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Abstract. The state of modern computer systems has evolved to allow easy access to multiprocessor systems by supporting
multiple processors on a single physical package. As the multiprocessor hardware evolves, new ways of programming it are also
developed. Some inventions may merely be adopting and standardizing the older paradigms. One such evolving standard for
programming shared-memory parallel computers is the OpenMP API. The Standard Performance Evaluation Corporation (SPEC)
has created a suite of parallel programs called SPEC OMP to compare and evaluate modern shared-memory multiprocessor
systems using the OpenMP standard. We have studied these benchmarks in detail to understand their performance on a modern
architecture. In this paper, we present detailed measurements of the benchmarks. We organize, summarize, and display our
measurements using a Quantitative Model. We present a detailed discussion and derivation of the model. Also, we discuss the
important loops in the SPEC OMPM2001 benchmarks and the reasons for less than ideal speedup on our platform.

1. Introduction

With the breakthroughs in standard off-the-shelf mi-
croprocessor and memory technologies and their use in
building cost effective Shared-memory Multiprocessor
(SMP) systems, SMP systems have gained prominence
in the market place. As their popularity grows, more
sophisticated, yet flexible development and runtime en-
vironments are called for to facilitate rapid and efficient
development of parallel applications. Over the years,
a variety of parallel programming paradigms such as
custom compiler directives to mark parallel regions,
MPI, POSIX thread programming, and data-parallel
paradigms have emerged. While each one has its bene-
fits, for small to medium range SMPs, directive-based
programming and POSIX thread programming have
gained prominence. Since most compilers implement
parallelization directives as threads, these two ways of
programming parallel machines are related.

While a large number of vendor-specific paralleliza-
tion directives have served the SMP user community,
there was a dire need for standardization. The OpenMP
API [6] (Application Programming Interface) has ful-
filled the need by providing a flexible, scalable, and
fairly comprehensive set of compiler directives, library
routines, and environment variables to incrementally
write parallel programs. OpenMP is still evolving to
better accommodate the needs of parallel programmers.

As SMPs become more commonplace, it is impor-
tant to be able to evaluate their performance with a
standard set of benchmarks. Several parallel bench-
mark suites over the past 20 years have attempted to
fill the void, including SPLASH 2 [10], Parkbench [9],
and the Perfect Benchmarks [5]. More recently, the
Standard Performance Evaluation Corporation (SPEC)
has released a new set of benchmarks targeted towards
modern SMP systems, called SPEC OMP. The suite
contains SPEC OMPM2001 (a medium, 2 GB data set)
and SPEC OMPL2001 (a large,7 GB dataset). The data
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set sizes define the maximum memory requirements for
a single-processor run. In this paper we analyze SPEC
OMPM2001. It contains eleven programs written in
Fortran or C, which have been made parallel using the
OpenMP API. More information about the benchmarks
and the parallelization effort can be found in [15].

The SPEC OMPM2001 suite has been released in
June 2001. This paper aims at characterizing the bench-
marks on a modern, commercial multiprocessor sys-
tem. To this end, we present detailed measurements
using timers and hardware counters on our platform.
We summarize the data using a Quantitative Model and
derive this model in detail. We discuss the individ-
ual loops in the benchmarks. Finally, we analyze the
reasons for the difference between measured and ideal
speedups.

The remainder of the paper is organized as follows.
We give a brief overview of the important OpenMP
constructs in Section 2. Section 3 briefly presents the
runtime environment in which we carried out our ex-
periments. We describe the key concepts behind our
Quantitative Model and derive it in detail in Section 4.
Section 5 presents overall measurements for the bench-
marks. In Section 6, we discuss the important loops of
several benchmarks and reasons for their speedup loss.
Section 7 summarizes the discussions in Sections 5 and
6. Finally, Section 8 concludes the paper.

2. Overview of OpenMP

The OpenMP standard is a set of directives, library
functions, and environment variables to write shared-
address-space (SAS) parallel programs in Fortran and
C languages. The OpenMP API resulted from stan-
dardizing vendor-specific directives for writing parallel
programs. OpenMP encompasses some of the key con-
cepts behind writing shared-address-space programs
with a few simple directives and library functions. We
briefly introduce the OpenMP constructs referred to in
this paper. See [6,7] for details on the OpenMP stan-
dard.

In OpenMP, a parallel region is declared by plac-
ing an OMP PARALLEL/OMP END PARALLEL di-
rective around it. Such a region will be executed by
every participating processor. A group of participat-
ing processors is called a team of threads. Usually,
OpenMP programs create one thread per processor.
Therefore, the following description refers to processor
where the OpenMP standard would use the more ab-
stract term thread. Variables within the parallel region

are declared private per processor or shared among the
processors with a PRIVATE or a SHARED clause af-
ter OMP PARALLEL, respectively. The private vari-
ables declared in this fashion are undefined at the be-
ginning of the parallel region and are undefined at the
end. Thus, they should be used only within the par-
allel region. On the other hand, THREADPRIVATE
variables are private to each processor, but their values
persist from one parallel region to the next. PRIVATE,
SHARED, and THREADPRIVATE are known as the
data environment clauses.

If a for-loop in C or a DO-loop in Fortran have inde-
pendent iterations, which can be executed by different
processors without generating incorrect results, the iter-
ations can be easily partitioned among the available pro-
cessors using omp for or OMP DO/OMP END DO
construct. The construct is placed immediately before
the loop and is called a worksharing construct. If the
parallel region contains only one worksharing construct
and does not contain any serial code either, it may be
possible to combine OMP PARALLEL and OMP DO
and use OMP PARALLEL DO instead.

In a worksharing construct, it is possible for the pro-
grammer to instruct the compiler to divide the iterations
among the processors in a specific way. One possibility
is to divide the iterations equally so that each processor
executes the same number of iterations. This is called
block or static scheduling. It is a default in the OpenMP
standard with the above worksharing constructs. Block
scheduling assumes that each iteration does roughly
the same amount of work, and hence, all processors
will perform the same amount of computation. When
such is not the case, the programmer can specify either
dynamic or guided scheduling. While these two kinds
of scheduling are different in implementation, the ba-
sic concept is the same: each processor fetches more
iterations once it is finished with its current share of
iterations. Thus, a slower processor may do less work
and a faster one may perform more. However, each
processor works for about the equal amount of time.
This helps avoid load-imbalance. The type of schedul-
ing can be specified using a SCHEDULE clause next to
an OMP DO construct.

Since the OpenMP constructs are inherently mul-
tithreaded, it is necessary to provide some form of
mutual exclusion and global synchronization. In
the OpenMP standard, the mutual exclusion is pro-
vided by enclosing a critical section of code within
either the OMP CRITICAL/OMP END CRITICAL
directives or by using the OpenMP library func-
tions omp set lock/omp unset lock. The code
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within these constructs is executed by each processor.
If part of the code within a parallel region needs to
be serialized among the processors, but only one pro-
cessor must execute it and the others must skip it, an
OMP SINGLE/OMP END SINGLE construct is ap-
propriate. Lastly, when all processors must arrive at
a certain point in the program before continuing on,
an OMP BARRIER directive can be used. No proces-
sor can continue past the barrier until all processors
have finished executing the code before it. Thus, it is
a global synchronization construct. A barrier is im-
plicitly defined in OMP END PARALLEL, OMP END
DO, and OMP END SINGLE among many other con-
structs. Because a barrier introduces overhead, it is
desirable to remove it where possible from OMP END
DO. This can be done by placing a NOWAIT clause next
to it. This is typically done for the last worksharing
construct in a parallel region. In many instances it is
necessary, not only to synchronize all processors, but
also to guarantee that all memory operations before
the synchronization point are complete, and all proces-
sors have a consistent view of memory [16]. An OMP
FLUSH directive updates the global view of memory
for all processors by completing all memory operations.

Finally, reduction operations are common in parallel
programming, where several processors update a sin-
gle scalar or array variable. The reduction operations
can be performed by inserting a REDUCTION clause
following a worksharing construct in OpenMP. The
OpenMP standard supports many most frequently used
reduction operators such as +, −, MIN, and MAX. The
OpenMP standard, revision 2.0 and above also includes
array reduction operations, which are not yet supported
by all compilers.

3. Experimental setup

We ran the benchmarks on a quad processor Sun
Enterprise 450 SMP system from Sun Microsystems
Inc.. The basic configuration of the system is shown in
Table 1.

All measurements were taken in single-user mode.
We executed each benchmark with the full data set.1

from the released version of the SPEC OMPM2001
Toolkit environment. All of the executions vali-
dated within the tolerances specified by the SPEC
OMPM2001 Toolkit.

1The full data set is called Reference set in the SPEC toolkit

Table 1
Basic hardware and software setup

Machine Model Sun Enterprise 450

CPU 480 MHz UltraSPARC II
No. of CPUs 4
Used CPUs 4
Memory per Node 4 GB
Instruction Cache 16 KB
Data Cache 16 KB, 32 byte line,

direct mapped, write through,
write no-allocate

External Cache 8 MB, 64 byte line, unified, write
allocate, inclusion with data L1

Peak Mem. Bandwidth 1.78 GB/sec
Operating System Solaris 5.8
Page Size 8KB
Fortran Compiler Sun Forte 6, update 1
C Compiler Kuck & Associate’s GuideC 4.0

with Sun Backend

In order to account for over 99% of the total exe-
cution time, we instrumented all time-consuming par-
allel and serial sections of the programs with a high-
resolution timer. The overhead introduced by instru-
mentation is 2% or less for all benchmarks, which is
within a tolerable range. In order to gain additional
insight into the performance of the programs, we en-
hanced our instrumentation libraries to measure the
hardware counters on the UltraSPARC II processors.
Each UltraSPARC II processor has two 32-bit hard-
ware counters. There are up to 22 distinct hardware
events that can be measured with these counters. Our
library handles the overflow of the counters correctly.
We measured all hardware events for the sequential and
the 4-processor parallel executions.

Just as in the case of timers, we have measured the
hardware events per program section as well as per
processor. In order to measure the events per pro-
cessor and inside a parallel region, we applied sev-
eral modifications to the region. In order to mea-
sure the parallel execution time, we instrumented each
OMP PARALLEL and OMP END PARALLEL section
but not the worksharing constructs inside each sec-
tion. Because we wanted to instrument at the paral-
lel region level rather than worksharing construct level,
a number of OMP PARALLEL DO worksharing con-
structs had to be converted to OMP PARALLEL/OMP
DO pair, which then allowed instrumentation at the
parallel region level. Also, we measured the fork-
join and the load-imbalance times by instrumenting
around OMP PARALLEL/OMP END PARALLEL di-
rectives. We define the fork-time as the time spent
while entering a parallel region. The time spent in OMP
END PARALLEL construct is a sum of the join-time
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Fig. 1. Measurement of different loop times.

and the load-imbalance time. Since the join-time is typ-
ically very small (several microseconds),we expect that
the time spent in OMP END PARALLEL matches the
load-imbalance time closely. Also, in order to measure
the load-imbalance, we appended a NOWAIT clause
to OMP END DO wherever possible. The NOWAIT
clause removes the implicit barrier in OMP END DO,
permitting each thread to reach the barrier inOMP END
PARALLEL as soon as it finishes useful work. Figure 1
shows how we attribute times.

We compiled each benchmark using the SPEC
Toolkit. We used the -fast flag on all C and For-
tran benchmarks. Also, with the Fortran benchmarks,
we used -O5 and -xprofile. We found more spe-
cific optimization flags to achieve peak performance for
gafort. The C programs used GuideC as the OpenMP
compiler combined with Sun’s C compiler. The only
optimizations for the C programs were -xfast and
-xalias level=strong. We used the same set
of optimization flags to generate the sequential and the
parallel versions of the programs. We did not make any
algorithmic changes to the parallel version that would
enhance or degrade the speedup. We compiled and ran
the exact same code in the sequential and the parallel
versions. We simply used or not used a -openmp flag
with the Fortran programs to generate either a parallel
or a sequential version, respectively. Compiling with
GuideC automatically generates parallel code. To com-
pile a sequential version of a C program, we used Sun’s
C compiler directly.

4. A quantitative model

We introduce a model in order to quantify our per-
formance observations. More specifically, we want to
exhibit quantitatively the reasons that limit scalabil-
ity of parallel programs. The basic idea is to analyze
the difference between measured and ideal speedup of
the parallel program. The model will subdivide this
difference into speedup components, which represent
the overhead factors responsible for suboptimal per-
formance. The issues in doing so are to (1) define a
complete and orthogonal set of overhead factors, (2)
measure the factors or derive them from measured data,
and (3) compute the model values thereof. The follow-
ing subsections present our solutions to these issues.
The presented model refines the Speedup Component
Model introduced in [13]. Another model that attempts
to quantify the performance of loop-dominated scien-
tific applications is presented in [3]. Similar to the
model in [3] that focuses on explaining performance
difference between the upper bound on the best achiev-
able performance and the realized performance, our
model also attempts to explain the difference between
the ideal performance and the measured performance.

4.1. Overhead Factors

The total execution time of a parallel program or pro-
gram section can be divided into the following factors:

1. Time spent performing useful work,
2. stalls due to waiting for data accesses,
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3. stalls due to pipeline bubbles (e.g., branch mis-
prediction stalls),

4. idle time due to serial program sections and load-
imbalance,

5. parallelization overhead, such as fork and join
operations,

6. time spent in extra computation, not present in the
serial code (such as initialization and final sum of
parallel reductions or OpenMP intrinsic function
calls),

7. time attributable to less optimal parallel code gen-
eration (e.g., due to more conservative compila-
tion)

8. time spent at low-level synchronization points,
such as fence instructions (e.g., MEMBAR and
STBAR in the UltraSPARC II processor)

We divide the overhead factors into two categories.
The first category includes overheads also present in the
serial program (factors 2 and 3). The second category
includes overheads only present in the parallel program
execution (factors 4 – 8).

While we believe these overhead factors to be reason-
ably complete, there are second-order effects. For ex-
ample, even in single-user mode, a program may be in-
terrupted by low-level system processes. Our measure-
ments will need to ensure that such effects are negligi-
ble. To account for possible inaccuracies, we will intro-
duce an additional factor that represents not-modeled
effects.

The orthogonality of the overhead factors needs care-
ful consideration. For example, idle time due to load-
imbalance and due to serial program execution must
be distinguished clearly. This will become important
for the measurement of the factors, discussed in the
next subsection. Orthogonality is a further issue in that
overhead factors may hide each other. For example,
a code section may exhibit 40% memory stall cycles
and 10% pipeline stalls. The programmer may be able
to reorder the computation so that the memory stalls
decrease by 20%. However, as a result the pipeline
stalls may increase by 10%. While it is important for
our instruments to attribute each processor cycle to ex-
actly one time factor, this requirement tends to hide
other factors. Note, it would be incorrect to conclude
that removing a certain speedup component via some
improvement would necessarily lead to a speedup in-
crease proportional to the affected speedup component.
Instead, the speedup components quantify the relative
importance of overhead factors in the measured pro-
gram execution. When interpreting our results we will
revisit this fact.

Table 2
Measured parameters

No. Parameter Notation Device
1 Sequential or Serial Time Tser Timer
2 Parallel Time Tpar Timer
3 Loop Body Time Tbody Timer
4 Fork Time Tfork Timer
5 IC Miss Stalls TIC HWC
6 Store Buffer Stalls TSB HWC
7 Load Use Stalls TLD HWC
8 Load Stalls on RAW TRAW HWC
9 Branch Misprediciton

Stalls TBM HWC
10 Floating-Point

Dependence Stalls TFP HWC
11 Amdahl’s Time Tamdahl Timer

4.2. Measuring and Deriving Overheads

We have instrumented our programs with calls to the
Sun UltraSPARC II hardware counter libraries at the
points indicated in Fig. 1. From these measurements
we obtained the following performance factors. All
factors apply to individual processors.

Category 1 (overheads present in both serial and par-
allel code):

1. memory system stalls (Tmemory), further sub-
divided into stalls due to instruction cache
misses (TIC), store buffer full (TSB), depen-
dence on earlier incomplete load (TLD), and
load dependent on an earlier store (TRAW).

2. pipeline stalls (Tpipeline), further subdivided
into stalls due to branch misprediction (TBM),
and floating-point dependence (TFP).

Category 2 (overheads present in parallel code only):

1. load-imbalance (Tload−imb),
2. serial program sections (Tamdahl),
3. fork and join overhead (T fork, Tjoin, Tfj)

Table 2 lists the overheads and times that we ob-
tained through direct measurement. Tser and Tpar rep-
resent the serial and parallel execution time, respec-
tively. Tamdahl represents time spent by all but one
processors during serial program sections. The used
hardware counters ensure that each machine cycle is
attributed to exactly one overhead factor, satisfying the
orthogonality criterion discussed in Section 4.1. Within
our overhead factors, only the memory system and
pipeline stalls can hide each other to a certain extent.
However, load-imbalance and fork-join overheads are
orthogonal to all other categories.

Table 3 lists overheads and parameters that we de-
rived from measured values. T join = Tpar − Tfork −
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Fig. 2. Illustration of load-imbalance.

Table 3
Derived parameters

No. Parameter Notation Unit
1 Speedup Speedup Unitless
2 Useful Computation Tcomp Cycles
3 Memory Stalls Tmemory Cycles
4 Pipeline Stalls Tpipeline Cycles
5 Join Time Tjoin Cycles
6 Fork-Join Stalls Tfj Cycles
7 Load-Imbalance Tload−imb Cycles
8 Not Modeled Tnot−modeled Cycles

max(Tbody) is the barrier time at the end of a par-
allel region. It is computed as the total time taken
by the region excluding the fork time and the region
time on the slowest processor, as illustrated in Fig. 2.
Tfj = Tfork+Tjoin. The load-imbalance is the time each
processor waits for all other processors to reach the final
barrier of the region: Tload−imb = Tpar − Tbody −Tfj.
The fork and join overhead is the same on all proces-
sors, while the load-imbalance can differ.

Table 3 also shows several terms that do not represent
overheads. Speedupis computed as T ser/Tpar. Tcomp,s

and Tcomp,p represent the time taken by useful com-
putation in the serial and parallel code, respectively.
Subscripts s and p stand for serial and parallel, respec-
tively. Tcomp,s = Tser − Tmemory,s − Tpipeline,s. We
cannot measure or compute Tcomp,p precisely and, in-
stead, estimate

∑N
Tcomp,p over all processors (N ) to

equal Tcomp,s. The inaccuracy of this estimate factors
into Tnot−modeled, which represents a time component
that is not accounted for in our model. Tnot−modeled

exhibits the inaccuracy of our model. Additional fac-
tors covered by this term include the items 6–8 listed
in Section 4.1. We will discuss effects believed to be
caused by these overheads in Section 6.

4.3. Computing the model values

The goal of our model is to split the difference be-
tween measured and ideal speedup into a number of
speedup components. These components represent the
overhead factors, each being proportional to the in-
crease in overhead cycles from the serial to the parallel
code. That is,

Speeduploss = Speedupideal − Speedupmeasured,

where Speeduploss is split into its contributing over-
heads.

We first consider a fully parallel region. For this
region, the parallel execution time equals the sum of
the times spent in useful computation plus overheads:

Tpar = Tcomp,p + Tmemory,p + Tpipeline,p + Tfj

+ Tload−imb

=
K∑

Tfactor,p

Tpar is the same on all processors, while its con-
stituents may differ.

∑K
Tfactor,p is short for the sum

of all K constituent times. Summing up this term
across all N processors results in

N,K∑
Tfactor,p = N · Tpar

With this relationship and the definition of speedup,
it follows that
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Speeduploss = Speedupideal − Speedupmeasured

= N − Tser

Tpar

=
∑N,K

Tfactor − Tser

Tpar
(1)

=
1

Tpar

K∑
i=1

(
N∑

Tfactori,p − Tfactori,s

)

Hence, each overhead factor contributes a speedup
component proportional to the sum of its cycles con-
sumed on all processors in parallel minus the overhead
time in the corresponding sequential program. For the
factors Tfj and Tload−imb the sequential overhead is
zero. We have defined

∑N
Tcomp,p = Tcomp,s as an

estimate. With this estimate the speedup component of
Tcomp is zero, that is, the combined useful cycles in the
parallel code equal the useful cycles of the sequential
code. In its place we use the Tnot−modeled term, cap-
turing model inaccuracies, as discussed in Section 4.1.
Hence,

Speeduploss = SCmemory + SCpipeline

+ SCload−imb + SCfj (2)

+ SCnot−modeled

where the first four components are computed by
formula 1, and SCnot−modeled fills the gap between
Speedupideal − Speedupmeasured and SCmemory +
SCpipeline + SCfj + SCload−imb.

4.3.0.1. The model for an entire program is a small
extension of the model for a fully parallel region. In
addition to parallel regions, a whole program con-
tains serial sections.2. According to Amdahl’s law,
the maximum speedup of such a program is limited to
Speedupideal − SCamdahl, where

SCamdahl = N − 1
(p/N) + (1 − p)

, 0 � p � 1,

and p is the parallel coverage. Parallel coverage is a
fraction of the serial program that is enclosed by paral-

2The serial sections of code in parallel and sequential executions
may take different amounts of time. We are assuming that they take
a same amount of time. Our assumption is valid only because the
serial sections are very small in all programs and do not contribute
substantially to the overall execution time.

lel regions. Hence, for parallel programs that include
serial sections, the speedup components are,

Speeduploss = SCmemory + SCpipeline (3)

+ SCload−imb + SCfj

+ SCnot−modeled + SCamdahl

Note, that a speedup component can amount to a
negative value if the overheads in the parallel code
are less than the overheads in the serial code. This
can occur when, for example, the compiler has ap-
plied locality-enhancement transformations to the par-
allel code but not to the serial code. In this case the
negative SCmemory exhibits the source of potential su-
perlinear speedup behavior. Negative components can
also result from measurement artifacts, if two over-
heads present in the same cycle are counted differently
in two program executions. For example, a cycle may
include both a memory and a pipeline stall; in one run
the hardware counters record a pipeline stall, in the
second run a memory stall. In this case one can expect
that, while one speedup component becomes negative,
another component grows significantly.

In the following sections we will use the two model
formulas, 2 and 3, to characterize the speedup loss of
the SPEC OMPM2001 benchmarks and their important
loops.

5. Overall performance

We have used the Quantitative Model as presented
in the previous section to organize and summarize the
timer and hardware counter measurements of the SPEC
OMPM2001 benchmarks on our platform. Before pre-
senting the speedup components of the programs, we
will outline their most basic characteristics.

5.1. Basic characteristics

Table 4 shows the parallel coverage based on a se-
quential run, the sequential and 4-processor parallel ex-
ecution times, and the overall speedup of the bench-
marks. With the exception of galgel, all benchmarks
show a parallel coverage of 97% or more in parallel and
sequential runs. Galgel shows a parallel coverage of
about 95%. Thus, the SPEC OMP codes are highly par-
allel. The table also shows that the SPEC OMP codes
run for a long time even with the medium Reference
data sets.
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Figures 3 and 4 show the overall cache hit rates,
the number of executed instructions, and the number
of memory access instructions. Figure 3 indicates that
most benchmarks suffer from poor first-level data cache
hit rate. Even the secondary cache hit rates are below
90% in some instances. The secondary cache hit rate
is computed with respect to the total references going
onlyto the secondary cache. With the exception of apsi,
art, and wupwise, most programs report an increase in
the cache hit rates. The instruction cache hit rates are
almost 100% in all instances except fma3d.

Figure 4 shows the relative proportion of the memory
access instructions to the overall instructions. It is

between 20% and 45% in all benchmarks. Also, the
figure shows that all benchmarks perform more work in
the parallel version compared to the sequential version.
Ammp, equake, fma3d, and galgelshow a large increase
in the number of memory access instructions.

Figure 5 shows the fork-join overhead scaling of the
benchmarks. Relative to the execution times, the fork-
join overhead is very small. Consequently, Fig. 6 shows
negligible fork-join speedup components. Galgelis an
exception; it has the largest fork-join overhead, mainly
due to several million invocations of the LAPACK rou-
tines. At the other extreme, art has nearly zero fork-
join overhead, because it has only one loop which is re-
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Table 4
Basic runtime characteristics of the SPEC OMPM2001 bench-
marks

Parallel Execution # of
Coverage Time(sec) Speedup Parallel

Code (%) Seq. 4 (4 CPU) Regions
ammp 99.12 16841 5898 2.84 7
applu 99.99 11712 3677 3.14 22
apsi 99.84 8969 3311 2.72 24
art 99.83 28008 7698 3.62 3
equake 99.16 6953 2806 2.54 11
fma3d 99.46 14852 6050 2.50 92/301

gafort 99.94 19651 7613 2.56 6
galgel 95.58 4720 3992 1.19 32/311

mgrid 99.98 22725 8050 2.84 12
swim 99.44 12920 7613 1.70 8
wupwise 99.83 19250 5788 3.31 10
1Programmed regions / regions called at runtime.

sponsible for about 99% of the execution time and is in-
voked only once. Finally, even if all loops in apsihave
a relatively small number of invocations (few tens to
few hundred), the fork-join overhead is high compared
to loops in some other benchmarks with a similar invo-
cation count. The higher fork-join time in apsicomes
from the malloc and free calls by the Fortran com-
piler to allocate a privatized array inside a parallel re-
gion. In fact, the local arrays in a subroutine are always
allocated dynamically by our Fortran compiler. Since
the Fortran compiler extracts each parallel region into a
subroutine [8,11] and declares all PRIVATE variables
as local variables in that subroutine, the PRIVATE ar-
rays end up getting allocated and freed dynamically.
The high overhead of the malloc/free calls comes
from the fact that each thread gets a copy of the array

from the same process heap. Therefore, these calls are
serialized by the operating system. Also, allocating
memory dynamically is usually costly. Such overhead
is experienced every time an OMP PARALLEL con-
struct is executed in apsi. There is a multithreaded mal-
loc library (libmtmalloc) available on Solaris, which
might alleviate serialization. However this library was
not used with our compilers.

5.2. Overall Speedup Components

Figure 6 shows the overall speedup components of
the SPEC OMPM2001 benchmarks. It breaks down the
lost speedup into the responsible components. We have
used Speedupideal = 4 to compute the overall speedup
components. We can make several observations from
Fig. 6:

– The key reason for speedup loss is the memory
stalls, which increase in the parallel versions.

– Fork-join and load-imbalance overheads are rela-
tively minor reasons for the lost speedup.

– Pipeline stalls are important in art and equake.
– Swimhas a negative speedup loss component, en-

abling potential superlinear performance. How-
ever, of all the benchmarks it also has the largest
speedup loss due to memory stalls.

– Our model is the most accurate for apsi, mgrid,
and wupwise, where it explain almost the entire
speedup loss. It is fairly accurate for gafort. On
the other hand, it is the least accurate for galgel, be-
cause it has a “Not Modeled” component of about
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Fig. 6. Overall speedup components.

2.0. Nevertheless, a part of galgel’s speedup loss
can be explained by the memory stalls component.

– All benchmarks, except galgel, have nearly zero
“Amdahl” speedup component. In galgel, the
“Amdahl” speedup component is about 0.5 due to
only 95% parallel coverage.

Figure 7 further categorizes the speedup components
related to memory and pipeline stalls. All benchmarks
suffer from “Load Use” stalls. These stalls delay all
instructions in the execute and the grouping stages of
the UltraSPARC II pipeline [12]. “Store Buf.” related
stalls are important in apsi, fma3d, galgel, mgrid, swim,
and wupwise. Swimhas a very large speedup loss com-
ponent due to the “Store Buf.” stalls. The “Store Buf.”
stalls result from a full store buffer. Fma3dshows a
speedup component because of the instruction cache
miss stalls (“IC Miss”), and gafort loses speedup be-
cause of the read-after-write (RAW) dependence. Fi-
nally, equakeexperiences reduced scalability due to the
stalls related to floating-point dependences. The “FP
Dependence” stalls occurs when the first instruction in
the group depends on the result from an earlier floating-
point instruction. These stall cycles are counted only
if the earlier floating-point instruction is notwaiting on
a load. Thus, “Load Use” and “FP Dependence” are
mutually exclusive.

6. Loop-by-loop performance

In this section we discuss the performance of the
individual benchmarks and their major loops. Table 5

shows the speedup components for these loops. We
have computed speedup components for the loops using
formula 2 for the fully parallel region (see Section 4.3
and Speedupideal = 4.

6.1. Ammp

Ammpis about 13,500 lines of C code in the area of
chemistry/biology. Mmfvupdate 5 is the most impor-
tant loop in ammp. It has an average execution time
of 80 seconds on a single processor. Table 5 shows
the speedup components of mmfvupdate 5, which are
identical to the overall program. All loops show negli-
gible load-imbalance, which is in part due to the chosen
guided scheduling option.

From the hardware counter measurements, we found
that the first-level data cache hit rate for mmfvupdate 5
increases from 79% to 85% for loads and from 92%
to 93% for stores while running in parallel. How-
ever, there are 1.5 times more loads in the parallel ver-
sion than in the sequential one. The number of stores
remains nearly unchanged between the two versions.
From Fig. 7, we can see that “Load Use” is the biggest
reason for the speedup loss. Despite the increase in the
cache hit rate, mmfvupdate 5 experiences more mem-
ory stalls on 4 processors. We attribute this effect to
the increase in loads. Even though the cache hit rate
improves, absolute number of cache misses goes up by
35% for loads and 8% for stores. It is the increase in
cache misses that contributes to the increased memory
stalls.

We discovered that one reason for the increase
in loads is the threadprivate array naybor.
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Fig. 7. Breakdown of the memory and pipeline components.

naybor is an array of 27 integers. It is respon-
sible for about 18% increase in the memory refer-
ences suggesting that accessing threadprivate
variables involves more memory references than ac-
cessing private variables. As an experiment, we
declared naybor as a private array. We found that
the number of memory references went down, and the
speedup increased to 2.92.

Since mmfvupdate-5 uses omp set lock/omp u
nset lock in 3 places, there are two overheads in the
parallel version, that are not present in the sequential
program: an overhead of executing extra instructions
while spin waiting and delays due to lock contention.
In order to quantify the overall contribution of the locks
to the speedup, we removed them temporarily. In this
loop, removing the locks is a programming error. How-
ever, we found that the program had executed correctly
most of the time without the locks suggesting that the
race conditions exist, but they are infrequent. After
removing the locks, the speedup increased to 2.99 on 4
processors. Our model does not capture this speedup
component explicitly. It shows up as a part of “Not
Modeled” component.

Also, we discovered that the sharing of the lock
variable leads to increased invalidations and copybacks
boosting the secondary cache misses. See [14] for
the detailed data on invalidations, copybacks, and sec-
ondary cache misses. Such sharing of the lock vari-
able is an example of true-sharing in the SPEC OMP
benchmarks.

6.2. Applu

Appluis about 4,000 lines of Fortran code in the area
of fluid dynamics. From Table 5, we see that ssor do#3
is the most important loop in applu. It has 177 seconds
of average execution time on a single processor and is
responsible for about 81% of the overall execution time.
Rhs-do#1 to rhs-do#4 are also important collectively.

Ssor do#3 has a speedup of 3.5, which is among the
best in the benchmark suite. The remaining speedup
component of 0.5 is due to “Load Use” stalls (0.3) and
not-modeled effects (0.2), as shown in Figures 6 and 7.
We attribute the increased memory stalls in the paral-
lel code in part to code patterns that lead to increased
demands on the memory bus. Code examination of
ssor-do#3 shows that it contains two DO-loops. Each
loop makes two subroutine calls. Each subroutine con-
sists of a doubly nested loop that performs some matrix
computations. In these doubly nested loops, we find
references to several shared arrays. At runtime, the
loop exhibits low computation-to-memory-access ra-
tio. In general, the code that accesses large arrays with
little or no computation leads to increased demands
on the memory bus or interconnect resulting in longer
memory access latencies. With little or no computation
to perform, a processor issues loads and stores more
frequently and waits for them to complete. This situa-
tion is worsened in parallel by frequent bus locking and
queuing delays in the interconnect, leading to longer
memory access latencies and, in turn, more memory
stalls. While we cannot measure bus and memory bank
contentions, we include such effects in the increased
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Table 5
Loop-by-loop speedup components of the SPEC OMPM2001 benchmarks

Loop % Exec. Not
Code Name (Seq) Load-Imb Pipeline Memory Fork-Join Modeled Measured
ammp mmfvupdate 5 97.12 0.01 0.00 0.75 0.00 0.43 2.81

mmfvupdate 2 2.10 0.02 0.02 0.20 0.01 0.97 2.78
applu ssor do#3 81.25 0.02 0.01 0.31 0.00 0.18 3.49

rhs do#3 4.54 0.17 −0.02 −0.17 0.03 0.32 3.68
rhs do#4 3.91 0.03 −0.04 −0.05 0.00 0.25 3.80
rhs do#2 3.54 0.03 0.01 0.90 0.01 0.12 2.93
rhs do#1 2.07 0.00 −0.01 0.43 0.01 1.80 1.76

apsi RUN DO#60 10.85 0.08 0.01 0.69 0.02 −0.04 3.24
RUN DO#40 10.83 0.06 0.01 0.69 0.02 −0.03 3.25
RUN DO#30 10.82 0.06 0.01 0.67 0.03 −0.02 3.25
RUN DO#20 10.82 0.08 0.01 0.67 0.03 −0.05 3.26
RUN DO#100 7.51 0.09 0.02 0.89 0.02 −0.03 3.01
DVDTZ DO#40 6.94 0.04 0.18 −0.14 0.03 −0.07 3.96
DTDTZ DO#40 5.21 0.15 0.07 0.43 0.02 −0.15 3.49
DUDTZ DO#40 5.06 0.15 0.37 0.34 0.09 −0.34 3.38
DKZMH DO#30 5.00 0.03 −0.67 −1.26 0.04 0.23 5.64
DCDTZ DO#40 4.26 0.04 0.02 0.07 0.04 0.03 3.81
RUN DO#50 4.17 0.09 0.01 0.83 0.04 −0.09 3.11
RUN DO#70 3.84 0.07 0.02 0.83 0.07 −0.07 3.08
WCONT DO#30 3.67 0.03 0.00 −0.41 0.19 0.32 3.87

art scanreco 0 99.92 0.01 0.26 0.18 0.00 0.25 3.31
equake smvp-#0 65.57 0.05 0.11 0.76 0.01 0.47 2.61

main-#3 31.61 0.01 0.13 0.34 0.00 0.55 2.97
fma3d platq do#2 76.62 0.01 0.00 0.78 0.00 0.27 2.94

solve do#6 11.83 0.01 0.00 1.44 0.03 0.26 2.27
solve do#4 5.23 0.01 0.07 2.44 0.00 0.42 1.06
solve do#2 2.85 0.07 0.00 2.50 0.02 0.08 1.34

gafort shuffle-do#10 34.89 0.06 0.00 1.70 0.01 −0.04 2.26
gafortran-do#45 26.35 0.05 0.03 0.41 0.00 0.04 3.48
mutate-jump 18.03 0.13 −0.01 0.88 0.00 0.40 2.61
evalout-do#30 13.30 0.01 −0.01 0.16 0.00 0.05 3.79
newgen-do#94 7.39 0.02 0.01 1.02 0.00 0.21 2.75

galgel syshtN do#1234 24.64 0.01 0.01 0.04 0.00 2.81 1.13
sysnsn do#123 23.74 0.01 0.03 0.20 0.00 3.16 0.61
lapak do#7 13.65 0.07 0.00 0.09 0.03 −0.10 3.91
lapak do#1 9.88 0.02 0.00 0.00 0.00 −0.02 4.00
lapak do#3 7.12 0.02 0.00 2.53 0.00 0.04 1.40
lapak do#5 5.69 0.10 0.01 1.36 0.00 0.02 2.50
lapak do#4 3.73 0.03 0.00 −1.33 0.00 −5.28 10.58
lapak do#10 3.23 0.03 0.00 0.15 0.00 −0.02 3.84

mgrid RESID do600 50.40 0.00 0.00 1.08 0.04 −0.07 2.94
PSINV do600 23.53 0.01 0.00 0.55 0.04 0.03 3.37
RPRJ3 do100 10.24 0.02 0.00 0.67 0.05 −0.06 3.32
INTERP do400 5.30 0.05 0.00 1.24 0.05 0.11 2.55
INTERP do800 5.22 0.03 0.00 1.77 0.05 0.12 2.02

swim CALC3 DO#300 35.03 0.00 0.00 2.47 0.01 −0.22 1.74
CALC2 DO#200 30.68 0.00 0.00 2.36 0.01 −0.19 1.81
CALC1 DO#100 28.59 0.01 0.00 2.75 0.01 −0.60 1.82
SWIM DO#400 5.61 0.01 0.12 2.50 0.00 0.09 1.29

wupwise MULDOE DO#1 43.01 0.00 0.00 0.13 0.01 0.07 3.79
MULDEO DO#1 42.83 0.00 0.00 0.08 0.01 0.06 3.85
ZAXPY DO#1 5.49 0.01 0.00 2.26 0.04 −0.13 1.82
ZDOTC DO#1 4.19 0.01 −0.01 1.84 0.01 0.00 2.15
ZCOPY DO#1 2.68 0.01 0.00 2.51 0.03 −0.36 1.81

1Naming Scheme: Either Subroutine/FileName-do#LoopLabelor Subroutine/FileName-do#LoopNumberfrom the top of
the subroutine

demands on the memory bus. Therefore, we attribute
the increase in memory stalls to such effects.

We found that ssor do#3 had been hand optimized
for this benchmark. In particular, loop scheduling
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was applied explicitly, rather than by making use of
OMP DO directive. In other benchmarks we will dis-
cuss experiments showing that replacing OMP DO con-
structs by explicitly scheduled code leads to improve-
ments. Hence, the optimization applied to ssor do#3
contributes to the good performance relative to other
benchmarks.

Table 5 shows that rhs do#3 and rhs do#4 have nega-
tive “Load Use” components. Rhs do#3 loses speedup
due to load-imbalance and “Not Modeled” effects.
Similarly rhs do#4 also loses speedup because of “Not
Modeled” component. Yet both loops speedup quite
well on 4 processors.

We did not find any evidence of false-sharing in ap-
plu.

6.3. Apsi

Apsi is a 7,500 lines of air pollution analysis code
written in Fortran. The execution time in apsi is
distributed over several important loops as shown
in Table 5. The most important loops from Ta-
ble 5 are RUN DO#60, RUN DO#40, RUN DO#30,
RUN DO#20, RUN DO#100. We will refer to these
loops as the RUN-loops.

The RUN-loops in apsi lose speedup due to the in-
crease in memory stalls, and they are responsible for the
majority of memory stalls in apsi. Figure 7 shows that
“Load Use” and “Store Buf.” are the key reasons for
increase in the memory stalls. From the timer and hard-
ware counter measurements, we found that all RUN-
loops show an increase in the “Load Use” stalls along
with several other important loops. The RUN-loops
also show a large and almost a linear increase in the
“Store Buf.” stalls. We discovered that in each RUN-
loop, the first-level data cache hit rate decreases from
94% to 91% for the loads, and from 90% to 85% for
the stores. However, the numbers of loads and stores
remain about the same between the serial and parallel
versions of the program. In addition to the RUN-loops,
several other loops in apsi also show lower cache hit
rates in the parallel version. The increase in cache
misses explains the increase in memory stalls.

All RUN-loops have almost 99% secondary cache
hit rate. Yet there is a slight degradation of the cache hit
rate in the parallel version leading to nearly 4% more
secondary cache misses. The decline in the secondary
cache hit rate is partly an artifact of increased invalida-
tions and copybacks suggesting some false-sharing in
these loops.

Dkzmh-do#30 is the only loop that shows superlin-
ear speedup over 5.0. The main reasons, as found by
the detailed hardware counter measurements [14], are
decreases in “Load Use” stalls and “FP Dependence”
stalls. We found that the first-level cache hit rate of
loads decreases in the parallel version, the overall sec-
ondary cache hit rate also decreases in the parallel ver-
sion, but the first-level store hit rate goes up. Overall,
there is almost 12% less secondary cache misses in the
parallel version. We attribute decreased “Load Use”
stalls to the decline in the number of secondary cache
misses.

6.4. Art

Art is the longest running code among all bench-
marks on a 1-processor sequential execution, as shown
in Table 4. It contains 1,300 lines of C code in the
area of image recognition and neural networks. Scan-
reo 0 is the most important loop. It is invoked once
and consumes 99% of the execution time. Art scales
fairly well among all benchmarks. The cache hit rates,
the number of instructions, and the number of memory
access instructions remain nearly the same between the
parallel and serial versions of the program as shown by
Figs 3 and 4. However, art still shows some increase in
the memory stalls. Figure 7 indicates that the memory
stalls component is due to “Load Use” stalls. It also
has a large pipeline stalls component due to the branch
misprediction and the floating-point dependences.

6.5. Equake

Equakeis about 1,500 lines of C code that simulates
an earthquake. Smvp-#0 and main-#3 are the most
important loops as shown in Table 5. The average
execution time of smvp-#0 is about 1.4 seconds and
of main-#3 is about 0.6 seconds on a single processor
sequential execution.

Table 5 shows the speedup components of smvp-
#0 and main-#3. It is evident from the table that
the speedup loss in equakecomes from memory and
pipeline stalls. From Figure 4, we see that the program
also has about 2.3-fold increase in the memory refer-
ences, most of which comes from the loads in smvp-
do#0. Main-#3 shows 1.7 times more loads in parallel.
The first-level data cache hit rate in both loops goes up,
but because the number of loads goes up, the absolute
number of first-level cache misses increases by 56%
in smvp-do#0 and 41% in main-do#3. The number of
stores remains nearly unchanged between the parallel
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and sequential versions. Figure 7 shows that floating-
point dependences are the main reason for pipeline
stalls. Finally, smvp-#0 shows slight load-imbalance.

We discovered that the increase in memory ref-
erences is partly a result of using extra temporaries
for address calculations by our OpenMP C compiler
(GuideC). We have found that the OpenMP C com-
piler declares several local automatic pointer variables
to hold the addresses of the multidimensional array el-
ements. It then assigns values to the elements of the
array by dereferencing the pointers. Also, because the
pointers are declared per block of C code, they are not
reused. Thus, there are more loads from the stack in
parallel than there are in the sequential version. As an
experiment we declared an explicit pointer to the w1 ar-
ray and reused it throughout the loop to access the array
elements in the sequential and parallel codes. We found
that the number of loads went down by nearly 47%
in the parallel version. An explicit pointer eliminated
many of the temporaries generated by the OpenMP C
compiler.

We have observed that a code with long floating-
point expressions typically has more floating-point de-
pendence stalls in the parallel version than a code with
many simpler expressions, suggesting potential im-
provements for compiler optimizations. As an experi-
ment we simplified the math expressions in smvp-#0.
After simplifying the math expressions, the floating-
point dependence stalls declined by almost 70%. As a
combined effect of removing the extra memory refer-
ences and reducing the floating-point dependence stalls,
the 4-processor execution time decreased by 3.5%.

Finally, smvp-#0 shows a 0.045 speedup loss be-
cause of load-imbalance. We determined that the load-
imbalance is a result of uneven iteration space of the
inner while-loop in smvp-#0. The while loop has
0 to 12 iterations every time it is invoked by the outer
for-loop. Since the iterations of the outer loop are
divided among multiple processors, each processor ex-
ecutes a different number of overall inner-loop itera-
tions. Use of guided scheduling instead of simple
block scheduling decreased the load-imbalance com-
ponent to 0.004.

We did not find any evidence of significant false-
sharing in equake.

6.6. Fma3d

Fma3dis a finite element method computer program
designed to simulate the inelastic, transient dynamic re-
sponse of three-dimensional solids and structures sub-

jected to impulsively or suddenly applied loads. It con-
tains over 60,000 lines of Fortran code. Platq do#2,
solve-do#6, solve-do#4, and solve-do#2 are the top four
loops in fma3d. It is evident from Table 5 that all loops
lose speedup due to memory stalls. We can see from
Fig. 7 that the speedup loss due to “Load Use” is about
0.9 and due to “IC Miss” is about 0.3. Figures 3 and 4
reveal that the first-level data cache hit rate improves in
the parallel version of the code, but the memory refer-
ences and the number of instructions almost double on
4 processors. A closer examination of the loops reveals
that all important loops in fma3dshow an increase in
the number of loads and stores, but platq do#2 has by
far the highest increase. The first-level data cache hit
rate improves in all loops except in solve-do#4. In
solve-do#4 the cache hit rate of stores drops from 99%
to 91%. Due to the increased number of loads and
stores, there is a 48% increase in the absolute number
of load misses and a 9% increase in the absolute num-
ber of store misses in platq do#2. Lastly, platq do#2
experiences a reduction in the instruction cache hit rate
from 90% to 84%.

A study of platq do#2 shows that it contains 9 con-
ditional subroutine calls. These calls inside the loop
perform the majority of work. All subroutines in-
side the loop use a set of 70 variables that are de-
clared in a THREADPRIVATE common block. We
discovered that the Fortran compiler makes stores to
the THREADPRIVATE variables “volatile.” Since the
volatile variables must be loaded from the memory each
time they are needed, they cannot be allocated in reg-
isters. After we declared the THREADPRIVATE vari-
ables as PRIVATE variables, the number of memory
references dropped by 18% and the overall speedup
rose to 2.83. Also, in order to avoid the cost of OMP
DO, we manually scheduled the loop along with the
privatized common block variables. We found that the
overall speedup climbed to 3.09 suggesting that the
OMP DO construct is implemented rather inefficiently.
As mentioned in Section 6.2, the main cost of OMP DO
construct comes from the additional loop body subrou-
tine call and the related stack activity. Finally, we at-
tribute “IC Miss.” stalls to the decrease in the instruc-
tion cache hit rate in platq do#2.

We found evidence of significant data sharing in
platq do#2 and solve-do#4 by measuring the invalida-
tions and copybacks. We measured that the invalida-
tions and the copybacks follow each other closely and
scale with the number of processors. Also, they are
responsible for most of the misses in the secondary
cache. We attribute this effect to the “+” REDUCTION
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of ENG1 and ENG2 variables in solve-do#4 and
MIN/MAX REDUCTION of TIME STEP MIN and
TIME STEP MAX in plaq do#2.

6.7. Gafort

Unlike other SPEC OMPM2001 applications, gafort
is an integer application. It is written in Fortran and
contains about 1,500 lines of code in the area of ge-
netic algorithms. Shuffle-do#10,gafort-do#45,mutate-
jump, evalout-do#30, and newgen-do#94 are the most
important loops in gafort. From the overall speedup
components in Figs 6 and 7 we see that the increase
in memory stalls is the key reason for speedup loss in
gafort. Specifically, the “Load Use” and “Load RAW”
stalls contribute to the memory stalls. Figures 3 and 4
show that the data cache hit rates do not increase signif-
icantly in the parallel version, and there is about 17%
increase in the total memory references, of which about
13% comes from mutate-jump and 3% from newgen-
do#94. From Table 5, we also find that evalout-do#30
and gafort-do#45 speedup quite well, and the top three
loops have slight load-imbalance.

We discovered that the primary reason for increase in
memory references in mutate-jump and newgen-do#4
is the OMP DO construct, just as it was in fma3d. As an
experiment, we removedOMP DO and manually sched-
uled the loop iterations in mutate-jump3 and newgen-
do#4. We found that the number of loads dropped
by 20% in mutate-jump and by 40% in newgen-do#45
bringing them closer to the sequential count of loads.
The number of instructions also went down proportion-
ally, and the overall speedup rose from 2.56 to 2.88.

Shuffle-do#10 is the most time consuming loop in
gafort. It is responsible for about 36% of the overall
execution time. It is also responsible for the largest
increase in the “Load Use” and “Store Buf.” related
memory stalls. From the hardware counter measure-
ments, we determined that even though Shuffle-do#10
shows about 8% more memory references in the se-
quential version than the parallel one, the secondary
cache misses decrease from 94% in sequential to 91.8%
in parallel, leading to about 9% increase in the abso-
lute number of secondary cache misses in the paral-
lel version. Thus, even if the first-level data cache
hit rate does not change significantly in shuffle-do#10,
the more expensive secondary cache misses lead to the

3We used the simple guided scheduling algorithm described
in [6].

memory stalls. Also, shuffle-do#10 is memory bound,
because it performs 3 array copies (shuffles), which
result in about 1GB of loads and stores during ev-
ery invocation of the loop. On the other hand, there
are no computational steps. Thus, shuffle-do#10 has
nearly zero computation-to-memory-access ratio. We
find that the memory bandwidth requirement increases
from 140 MB/s to 300 MB/s on our machine. As ex-
plained in Section 6.1, a loop with low computation-to-
memory-access ratio puts more demands on the mem-
ory bus. Therefore, we attribute the limited scalability
of shuffle-do#10 in part to the increased demands on
the memory bus.

Shuffle-do#10 uses OpenMP locks inside the loop.
We measured that about 5% of the overall execution
time, is spent in the locks on our platform. Unlike
the sharing of lock variables in ammp, we did not see
excessive sharing of lock variables in gafort, mainly
because there is one lock per row of the iparent
array. The chance of two processors grabbing the same
lock before swapping the rows is 1 in 400,000.

Load-imbalance in gafortis inherent in the algorithm
because of the random number generator. In mutate-
jump and gafort-do#45, for example, there are several
conditional paths, which are either taken or not taken
depending on a random number. Both of these loops
use guided scheduling to mitigate the effects of load-
imbalance. As a result, the load-imbalance speedup
component is minor, as shown in Fig. 6.

We did not find any evidence of noteworthy false-
sharing in gafort.

6.8. Galgel

Galgel is a fluid dynamics code written in For-
tran. It contains about 15,300 lines. The most im-
portant parallel regions in galgelare syshtN do#1234,
sysnsn do#123, and lapak do#7. In addition to la-
pak do#7, several other loops in the LAPACK routines
are also important. However, given their small average
execution times, their importance comes from the large
invocation counts. Many of them scale quite well with
respect to the number of processors. Table 5 shows that
lapak do#4 has a superlinear speedup, and the top two
loops have large “Not Modeled” components.

SyshtN do#1234 and sysnsn do#123 are very sim-
ilar in structure. There are 4 parallel loops in
syshtN do#1234 and 3 parallel loops in sysnsn do#123,
where the first loops are the most time-consuming ones.
The real workhorses in both regions are the matrix
multiply, transpose, and dot product intrinsics. We
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measured that both regions have an average execution
time of 10 seconds in a sequential run. However, in
a 1-processor parallel execution the average execution
time degrades to 32 seconds for syshtN do#1234 and
55 seconds for sysnsn do#123. Therefore, both loops
demonstrate very poor scalability on our platform as
shown in Table 5. We also discovered that the average
execution time scales almost perfectly on 2 and 4 pro-
cessors with respect to the 1-processor parallel execu-
tion time, suggesting a high parallelization overhead.
The parallelization overhead here refers to the fork-join
overhead. However, Fig. 5 shows that the fork-join
time is not a significant part of the overall execution
time. Instead we found that the matrix manipulation
functions are the culprits for the increase in the execu-
tion time in parallel. The assembly code inspection of
these functions revealed that the matrix manipulation
routines (e.g. MATMUL or dgemm) are never called di-
rectly but are rather inlined in both the sequential and
parallel versions. The difference in the parallel version
is that we also found calls to malloc and free inside
the loop body subroutines. These calls seem to allo-
cate temporary arrays before the matrix manipulation
occurs. As explained in Section 5.1, the dynamically
allocated arrays introduce a significant overhead in the
parallel version. Therefore, we attribute the increase
in the average execution time to the dynamic alloca-
tion of arrays in the parallel version in syshtN do#1234
and sysnsn do#123. Since we do not have an explicit
category for such an overhead, galgelhas a large “Not
Modeled” component.

Figures 6 and 7 show that the memory stalls due
to “Load Use” and “Store Buf.” are important rea-
sons for the speedup loss in galgel. We found that
lapak do#3 and lapak do#5 are responsible for the in-
crease in “Load Use” stalls. Lapak do#3 also shows
a large increase in “Store Buf.” stalls. Lapak do#5
shows only 1% reduction in the secondary cache miss
rate in parallel, almost all of which comes from the
false-sharing of array C. Similarly, lapak do#3 also
shows about 3% reduction in the secondary cache miss
rate. We attribute the increase in memory stalls in these
loops to the reduction in secondary cache hit rate.

6.9. Mgrid

Mgrid is a 500 line multigrid solver code writ-
ten in Fortran. RESID do600, PSINV do600, and
RPRJ3 do100 are the three most important loops as
shown by Table 5. We can see from Figs 6 and 7 that
the memory stalls is the key reason for speedup loss

in mgrid. Also, the increase in memory stalls comes
from the increase in “Load Use,” “Store Buf.,” and
“Load RAW” related stalls. From the hardware counter
measurements, we discovered that RESID do600 is re-
sponsible for the largest increase in all three areas,
specifically in “Store Buf.” stalls. PSINV do600 and
RPRJ3 do100 also show a substantial increase in “Load
Use” stalls.

The first-level data cache hit rate of the loads in
RESID do600 and PSINV do600 is 67% and is un-
changed in the parallel version. For RPRJ3 do100,
the hit rate is 77% and also remains constant be-
tween the sequential and parallel versions. While the
hit rate of stores is over 80% for PSINV do600 and
RPRJ3 do100, it is only 58% for RESID do600. These
hit rates also remain constant between the serial and
parallel versions. The number of loads and stores re-
main nearly the same from the sequential to the parallel
versions for all three loops.

From the code inspection,we find that RESID do600
and PSINV do600 both perform stencil computations
on an entire 3 dimensional array during each invocation.
The array sizes range from 4×4×4 to 256×256×256
in the increments of powers of two. The array access
patterns in the loops lead to good spatial and temporal
locality in the sequential and parallel versions. Also,
there is no data sharing among processors, because the
arrays are an exact multiple of the number of proces-
sors (4) on our system. We found that the bandwidth
requirement grows from 33 MB/sec in a sequential run
to 95 MB/sec in a parallel run on 4 processors. Al-
though the maximum bandwidth of the interconnect is
significantly higher, this increase may contribute to the
higher memory stalls in the parallel execution.

Finally, we did not find any evidence of false-sharing
in mgrid.

6.10. Swim

Swimis a shallow water modeling program. It con-
tains about 400 lines of Fortran code. CALC3 DO#300,
CALC2 DO#200, and CALC1 DO#100 are the three
most important loops in swim. We will refer to them
as the CALC-loops from here on. The average execu-
tion time of each loop is about 3 seconds. From the
performance point of view SWIM DO#400 is also an
important loop.

From Figs 6 and 7 we can see that almost all of
the speedup loss in swim is due to the increase in
memory stalls. “Store Buf.” is the largest mem-
ory stalls component followed by the “Load Use” and
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the “Load RAW” components. CALC3 DO#300 and
SWIM DO#400 show an increase in memory refer-
ences. CALC3 DO#300 has 1.33 times more loads in
the parallel version, but the number of stores is un-
changed. In SWIM DO#400, there are 2 times more
loads and several hundred times more stores. While
all four loops show substantial increase in the “Store
Buf.” and “Load RAW” stalls, only the CALC-loops
are responsible for the majority of increase in “Load
Use” stalls.

In general, swim suffers from poor cache perfor-
mance. The first-level data cache hit rate is about
50% for the loads in all loops. The hit rate for the
stores is almost 99% in CALC3 DO#300, about 50%
for SWIM DO#400, and below 1% in the remaining
two CALC-loops. We found that the reason for the
poor cache performance is lack of temporal locality in
the CU, CV, Z, H, PNEW, UNEW, VNEW, P, U, V, POLD,
UOLD, and VOLD arrays with respect to the outermost
time-step loop. CU, CV, and Z act as intermediate ar-
rays in swim. Every time-step the new arrays (e.g.
PNEW) are written in two steps: first the intermediate
arrays are updated, and then the new arrays are writ-
ten. The size of each array is approximately 110 MB.
An examination of the code reveals that these arrays
display good spatial locality, but the use of intermedi-
ate arrays causes the final arrays to get replaced in the
cache, before the final arrays could be reused. In the
same way, the final arrays replace the intermediate ones
before the next iteration of the time-step loop. Thus,
swimexperiences thrashing in the caches.

In order to prevent thrashing we conducted an exper-
iment where we completely removed any references to
the intermediate arrays by performing aggressive ex-
pression propagation on the CALC-loops. Also, we
coalesced the CALC-loops in a single loop for a larger
granularity of parallelism. We found that the overall
data cache hit rate improved from 49% to 75% for the
first-level cache and from 87% to 91% for the secondary
cache when comparing the parallel versions with and
without the transformation. The sequential code with
the transformation, however, showed a 10% increase
in execution time when compared with the sequential
version without it. Also, we found more floating-point
dependence related stalls with the parallel transformed
version. The increase in the floating-point dependences
is linked to the increased complexity of math expres-
sions in the transformed loop. Nonetheless, the 4-
processor execution time with the expression propaga-
tion improved by almost 25% and the overall speedup
also rose to 2.45.

In addition to thrashing, swim also has a low
computation-to-memory-access ratio in parallel. There-
fore, it exerts more demands on the memory bus than
other benchmarks. One indication of the increased de-
mands is the increased bandwidth requirements in par-
allel. For example, in CALC1 DO#100 the bandwidth
requirement increases from about 250 MB/sec to 447
MB/sec. The increased demand on the memory bus
combined with poor temporal locality leads to more
memory stall in parallel, which severely limit swim’s
scalability on our platform.

6.11. Wupwise

Wupwiseis a Fortran code of about 2,200 lines
in the area of quantum chromodynamics. Even
though MULDOE DO#1 and MULDEO DO#1 are the
most important loops in wupwise, the speedup loss
is mainly due to ZAXPY DO#1, ZDOTC DO#1, and
ZCOPY DO#1. These loops are similar to BLAS [2]
routines. They operate on vectors and matrices of
complex numbers. As shown in Table 5, MUL-
DOE DO#1 and MULDEO DO#1 scale quite well on
4 processors but not ZAXPY DO#1, ZDOTC DO#1,
and ZCOPY DO#1.

Figures 6 and 7 show that the speedup loss
in wupwise is a result of memory stalls, mainly
“Load Use” and “Store Buf.” stalls. MUL-
DOE DO#1 and MULDEO DO#1 are responsible for
only a small percentage of the memory stalls. A
vast majority of the memory stalls result from ZA-
XPY DO#1, ZDOTC DO#1, and ZCOPY DO#1. Al-
though these loops demonstrate poor cache perfor-
mance, ZDOTC DO#1 is the only loop where the first-
level data cache hit rate of stores decreases to 33%
from 50%, and the number of loads increases by 23%.
In the remaining two loops, the cache hit rates and
the number of loads and stores remain unchanged.
Hence, we attribute the increase in the memory stalls
in ZDOTC DO#1 to the combined effect of the low-
ered cache hit rate and the increased loads. We dis-
covered that in ZCOPY DO#1, the secondary cache
hit rate drops from 79.7% to 76.3% and the number
of references to the secondary cache rise up by almost
16%. Similarly, ZAXPY DO#1 also reports a drop in
the secondary cache hit rate from 85% to 81% and a
rise in the number of references to the secondary cache
by 7%. Therefore, we attribute the increased memory
stalls in these two loops to the poorer performance of
the secondary cache in the parallel version.

We did not see significant false-sharing in wupwise.
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7. Summary

Most benchmarks in the SPEC OMP suite adhere to
the golden rule that over 90% of program execution
time is spent in less than 10% of code. Majority of the
programs spend most of the execution time in 5 loops
or less. Also, these programs are highly parallel, and
they run for a long time, even in parallel.

We have presented a Quantitative Model that ex-
plains gap between ideal speedup and realized speedup
into the speedup components. We also showed ways of
measuring, deriving, and computing the speedup com-
ponents. We derived two basic formulas that quantify
the speedup loss: a formula for a fully parallel region
and a formula for a partially parallel region that con-
tains serial sections. Using the Quantitative Model, we
explained the performance of SPEC OMP benchmarks.
We presented the overall characteristics of benchmarks
followed by loop-by-loop analysis. We focused our ex-
planations on the most important loops in each bench-
mark and explained the reasons for their speedup loss.

Overall we discovered that memory system related
stalls are the biggest reason for speedup loss. The
memory stalls increase in parallel. The stalls due to
loads are dominant compared to stores. However, stalls
due to a full store buffer are also important in several
codes. We found that there are three primary reasons
for the memory stalls in the SPEC OMP benchmarks:

– Increased memory reference instructions: In-
crease in memory references results mainly due
to an increase in the number of loads. In all
benchmarks there are considerably more loads
than stores. We found that even if the cache hit rate
increases in many benchmarks, more memory ref-
erences lead to a higher absolute number of cache
misses. The benchmarks that exhibit such behav-
iors are ammp, equake, fma3d, and gafort. We
found more memory references in parallel with-
out counting references at the implicit barriers.
We could not find any specific code patterns that
lead to increased memory references in parallel.
The reasons are mostly inefficient compilation and
run-time management of some OpenMP directives
such as OMP DO and THREADPRIVATE.

– Decreased data cache hit rate: Apsi reported a
lower cache hit rate in parallel. False-sharing was
partly responsible for the reduction in the cache hit
rate. However, in general false-sharing is really a
minor reason for the cache misses. Wupwisealso
reported slightly lower cache hit rates in the BLAS
loops. The memory stalls due to a full store buffer
is a secondary effect of increased cache misses.

– Increased demands on the memory bus: Increased
demands on the memory bus in parallel is an ar-
tifact of lower computation-to-memory-access ra-
tios in the benchmarks, such as applu, gafort,
mgrid, and swim.

True-sharing is important in ammpand fma3d. In ammp
the source of true-sharing is the locks, and in fma3dit
is the REDUCTION clause.

Floating-point dependences is the most important
reason for pipeline stalls in parallel in the SPEC OMP
benchmarks. The higher complexity of floating-point
math operations seems to lead to higher floating-point
dependence stalls in parallel. Loops in equakeand
swim4 exemplify such a pattern. Nevertheless, con-
sidering the fact that the SPEC OMP codes represent
scientific applications’ domain, whose execution times
are dominated by the floating-point and memory ac-
cess operations, we found that the efficiency of mem-
ory access operations is far more important than the
efficiency of floating-point operations. The diminished
importance of floating-point operations is a result of
on-chip, efficiently pipelined floating-point unit. Art is
the only benchmark whose scalability is limited by the
pipeline stalls related to branch misprediction.

Because the SPEC OMP codes are highly parallel,
serial sections of the codes do not impact the parallel
performance on our 4-processor system. Finally, the
performance of SPEC OMP benchmarks is not signif-
icantly limited by fork-join and load-imbalance over-
heads. The fork-join overhead, however, can become
significant if entering a parallel region involves expen-
sive operations such as memory allocation as illustrated
by apsi. The overhead can be worsened by a large invo-
cation count of the parallel region. Also, we expect the
fork-join overhead to scale much more rapidly as the
number of processors increases. While we found slight
load-imbalance in some instances, in general it does
not hamper the performance of SPEC OMP programs
on our system.

8. Conclusions

We have presented detailed analysis of the SPEC
OMP benchmarks in Section 6. Our goal was to study
a set of modern scientific shared-address-space (SAS)
parallel programs. The SPEC OMP benchmarks pre-

4In Swim, the math expressions become more complex after ap-
plying aggressive expression propagation optimization.
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sented that opportunity to us. There are three distin-
guishing aspects to our study: We have chosen a mod-
ern multiprocessor platform on which to study the pro-
grams, the programs are parallelized with the OpenMP
directives, which is a new standardized way of writing
SAS programs, and the large size of data sets, which
results in long execution times even on 4 processors.
We have learned several lessons about the performance
of such programs.

The parallelization overhead in terms of fork-join
time is only a minor factor in determining the speedup
of long running codes, because the cost of fork-join gets
amortized over a long period of time. That is, the ef-
ficiency of OMP PARALLEL/OMP END PARALLEL
directives without the data environment clauses is of
little concern in terms of performance. However, we
found that an efficient implementation of the OMP DO
construct (worksharing construct) is important to the
performance of loop-based programs. For example, we
found differences between our Fortran and OpenMP C
compilers in how each implements OMP DO directive:
the Fortran compiler generates a subroutine from the
OMP DO loop body, whereas the C compiler does not.
Therefore, the Fortran compiler incurs more overhead
at runtime. Also, our OpenMP C compiler automati-
cally coalesces adjacent parallel regions into a single
subroutine, thereby reducing subroutine calls.

The importance of OMP PARALLEL and OMP DO
in terms of performance is linked to the efficiency
of data environment clauses. Efficient code genera-
tion of PRIVATE, SHARED, and THREADPRIVATE
is critical to the performance of OpenMP programs,
since they are the most frequently used data environ-
ment clauses. In particular, efficient ways of allo-
cating, accessing, and deallocating THREADPRIVATE
and SHARED variables and PRIVATE arrays is impor-
tant. Individual heaps for the threads can help improve
the efficiency of dynamic memory allocation in parallel
for the PRIVATE arrays, which is a part of the fork-
join overhead. As the number of processors increases,
serialization to allocate from the same process heap can
drastically increase the fork-join overhead. Similarly,
repeated address calculations to access SHARED and
THREADPRIVATE variables can be avoided by using
more registers and more efficient register allocation al-
gorithms.

The OpenMP locks and OMP CRITICAL introduce
two overheads in a parallel program, which are absent
in a sequential one: an overhead of executing extra in-
structions while spin waiting and an overhead of acquir-
ing the lock. The overhead of executing extra instruc-

tions is paid in a parallel program if the processors end
up spin waiting for the lock. However, the overhead of
acquiring a lock depends on the amount of lock con-
tention and the implementation of locks. Therefore, an
implementation that reduces contention for the locks is
important [1,4]. The lock variables are also a source
of true-sharing. True-sharing can lead to increased in-
validations and copybacks, which in turn may lead to
increased cache misses. For example, the lock variable
in ammpexperiences true-sharing. The REDUCTION
clause is much more likely to be a source of false and
true-sharing than any other OpenMP clause for three
reasons: (1) all processors update the reduction vari-
able, (2) some implementations of the REDUCTION
clause use implicit locks, and (3) reduction operations
are popular in parallel programming.

The presented study is one step towards understand-
ing realistic, OpenMP shared-address-space parallel
programs on modern SMP systems. While the used
programs are highly parallel, their efficiency, even on
four processors, is below expectation. In addition to
a few intrinsic reasons, we have found room for im-
provements of compilers and libraries. In order to find
and evaluate remedies, more such studies are neces-
sary, quantifying application performance on other ar-
chitectures, larger numbers of processors, and future
generations of software systems.
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