
namic work generation schemes (recursions and loops
with unknown loop bounds). At the research level, the
Illinois – Intel Multithreading library [7] provides a
similar approach based on work queues. In both cases,
there is no explicit (at the user or compiler level) con-
trol over the allocation of threads so they do not sup-
port the logical clustering of threads in the multilevel
structure, which we think is necessary to allow good
work distribution and data locality exploitation.

Compaq recently announced the support of nested
parallel region by its Fortran compiler for Tru64 sys-

tems [3]. The Omni compiler [19], which is part of the
Real World Computing Project, also supports nested
parallelism through OpenMP directives.

There are a number of papers reporting experiences
in combining multiple programming paradigms (such
as MPI and OpenMP) to exploit multiple levels of par-
allelism. However, there is not much experience in the
parallelization of applications with multiple levels of
parallelism simply using OpenMP. Implementation of
nested parallelism by means of controlling the alloca-
tion of processors to tasks in a single-level parallelism
environment is discussed in [5]. The authors show the
improvement due to nested parallelization.

Other experiences using nested OpenMP directives
with the NanosCompiler are reported in [2]. In the
examples discussed there, the directives have not been
automatically generated.

6. Project status and future plans

We have extended the CAPO automatic paralleliza-
tion support tool to automatically generate nested
OpenMP directives. We used the NanosCompiler to
evaluate the efficiency of our approach. We conducted
several case studies which, showed that:

– Nested parallelization was useful to improve load
balancing.

– Nested parallelization can be counter productive
when applied without considering workload dis-
tribution and memory access within the loops.



H. Jin et al. / Automatic multilevel parallelization using OpenMP 189

0
2
4
6
8

10
12
14
16
18

4 8 16 32 64 128

SGI OpenMP

SGI OpenMP+NEST

Nanos Outer

0

50

100

150

200

250

300

350

4 8 16 32 64 128

SGI OpenMP

SGI OpenMP+NEST

Nanos Outer

Fig. 10. Timings from the outer level parallelization of ARC3D.

– Extensions to the OpenMP standard are needed to
implement nested parallel pipelines.

We are planning to enhance the CAPO directives
browser to allow the user to view loops, which are can-
didates for nested parallelization. Nested paralleliza-
tion may then be turned on selectively and necessary
loop transformations can be performed. We are also
considering the automatic determination of an appro-
priate number of groups and the assignment of different
weights to the groups. Currently CAPO is also being
extended to support hybrid parallelism which combines
coarse-grained parallelization based on message pass-
ing and fine-grained parallelization based on directives.

We plan to conduct further case studies to com-
pare the performance of parallelization based on nest-
ed OpenMP directives with hybrid and pure message
passing parallelism.
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