Scientific Programming 11 (2003) 177-190
10S Press

177

Automatic multilevel parallelization using

OpenM P

Haogiang Jin?, Gabriele Jost®***, Jerry Yan?, Eduard Ayguade”, Marc Gonzalez" and

Xavier MartorellP

2NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
bCentre Europeu de Parallelism de Barcelona, Computer Architecture Depar(tdB@), cr.Jordi Girona 1-3,

Modul D6,08034 — Barcelona, Spain

Abstract. In this paper we describe the extension of the CAPO parallélization support tool to support multilevel parallelism
based on OpenMP directives. CAPO generates OpenM P directives with extensions supported by the NanosCompiler to allow for
directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application

that have been parallelized using our system.

1. Introduction

Parallel architectures are an instrumental tool for
the execution of computational intensive applications.
Simple and powerful programming models and envi-
ronmentsare required to develop and tune such parallel
applications. Current programming modelsoffer either
library-based implementations (such as MPI [16]) or
extensions to sequential languages (directives and lan-
guage constructs) that expressthe avail able parallelism
in the application, such as OpenMP [20].

The compiler directives provided by the OpenMP
standard support afork/join execution model inwhicha
program begins execution as asingle process or thread.
This thread executes sequentially until a PARALLEL
construct is found. At this time, the thread creates
a team of threads and it becomes its master thread.
OpenMP allows the nesting of parallel regions, but
does not clearly address the issue of how to exploit it
efficiently.

It has become increasingly popular to combine sev-
eral programming models to exploit multiple levels of

1A Preliminary version of this paper was presented at the 3rd
European Workshop on OpenMP (EWOMPOL).

*Corresponding author: GJost@nAS.nASA.gov.

**The author is an employee of Computer Sciences Corporation.

I SSN 1058-9244/03/$8.00 [1 2003 —10S Press. All rights reserved

parallelism but at this point there are few reported re-
sults on experiences using mulitlevel OpenMP paral-
lelism. The lack of compilers supporting this feature
has been the main cause of this problem. Inturn, since
thebenefitsof nested parallel regionsarenot clear, there
islittle incentive for compiler developersto support it.

Some research platforms, such as the OpenMP
NanosCompiler [9], have been developed to show the
feasibility of exploiting nested parallelism in OpenMP
and to serve as testbeds for new extensions in this di-
rection. The OpenM P NanosCompiler accepts Fortran-
77 code containing OpenMP directives and generates
plain Fortran-77 code with calls to the NthLib thread
library [17] (currently implemented for the SGI Ori-
gin). In contrast to the SGI MP library, NthLib allows
for multilevel parallel execution such that inner parallel
constructs are not being serialized. The NanosCompil-
er supports several extensionsto the OpenM P standard
to allow the user to control the all ocation of work to the
participating threads. By supporting nested OpenMP
directives the NanosCompiler offers a convenient way
to multilevel parallelism.

We have extended the automatic parallelization tool
CAPO[13],toalow for the generation of nested Open-
MP parallel constructs and NanosCompiler extensions
in order to support multilevel shared memory paral-
lelization. CAPO automates the insertion of OpenMP

178 H. Jin et al. / Automatic multilevel parallelization using OpenMP

directiveswith nominal user interactiontofacilitate par-
allel processing on shared memory parallel machines.
It is based on CAPTools [11], a semi-automatic par-
allelization tool for the generation of message passing
codes, developed at the University of Greenwich. By
being able to generate nested directives automatically
in a reasonable amount of time we hope to gain a bet-
ter understanding of performance issues and the needs
of application programs when it comes to exploiting
multilevel parallelism. The goa of our evaluation is
threefold: We want to study the performance impact
of nested OpenMP parallelization, we discuss poten-
tial extensions to the OpenMP standard, and we iden-
tify requirements for tools to automate the multilevel
parallelization process.

The paper is organized as follows: Section 2 sum-
marizes the NanosCompiler extensionsto the OpenM P
standard. Section 3 discussestheextension of CAPO to
generate multilevel parallel codes. Section 4 presents
case studies on several benchmark codes and one full
application. Section 5 gives an overview on related
work and Section 6 concludes with describing the cur-
rent project status and future plans.

2. The NanosCompiler

OpenMP provides a fork-and-join execution model
in which a program begins execution as a single pro-
cess or thread. This thread executes sequentially un-
til a PARALLEL construct is found. At thistime, the
thread creates ateam of threadsand it becomesits mas-
ter thread. All threads execute the statements lexically
enclosed by the parallel construct. Work-sharing con-
structs (DO, SECTI ONS and SI NGLE) are provided
to divide the execution of the enclosed code region
among the members of ateam. All threads are inde-
pendent and may synchronize at the end of each work-
sharing construct or at specific points (specified by the
BARRI ERdirective). Exclusive execution modeis al-
so possible through the definition of CRI Tl CAL and
ORDERED regions. If athread in ateam encounters a
new PARALLEL construct, it creates anew team and it
becomesits master thread. OpenMP v2.0 providesthe
NUM.THREADS clauseto restrict the number of threads
that compose the team.

The NanosCompiler extension to multilevel paral-
Ielization is based on the concept of thread groups. A
group of threads is composed of a subset of the total
number of threadsavailableintheteamtorunaparallel
construct. Inaparallel construct, the programmer may

define the number of groups and the composition of
each one. When a thread in the current team encoun-
tersaPARALLEL construct defining groups, thethread
creates a new team and it becomes its master thread.
The new team is composed of as many threads as the
number of groups. The rest of the threads are used
to support the execution of nested paralel constructs.
In other words, the definition of groups establishes an
allocation strategy for the inner levels of paralelism.
To define groups of threads, the NanosCompiler sup-
ports the GROUPS clause extension to the PARALLEL
directive.

C$OVP PARALLEL GROUPS (gspec)

C$OVP END PARALLEL

Different formats for the GROUPS clause argument
gspec are alowed [10]. The simplest specifies the
number of groups and performs an equal partition of
the total number of threads to the groups:

gspec = ngroups

The argument ngroups specifies the number of
groupsto be defined. Thisformat assumesthat work is
well balanced among groups and therefore al of them
receive the same number of threads to exploit inner
levels of parallelism. At runtime, the composition of
each group is determined by equally distributing the
available threads among the groups.

gspec = ngroups, weight

In this case, the user specifies the number of groups
(ngr oups)andaninteger vector (wei ght) indicating
the relative weight of the computation that each group
has to perform. From this information and the number
of threads available in the team, the threads are alo-
cated to the groups at runtime. Thewei ght vector is
allocated by the user and its values are computed from
information available within the application itself (for
instance iteration space, computational complexity).

3. The CAPO paralléization support tool

Themain goal of developing parallelization support
tools is to eliminate much of the tedious and some-
times error-prone work that is needed for manual par-
allelization of seria applications. With this in mind,
CAPO [13] was developed to automate the insertion
of OpenMP compiler directives with nominal user in-
teraction. Thisis achieved largely by use of the very

H. Jin et al. / Automatic multilevel parallelization using OpenMP 179

accurate interprocedural analysis module from CAP-
Tools [11]. Furthermore CAPO provides a directive
browser to allow the user to examine and optimize the
directives automatically placed within the code. CAP-
Tools provides afully interprocedural and value-based
dependence analysis engine [14] and has successful-
ly been used to parallelize a number of mesh-based
applications for distributed memory machines.

3.1. Single level parallelization

After an extensive dependence analysis CAPO in-
serts OpenMP directives into sequential Fortran code.
Details about this process can be found in [13]. The
three main steps to generate the directives can be sum-
marized as follows:

1) Identification of parallel loops and parallel re-
gion: Based on the dependence analysis infor-
mation loops are identified as serial or parallel.
The outermost parallel loops are considered for
parallelization. The dependenceanalysisisinter-
procedural, and the parallel regions are defined
as high up in the call tree as the analysis results
will alow it to achieve an efficient placement
of the directives. If the outermost |oop contains
prohibitive dependences, the next nesting level is
considered for the insertion of directives.

2) Optimization of parallel regions and parallel
loops: The goa of this phase is to lower the
fork-and-join overhead associated with starting
parallel regions and the thread synchronization
costs. This is achieved by merging paralle re-
gions whenever possible. In addition, the syn-
chronization between successive parallel loopsis
minimized by using the NOWAIT clause if the
dependenceanalysisshowsthat theloopscan cor-
rectly execute asynchronously.

3) Code transformation and insertion of OpenMP

directive: This is the fina stage where the
call graph is traversed to place OpenMP direc-
tives within the code. This includes the iden-
tification of variable types, such as SHARED,
PRI VATE, and REDUCTI ON. In addition possi-
ble THREADPRI VATE common blocks areiden-
tified and proper directives are inserted.

The transformations described above are portable to
all platformswhere OpenMP parallelizationis support-
ed. In addition to this, CAPO provides the possibil-
ity to generate some platform dependent extensions.
One of the extensions supported by CAPO is the SGI

NEST clause. Althoughthe SGI compiler doesnot sup-
port nested parallelism, the user can exploit parallelism
across multiple loop nests in a limited manner. The
SGI compiler accepts the NEST clause on the OMP
DO directive[18]. The NEST clauserequiresat least 2
variablesasargumentsto identify indices of subsequent
DO-loops. Theidentified loops must be perfectly nest-
ed and no code is alowed between the identified DO
statements and the corresponding END DO statements.
The NEST clause on the OMP DO directive informs
the compiler that the entire set of iterations across the
identified loops can be executed in parallel. The com-
piler can then linearize the execution of the loop itera-
tion and divide them among the available single level
of threads. This is not nested parallelism but merely
a distribution of work in multiple dimensions within
asingle level of paralelism. CAPO has the capabili-
ty to identify suitable loop nests and generate the SGI
NEST clause. We have extended this feature of CAPO
to support true nested parallelism.

3.2. Extension to multilevel parallelization

According to the OpenMP standard if a thread in
a team executing a parallel region encounters another
parallel region, it creates a new team and it becomes
the master of that new team. Our extension to Open-
MP multilevel parallelism makes use of the extensions
offered by the NanosCompiler. Currently, we limit our
approachto only two-level loop parallelism, whichisof
more practical use. The approach to automatically ex-
ploit two-level parallelism is extended from the single
level parallelization and isillustrated in Fig. 1. After
performing the data dependence analysis the approach
can be summarized in the following four steps:

1) First-level loop analysis:Thisis essentialy the
combination of the first two stages in the single
level parallelization where parallel loops and par-
allel regions are identified and optimized at the
outermost loop level.

2) Second-level loop analysisThis step involves
the identification of paralel loops and parallel
regions nested inside the parallel loops that were
identified in Step 1. These parallel 1oops and
parallel regions are then optimized as before but
limited to the scope defined by thefirst level.

3) Second-level directive insertionThis includes
code transformation and OpenMP directives in-
sertion for the second level. This step is per-
formed beforeinserting any directiveson thefirst-

180 H. Jin et al. / Automatic multilevel parallelization using OpenMP

Serial Code
!
| Data Dependence Analysis |

!

| First Level Loop Analysis |

| [Sooontova LoopAvatyas | |

j i

| Second Level Directive Insertion |

| First Level Directive I nsertion |

v
Parallel Code

Fig. 1. Stepsin multilevel parallelization.

level. It ensuresthat a consistent pictureis main-
tained for any variables and code that may be
changed during the parallelization process.

4) First-level directive insertionLastly code trans-
formation and OpenMP directives insertion are
performed for the outer level paralelization.
All the transformations of the last stage of
the single level parallelization are being per-
formed, with the exception that we disallow the
THREADPRI VATE directive. Compared to sin-
glelevel parallelization, thetwo-level paralleliza-
tion process requires the additional steps indicat-
edinthedashbox inFig. 1.

3.3. Implementation consideration

In order to maintain consistency during necessary
code transformations of the parallelization process we
need to update datadependences properly. Consider the
example where CAPO transforms an array reduction
into updates to a local variable. This is followed by
an update to the global array in a CRI Tl CAL section
to work around the limitation on array reductions in
OpenMP v1.x. In this case the data dependence graph
needs to be updated to reflect the change due to this
transformation

When nested parallel regions are considered, the
scope of the THREADPRI VATE directive is not clear
any more, since avariable may bethreadprivatefor the
outer nest of parallél regions but shared for the inner
parallel regions, and the directive cannot be bound to
a specific nest level. The OpenMP specification does
not properly addressthisissue. Our solutionisto disal-
low the THREADPRI VATE directive when nested par-

allelismis considered. In case that avariablein anon-
threadprivate common block needsto be privatized and
causes a usage conflict, the common block variables
are added to the argument list of and removed properly
from the common blocks inside the relevant subrou-
tines.

CAPO detects opportunities for software-pipelined
execution of |oopswhere data dependences prevent par-
allelization (see [13]). Such loops are enclosed by a
parallel region. The iteration space of the loopsis di-
vided up among the threads using the OMP DO di-
rective. The threads then explicitly synchronize their
execution with their neighbors. This is discussed in
greater detail in Section 4.2 and an example for a one-
dimensional pipelineis shownin Fig. 5. Setting up a
two-dimensional pipeline would involve synchroniza-
tion of threads from two different nest levels. We will
discuss the problem of two-dimensional pipelining in
one of our case studiesin Section 4.2.

One of the contributions by the NanosCompiler to
support nested directivesisthe GROUPS clause, which
can be used to define the number of thread groups to
be created at the beginning of an outer-nest parallel
region. In our implementation, the GROUPS direc-
tive (containing a single shared variable ‘ngr oups’)
is generated for all thefirst-level parallel regions. The
ngr oups variable is placed in a common block and
can be defined by the user at run time. Although it
would be better to generate the GROUPS clause with
awei ght argument based on different workloads of
parallel regions, thisis not considered at the moment.

As an example, the following nested loop:

DOK =1, NK
RHO = 1/ NORVK(K)
DOJ =2, NJ

AJ, K) = AJ,K) + RHO * B(J, K)
END DO
END DO

will be transformed by CAPO into:

I $OVP PARALLEL GROUPS(ngr oups)
I'$OW & PRI VATE (RHO, K)
I $OWP DO
DO K =1, NK
RHO = 1/ NORMK(K)
I $OVP PARALLEL DO PRI VATE (J)
DOJ =2, N
A(J, K) = A{J, K) + RHO * B(J, K)
END DO
I $OVP END PARALLEL DO
END DO

H. Jin et al. / Automatic multilevel parallelization using OpenMP

181

BT Class A (Problem size 64x64x64)
120

% 100 {7

c

O gl OsGIOpenMP

(8]

g OSGI OpenMP + NEST
c 60 1 B Nanos Outer
; 40 ONanos Nested
£

i: 20 1

o 44
8 16 32 64 128
Number of threads
SP Class A (Problem size 64x64x64)

»n 160

T 140

| = -

8 120 1 OSGI OpenMP
o 1004 o

® 0l SGI OpenMP + NEST
- co U ENanos Outer
q_, 40 ONanos Nested
£ ») (101 1T [k
F r r , r

8 16 32 64 128
Number of threads

Fig. 2. Timing results for class A benchmarks.

' $OVP END DO NOWAI T
I $OVP END PARALLEL

Note that for this loop the SGI NEST clause is not
applicable, since there is a statement between DO K
and DO J.

4. Casestudies

In this section we show examples for successful
and not so successful automatic multilevel paralleliza-
tion. We have parallelized the three application bench-
marks (BT, SP, and LU) from the NAS Parallel Bench-
marks [4] and the ARC3D [22] application code using
the CAPO multilevel parall€elization feature and exam-
ined its effectiveness.

I'n each of our experimentswe generate nested Open-
MP directives and use the NanosCompiler for compi-
lation. As discussed in Sections 2 and 3, the nested
parallel code contains the GROUPS clause at the outer
level. According to the OpenMP standard, the num-
ber of executing threads can be specified at runtime
by the environment variable OVP NUM.THREADS. We
introduce the environment variable NANOS _GROUPS
and modify the source code to have the main routine
check the value of this variable and set the argument to
the GROUPS clause accordingly. This allows usto run
the same executable not only with different numbers of
threads, but also with different numbers of groups. We
comparethetimingsfor different numbers of groupsto
each other. Note that single level parallelization of the
outer loop corresponds to the case that the number of

182 H. Jin et al. / Automatic multilevel parallelization using OpenMP
BT Spaad-up with Nested Parallalization
7 -
; m
18 -
L]
E 16 |
i 1.4 — .
E 12 e ™ @Class A
E | =1 - I".:'-EI‘S-E-E!
z 04 - - — e = o Clags C
Eos- - - H
S04 _— _— _— =
® 037 | | - u
| T T T T —
] 16] 54 128
Mamber of Threads
8P Speed-up with Nested Parallelization
18 -
16 B
]
£ 14 =
E
g 112 -
E || || |mtlase &
E milass H
* 08 - - = .
r..: OClass ©
i 08 —— — —
S0 e b B
]
0 - - L
g 1 12 1] 128
Migitihat of Thoeads

Fig. 3. Speed-up due to nested parallelism.

executing threadsis equal to the number of groups, i.e.
there is only one thread in each group. We compare
these timings to those resulting from compilation with
the native SGI compiler, which supports only the sin-
gle level OpenMP parallelization and serializes inner
parallel loops. We will also give timings for the SGI
compiler using the NEST clause which we described
in 3.1. These timings show how true multilevel paral-
lelism compares to single parallelization employing a
2-dimensional work distribution.

The timings were obtained on a SGI Origin 2000
with R12000 CPUs, 400MHz clock, and 768MB local
memory per node.

4.1. Successful multilevel parallelization: The BT and

SP benchmarks

The NAS Parallel Benchmarks BT and SP are both
simulated CFD applications with a similar structure.
They use an implicit algorithm to solve the 3D com-
pressible Navier-Stokes equations. The z, y, and z
dimensions are decoupled by usage of an Alternating
Direction Implicit (ADI) factorization method. In BT,
the resulting systems are block-tridiagona with 5 x 5
blocks. The systemsare solved sequentially along each
dimension. SP uses a diagonalization method that de-
couples each block-tridiagonal system into three inde-

H. Jin et al. / Automatic multilevel parallelization using OpenMP 183

BT Benchmark with &4 Threads

aEdl

.-\.
m
|

-\.
m
|

=
|

Fanm= Lhrise Henas Rescisd

g W o

Harchmash Llsss

[EFEE
miEsd
[=].] =

mdnlE

Chiss B Clags o

Fig. 4. Timings of BT with varying number of groups and threads per group.

pendent scalar pentadiagonal systems that are solved
sequentially along each dimension.

A study about the effects of single level OpenMP
parallelization of the NAS Parallel Benchmarks can be
found in [12]. In our experiments we started out with
the same serial implementation of the codes that was
the basis for the single level OpenM P implementation
asdescribedin[12]. WeranclassA (64 x 64 x 64 grid
points), B (102 x 102 x 102 grid points), and C (162 x
162 x 162 grid points) for the BT and SP benchmarks.
As an example we show timings for problem class A
for both benchmarksin Fig. 2. We denote by:

— SGI OpenMPthe time for outer loop paralleliza-
tion using just the native SGI compiler,

— SGI OpenMP+NESTT hetime for outer loop par-
alelization using the SGI NEST clauseif applica-
ble.

— Nanos Outer:the time for outer loop paralleliza-
tion using the NanosCompiler,

— Nanos Nestedthe minimal time for nested paral-
Ielization using the NanosCompiler.

The programs compiled with the SGI OpenM P com-
piler scale reasonably well up to 64 threads, but do not
show any further speed-up if more threads are being
used. For asmall number of threads (up to 64), the out-
er level parald code generated by the NanosCompiler
performs about the same as the code generated by the
SGI compiler. When increasing the number of threads
from 64 to 128, the multilevel parallel code still shows
a speed-up, provided the number of groups is chosen
in an optimal way. We observed a speed-up of up to

Table 1
Thread workload for the class A problems BT and SP
Groups Max # Iters Min # lters
64 62 0
32 62 31
16 64 45
8 64 49
4 64 45

85% for 128 threads. In Figure 3 we show the speed-up
resulting from nested parallelization for three problem
classes of the SP and BT benchmarks.

The timings show that the SGI NEST clause is of
limited benefit. It improvesthe performance of the BT
benchmark dlightly, but it does not help the SP bench-
mark. The time consuming routines in the two bench-
marks are the three solversin x, y, and z-direction and
the computation of the right hand side. In case of BT,
CAPO parallelized 28 loops, 11 of which were suitable
for the NEST clause. This includesthe major loopsin
the three solver routines. The time consuming loopsin
the calculation of the right hand side are not suitable
for the NEST clause, since they contain statements be-
tween the DO statements. The situation is alot worse
for the SP benchmark. CAPO parallelized 31 loops.
The NEST clause could be generated for 11 of them.
The three main loops in the solver routines were not
suitable for the NEST clause, because the inner loops
are enclosed in subroutine calls. The computation of
the right hand side contains nested loops that are not
tightly nested, just like in the case of BT. The NEST
clause could only be applied to loops with a very low
workload. Inthiscase, distributing thework in multiple

184 H. Jin et al. / Automatic multilevel parallelization using OpenMP

dimensions leads to a slight decrease of performance
for a small number of threads. Neither the occurrence
of code between the DO statements nor inner loops
enclosed within subroutine calls poses an obstacle to
nested parallel regions supported by the NanosCompil-
er. For the BT benchmark CAPO parallelized 13 of the
28 parallel loops employing nested parallel regionsand
the GROUPS clause. For the SP benchmark CAPO
identified 17 of the 31 parallel 31 loops, as suitable
for nested parallelism. In both benchmarks the most
time consuming loops are parallelized in two dimen-
sions. All of the nested parallel loops are at least triple
nested. The structure of the loops is such that the two
outer most loops can be parallelized. Theinner parallel
loops enclose one or more inner loops and contain a
reasonably large amount of computational work.

The reason that multilevel parallelism has a positive
effect on the performance of these loopsis mainly due
to the fact that load balancing between the threads is
improved. For class A, for example, the number of
iterationsis typically 62. If only the outer loop is par-
allelized, using more than 62 threads will not improve
the performance any further. I1n the case of 64 threads,
2 of them will beidling. If, however, the second loop
level is aso parallelized, all 64 threads can be put to
use. Our experiments show that by choosing the num-
ber of groups too small, the performance will actual-
ly decrease. Setting the number of groupsto 1 effec-
tively moves the parallelism completely to the inner
loop, which will in most cases be less efficient than
parallelizing the outer 1oop.

In Table 1 we show the maximal and minimal number
of iterations (for class A) of theinner parallel loop that
a thread has to execute, depending on the number of
groups.

To giveaflavor of how the performance of the multi-
level parallel code depends on the grouping of threads
we show timings for the BT benchmark on 64 threads
and varying number of groupsin Fig. 4. In the figure
we indicate by NxM the situation where N groups are
being used with M threads each. The timings indicate
that good criteriato choose the number of groups are:

— Efficient granularity of the parallelism, i.e., the
number of groupshasto be sufficiently largethere-
by avoiding excessive parallelization overhead that
occurs when parallelism is moved to inner loop
level. Inour experimentswe observethat the num-
ber of groups should not be smaller than the num-
ber of threads within a group.

— The number of groups has to be small enough to
allow agood balancing of work among thethreads.

An enhancement to CAPO in support of multi-
level OpenMP parallelization would be to automatical -
ly choose an appropriate number of groups based on
the workload for each thread.

4.2. The need for OpenMP extensions: The LU
benchmark

The LU application benchmark is a smulated CFD
application that uses the symmetric successive over-
relaxation (SSOR) method to solve a seven band bl ock-
diagonal system resulting from finite-difference dis-
cretization of the 3D compressible Navier-Stokesequa-
tions by splitting it into block lower and block upper
triangular systems.

Asstarting point for our testswe choosethe pipelined
implementation of the parallel SSOR agorithm, as de-
scribed in [12]. The example below shows the loop
structure of the lower-triangular solver in SSOR. The
lower-triangular and diagonal systems are formed in
routine JACLD and solved in routine BLTS. The index
K correspondsto the third coordinate direction.

DO K = KST, KEND
CALL JACLD (K)
CALL BLTS (K)

END DO

SUBROUTI NE BLTS

DO J = JST, JEND
Loop\ _Body (J, K)

END DO
RETURN
END

All of theloopsinvolved carry data dependencesthat
prevent straightforward parallelization. The structure
of the loop body is such that iteration (J, K) depends
on iterations (J1, K) and (J, K-1). Thereis, however,
the possibility to exploit a certain level of parallelism
by using software pipelining as described in Section
3.3. To set up a pipeline for the outer loop, thread O
starts to work onits first chunk of datain K direction.
Once thread O finishes, thread 1 can start working on
its chunk for the same K and, in the meantime, thread
0 moves on to the K+1. The directives generated by
CAPO to implement the pipeline for the outer loop are
shownin Fig. 5.

H. Jin et al. / Automatic multilevel parallelization using OpenMP 185

1 $OVP PARALLEL PRI VATE(K, i am nunt)
iam = onp_get _t hread_num()
nunt = onp_get_numthreads()
isync(iam =0

1 $OVP BARRI ER
DO K = KST, KEND

CALL JACLD (K)
CALL BLTS (K)
END DO

1 $OVP END PARALLEL

SUBROUTI NE BLTS (K)

if (iam.gt. O .and.
iam.lt. nunt) then
do while(isync(iam1l1l) .eq. 0)
1 $OMP FLUSH(i sync)
end do
isync(iaml) =0
1 $OWP FLUSH(i sync)
end if
1 $OWP DO
DO J = JST, JEND
Loop_Body (J, K)
END DO
! $OMP END DO nowai t
if (iam.lt. nunt) then
do while (isync(iam .eq. 1)
I $OVP FLUSH(i sync)
end do
isync (iam =1
1 $OWP FLUSH(i sync)
endi f
RETURN
END

Fig. 5. The one-dimensional parallel pipeline implemented in LU.

The K loop is placed inside a parallel region. Two
OpenMP library functions are called to obtain the cur-
rent thread identifier (i am) and the total number of
threads(nunt). Thesharedarray i sync isusedtoin-
dicatetheavailability of datafrom neighboringthreads.
Together with the FLUSH directive in a WHI LE loop
it is used to set up the point-to-point synchronization
between threads. The first WHILE ensures that thread
iam will not start with its slice of the J loop before
the previous thread has updated its data. The second
VWHI LE is used to signal data availability to the next
thread.

The NanosCompiler team is currently defining and
implementing OpenM P extensionsto easily expressthe
precedence relations that originate pipelined compu-
tations. These extensions are also valid in the scope
of nested parallelism. They are based on two compo-
nents:

— The ability to name work-sharing constructs (and
therefore reference any piece of work coming out
of it).

I $OMP PARALLEL PRI VATE(K, i am nunt)

DO K = KST, KEND
CALL JACLD (K)
CALL BLTS (K)
END DO
| SOVP END PARALLEL
SUBROUTI NE BLTS (K)

1 $OVP DO NAME (i nner | oop)
DO J = JST, JEND
1 $OVWP PRED (i nner |oop, j-1)
Loop_Body (J, K)
1 $OVP SUCC (i nner |oop, |+1)
END DO
1 $OVP END DO nowai t

RETURN
END

Fig. 6. One-dimensional pipeline using directives.

— The ability to specify predecessor and successor
relationships between named work-sharing con-
structs (PRED and SUCC clauses).

This avoids the manual transformation of the loop
to access data slices and manual insertion of synchro-
nization calls. From the new directives and clauses,
the compiler automatically builds synchronization data
structures and insert synchronization actions following
the predecessor and successor relationshipsdefined [8].
Figure 6 shows the pipelined loop from Fig. 5 when
using the new directives.

In Fig. 7 we show the timings for LU bench-
mark comparing the one-level pipelined implemen-
tation using the synchronization mechanism from
Fig. 5, theone-level pipelinedimplementation using the
new NanosCompiler directives, and a 2-dimensional
pipelined implementation based on MPI. The compiler
directives based implementation shows about the same
performance as the hand-coded synchronization.

The timings in Fig. 7 show that the directive based
implementation does not scale as well as a message
passing implementation of the same algorithm. The
cost of pipelining results mainly from waiting (at start-
up and termination). The message-passing version em-
ploys a2 dimensional pipeline where the wait cost can
be greatly reduced. The use of nested OpenMP direc-
tives offers the potential to achieve similar scalability
to the message passing implementation.

Thereis, however, aproblemin setting up adirective-
based two-dimensional pipeline. The new directives
allow synchronization of threads within one team and
synchroni zation between different teams.

The structure of the Loop Body depicted in Fig. 5
looks like:

186 H. Jin et al. / Automatic multilevel parallelization using OpenMP
LU Class A Timings
200
180 -
160 -
B 140 1
8 120 OExplicit Sync.
§ 100 4 BEPRED/SUCC
é 80 1 HMPI
£ 604
40 4
20 4
oH . :
4 8 16 32 64
Number of Threads
Fig. 7. Timings for different implementations of LU.
DOl =I1LON IH&H Theend of theinner parallel region forcesthethreads
DOM=1, 5 tojoin and destroysthe multilevel pipeline mechanism.
VM 1, J) = V(M |, J, K-1) In order to set up a 2-dimensional pipeline, two pos-
+ VMM I,J-1,K sibilities should be taken into account. The first one
+ VM I1-1,7J,K) is removing the implicit barrier at the end of the inner
END DO parallel region. Such aNOWAIT clause would violate
- the OpenM P standard. Thesecond alternativeistheuse
DOM=1, 5 of nested OMP DO directives within the same parallel
VMM 1,J, K= TvVM 1, J) region. This is a proposed extension to the OpenMP
END DO standard, but is not part of OpenMP at thistime.
END DO The SGI compiler providesthe NEST clause, which

If both J- and |-loop are to be parallelized employing
pipelines, athread would need to be ableto synchronize
with its neighbor in the J- and I-directions on different
nesting levels. Parallelizing the I-loop with OpenMP
directivesintroducesan inner parallel region, as shown
below (see also the discussion in Section 3.3):

I $OVP PARALLEL
Synchroni zati onl
' $OVP DO
DO JT = ...
I $OVP PARALLEL
DO J = JLON JH GH
Synchr oni zat i on2
' $OWP DO
DOl =ILON IHCH

END DO
I $OVP END DO NOWAI T
Synchr oni zat i on2
END DO
I $OVP END PARALLEL
END DO
I $OVP END DO NOWAI T
Synchroni zati onl

simply usesonelevel of parallelism but performsatwo-
dimensiona distribution of work. Asdiscussedin 3.1,
the loops need to be tightly nested for the NEST clause
to be applicable. The loop structure of loops allowing
pipelined executionin the LU benchmark is suitablefor
the SGI NEST clause. However, the SGI compiler does
not provide extensionsfor explicit thread synchroniza-
tion which is necessary for pipelined execution of the
loop.

As we have seen in Section 4.1, the restrictions to
application of the NEST clause greatly limit its usage
for many time consuming loops. It would be desir-
ableto have theserestrictionsremoved. Allowing nest-
ed OVP DO directives within the same parallel region
would remove these restrictions. Code between the
DO statements could be handled by having only part
of the threads executing these statements. In case that
the inner loop is enclosed in a subroutine call, more
complicated techniques, involving procedure in-lining
are necessary.

4.3. Unsuitable loop structure in ARC3D

ARC3D uses an implicit scheme to solve Euler and
Navier-Stokes equations in a three-dimensional (3D)

H. Jin et al. / Automatic multilevel parallelization using OpenMP 187

| BC |—| Boundary Condition |

|—| Explicit Right-Hand-Side |

| RHS
| FILTI|ER3D |—| Artificial Dissipation Terms |

(X) For each L:
form LHS for (J,K) plane
VPENTAS3 -- solvefirst 3
VPENTA -- solve4 & 5

(Y) For each L:
form LHSfor (K,J) plane
VPENTA3 -- solvefirst 3
VPENTA -- solve4 & 5

(2) For each K:
form LHSfor (L,J) plane
VPENTA3 -- solvefirst 3
VPENTA -- solve4 & 5

update solution

Fig. 8. The schematic flowchart of the ADI solver in ARC3D.

rectilinear grid. The main componentisan ADI solver,
which results from the approximate factorization of
finite difference equations. The actual implementation
of the ADI solver (subroutine STEPF3D) in the serial
ARC3D isillustrated in Fig. 8. It isvery similar to the
SP benchmark.

For each time step, the solver first sets up bound-
ary conditions (BC), forms the explicit right-hand-side
(RHS) with artificia dissipation terms (FI LTER3D),
and then sweeps through three directions (X, Y and Z2)
to update the 5-element fields, separately. Each sweep
consists of forming and solving a series of scalar pen-
tadiagonal systems in a two-dimensional plane one at
atime. Two-dimensiona arrays are created from the
3D fields and are passed into the pentadiagonal solvers
(VPENTAS for thefirst 3 elementsand VPENTA for the
4 and 5th elements, both originally written for vector
machines), which perform Gaussian eliminations. The
solutions are then copied back to the three-dimensional
residua fields. Between sweeps there are routines
(TKI NV, NPI NV and TK) to calculate and solve small,
local 5 x 5 eigensystems. Finally the solution is up-
dated for the current time step.

We ran ARC3D for two different problem sizes. In
both cases the performance dropped by 10% to 70%
when the number of groups was smaller than the num-
ber of threads, i.e. when multilevel paralelism was

used. Example timings for both problem sizes and 64
threadsaregivenin Fig. 9. Figure 10 showsthetimings
for outer level paralelism.

Eventhoughthetime consuming solverin ARC3D is
similar to the onein the SP benchmark, our approachto
automatic multilevel parallelization was not successful.
For ARC3D CAPO identified 58 parallel loops, 35 of
which were suitable for nested parallelization. 19 of
the 35 nested paralel loops had very little work in the
inner parallel loop and inefficient memory access. An
exampleis shown below:

| $OMP PARALLEL DO GROUPS(ngr oups)
I $OMP & PRI VATE(AR, BR, CR DR, ER)
DO K = KLOW KUP

I $OVP PARALLEL DO
DOL =2, LM
DOJ = 2, UM

AR(L, J) = ARL, J) + V({J, K, L)
BR(L, J) = BR(L, J) + V(J, K, L)
CR(L, J) = CR(L,J) + V(J, K, L)
DR(L, J) = DR(L,J) + V({J, K L)
ER(L, J) = ER(L, J) + V({J, K L)
CR(L,J) = CR(L,J) + 1.
END DO
END DO

END DO

Parallelizing the L loop increases the executiontime
of the loop considerably dueto a high number of cache
invalidations. Theoccurrenceof many suchloopsinthe
original ARC3D code nullifies the benefits of a better
load balance and we see no speed-up for multilevel
parallelism.

The NEST clause could be applied to the same
35 loops that were suitable for nested parallelization.
However, the NEST clause did not improve the perfor-
mance of the code.

The example of ARC3D shows that parallelizing all
loops in an application indiscriminately on two levels
with the same number of groups and the same weight
for each group may actually increase the execution
time.

CAPO provides a browser for first level directives.
The browser allows the user to examine the directives
that have been automatically placed in the code. The
user has the possihility to provide knowledge about in-
put data or code structure so that the placement of di-
rectives can be optimized. At the moment this feature
is not available for second level directives. The exam-
ple of ARC3D shows that we will need to extend the

188 H. Jin et al. / Automatic multilevel parallelization using OpenMP

ARCID Mested Parallelism Timings

Tiin i detonds

0 |

[=]

1|:i L

Presiam sire

mEd griupl
s |37 graup
C1E graups

103194

Fig. 9. Timings of ARC3D with varying number of thread groups for a given total of 64 threads.

CAPO directives browser so that the user can inspect
all multilevel parallel loops. Thiswill alow optimizing
the placement of second level directives.

5. Related work

There are anumber of commercia and research par-
allelizing compilersand toolsthat have been developed
over the years. Some of the more notable ones include
Superb [24], Polaris[6], Suif [24], KAlflstoolkit [15],
VAST/Pardlel [21], and FORGexplorer [1].

Regarding OpenMP directives, most current com-
mercial and research compilers mainly support the ex-
ploitation of a single level of parallelism and spe-
cia cases of nested paralelism (e.g. double perfectly
nested loops as in the SGI MIPSpro compiler). The
KAIl/Intel compiler offers, through a set of extensions
to OpenMP, work queues and an interface for inserting
application tasks before execution (WorkQueue pro-
posal [23]). The KAl/Intel proposal mainly targets dy-
namic work generation schemes (recursions and loops
with unknown loop bounds). At the research level, the
Illinois — Intel Multithreading library [7] provides a
similar approach based on work queues. In both cases,
thereis no explicit (at the user or compiler level) con-
trol over the allocation of threads so they do not sup-
port the logical clustering of threads in the multilevel
structure, which we think is necessary to alow good
work distribution and data locality exploitation.

Compaq recently announced the support of nested
parallel region by its Fortran compiler for Tru64 sys-

tems[3]. The Omni compiler [19], whichis part of the
Real World Computing Project, also supports nested
parallelism through OpenMP directives.

There are a number of papers reporting experiences
in combining multiple programming paradigms (such
as MPI and OpenMP) to exploit multiple levels of par-
allelism. However, thereis not much experiencein the
parallelization of applications with multiple levels of
parallelism simply using OpenMP. Implementation of
nested parallelism by means of controlling the aloca-
tion of processorsto tasksin asingle-level parallelism
environment is discussed in [5]. The authors show the
improvement due to nested parallelization.

Other experiences using nested OpenMP directives
with the NanosCompiler are reported in [2]. In the
examples discussed there, the directives have not been
automatically generated.

6. Project statusand future plans

We have extended the CAPO automatic paralleliza-
tion support tool to automatically generate nested
OpenMP directives. We used the NanosCompiler to
evaluate the efficiency of our approach. We conducted
several case studies which, showed that:

— Nested parall€lization was useful to improve load
balancing.

— Nested parallelization can be counter productive
when applied without considering workload dis-
tribution and memory access within the loops.

H. Jin et al. / Automatic multilevel parallelization using OpenMP 189

ARC3D Timings for Probelm size 64x64x64

18

16 { [
& 144
g 12 OSGI OpenMP
s 12 1] OSGI OpenMP+NEST
é 6 HENanos Outer
£ 44

3 11 [T

0 r r

4 8 16 64 128
Number of threads
ARC3D Timings for Problem size
194x194x194

350

300 { _
§ 250 1
§ 200 - O SGI OpenMP
o O SGI OpenMP+NEST
£ 150 -
g E Nanos Outer
£ 100 -

50 4
o 44
4 8 16 32 128
Number of threads

Fig. 10. Timings from the outer level parallelization of ARC3D.

— Extensionsto the OpenMP standard are needed to
implement nested parallel pipelines.

We are planning to enhance the CAPO directives
browser to allow the user to view loops, which are can-
didates for nested parallelization. Nested paralleliza-
tion may then be turned on selectively and necessary
loop transformations can be performed. We are also
considering the automatic determination of an appro-
priate number of groupsand the assignment of different
weights to the groups. Currently CAPO is aso being
extended to support hybrid parallelism which combines
coarse-grained parallelization based on message pass-
ing and fine-grained parall €lization based on directives.

We plan to conduct further case studies to com-
pare the performance of parallelization based on nest-
ed OpenMP directives with hybrid and pure message
passing parallelism.

Acknowledgments

The authors would like to thank Rob Van der Wijn-
gaart and Michagl Frumkin of NAS and JesUs Labarta
from CEPBA for reviewing the paper and the sugges-
tionsthey madefor improvingit. Theauthorsalsowish
to thank the CAPToolsteam (C. lerotheou, S. Johnson,
P. Leggett, and others) at the University of Greenwich

190

H. Jin et al. / Automatic multilevel parallelization using OpenMP

for their support on CAPTools. This work was sup-
ported by NASA contractsNAS 2-14303and DTTS59-
99-D-00437/A61812D with Computer Sciences Cor-
poration, by the CEPBA and by the Spanish Ministry
of Science and Technology and the European Union
FEDER contract T1C2001-0995-C02-01.

References

(4
(2

(3]

(4

(9]

(6l

(7

(8]

(9

[10]

Applied Parallel Research Inc., FORGE Explorer, http://www.
apri.com/.

E. Ayguade, X. Martorell, J. Labarta, M. Gonzalez and N.
Navarro, Exploiting Multiple Levels of Parallelism in Open-
MP: A Case Study, Proc. Of the 1999 International Conference
on Parallel Processing, Ajzu, Japan, September 1999.
Compaq Fortran Release Notes for Compag Tru64 UNIX
Systems April 2001, http://www5.Compag.com/fortran/docs/
unix-um/relno.htm.

D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A.
Woo and M. Yarrow, The NAS Paralel Benchmarks 2.0,
RNR-95-020, NASA Ames Research Center, 1995. NPB2.3,
http://www.nas.nasa.gov/Software/NPB/.

R. Blikberg and T. Sorevik, Nested Parallelism: Allocation of
Processors to Tasks and OpenM P Implementation, 2nd Euro-
pean Workshop on OpenM P, Edinburgh, September 2000.

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Lee, T.
Lawrence, J. Hoeflinger, D. Padua, Y. Paegk, P. Petersen, B.
Pottenger, L. Rauchwerger, P. Tu and S. Weatherford, Re-
structuring Programs for High-Speed Computers with Polaris,
1996 |CPP Workshop on Challenges for Parallel Processing,
August 1996, pp. 149-162.

M. Girkar, M.R. Haghighat, P. Grey, H. Saito, N. Stavrakos
and C.D. Polychronopoulos, Illinois-Intel Multithreading Li-
brary: Multithreading Support for Intel. Architecture — based
Multiprocessor Systems, Intel Technology JournaD1 (Febru-
ary 1998).

M. Gonzalez, E. Ayguadé, X. Martorell and J. Labarta, Defin-
ing and Supporting Pipelined Executions in OpenMP, 2nd In-
ternational Workshop on OpenMP Applications and Tools,
July 2001.

M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta, N. Navar-
ro and J. Oliver, NanosCompiler: Supporting Flexible Multi-
level Parallelism in OpenMP. Concurrency: Practice and Ex-
perience. Special issue on OpenMP. vol. 12, no. 12, October
2000, pp. 1205-1218.

M. Gonzalez, J. Oliver, X. Martorell, E. Ayguadg, J. Labar-
ta and N. Navarro, OpenMP Extensions for Thread Groups
and Their Run-time Support, 13th International Workshop on

(11

[12]

[13]

[14]

[19]

[16]
[17]

(18]
[19]
[20]
[21]

[22]

[23]

[24]

[29]

Languages and Compilers for Paralel Computing
(LCPC'2000), New York, USA, August 2000, pp. 317-331.
C.S. lerotheou, S.P. Johnson, M. Cross and P. Leggett, Com-
puter Aided Parallelisation Tools (CAPTools) — Conceptual
Overview and Performance on the Parallelisation of Struc-
tured Mesh Codes, Parallel Computing22 (1996), 163-195,
http://captools.gre.ac.uk/.

H. Jin, M. Frumkin and J. Yan, The OpenMP Implementa-
tions of NAS Parallel Benchmarks and Its Performance, NAS
Technical Report NAS-99-011, 1999.

H. Jin, M. Frumkin and J. Yan, Automatic Generation of Open-
MP Directives and Its Application to Computational Fluid Dy-
namics Codes, in Proceedings of Third International Sympo-
sium on High Performance Computing (ISHPC2000), Tokyo,
Japan, October 16-18, 2000.

S.P. Johnson, M. Cross and M. Everett, Exploitation of Sym-
bolic Information In Interprocedural Dependence Analysis,
Parallel Computing?22 (1996), 197-226.

Kuck and Associates, Inc., Parallel Performance of Standard
Codes on the Compagq Professional Workstation 8000: Expe-
rienceswith Visual KAP and the KAP/Pro Toolset under Win-
dows NT, Champaign, IL, Assure/Guide Reference Manual,
1997.

Message Passing Interface, http://www-unix.mcs.anl.gov/.

X. Martorell, E. Ayguadé, N. Navarro, J. Corbalan, M. Gonza-
lezand J. Labarta, Thread Fork/join Techniquesfor Multi-level
Parallelism Exploitation in NUMA Multiprocessors, 13th In-
ternational Conference on Supercomputing (ICS' 99), Rhodes,
Greece, June 1999.

MIPSPro 7 Fortran 90 Commands and Directives Reference
Manual 007-3696-03.

Omni: RCWP OpenMP Compiler Project, http://www.hpcc.
jplomni.

OpenMP Fortran/C Application Program Interface, http:/
Www.openmp.org/.

Pacific-Sierra Research, VAST/Parallel Automatic Paralleliz-
er, http://www.psrv.conm/.

T.H. Pulliam, Solution Methods In Computational Fluid Dy-
namics, Notes for the von Karman Institute For Fluid Dynam-
ics Lecture Series, Rhode-St-Genese, Belgium, 1986.

S. Shah, G. Haab, P. Petersen and J. Throop, Flexible Con-
trol Structures for Parallelism in OpenMP, In 1st European
Workshop on OpenMP, Lund, Sweden, September 1999.
R.P.Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, JM.
Anderson, SW.K. Tjiang, S. Liao, C. Tseng, M.W. Hall, M.
Lamand J. Hennessy, SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers, Computer Systems
Laboratory, Stanford University, Stanford, CA.

H.P. Zima, H.-J. Bast and H.M. Gerndt, SUPERB- A Tool for
Semi-Automatic MIMD/SIMD Parallelisation, Parallel Com-
puting 6 (1988).

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

