
Scientific Programming 11 (2003) 143–158 143
IOS Press

Scaling non-regular shared-memory codes by
reusing custom loop schedules

Dimitrios S. Nikolopoulosa,∗, Ernest Artiagab, Eduard Ayguadéb and Jesús Labartab

aCoordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main Street, Urbana, IL
61801, USA
E-mail: dsn@csrd.uiuc.edu
bDepartment d’ Arquitectura de Computadors, Universitat Politecnica de Catalunya, c/Jordi Girona 1-3, Modul
D6, Barcelona 08034, Spain
E-mail: {ernest, eduard, jesus}@ac.upc.es

Abstract. In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular
numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly
setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular
data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This
transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-
memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors.
The paper presents practical examples from real applications and experiments showing the efficiency of the approach.
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1. Introduction

Programming models based on the abstraction of
a shared address space became popular because they
could potentially eliminate a number of tasks that make
parallel programming difficult, such as the placement
of data in memory, the assignment of computation to
processors, and the management of communication.
Parallelism can be expressed simply by pin-pointing
loops and fragments of sequential code that can be
safely executed in different threads, using compiler di-
rectives [16]. Unfortunately, these otherwise desirable
features of shared-memory programming models are
also the ones that make the use of these models prob-
lematic in scalable parallel architectures.

∗Corresponding author. Present address: Department of Com-
puter Science, The College of William&Mary, McGlothlin Street
Hall, Williamsburg, VA 23187-8795, USA. Tel.: +1 757 221 3455;
Fax: +1 757 221 1717.

Scalable shared-memory multiprocessors use a
LEGO architecture, in which off-the-shelf or propri-
etary computational nodes with processors and memory
are interconnected via a fast switching network [10].
This setting is identical to that of distributed-memory
architectures, with the exception that the nodes run a
directory-based cache coherence protocol at their com-
munication interfaces. The protocol allows processors
to use their caches for coherent migration and replica-
tion of data, regardless of the location of data in mem-
ory. The programmer views the memory of the sys-
tem as a flat, globally accessible address space and can
exploit the caches to enable fast access to shared data.
However, the cost of memory accesses upon cache
misses varies, depending on whether the accesses are
to locally or remotely located data. If the placement
of data across nodes does not match the memory ac-
cess pattern of the program, performance may suffer
from the latency of remote memory accesses, which is
several times higher than the latency of local memory
accesses.
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The parallel processing community has been ad-
dressing this problem by incorporating data and thread
placement facilities in shared-memory programming
models [3,4,17]. Albeit effective, this solution sacri-
fices the transparency of the shared-memory program-
ming abstraction, by exposing architectural state to the
programs. Shared-memory programming paradigms
are fundamentally based on location transparency for
both data and computation. Data distribution com-
plicates the programming process and the underlying
compilation and execution framework.

As an alternative to data distribution, we have pro-
posed a dynamic optimization framework, for max-
imizing memory access locality in programs written
with an architecture-agnostic shared-memory program-
ming model, such as OpenMP [14]. The idea is to
dynamically record the memory access pattern of the
program while the program is running, and, if the com-
plete memory access pattern is periodic, optimize data
placement for the specific access pattern. Dynamic op-
timization of data placement is performed by migrating
each page to the memory of the node that accesses the
page more frequently during the execution of the pro-
gram. This technique works extremely well, yielding
performance as good as that of the best manual data
distribution algorithms for a large number of parallel
codes that have strictly periodicstructure, i.e. they re-
peat the same parallel computation for a number of
iterations [13].

The advantage of dynamic optimization is that it re-
quires no modifications or extensions to the program-
ming model. It is a purely runtime scheme that needs
minimal compiler support for instrumenting the pro-
gram to collect memory access traces and invoke a dy-
namic data distribution engine. It can also be used as a
convenient tool for dynamic compilation and optimiza-
tion of parallel programs, when the cost of runtime data
distribution is prohibitive. Our dynamic optimization
framework has been successful as a transparent opti-
mizer of memory access locality in several OpenMP
codes [12,13].

1.1. Problem statement

Although we have been able to use dynamic opti-
mization of data placement in several OpenMP pro-
grams without modifications to the programming in-
terface, this approach is limited by the fact that not
all parallel codes are amenable to dynamic data place-
ment optimizations. Our optimization framework re-
lies on a periodic memory access pattern to optimize

data placement for the program as a whole. Unfortu-
nately, several parallel codes in use today do not have
this property.

Some parallel codes have a dynamic memory ac-
cess pattern, which changes with the evolution of the
computation. The plight of our dynamic optimization
scheme in these codes is the inability to speculate on
the future memory accesses of the program based on
a snapshot of the access pattern retrieved early during
the execution. An optimization scheme based on the
access rates to each page in memory is effective only if
the memory access pattern has sufficient temporal lo-
cality (i.e. recent memory accesses are likely to provide
a prediction for future memory accesses) and if the data
distribution engine is able to identify phase changes
in the memory access pattern. Although techniques
for sampling and decaying memory access history to
gauge dynamic memory access patterns have appeared
in the literature [14,18,20], it is questionable if these
techniques form a general solution.

A second problem is that dynamic optimization of
data distribution is only one aspect of the performance
tuning process for scalable shared-memory architec-
tures. The balanced distribution of computation among
processors is a second critical aspect, in which dynamic
data distribution by itself can not be of much help. Dy-
namic optimization of data placement is always per-
formed for a given work distribution scheme and is
inherently orthogonal to load balancing. The penalty
of load imbalance may well limit the scalability of the
program, even if memory access locality within the
program is optimized. Unfortunately, shared-memory
programmingstandards like OpenMP lack the means to
express flexible work distributions for load balancing
purposes.

Load balancing, pretty much like data distribution
can be dynamically optimized under the assumption
that the computation in the program has some form of
periodicity, so that the load imbalance can be exposed
and resolved at runtime. Such an approach is outlined
in [15]. The weakness of this solution, in addition to
the inability to handle aperiodic computation patterns,
is that it can not balance the load according to the phys-
ical properties of the problem modelled by the parallel
computation. It can only alleviate the load imbalance
incurred from an arbitrary static work distribution and
up to the point where a measurable index of load bal-
ancing (e.g. floating point operations per processor)
can not be further improved.
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1.2. Contributions of the paper

This paper presents an effective technique and the
associated program transformations for implementing
application-specific work distributions and simulta-
neously optimize memory access locality in shared-
memory programming paradigms, without manual data
distribution. In principle, we target array-based nu-
merical codes, in which the bulk of the computation is
executed in loop nests.

Our scheme relaxes the constraint of entirely trans-
parent optimization, by allowing the programmer to
encode application-specific work distribution schemes.
The novelty of this scheme is that both load balanc-
ing and memory access locality are achieved by proper
scheduling of loop iterations to processors. Effective
loop schedules are identified and reused throughout the
program, across executions of the same loop or across
executions of different loops with overlapping access
regions. The distribution of data is optimized implic-
itly, by exploiting the operating system’s automatic
page placement algorithm.

The proposed scheme provides the programmer with
flexibility that can otherwise be provided only with
data distribution statements and a data-centric model
integrated with the shared-memory programming ab-
straction. Although the programming effort for proper
thread and data distribution is not eliminated (the pro-
grammer must still express the desired correlation be-
tween computation and data), the scheme is more ap-
propriate for shared-memory parallel programming,
because it operates only within the scope of loop
scheduling and implements coordinated rather than
decoupled placement of computation and data, thus
minimizing the associated overhead. Since directive-
based shared-memory programming paradigms like
OpenMP already allow some flexibility in the selection
of loop schedules from predefined alternatives, adding
our transformations as an option to the loop schedule
clauses of parallelization directives seems to be a rea-
sonable extension. Reusable loop schedules can be
nicely expressed with affinity clausesin directives en-
closing parallel loops and can be translated to parallel
code with simple loop transformations.

We implemented and tested our technique in the fa-
miliar OpenMP framework. OpenMP is the de facto
standard for parallel programming with the shared-
memory abstraction and has been deployed widely in
small-scale shared-memory architectures and more re-
cently, in scalable NUMA multiprocessors and clus-
ters. Currently, our technique handles effectively two

types of OpenMP codes: First, codes where although
the memory access pattern is aperiodic, processors can
exploit memory access locality by reusing a significant
amount of the data that they access during the course of
the computation. Second, OpenMP codes that model ir-
regular problem spaces, using irregularly shaped grids.
In these codes, our technique enables the program-
mer to implement application-specific work distribu-
tion schemes, while optimizing transparently data dis-
tribution.

As far as performance is concerned, our scheme im-
proves the performance of OpenMP code by more than
50%, compared to automatic data and work distribu-
tion algorithms implemented in the operating system
and the runtime system respectively. Our technique
outperforms slightly hybrid parallelization schemes us-
ing OpenMP and manual data distribution (by 5–10%),
because it performs locality-conscious distribution of
data and computation simultaneously. Data distribu-
tion is performed lazily and in parallel, whenever the
processors experience page faults on unmapped pages
during the execution of useful computation. In the case
of manual data distribution, a higher cost is paid before
the actual parallel computation, by either having one
processor call the operating system to place data on
the appropriate nodes, or inserting a dummy parallel
loop that forces each processor to map locally the data
assigned to it.

The drawback of our scheme is that it is prone to
false-sharing, whenever the blocks of data assigned to
each processor are not page-size aligned. To circum-
vent this problem, it is necessary to use techniques such
as array reshaping and index rewriting, thus placing
more burden on the compiler. Fortunately, previous
work on data parallel languages formalized the related
techniques to a significant extent, therefore it is rea-
sonable to have such an expectation from an advanced
OpenMP compiler. We plan to address the relevant is-
sues in future work. At the time being, we use manual
transformations of arrays to cope with false sharing.

1.3. The rest of this paper

The rest of this paper is organized as follows: Sec-
tion 2 illustrates two motivating examples for reusing
custom loop schedules, a simple LU decomposition
and an irregular data transposition kernel. Section 3
describes the most essential details of our transforma-
tions. Section 4 provides results from experiments with
non-regular parallel codes, which compare our scheme
against a shared-memory parallelization scheme which
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is oblivious to data distribution, a scheme which com-
bines shared-memory parallelism and manual data dis-
tribution and implementations of the same codes with
MPI. Section 5 reviews related work and Section 6
summarizes the paper.

2. Motivating examples

This section provides two examples to highlight the
issues that motivate the use of customizing and reusing
loop schedules for optimizing memory access locality
in shared-memory codes. Section 2.1 examines LU
decomposition, a code in which although the memory
access pattern of the program is aperiodic, there is a
significant amount of data reuse that can be exploited
by distributing data and scheduling appropriately the
parallel loop. Section 2.2 presents a data transposition
kernel from a weather forecasting system, which re-
quires an irregular two-dimensional block distribution
to balance the computational load among processors.

In the following discussion,we assume that the target
architecture is a hardware cache-coherent, distributed
shared-memory (DSM) multiprocessor,such as the SGI
Origin2000 [9], the Sun Wildfire [7], and the Compaq
GS320 AlphaServer [6]. The performance optimiza-
tions that we are seeking for in these architectures are
of two kinds. First, we wish to distribute the data of
each program among the nodes of the system, so that
the processors on each node access local memory as
frequently as possible and remote memory as infre-
quently as possible, whenever they miss in their caches.
Second, we wish to distribute the work between pro-
cessors, so that the work distribution balances the load
according to the structure of the data space modelled
by the application.

We take into account the fact that the operating sys-
tem uses automatic page placement algorithms that dis-
tribute pages with the data of the program across the
nodes of the system. The most popular of these algo-
rithms is first-touch[11], which places each page on
the same node with the processor that accesses the page
first during the course of execution. First-touch is used
in commercial operating systems such as IRIX and So-
laris. Although first-touch is oblivious of the memory
access pattern of the program, it is a policy able to attain
satisfactory memory access locality in many practical
cases.

2.1. LU

Consider the simple LU decomposition code shown
in Fig. 1(a). The code divides the element in column
k of a with the pivot element and then updates the
submatrix a[k+1:n,k+1:n]. We assume that the
code is parallelized with a flat shared-memory model,
by inserting a compiler directive that encloses the inner
j loop and commands its parallel execution. Them loop
can also be parallelized, but we omit this option here to
simplify the discussion. We use OpenMP directives in
the code. The example is taken from [3].

Conceptually, according to the memory access pat-
tern of the parallelized loop, memory access local-
ity will be better if the columns of a are distributed
among processors. The problem is how to distribute the
columns, so that processors can actually reuse data and
avoid remote memory accesses. The default algorithm
for distributing the iterations of a parallel loop among
processors in OpenMP is the static algorithm, which
assigns n/p consecutive iterations to each processor,
where n is the number of iterations in the parallel loop
and p the number of processors. In the case of LU,
this algorithm implements implicitly a block distribu-
tion of the columns of a among processors, under two
assumptions: First, that the operating system uses the
first-touch page placement algorithm, so that each pro-
cessor maps locally the columns of a that it updates
first during the first iteration of the outer k loop; and
second, that each column ofa is page-aligned. The first
requirement is usually met. Most popular commercial
DSM multiprocessors use first-touch page placement
in the operating system [6,7,9]. The requirement for
page alignment can be met with additional compiler
support or with programmer intervention, to pad and/or
reshape a along the second dimension.

Figure 2(a) shows the layout of the elements of a
16 × 16 array, if the inner parallel loop of LU is par-
allelized and scheduled statically on four processors.
The figure demonstrates the problem with the block
distribution of the columns of a. With this layout, in
every iteration of the k loop except the first one, at least
one processor has to update one or more columns of a
that reside in remote memories. This happens because
for k � 2, the work of the processors in the parallelized
inner loop is redistributed so that each processor up-
dates (n− k)/p consecutive columns of the submatrix
a[k+1:n,k+1:n]. Figure 2(b) shows the partition
of the array which is accessed during the 8th iteration
of the outer loop (surrounded with boldface lines). As-
suming that processors are numbered from 0 to 3 and
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program LU
integer n
parameter (n=problem size)
double precision a(n,n)
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

end do
!$omp parallel do private(i,j)

do j=k+1, n
do i=k+1,n

a(i,j)=a(i,j)-a(i,k)*a(k,j)
enddo

enddo
enddo

(a)

program LU
integer n
parameter (n=problem size)
double precision a(n,n)
!$distribute (*, cyclic) :: a
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

end do
!$omp parallel do private(i,j)
!$affinity(j)=(a(i,j))

do j=k+1, n
do i=k+1,n

a(i,j)=a(i,j)-a(i,k)*a(k,j)
enddo

enddo
enddo

(b)

Fig. 1. The LU code implemented with OpenMP (left) and extended with data distribution and an affinity clause (right) to optimize memory
access locality in the parallel loop.

(a) (b)

(c) (d)

Fig. 2. Block and cyclic data distribution and implications on memory access locality in LU.

from left to right, processors 0 and 1 will update four
columns which are local to processor 2, processor 2 will

update two columns which are local to processor 3 and
processor 3 will be the only processor that will update
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!hpf$ processors procs(nproc),procsab(nproca,nprocb)
!hpf$ distribute(gen block(mapgla),indirect(mapfld0)) onto procsab::zgl
real zgl(npromag,ngt0)
!hpf$ independent,new(jfld),onhome(zgl(indl(j),:)), reuse(lreuse)
do j=1,ngptotg

do jfld=1,ngt0
zgl(indl(j),jfld)=zga(j,jfld)

enddo
enddo

Fig. 3. A snippet of the LG kernel implemented in HPF.

(a) (b)

Fig. 4. Unstructured two-dimensional block distribution in LG (left) and load imbalance caused by a regular block distribution (right).

local columns. 48 out of the 64 elements of the subma-
trix updated during the 8th iteration of the outer loop
will be updated with remote memory accesses. It could
be possible to handle this case by migrating the pages
with the columns to the processors that access them in
any given iteration on demand. This solution however
may be inhibited by the cost of page migration. The
amount of computation per column should be sufficient
to balance the cost of migrating the pages that store the
column, which may be as high as one ms. per page on
state-of-the-art systems like the Origin. Therefore, this
solution is viable only in codes with very large problem
sizes.

The way to overcome this problem is to distribute
data and/or computation, so that in every iteration of
the outer loop, each processor updates only columns
that reside in local memories. Since the computation
works in one direction towards smaller submatrices of
a, the way to achieve this is to have processors work
on columns scattered across the array in the first itera-
tion and update a subset of the same columns in sub-
sequent iterations. One way to implement the desired
data distribution and simultaneously balance the load,
is to distribute the columns of a in a cyclic fashion
as shown in Fig. 2(c) and schedule the inner parallel

loop so that processor i updates only columns j for
which j mod (n/p) = i. As Fig. 2(d) shows, with this
data distribution in iteration 8, processor 0 will update
columns 8 and 12 which are local, processor 1 will
update columns 9 and 13 which are also local and so
on.

Figure 1(b) shows how this is achieved with direc-
tives for manual data distribution and affinity schedul-
ing. The functionality of the !$distribute direc-
tive is identical to that of the corresponding HPF direc-
tive [5]. The second dimension (i.e. the columns) of a
are distributed in a cyclic manner across the processors
that execute the program. The !$affinity direc-
tive is in analogy to the !$onhome clause of HPF and
has been proposed in previous work as an extension
to shared-memory programming paradigms that helps
the programmer express mappings of computation that
enforce memory access locality [3,4].

What we try to circumvent with the work presented
in this paper is the requirement to explicitly distribute
data in codes like LU, whenever the desired collocation
of computation and data can be achieved by letting the
operating system place data in memory and in paral-
lel, move the right pieces of computation close to the
data they access. We show that in many cases, this can
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be done easily by carefully scheduling loop iterations
to processors. We wish to avoid the implications of
data distribution on the complexity of the programming
model and the implementation of the compiler. We
also wish to eliminate the overhead of manual data dis-
tribution and try to overlap automatic data distribution
with computation, while achieving the same effect as
the best data distribution algorithm for the program at
hand.

We decide to tolerate an extension of the program-
ming model that expresses affinity of computation to
data for two reasons. First, such an extension can be
expressed as part of the clauses that define the schedul-
ing algorithm for parallel loops. Such flexible work
distributions are already considered in shared-memory
programming models and OpenMP in particular [16].
Second, there are several codes in which the affinity
relation between computation and data depends on an
application-specific distribution of computation, which
can not be analyzed by the compiler or inferred at run-
time. The next subsection presents one example.

2.2. The IFS LG kernel

Figure 3 shows the HPF implementation of a snip-
pet from the LG kernel, a data transposition routine
which is part of the Integrated Forecasts System of
the European Center for Medium-Range Weather Fore-
casts [19]. The LG kernel transposes a grid which mod-
els the earth’s atmosphere, from the physical space to
the Fourier space. Both the original and the transposed
grids are irregular and use more points to model the
parts of the atmosphere which are close the equatorial
and less points to model the parts of the atmosphere
which are close to the poles. The snippet shown in
Fig. 3 updates the elements of one of the most fre-
quently accessed array in the code (zgl).

LG is an irregular parallel code, as far as the memory
access pattern is concerned. The peculiar feature of
this code is that the physical problem that it models has
some form of structural irregularity, which makes cer-
tain regions of the modelled data space more densely
populated with data points than others. Such a grid
requires an application-specific load balancing algo-
rithm. More specifically, the decomposition of the grid
among processors has to be done with an unstructured
block distribution, like the one shown in Fig. 4(a).

For proper load balancing, the code requires a two-
dimensional block distribution, where the size of the
blocks along the vertical dimension is variable. Blocks
assigned to processors that work on the north/south

edges of the grid (i.e. close to the poles) are larger
than blocks assigned to processors that work on other
parts of the grid. As shown in Fig. 3, the HPF solution
to model such a grid is to define a generalized block
distribution for the first dimension of the array, in which
the size of each block is defined in a vector (mapgla)
of size equal to the number of processors among which
the array is distributed along the vertical dimension.
The second dimension of the array is distributed with
an indirect distribution, which actually collapses into
a balanced block distribution of the second dimension,
with an irregular ordering of accesses to columns of the
array. Therefore, we do not treat it as a special case.

Likewise to LU, the problem with the LG kernel is
that if the code is parallelized with a flat shared-memory
model using compiler directives, static scheduling of
parallel loops and automatic first-touch page placement
by the operating system, the columns of the array will
be distributed blockwise, which will force processors
to access remotely located data most of the time. The
same will happen if the loop is interchanged so that
the array is distributed rowwise (see Fig. 4(b)), and in
addition, load balancing will be compromised, since
the size of the blocks of rows assigned to each processor
will be equal. This is undesirable, because the amount
of work assigned to the topmost(bottommost) rows is
less than the amount of work assigned to the other rows.

HPF handles this case by defining the irregular gen-
eralized block distribution and executing the loop that
updates the elements of zgl as a triple-nested loop
which iterates over the processor number. The bounds
of the innermost two loops are the bounds of the blocks
assigned to each processor according to the specified
distribution ofzgl. We wish to achieve the same effect
in the shared-memory programming model using only
extensions for flexible scheduling of loop iterations to
processors and the automatic page placement algorithm
of the operating system.

3. Reusing customized loop schedules

The idea behind customizing and reusing loop sched-
ules is to implement application-specific algorithms for
work and data distribution in shared-memory codes,
by scheduling appropriately the iterations of parallel
loops. What makes this idea work, is the ability to co-
ordinate the distribution of work with the distribution
of data, which is performed automatically by the oper-
ating system. If the mapping of loop iterations to pro-
cessors can match the data placement algorithm imple-
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program LU
integer n
parameter (n=problem size)
double precision a(n,n)
integer num procs
num procs = omp get max threads()
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

enddo
!$omp parallel do private(i,j,myp,jlow)
!$omp& shared(a,k)

do myp = 0, num procs-1
jlow = ((k / num procs) * num procs) + 1 + myp
if (myp .lt. mod(k, num procs))

jlow = jlow + num procs
do j=jlow, n, num procs

do i=k+1, n
a(i,j) = a(i,j) - a(i,k)*a(k,j)

enddo
enddo

enddo
enddo

Fig. 5. Data and computation distribution in LU using loop schedule reuse.

mented by the OS, it is possible to implement arbitrary
data distribution schemes, without having to extend the
programming model with data distribution statements.

We exploit the fact that most operating systems of
DSM multiprocessors use the first-touch page place-
ment algorithm. First-touch provides an elegant way of
mapping data to processors. If each processor touches
the data that we wish to map to it first, the desired data
distribution is performed implicitly and transparently
to the programmer. In fact, in most cases, data dis-
tribution with first-touch can be performed on-the-fly,
during the execution of the parallel computation. This
is beneficial because it avoids the overhead of manu-
ally calling the operating system to place data before
executing useful work.

Given the first-touch page placement algorithm, the
only thing that needs to be done for implementing ar-
bitrary data distributions is to restructure the parallel
computation so that each processor accesses first the
data that the desired distribution maps to it. In prin-
ciple, this is possible by rewriting the loop so that it
iterates over the processor number and the innermost
iterations touch the data assigned to each processor.
This is essentially the same approach used in earlier
implementations of HPF [8].

The important limitation of this scheme is that the
data assigned to each processor should be page-aligned.
If not, it is likely that processors will map locally pages
with significant amounts of data that “belong” to other

processors. As a consequence, false sharing will oc-
cur, the number of remote memory accesses will be in-
creased and the program might suffer from high waiting
times in the memory system. In many practical cases,
this problem can be relatively easily circumvented by
padding certain array dimensions, or by adding one di-
mension (the processor number dimension) to the array,
a transformation known as array reshaping [1,4]. Al-
though these techniques have been formalized for au-
tomation in a restructuring compiler, they are not gener-
ally available. In this work, we apply these techniques
to avoid false sharing via manual array transformations.

We demonstrate how this strategy works for the ex-
amples presented in Section 2. Consider LU. Figure 5
shows how the code can be restructured to implement
the cyclic distribution of the columns of a and ensure
that each processor updates only local columns in all
iterations of the outer loop. Iterations of a are assigned
to processors in a cyclic manner by executing the loop
with a step equal to the number of processors. During
the k-th iteration of the outer loop, each processor exe-
cutes a subset of the iterations that the same processor
executed during the k-1-th iteration of the outer loop.
For example, assume that the program is executed with
4 processors. When k=1, processor 0 executes itera-
tions 2, 6, 10, 14, . . . , processor 1 executes iterations
3, 7, 11, 15, . . . and so on. In the second iteration,
processor 0 executes iterations 6, 10, 14, . . . , processor
1 executes iterations 7, 11, 15, . . . etc.
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nprocs=omp get num threads()
myblock start(1) = 1
myblock end(1) = mapgla(1)
!$omp parallel do private(p,pp)
do p=2,nprocs

do pp=1,p-1
myblock start(p)=1+myblock start+mapgla(pp)

enddo
myblock end(p)=myblock start(p)+ mapgla(p) - 1

enddo
!$omp parallel do private(iam)
do iam = 1, omp get num threads()

do j = myblock start(iam), myblock end(iam)
do jfld=1+mod(iam-1,nprocb)*(ngt0/nprocb), &
& (mod(iam-1,nprocb)+1)*(ngt0/nprocb)

zgl(j,jfld)=zga(j,jfld)
enddo

enddo
enddo

Fig. 6. Implementing a two-dimensional irregular block distribution using a customized loop schedule in the IFS LG kernel.

The initial cyclic assignment of iterations to proces-
sors is equivalent to a cyclic distribution of the columns
of a. By reusing the initial schedule of the innermost
parallel loop, we ensure that each processor updates a
subset of the data that it updates during the first iteration
of the outermost k loop. The appealing property of this
scheme is that data is actually distributed while the pro-
cessors execute useful computation, i.e. the first com-
putational iteration of LU. There is no need to predis-
tribute the data using manual data distribution and the
overhead of data distribution is removed from initial-
ization and overlapped with computation, so that it has
a lesser impact on the execution time of the program.

This scheme can be extended to work with sequences
of parallel loops that might have different bounds but
update the same data. If the first loop of this sequence is
restructured for localizing memory accesses, the sched-
ule obtained for this loop can be applied to subsequent
loops, so that the data access pattern of these loops
matches the data distribution that the first loop imple-
ments.

In cases where the data access pattern needs to be
changed (e.g. across loops that update or access differ-
ent data), it is possible to discard any previously es-
tablished distribution of data by unmapping the pages
that contain elements of distributed arrays, using calls
similar to the UNIX mprotect(). The side-effect of
mprotect() is that pages with distributed data be-
come invalid and will cause page faults whenever a pro-
cessor access them after raising their protection bits.
The first execution of the loop that changes the memory
access pattern will force the pages to be remapped to

processors on a first-touch basis and according to the
new memory access pattern. This is an implicit mech-
anism for data redistribution, which extends the appli-
cability of customized loop schedules to codes with
dynamically changing memory access patterns.

Figure 6 shows a customized loop schedule that im-
plements the irregular block distribution required by
the IFS LG kernel. The idea is again to have processors
touch data assigned to them first, so that the associated
pages are placed in local memory modules. The gen-
eralized block distribution is handled by defining the
bounds of the block assigned to each processor (first
parallel loop in the code). mapgla, which stores the
number of rows of zgl assigned to each processor, is
used to define the lower and upper bound of the loop.
Two-dimensional blocking is then applied to the paral-
lel loop. Note that nproca and nprocb are the num-
ber of processors used for distribution along the hori-
zontal and vertical direction respectively. Each block
assigned to a processor along the vertical direction is
ngt0/nprocb columns wide. Processor p accesses
the block of columns j, where p mod nprocb = j.
The technique is no different than previously proposed
techniques to access data distributed with multidimen-
sional distributions [4] and is straightforward to extend
for handling combinations of block and cyclic distribu-
tions, with potentially variable sizes for the blocks and
the chunks of rows/columns assigned to each processor.

Figure 7 illustrates an example of how proper as-
signment of loop iterations to processors implements
implicitly an indirect data distribution, using the first-
touch page placement algorithm. The example shows
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do j=1,ngptotg
rindl(indl(j))=j

enddo

!$omp parallel private(iam)
iam=omp get thread num()
do j=1,mapgla(iam)

myiter(iam,j)=rindl(j)
enddo
!$omp end parallel

!$omp parallel private(iam)
iam=omp get thread num()
do j=1,mapgla(iam)

zgl(myiter(iam,j),jfld)=zga(j,jfld)
enddo
!$omp end parallel

Fig. 7. Implementation of an indirect irregular distribution.

another excerpt from the LG kernel. We assume that
the number of rows assigned to each processor is such
that the elements on the part of the column assigned
to a processor are page-aligned. The indirect distribu-
tion is defined by an indirection map, which is obtained
by accessing the values of vector indl. In order to
implement the indirect block distribution by assigning
iterations to processors, we identify the iterations that
access the elements of the block assigned to each pro-
cessor, as shown in the first code fragment in Fig. 7.
The array element rindl(j) stores the iteration of
the loop that accesses the elements of row indl(j) of
zgl. These elements must be mapped to the processor
that ownsindl(j). This is implemented by construct-
ing a map of iterations to processors, which is defined
as a two-dimensional array myiter(i,j), i=1,
. . .p, j=1, . . .max(mapgla(i)). The elements of
this array are set with the second code fragment shown
in Fig. 7. Intuitively, if an elementi1 is assigned to pro-
cessor p, we first find the iteration j1 that accesses i1,
by finding the value j1 that satisfies indl(j1) = i1.
We then set rindl(i1) = j1 and assign iteration j1
to processor p by setting myiter(p, k) = j1 for some
k. Finally, the original loop is transformed so that
each processor executes its assigned set of iterations,
as shown in the third code fragment in Fig. 7.

In a practical implementation, the aforementioned
loop scheduling transformations can be easily au-
tomated in an extension of the SCHEDULE clause
of the OpenMP programming standard. In anal-
ogy to data-parallel directives implemented in vari-
ants of HPF, the SCHEDULE clause may include a
GEN BLOCK(map(1:P)) parameter or an INDIRECT
(map(1:N)) parameter. In the first case, element i of

map contains the size of a contiguous chunk of itera-
tions assigned to processor i. In the second case, ele-
ment i of MAP contains the mapping of an element of a
shared array to a processor, along the dimension of the
array indexed by the running index of the parallelized
loop. The OpenMP compiler should interpret this as a
mapping of the iteration that updates this element to the
same processor. Similarly, in the case of LU, a clause
of the type cyclic,affinity(j)=data(a(i,j))
would instruct the compiler to schedule the iterations
of the loop cyclically and reuse this schedule across
invocations of the loop.

4. Results

4.1. Experimental setting

We present experimental results that demonstrate
the potential of reusing customized loop schedules for
achieving good memory access locality. We experi-
mented on a 128-processor SGI Origin2000 located at
NCSA. This system has MIPS R10000 processors run-
ning at 250 MHz, with 32 Kilobytes of split L1 cache,
4 Megabytes of unified L2 cache per processor, and
64 Gigabytes of uniformly distributed DRAM mem-
ory. The operating system used is IRIX version 6.5.11.
The page size for data pages on the Origin2000 is 16
Kilobytes. All experiments were submitted to bench-
marking queues and they were executed on dedicated
processors.

We experimented with four codes. LU and the LG
kernel were already presented as examples in the previ-
ous sections. We also performed experiments with SL
and TS, two irregular data transposition kernels taken
from the IFS weather forecast code. The data ker-
nels perform transpositions of data between the three
main computational phases of IFS, namely the physical
grid-point space computation, the Fourier space com-
putation, and the spectral space computation. These
transpositions are performed to ensure that the com-
putational parts of IFS are executed in parallel with-
out interprocessor communication. Data transpositions
in the IFS code can be implemented with appropri-
ate data redistribution. Unfortunately, the grids of the
main computational phases of IFS cannot be repre-
sented with regular (e.g. BLOCK or CYCLIC) data
distributions. The physical space grid and the Fourier
space grid are quasi-regular, because the number of
grid points (used to model the atmosphere) is progres-
sively reduced when moving from the equatorial to the
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OpenMP 
OpenMP + loop schedule reuse 
OpenMP + manual data distribution
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OpenMP + manual data distribution
MPI 

Fig. 8. Execution times of LU and LG (top charts), SL and TS (bottom charts).

poles. The spectral space grid, which is produced from
a Legendre transform of the Fourier space grid, has a
triangular shape.

The LG kernel handles the transpositions of data be-
tween the physical grid point space and the Fourier
space. The SL kernel computes a trajectory from a grid
point backwards in time and interpolates some quanti-
ties at the departure and the mid point of the trajectory,
using the semi-Lagrangian method. The main compu-
tational challenge in a parallel implementation of SL
is that computing the trajectory requires that each pro-
cessor collects a set of global grid point indices from
neighboring processors. These grid points are repre-
sented by a compact read-only data structure, called a
halo. The halo is updated at runtime according to the
winds which are likely to be encountered in the trajec-
tory. The TS kernel uses Fourier and Legendre trans-
forms to transpose data from the Fourier space to the
spectral space and backwards.

The original implementation of the codes uses MPI.
The codes are parallelized by decomposing the grids
between processors for balanced load, according to the
shape and the population of different parts of the grids.
Communication follows nearest-neighbor patterns and
is manually optimized.

For LU, we compare the three OpenMP implemen-
tations (loop-parallel version, version with manual data
distribution and version with loop schedule reuse). For
the three irregular codes, we compare the performance
of four versions of each code. The first version is the
original MPI implementation. The second version is an
OpenMP implementation derived from the HPF imple-
mentation of the codes [2], by parallelizing the loops
denoted as independent in the HPF implementa-
tion, and applying reordering of loop nests, so that in-
ner loops work along columns of the arrays for better
spatial and temporal cache locality. The third version
uses OpenMP and the customized loop schedules, via
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Fig. 9. Histograms of memory accesses in LU.

Fig. 10. Histograms of memory accesses in LG.

manual transformations that we applied to the codes.
We note that these transformations are straightforward
to implement in an OpenMP compiler, assuming that
a user gives a description of the thread-to-data affinity
relationship in the loop’s SCHEDULE clause.

The fourth version is a hybrid data-parallel/OpenMP
version which uses manual data distribution. While
developing this version, we had the option of using the
native SGI compiler, which implements multidimen-
sional block and cyclic data distributions, in conjunc-
tion with affinity mapping of threads to data. These op-
tions are enabled with compiler directives similar to the
ones used in HPF. Unfortunately, we had to disqualify
this option for two reasons. First, the SGI implementa-
tion has been performing poorly in several experiments
we did with the affinity scheduling clause of the SGI
compiler. Second, it is impossible to implement the ap-
propriate data distributions for the irregular kernels us-
ing the SGI directives. We reverted to a brute-force so-
lution and placed manually the pages with the elements

of the distributed arrays across processors. We applied
array reshaping and padding, together with rewriting
of array access indices, as needed for the accurate im-
plementation of the irregular two-dimensional distribu-
tions. We purposely didn’t apply reshaping or padding
in the versions that use loop schedule reuse, to evaluate
the impact of false sharing in the performance of the
codes.

4.2. Results

Figure 8 illustrates the execution times of LU decom-
position performed on a dense 4096× 4096 matrix and
the three irregular kernels operating on a 63 × 63 grid
respectively. Execution times are plotted from 1 to 128
processors for LU and from to 1 to 100 processors for
the three irregular kernels. The latter require a square
number of processors for the grid decomposition. Note
that execution time is plotted in logarithmic scale and
the lower/upper bounds are adjusted according to the
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Fig. 11. Histograms of memory accesses in SL.

Fig. 12. Padding of zsl1 in SL to cope with false sharing.

execution times of the benchmarks. Note also that for
the irregular codes, we report the execution time per
iteration, averaged over 100 iterations.

There is a highly consistent performance trend in all
four benchmarks. The loop schedule reuse transfor-
mation improves the performance of the unmodified
OpenMP implementation at least as much and in most
cases slightly more than manual data distribution. This
verifies the common belief that some form of guided
data distribution is necessary for shared-memory pro-
grams running on NUMA architectures, but also shows
that data distribution can be implemented implicitly
and in parallel with the execution of useful computa-
tion. The advantage of our implicit data distribution
mechanism compared to manual data distribution is at-
tributed to the reduced overhead of our scheme, which
distributes data during rather than before the parallel
computation.

The OpenMP versions that use customized loop
schedules perform within 5% off MPI in the irregular

kernels. The same versions outperform the versions
that use manual data distribution by up to 13% and
the plain OpenMP versions by a margin that ranges
between 23% and 55%. The notable exception is SL,
where the performance of loop schedule reuse suffers
from false sharing.

The message from the presented results is that it is
possible to obtain the full benefit of memory access lo-
cality without introducing data distribution extensions
to OpenMP. The comparison with MPI is of particu-
lar interest, first because it is among the first to con-
tradict the existing experimental evidence that position
OpenMP behind MPI in terms of performance and scal-
ability, and second because the programming effort re-
quired to reach this level of performance with OpenMP
is one order of magnitude less than the programming
effort required to reach the same level of performance
with MPI [15].

To quantify the improvement in memory access lo-
cality from customizing and reusing loop schedules,
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Original :

real zsl1 (ngptotg, nfldslb1)

Transformed:

padded nfldslb1= ((nfldslb1*sizeof(real)) & (˜ (page size-1)))/sizeof(real)

real zsl1 (ngptotg, padded nfldslb1)

Fig. 13. Performance of loop schedule reuse in SL, after applying array reshaping and padding to alleviate false sharing.

OpenMP 
OpenMP + loop schedule reuse 
OpenMP + manual data distribution
MPI 

Fig. 14. Histograms of memory accesses in SL with loop schedule
reuse, before and after applying padding.

we traced the memory accesses in the programs and
calculated the amount of local and remote memory ac-
cesses issued to each node, during the executions of the
programs on 64 processors. Figures 9 through 12 show
these results. The processors on the Origin2000 are
attached to nodes with two processors per node. The
processors in a node share the memory of the node.
The histograms show the accumulated number of mem-
ory accesses per node, divided into local accesses (i.e.
accesses from the processors on the node, gray part
of the bars) and remote accesses (i.e. accesses from
processors outside the node, black part of the bars).

Aside from reducing radically memory latency by
reducing the number of remote memory accesses per
node, the schedule reuse transformation helps in alle-
viating contention at memory modules. Contention is
alleviated by balancing the remote memory accesses
across the nodes of the system. This is crucial for dis-
tributing evenly the traffic of messages in the intercon-
nection network. Memory access balancing is almost
excellent in LU and LG, when iteration schedule reuse
is applied. TS has a somewhat more unbalanced mem-
ory access pattern, but the overall number of remote
memory accesses is reduced significantly.

SL has severe false sharing in pages that are accessed
by neighboring processors. To circumvent this prob-
lem, we applied array padding in the version that uses
loop schedule reuse. We transformed the primary array
(zsl1) as shown in Fig. 13. The array is distributed
with an implicit indirect distribution along the first di-
mension, likewise to the example in Fig. 7. The result
of this optimization is shown in Fig. 14 and validates the
argument about false sharing and the effectiveness of
the solution. Figure 14 shows how the simple padding
transformation reduces and balances remote memory
accesses in SL.

5. Related work

Data distribution was explored in depth in various
projects that investigated data-parallel programming
languages and in particular, High Performance Fortran.
The works of Benkner et al. [2] and Hirandani et al. [8]
are probably the most relevant to our work, since they
also explored the option of reusing schedules for im-
proving the runtime performance of message-passing
code obtained from translating HPF directives. Instead
of reusing loop schedules though, these works propose
to reuse communication schedules, once these sched-
ules are obtained in the first iteration of the computa-
tion. Our work proposes to reuse iteration schedules, so
that computation is moved to data dynamically, while
the computation is in progress and the operating system
places data in memory according to its local algorithm.

Anderson et al. [1] and Hirandani et al. [8] pro-
posed loop transformations for mapping loop iterations
to data, according to multidimensional data distribu-
tions. We use similar transformations to implement
loop schedules that implicitly set up arbitrary distribu-
tions of computation and data. We note that these trans-
formations are beneficial not only to memory access
locality but also to cache access locality, particularly
if the transformed loops are executed multiple times
within the same program.
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The authors were the first to propose runtime trac-
ing of memory accesses as a method for dynamic data
distribution [13,14] and extended this work to handle
codes where dynamic data distribution should coordi-
nate with a dynamic load balancing algorithm [15].
This work extends this framework in applications where
dynamic optimization is difficult, due to the lack of
periodicity in the memory access pattern, or due to the
inability of automatic scheduling algorithms to imple-
ment application-specific load distributions.

6. Conclusions

On scalable multiprocessor architectures, shared-
memory parallelization suffers often from poor perfor-
mance. This happens particularly in codes where com-
putation and data must be aligned in an application-
specific manner, due to structural irregularities of the
modelled physical problem and/or lack of periodicity in
the data access pattern. In this paper we have proposed
the technique of reusing customized loop schedules, as
a simple transformation for improving memory access
locality in such programs, without manual data distri-
bution. We have shown how customized loop sched-
ules can be used in OpenMP to implement irregular
data distributions simultaneously with the distribution
of computation, using the first-touch page placement al-
gorithm. The results of this work corroborate the belief
that OpenMP and shared-memory programming mod-
els in general can scale well on tightly-coupled NUMA
architectures without requiring significant extensions
or mixtures of shared-memory with other forms of
parallelism, such as data-parallel, SPMD, message-
passing and so on. Further research is required to in-
vestigate if a similar argument is valid on distributed
memory architectures, such as clusters and constella-
tions, where the abstraction of shared memory is sup-
ported by computationally costly software extensions
to the operating system and complex memory coher-
ence protocols.
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