Scientific Programming 11 (2003) 199-224
10S Press

199

BSML: A binding schema markup language
for data interchange in problem solving

environments

Alex Verstak?®, Naren Ramakrishnan?®, Layne T. Watson?, Jian He?, Clifford A. Shaffer?,

Kyung Kyoon Bae®, Jing Jiang®, William H. Tranter® and Theodore S. Rappaport?

2Department of Computer Science, "Bradley Department of Electrical and Computer Engineering, Virginia
Polytechnic I nstitute and State University, Blacksburg, Virginia 24061, USA

E-mail: naren@cs.vt.edu

Abstract. We describe a binding schema markup language (BSML) for describing data interchange between scientific codes.
Such afacility isan important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with
a PSE or application composition system that views model specification and execution as a problem of managing semistructured
data. The datainterchange problem is addressed by three techniques for processing semistructured data: validation, binding, and
conversion. We present BSML and describe its application to a PSE for wireless communications system design.

1. Introduction

Problem solving environments (PSES) are high-level
software systems for doing computational science. A
simple example of a PSE is the Web PELLPACK sys-
tem[20] that addressesthe domain of partial differential
equations (PDEs). Web PELLPACK allows the scien-
tist to access the system through aWeb browser, define
PDE problems, choose and configure solution strate-
gies, manage appropriate hardware resources (for solv-
ingthe PDE), and visualize and analyzetheresults. The
scientist thuscommuni cateswith the PSE in thevernac-
ular of the problem, ‘ not in the language of a particular
operating system, programming language, or network
protocol’ [16]. It is 10 years since the goal of creating
PSEswas articulated by an NSF workshop (see[16] for
findings and recommendations). From providing high-
level programming interfaces for widely used software
libraries [22], PSEs have now expanded to diverse ap-

1Thework presented in this paper is supported in part by National
Science Foundation grants EIA-9974956, EIA-9984317, and EIA-
0103660.

I SSN 1058-9244/03/$8.00 [1 2003 —10S Press. All rights reserved

plication domains such as wood-based composites de-
sign [18], aircraft design [17], gas turbine dynamics
simulation [15], and microarray bioinformatics [4].

The basic functionalities expected of a PSE include
supporting the specification, monitoring, and coordi-
nation of extended problem solving tasks. Many PSE
system designs employ the compositional modeling
paradigm, where the scientist describes data-flow re-
lationships between codes in terms of a graphical net-
work and the PSE manages the details of composing
the application represented by the network. Composi-
tional modeling is not restricted to such model speci-
fication and execution but can also be used as an aid
in performance modeling of scientific codes[2] (model
analysis).

We view model specification and execution as adata
management problem and describe how a semistruc-
tured data model can be used to address data inter-
change problemsin a PSE. Section 1.1 presents a mo-
tivating PSE scenario that will help articulate needs
from a data management perspective. Section 2 elab-
orates on these ideas and briefly reviews pertinent re-
lated work. In particular, it identifies three basic levels
of functionality — validation, binding, and conversion—

200 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

at which data interchange in application composition
can be studied. Sections 4, 5, and 6 describe our spe-
cific contributions along these dimensions, in the form
of a binding schema markup language (BSML). Sec-
tion 7 outlines how these ideas can be integrated within
an existing PSE system design. A concluding discus-
sion is provided in Section 8. Aspects of the scenario
described next will be used throughout this paper as
running examples.

1.1. Motivating example

S*W (Site-Specific System Simulator for Wireless
system design) is a PSE being developed at Virginia
Tech. S*W provides deterministic €lectromagnetic
propagation and stochastic wireless system models for
predicting the performance of wireless systems in spe-
cific environments, such as office buildings. S*W is
also designed to support the inclusion of new models
into the system, visualization of results produced by
the models, integration of optimization loops around
the models, validation of models by comparison with
field measurements, and management of theresultspro-
duced by alarge series of experiments. S*W permits
a variety of usage scenarios. We will describe one
scenario in detail.

A wireless design engineer uses S*W to study trans-
mitter placement in an indoor environment located on
the fourth floor of Durham Hall at Virginia Tech. The
engineering goal is to achieve a certain performance
objective within the given cost constraints. For a nar-
rowband system, power levels at the receiver locations
are good indicators of system performance. Therefore,
minimizing the (spatial) average shortfall of received
power with respect to some power threshold is a mean-
ingful and well defined objective. The major cost con-
straints are the number of transmitters and their pow-
ers. Different transmitter locations and powers yield
differentlevelsof coverage. Thesituationismorecom-
plicated in a wideband system, but roughly the same
process applies. A wideband system includes extra
hardware not present in a narrowband system and the
performance objective is formulated in terms of the bit
error rate (BER), not just the power level.

Thefirst step in this scenario is to construct a model
of signal propagation through the wireless communi-
cations channel. S*W provides ray tracing as the pri-
mary mechanism to model site-specific propagation ef-
fects such astransmission (penetration), reflection, and
diffraction. The second step is to take into account
antenna parameters and system resolution. These two

steps are often sufficient to model the performance of
a narrowband system. If a wideband system is being
considered, the third step is to configure the specific
wireless system. Parameters such as the number of
fingers of the rake receiver and forward error correc-
tion codes are considered at this step. S*W providesa
Monte-Carlo simulation of aWCDMA (wideband code
division multiple access) family of wireless systems.
In either case, the engineer configures a graph of com-
putational components as shown in Fig. 1. The ovals
correspond to computational componentsdrawnfroma
mix of languagesand environments. Hexagonsenclose
input and output data. Aggregation isused to ssimplify
theinterfacesof thecomponentsto each other andtothe
optimizer. In Fig. 1, rectangles represent aggregation.
The propagation model is acomponent that consists of
three connected subcomponents: triangulation, space
partitioning, and ray tracing. Similarly, the wireless
system model consists of (roughly) three components:
dataencoding, channel modeling, and signal decoding.
All three steps are further aggregated into a complete
site-specific system model. This model isthen used in
an optimization loop. The optimizer changes transmit-
ter parameters (all other parameters remain fixed) and
receives feedback on system performance.

For agiven environment definition in AutoCAD, the
triangulation and space partitioning components are
used to reduce the number of geometric intersection
tests that will be performed by the ray tracer. Sev-
eral iterations over space partitioning are necessary to
achieve acceptable software performance. However,
oncethe objective (an average of tentrianglesper voxel)
is met, the space partitioning can be reused in al fu-
ture experiments with this environment. The engineer
then configures the ray tracer to only capture reflec-
tion and transmission (penetration) effects. Although
diffraction and scattering are important in indoor prop-
agation [5], these phenomena are computationally ex-
pensiveto model in an optimization loop. The triangu-
lation and space partitioning codes are meant for serial
execution, whereas the ray tracer and the Monte Carlo
wireless system models run on a 200 node Beowulf
cluster of workstations. Post processingis availablein
both serial and parallel versions. Theray tracer and the
post processor are written in C, whereas the WCDMA
simulation is available in Matlab and Fortran 95 ver-
sions.

A series of experiments is performed for various
choices of antenna patterns, path loss parameters (in-
fluenced by material properties), and WCDMA system
parameters. The predicted power delay profiles (PDPs)

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 201

<Transmitter Params.

< Environment Data

[Triangulation J—{Space PartitioningH Ray Tracing]

Propagation Model

< Receiver Locations

< Antenna Params. >—|
System Resolution

|-< Impulse Responses

SignaltoNoise Ratios

Post Processing Power Delay Profiles

Performance Metric >

Data Encoding Channel Modeling

Wireless System Model

Signal Decoding

SiteSpecific System Model

Fig. 1. A site-specific system model in S*W. The system model consists of a propagation model, an antenna model (post processing), and a
wireless system model.

y, m
30 ¥ ‘ | HJ
_| =
204 £ |] m
10 | | | [
[1
0 20 40 xm 60 80

Fig. 2. Optimizing placement of three transmitters to cover eighteen roomsand a corridor bounded by the box in the upper lft corner. The bounds
for the placement of three transmitters are drawn with dotted lines. The initial transmitter positions are marked with crosses. The optimum

coverage transmitter positions are marked with dots.

arethen compared with the measurementsfrom a chan-
nel sounder and the predicted bit error rates are com-
pared with the published data. The parameters of the
propagation model are calibrated for variouslocations.
The validated propagation and wireless system models
are finally enclosed in an optimization loop to deter-
mine the locations of transmitters that will provide ad-
equate performance for a region of interest. The opti-
mizer, written in Fortran 95, uses the DIviding RECT-
angles (DIRECT) agorithm of Jones et al. [19]. The
parameters to the optimization problem and the opti-
mal transmitter placement are depicted in Fig. 2. The
optimizer decided to move the transmitter in the upper
right corner one room to the right of itsinitial position
and the transmitter in the lower left corner two rooms
to theright of itsinitial position.

What requirements can we abstract from this sce-
nario and how can they be flexibly supported by a data
model? We first observe the diversity in the compu-
tational environment. Component codes are written
in different languages and some of them are meant
for parallel execution. In a research project such as

S*W, many components are under active devel opment,
so their 1/0 specifications change over time. Second,
theinterconnection among componentsis also flexible.
Optimizing for power coverage and optimizing for bit
error rate, while having similar motivations, requiredif-
ferent topol ogies of computational components. Third,
sincedifferent groupsof researchersareinvolvedinthe
project, there exists significant cognitive discordance
among vocabularies, data formats, components, and
even methodologies. For example, ray tracing models
represent powersin a power delay profilein dBm (log
scale). However, WCDMA models work with a nor-
malized linear scal eimpul se response and an aggregate
called the ‘signal-to-noise ratio’. Also, there is more
than one way of calculating the signal-to-noise ratio.
Since antennas generate noise that dependson their pa-
rameters, detailed antenna descriptions are necessary
to calculate this ratio. However, researchers who are
not concerned with antenna design seldom model the
system at this level of detail. Thetypical practiceisto
use afixed noise level in the calculations. Simulations

202 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

of wireless systems abound in such approximations, ad
hoc conversions, and simplifying assumptions.

2. PSE requirementsfor data interchange

Culling from the above scenario, we arrive at amore
formal list of data interchange requirements for appli-
cation composition in a PSE. The PSE must support:

1. components in multiple languages (C, FOR-
TRAN, Matlab, SQL);

changesin component interfaces;

changesin interconnections among components;
automatic unit conversion in data-flows;
user-defined conversion filters;

composition of components with slightly differ-
ent interfaces; and

7. stream processing.

The reader might be surprised that SQL is listed
alongside FORTRAN, but both languages are used in
S*W. Experiment simul ations are written in procedural
languages, while experiment data is stored in a rela-
tional database. Thus, developing a system that inte-
grates with the PSE environment requires more than
the ability to link scientific computing languages. It
involvesovercoming the impedance mismatch between
languages developed for fundamentally different pur-
poses.

The last requirement above — stream processing —
refers to processing data as soon as it is read from
an input stream, as opposed to waiting for the end of
the stream, and subsequently processing al the data
at once. This often neglected technical requirement is
related to composability —the ability to create arbitrary
component topologies. As data interchange is pushed
deeper into the computation, theunit of datagranularity
needs to become correspondingly smaller. The opti-
mizationloop isagood exampleof finedatagranularity.
We cannot accumulate all transmitter parameters over
all iterations and later convert them to the format re-
quired by the simulation inside the loop, becausetrans-
mitter parameters generated by the optimizer depend
on the feedback computed by the simulation. Each
block of transmitters must be processed as soon asit is
available. Likewise, each value of the objective func-
tion must be made available to the optimizer before it
can produce the next block of transmitters. Usability
dictates a similar requirement. Since some models are
computationally expensive (e.g., those meant for par-
allel execution), incremental feedback should be pro-

o hwN

vided to the user as early as possible. The stream pro-
cessing requirement improves composability and us-
ability, but limits conversions to being local. Global
conversions(e.g., XSLT [13]) cannot be performed be-
cause they assume that all the datais available at once.

While the requirements point to a semistructured
data model, no currently available data management
system supports all forms of PSE functionality. This
paper presents the prototype of such a system in the
form of a markup language. Observe that all of the
above requirements are summarized by three standard
techniquesfor working with semistructured data— vali-
dation, binding, and conversion. Validation establishes
dataconformanceto agivenschema. Itisaprerequisite
to most of the requirements. Binding refersto integrat-
ing semistructured data with languages that were de-
signed for different purposes (requirement 1). Conver-
sion (transformation) takes care of requirements 2—6.
Given two dightly different schemas, it is possible to
generate an edit script [11] that converts datainstances
from one schema to another. Requirement 7 dictates
that all such conversions must be local.

2.1. Related work

While research in PSEs covers a broad territory, the
use of semistructured data representationsin computa-
tional scienceis not established beyond afew projects.
Therefore, we only survey standard XML technolo-
gies and PSE-like systems that make (some) use of
semistructured data. It would be unfair to review some
of these systems against PSE data interchange require-
ments. Instead, our evaluation is based on how well
these systems support validation, binding, conversion,
and stream processing.

Specific XML technologiesfor document processing
are easy to classify in terms of our framework. Schema
languages (e.g., RELAX NG [12]) deal with valida-
tion and, possibly, binding. Transformation languages
(e.g., XSLT [13]) deal with conversion. Several proper-
ties of these technol ogies hinder their direct applicabil-
ity toaPSE setting. First and foremost, these technol o-
gies do not work with streams of data. Sophisticated
schema constraints and complex transformations can
require buffering the whole document before produc-
ing any output. Second, transformation languages are
simply vehicles for applying edit scripts. They cannot
be used to create edit scripts. Since our conversions
arelocal, edit script applicationistrivial, but edit script
creation is not.

Four major flavors of PSE-like projects that use
semistructured data representations can be identified:

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 203

1. component metadata projects;

2. workflow projects;

3. scientific datainterchange projects; and
4. scientific data management projects.

Projectsin the first category use XML to store IDL-
like (interface definition language) component descrip-
tions and miscellaneous component execution parame-
ters. An example of such aproject is CCAT [9], which
isadistributed object oriented system. CCAT also uses
XML for message transport between components, so
we say that it providesan OO binding. The second cat-
egory of projects augments component metadata with
workflow specifications. For example, GALE [8] is
aworkflow specification language for executing simu-
lations on distributed systems. Unlike CCAT, GALE
provides XML specifications for some common types
of experiments, such as parameter sweeps (CCAT uses
ascripting language for workflow specification). How-
ever, GALE does not use XML for component data.
Both the component metadata and workflow projects
use XML to encode data that is not semistructured.
Their use of XML is not dictated by the need for auto-
matic conversion. Neither generic binding mechanisms
nor conversion are provided by these projects.

Thelatter two groupsof projectsuse XML for appli-
cation data, not component metadata. Representatives
of the scientific data interchange group develop flexi-
ble all-encompassing schemas for specific application
domains. For example, CACTUS[7] dealswith spatial
grid data. CACTUS's schemais complex enough to be
considered semistructured and this project recognizes
the need for conversion filters. However, it does not
provide multiple language support and, more impor-
tantly, does not accommodate changes in the schema.
CACTUS's conversion filters aim at code reuse, not
change management. This project has OO binding and
manual conversion (the sequence of conversionsis not
determined automatically). Complexity of thedatafor-
mat precludes stream processing.

Perhaps the most relevant group of projects for
our purposes involves the scientific data management
community. Especialy interesting are the projects
in rapidly evolving domains, such as bicinformatics.
DataFoundry [1,14] providesaunifying database inter-
face to diverse bioinformatics sources. Both the data
and the schema of these sources evolve quickly, so
DataFoundry hasto deal with change management — by
far more complex changemanagement than thekindwe
consider here. However, DataFoundry only provides
mediators for database access. It does not integrate
with simulation execution. This system takes full ad-

vantage of conversion, but providesonly an SQL bind-
ing. Introducing bindings for procedural languages
would involve significant changes to DataFoundry.
Table 1 summarizes related work. It turns out that
no known PSE-like system takes full advantage of both
binding and conversion. XML technologiesfor valida-
tion and binding are well established, but XML trans-
formation technologies do not support PSE-style con-
version. Very few systems can integrate with a PSE ex-
ecution environment because most of them do not meet
the stream processing requirement. This paper devel-
ops a system that satisfies all of our data interchange
requirements. The next section summarizes the con-
tributions made by our approach and aso introduces
relevant background material. Thefollowing three sec-
tions describe our handling of validation, binding, and
conversion. Systemintegrationisoutlinedin Section 7.

3. In this paper

As mentioned earlier, our specific contributions are
intheform of amarkup language called BSML. BSML
provides expressive access to objects and streams for
managing the execution environment of a PSE. It
should be remarked that BSML is not a data format
masquerading as a markup language, or even a high-
level abstraction of a programming environment. It
is meant to be a vehicle to capture assumptions about
data interchange happening in a PSE. Suitably defined
BSML schemasallow the programmer to describe map-
pingsfrom internal representationsto the execution en-
vironment. These mappings are used to perform vali-
dation, binding, and conversion functions. Validation
isachieved by ensuring that new documents(describing
PSE objects) conform to BSML schemas. Binding is
achieved by inserting special markup tagsthat describe
how PSE objects should be interpreted in an underly-
ing environment. Conversion is motivated by relating
BSML schemas. Specifically, we create a schema that
describes one data format but performs the bindings of
another data format.

The novelty of our work is a careful integration of
therelevant concepts— parsing theory asit relatesto at-
tribute grammars, realistic PSE settings, and a markup
language as a mechanism to capture assumptions. A
core set of algorithmic ideas transcend all of BSML's
capabilities. These specific ideas include: (i) relat-
ing stream processing requirements of PSEsto predic-
tive parsing theory, (ii) studying how PSE requirements
for binding manifest in attribute grammars, including

204 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

Table 1
A survey of PSE-like systems and XML technologies. The binding row shows that most systems
support only one paradigm. Only DataFoundry fully supports conversion. Other systems either
provide alibrary of conversion primitives and leave their composition up to the user (CACTUS)
or do not recogni ze the need for conversion at all (CCAT). No system or technology fully supports
validation, binding, and conversion. Most systems and technologies cannot dynamically process
streams of data

CCAT GALE CACTUS DataFoundry RELAXNG XSLT

Validation v Vv Vv v
Binding 00 00 SQL 00
Conversion manual Vv manual

Stream Processing v

their effect on predictive parsers, and (iii) using schema
transformationsto provide conversionand change man-
agement functionality. Our work is one of the first ef-
fortsto systematize the creation of conversionfacilities
ina PSE.

3.1. Some pertinent background

We begin by reviewing some pertinent background
in the areas of markup languages and parsing theory.
Markup languages, like XML, HTML, and SGML, use
a tagged structure to describe documents. While the
types and intended semantics of tags are fixed in a
language like HTML, tags in XML do not have any
pre-defined meaning. This allows us to rapidly proto-
type domain-specific markup languages (like BSML)
and use document processing tools to harness descrip-
tionsin such languages. Ultimately, this availability of
readymade softwareiswhat steers scientific computing
researchers to a markup language-based sol ution.

Onetypica use of amarkup languageisfor defining
data formats. For instance, we can define a markup
language for describing time series data. Domains
such as bioinformatics abound in such markup lan-
guages. BSML's approach is to employ tags that will
help realize data interchange functionality. There are
even projects that encapsulate a complete ontology in
amarkup language!

Documents in a markup language can be displayed,
interpreted, and reasoned about in simpleways. Forin-
stance, aweb browser usesthe. . . </ B> tag struc-
ture in a HTML document to recognize when to ren-
der text in bold. Similarly, we can assign any suitable
interpretation to a markup language in a PSE setting.

A markup language can be defined by itsDTD (Doc-
ument Type Definition) which declares what a well
formed document should look like. Among other
things, the DTD helps validate new documents, to see
if they adhere to the markup specification. Other tools
use DTDs to automatically generate parsers for inter-

preting documents. XML Schemais anewer approach
for schemadefinition of XML documentsand iswidely
believed to eventually supersede DTDs. BSML can ac-
tually be thought of as a schema language specifically
designed for datainterchange in PSEs.

Two technologies that are especially relevant here
are DOM and SAX. DOM (Document Object Model)
isan object model that uses atree structure to represent
an XML document. This internal tree structure can
then be navigated and manipulated to provide many
facilities, e.g., searching the tree for the occurence of a
givenstring, or rearrangingthetree structureto produce
a new document. The contrasting approach, SAX, is
an event-based technology that relates parsing events
back to an application, which can then use them to
implement specific functionality. Many parsing tools
use either or both these approaches. The reader is
referred to introductory resources such as[10] for more
details.

Besides markup language basics, this paper assumes
background knowledge of grammars and computer
languages, especially as encountered in a compilers
course. Themost important conceptsareLL grammars
and the construction of predictive parsing tables. For
our purposes, an LL grammar is one that supportsiter-
ative and incremental parsing of input and as we will
show, thisis a necessary pre-requisite to achieve data
interchange funtionality. The first ‘L’ denotes a ‘| eft-
to-right’ scan and the second ‘L’ denotes that we are
performing a leftmost derivation. We will devote con-
siderable attention to LL (1) grammars which are LL
with only one symbol of lookahead. These concepts
arewell coveredin [3].

4. Validation
The first function we study, validation, establishes

conformance of a data instance to a given schema. It
is a prerequisite to binding and conversion. (This def-

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 205

inition of validation is a small part of the process of
validation in a PSE, which is concerned with the larger
issue of a model being appropriate to solve a given
problem; but, it suffices for the purpose of this paper.)
The schemasfor PSE dataare easy to obtain since com-
putational science traditionally uses rigid data struc-
tures, not loosely formatted documents. Describing the
data structures in terms of schemas has several bene-
fits. First, language-neutral schemas alow for inter-
operability between different languages (see require-
ment 1 in the previous section). Second, schemas fa-
cilitate database storage and retrieval. Third, appropri-
ate schemas help assign interpretations to various data
fields. It is such interpretation that makes automatic
conversion possibl e (requirements 2—6).

What kind of validation is appropriate for PSE data?
Requirement 7 calls for the most expressive schema
languagethat can be parsed by astream parser. In other
words, we are looking for a schema language that can
be defined in terms of an LL(1) grammar [3]. (The
LR family of grammars is more expressive, but LR
parsers do not follow stream semantics.) Therefore, a
predictive parser generated for a given schema can val-
idate a datainstance. This section describes a schema
language (BSML) appropriate for a PSE and the steps
for building a parser generator for this language. We
present an example, an informal overview of BSML
features, and a formal definition for a large subset of
BSML in terms of a context-free grammar. Further,
predictive parser generation is outlined and grammar
transformations specific to BSML are described in de-
tail. Finally, we show that BSML is strictly less ex-
pressive than LL(1) grammars.

Let usstart with anexample. Figures3and4 depicta
(simplified) schemafor an octree environment decom-
position. (Figure 3 describesit in XML notation while
Fig. 4 uses a non-XML format that will be useful for
describing some functionalities of BSML). Thisis the
most complex schemain S*W, not counting the schema
for the schema language itself. An octree consists of
internal and leaf nodesthat delimit groups of triangles.
Recall from Section 1.1 that this grouping is used to
limit the intersection tests in ray tracing. The nested
structure of an octree maps nicely into an XML tree.
Since many components work with lists of triangles,
thereis aseparate schemafor alist of triangles. Asthe
exampleshows, thefeaturesof BSML closely resemble
those of other schema languages, such as RELAX NG.
The only noticeable difference is the presence of units
in the definitions of primitive types. Units will be use-
ful for certain types of conversions. Figure 5 shows

an LL (1) grammar generated from the octree schema.
Thisgrammar is then annotated with binding code and
used to generate a parser for octree data. The parser
can be linked with a parallel ray tracer writtenin C.

TheDTD for thecurrent version of BSML isgivenin
Appendix 8. The schema language describes primitive
typesand schemas. Therearefour base primitivetypes:
integer, string, (IEEE) double, and boolean. Users can
derive their own primitive types by range restriction.
User-derivedtypesusually have domain-specific flavor,
such as coordinatesand distancesin the exampleabove.
We do not support more complicated primitive types,
such as dates and lists, because each PSE component
treats them differently. Schemas consist of four build-
ing blocks: elements, sequences, sel ections, and repeti-
tions. Strictly speaking, repetitions can be expressed as
selections and seguences, but they are so common that
they deserve specia treatment. Derivation of schemas
by restriction is not supported, but derivation by exten-
sion can be implemented via inter-schema references.
Mixed content is not supported because it is only used
for documentation. Instead, BSML supports a wild-
card content type. The contents of this type matches
anything and is delivered to the component as a DOM
tree [6]. We do not support referential integrity con-
straints because they can delay binding and thus break
requirement 7. Thereis no explicit construct for inter-
leaves. In some ways, interleaves are handled by the
conversion algorithm. In other words, BSML isasim-
ple schema language that incorporates most common
featuresthat are useful in a PSE.

Parser generation for a BSML schema follows the
standard steps from compiler textbooks [3]:

convert the schemato an LL (1) grammar,
eliminate empty productionsand self-derivations,
eliminate left recursion,

perform left factoring,

perform miscellaneous cleanup (described in de-
tail below),

6. compute a predictive parsing table, and

7. generate parsing code from the table.

ghrwdE

The only steps specific to this schema language
are generating an LL(1) grammar (step 1) and mis-
cellaneous cleanup (step 5). Since grammars have
been in use for along time, it is pertinent to define
BSML semantics in terms of how the schemas are
converted to grammars. The terminals are defined by
SAX events[10]. The start of element and end of el-
ement events are denoted s(name) and e(name), re-
spectively, where name is element name. We omit

206 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

<type id="distance’ base='doubl e’ nunber="true’ finite="true'/>
<type id="coordi nate’ base='doubl e’ nunmber="true finite="true />

<schenmm id="triangl es’ >
<repetition>
<el ement name="tr’>

<repetition mn="3 max=" 3" >

<el enent nane='v’ >

<attribute name='x' type=' coordinate’ units="m/>
<attribute nane="y’' type=' coordinate’ units="m/>
<attribute nanme='z’' type=' coordinate’ units="m/>

</ el enent >
</repetition>
</ el enent >
</repetition>
</ schema>

<schenm id="octree’ >
<el enent name=’ octree’ >
<el enent name="oi’' id="oi’'>
<attribute name='x' type=
<attribute name="'y’' type=
<attribute name='z' type=

1

coordi nate’ units="m/>
coordinate’ units="m/>
coordinate’ units="m/>

<attribute name='dx' type='distance’ units="m/>

<attribute nane=

dy’ type='distance’ units="mn/>

<attribute name='dz’ type='distance’ units="nmi/>

<ref id="triangles />
<repetition>
<sel ecti on>
<ref id="o0i’'/>
<el enent nane="ol’' >
<attribute nane='x’
<attribute nane='y’
<attribute nane='z’
<attribute name= dx’
<attribute nane=dy’
<attribute name='dz’

type='coordinate’ units="m/>

type='coordi nate’ units="mn/>

type='coordi nate’ units="mn/>
type='di stance’ units="m/>
type='di stance’ units="ni/>
type='di stance’ units="m/>

<ref id="triangles'/>

</ el ement >
</ sel ecti on>
</repetition>
</ el enment >
</ el ement >
</ schema>

Fig. 3. BSML schemas for an octree decomposition of an environment, in XML notation. ‘tr’ stands for atriangle, ‘v’ stands for a vertex, ‘oi’

stands for an internal node, and ‘ol’ stands for a leaf.

the attributes for simplicity, but BSML supports them
in an obvious way. Further, we assume that the
SAX parser inlines external entity references. Char-
acter data is accumulated until the next start of el-
ement or end of element event and delivered as a
d(base, min, max, number, finite, units) terminal,
abbreviated as d (see Appendix 8 for d’s attributes).
Generated code checks character data conformance to
the type constraints. This definition of d is appropriate
since BSML does not support selections based on the
type of character data.

Oneroot non-terminal isinitially generated for each
schema block (element, sequence, selection, repeti-
tion), each referenceto aprimitivetype, and each string
of user code. We denote non-terminals by capital let-
ters, the start non-terminal by S, the empty string by e,
and the root non-terminals generated for the children
of each schema block by X, Xo,..., X,,,ne0. Fur-
ther, lower-case Greek letters denote (possibly empty)
seguences of terminals, non-terminals, and, in the next
section, user codes. With thisnotationin mind, the def-
inition of BSML isinFig. 6 (moredetailsfollow in fu-

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 207

type(di stance, double, $, $,
type(coordinate, double, $, $,

schema(triangl es,
repetition($, $, $, $,
element ($, $, tr,

repetition($, $, 3, 3,

element ($, $, v,
attribute($, x,

attribute($,

schenm(octree,
el enent ($, $, octree,
el ement (oi, $, oi,

attribute($, x, data(coordinate, $,$,$,$,
attribute($, y, data(coordinate, $,$,$, 3,
dat a(coordinate, $, $, $, $,
attribute($, dx, data(coordinate, $,$, %% M),
attribute($, dy, data(coordinate, $,$, % $,m),
dat a(coordinate, $,$,%$,$,m)

attribute($, z,

attribute($, dz,
ref (triangles),

repetition($, $, $, S,

selection($, $,
ref(oi),
elenent ($, $, ol,
attribute($, x,

attribute($, z,

attribute($, dx,

attribute($, dz,

ref (triangles)

dat a(coordinate, $,$, $, $,
attribute($, y, data(coordinate, $,$, $,$,
z, data(coordinate,$,$,%$,$

data(coordinate, $,$, $, $,
attribute($, y, data(coordinate, $,$,$,$,
data(coordinate, $,$, $, $,
data(coordinate, $, $, $, $,
attribute($, dy, data(coordinate, $,$,$,$,
data(coordinate, $, $, $, $,

true, true, $)
true, true, $)

333

)
)
)

333533

),
)
)

Fig. 4. BSML schemas from Fig. 3 in anon-XML notation. $ stands for a missing value, i.e., a suitable default value is supplied by BSML

software.

ture sections). We dlightly deviate from a context-free
grammar to allow for the constraints on the number of
repetitions (see next section). To reiterate, a grammar
generated from a schema according to this definition
will undergo severa standard equivalence transforma-
tions before a grammar of the form shownin Fig. 5is
obtained.

The purpose of miscellaneous cleanup is to reduce
the number of non-terminals in the grammar. These
ad-hoc rewritings do not guarantee that the resultant
grammar is minimal in any strict sense. Instead, they
address some inefficiencies that other steps are likely
to introduce. These cleanup steps were also chosen

such that if the grammar were LL(1) before cleanup,
it would remain LL(1) after cleanup. The grammars
showninthis paper have undergonetwo cleanup rewrit-
ings. Each rewriting is applied until no further rewrit-
ing is possible.

1. Maximum length common suffixes are factored
out. 3 # e isthemaximum length common suffix
of anon-termina A # S if (a) al of A’'sproduc-
tionshavetheform A — «;3,1 < < n, (b) 8
is of maximum length, and (c) neither 5 nor any
o contain A. If n = 1, A iseliminated from the
grammar and all occurrencesof A inthegrammar

208 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange
type(di stance, double, $, $, true, true, $)
type(coordi nate, double, $, $, true, true, $)
schema(triangl es,

repetition($, $, $ S,
elenent($, $, tr,
repetition($, $ 3, 3
elenment ($, $, v,
attribute($, x, data(coordinate, $,%$,$,%$ m),
attribute($, y, data(coordinate, $,%$,$,%$ m),
attribute($, z, data(coordinate, $,%,9$,$ m)

schema(octree,
elemrent ($, $, octree,
elenent(oi, $, oi,

attribute($,
attribute($,
attribute($,

attribute($,
attribute($,
attribute($,

X, data(coordinate, $,
y, data(coordinate,$,
z, data(coordinate, $,

dx, data(coordinate,$, $, $, ,
dy, data(coordinate,$, $,$, ,
dz, data(coordinate, $,$,$,

ref(triangles),
repetition($, $,
sel ection($, $,
ref(oi),

element ($, $, ol
attribute($, x,
attribute($, v,
attribute($, z,
attribute($, dx,
attribute($, dy,
attribute($, dz,

ref (triangles)

$,

$,

dat a(coor di nat e,

dat a(coor di nat e,

dat a(coor di nat e,
dat a(coor di nat e,
dat a(coordi nat e,
dat a(coor di nat e,

Fig. 5. LL(1) grammar corresponding to the octree schemas in Figures 3 and 4. Attributes are omitted for simplicity. Petterns of the form {c}

will be explained in the next section (they are related to repetitions).

octree decomposition of a set of triangles.

arereplaced with 3 (or; = € because 5 is of max-
imum length). We call such non-terminals triv-
ia. Trivia non-terminalsare often introduced by
schemar-to-grammar conversion rules. If n > 1,
all occurrencesof A on theright-hand sides of all
grammar productions are replaced with A5 and
the suffix 5 is deleted from al of A’'s produc-
tions. The purpose of this rewriting is to uncover
duplicate non-terminalsfor the next step.

2. Only one of any two duplicate non-terminals is

Non-terminals 7", T, and V' are related to triangles; others are related to

retained. Twonon-terminals A £ B areduplicate
if whenever A — « isin the grammar, B — «
is adso in the grammar, and vice versa. A is
eliminated if A # S, B is eliminated otherwise.
This definition is weak, eg., A and B are not
considered duplicate if A — aApf and B —
aBg areinthe grammar. However, it sufficesfor
Our purposes.

The expressive power of LL(1) grammars is well
known. In practice, the limiting factor is not that the

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

element(in, opf, mome, 8y, Ha, ..., By
wEquencel 1l el By B B

celection| id, o, B, Hs B,
repetition|id, opt, nein, maz, By, By, ..., Hy)
dlatzy] Pwaxie, v, ey, nuerneber, finate, umiks)
ondis|)

£
'
W

i

i
7
I
I
II.'I
o

209

CPLLTIRC |

slmame], Xy, Xo, .00, Mt
i Ill'.'|ln'
X Xy, ... X,

if g
.1|..|
Xn
A
£ 1l age
(B} X Xy
Xy, Xayooo XN, |
[}
¢ if o or mein = ()
it | i, redne, reunr, naereleer, Finite, unifa)

fel ’

Fig. 6. L-attributed definition of BSML. Schema primitives, in a non-XML notation, are on the left (see Figure 4 for an example) and
their translations to grammar productions are on the right. B;, Ba, ..

the root non-terminals generated for By, Ba, ..

., By, are the children of the schema block and X7, Xo, ..
., Bn, respectively. opt is a boolean block attribute; true means that the block is optional.

., Xn ae

{B}, {A}, {E}, and {c} are binding codes explained in the next section. References to schema blocks (denoted by ref(id)) are replaced with
root non-terminals of the blocks being referenced. Definitions related to XML attributes are omitted.

grammar is LL(1), but that the grammar is annotated
with user codes. The next section gives two examples
of grammars that are not convertible to LL (1) because
binding codes are present. A moreinteresting question
is how the expressive power of LL(1) grammars com-
pares to the expressive power of BSML. It is easy to
see that BSML can express a proper subset of LL(1)
grammars. For example, S — s(x),e(y) is a valid
LL(1) grammar, but BSML cannot express it since no
XML document that conformsto this grammar iswell-
formed.

Observation 1 Consider a subset of BSML that ex-
cludes repetitions and user codes. We say that BSML
can express a grammar G if a predictive parser gener-
ated fromsome schemainthisrestricted subset of BSVIL
can recognize precisely the language L(G). Clearly,
BSML cannot express any grammar G thatisnot LL(1)
(by construction of the predictive parser). Further,
BSML cannot express an LL(1) grammar G unless:

1. ifdy andd, aredataterminalsin G, thenVo, (3 :
S #1 a,d;, ds, 8 (dataisatomic),

2. if d is a data terminal and S =71 a,d,3 isa
derivationin G, then

(18 " s@),7) and [(8 =" e(x),)
implies (Vy,0 : o #* e,e(y))]) (no mixed con-
tents), and

3. if s(x) isa start of element terminal, g ise or a
dataterminal, and S =7 «, s(x), 8 isa deriva-

Va,y :

tionin G, then ([ﬂ +* gl and [(y # z) implies

eSS g,e(y),’y)]); similarly, if e(y) is an

end of element terminal and S =7 o, e(x), 8 is
(

aderivationin G, then ([a =% gland [(x # y)

implies (V0 : a = 0, s(x),g)]) (proper nesting
of elements).

The first two restrictions are specific to BSML and
easy torelax. However, thelast restrictionisinherentin
any XML schemalanguage. A good schemalanguage
cannot describe documents that are not well-formed.
These are the necessary conditions, but it is not clear
whether or not they are sufficient. We define schemas
in terms of the schemalanguage, not interms of LL (1)
grammars, so converting from grammarsto schemasis
not considered in this paper.

Thissection provided an overview of BSML features
and defined BSML in terms of an ‘amost context-free’
grammar. We outlined automatic generation of pre-
dictive parsers that validate XML documents. Further,
we have shown that the descriptive power of BSML is
strictly less than that of an LL(1) grammar where the
terminals are SAX events. The next section extends
validation to perform binding.

5. Binding

Binding is a way to integrate semistructured data
with languages that were not designed to handle it (re-

210 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

quirement 1). Binding can take several forms, depend-
ing on the language. For FORTRAN and C, binding
usually means assigning values to language variables
and calling user-defined code to process these values
(procedural binding). It can also mean writing the data
out in aformat understood by the component (format
conversion). For Matlab and SQL, binding entails gen-
erating a script that contains embedded data and pro-
cessing this script by an interpreter (code generation).
The last two kinds of binding can be thought of as
XSLT-like transformations.

We implement all three kinds of binding by L-
attributed definitions. The schema language is ex-
tended by alowing user code to be injected in the
schema. Schema languages that provide binding are
called binding schema markup languages. Thissection
describes bindings in BSML and gives an example of
their use. Further, weshow how arbitrary binding codes
limit the set of schemas supported by BSML. Predic-
tive parsing cannot handle common prefixes in alter-
native productions, so standard techniques are used to
eliminate such common prefixes. We show that these
techniques break when the common prefixes contain
binding codes. Thislimitationisrarely anissueandthe
problemsit causes can be remedied by simple modifi-
cations to the schema.

Let ¢ denote an arbitrary string of code. Matching
{¢} means executing code ¢ while consuming no in-
put tokens. No assumptions are made about the nature
of ¢. In particular, ¢ can (and usually does) produce
side effects, s0 A — {c1}, {co} and A — {e2}, {c1}
canyield different results. A syntax-directed definition
is a context-free grammar extended by alowing {c;}
on the right-hand sides of productions. For a syntax-
directed definition to be useful in binding, ¢ ; must con-
tain references to parts of the document being parsed.
We denote such references by %, where x istheid or
the name of some element or attribute. When x refers
to an attribute or an element of some primitive type,
%« isavalue of the attribute or the data contents of the
element. The type of % is determined by the corre-
sponding primitive type. When x refers to an element
of awildcard type, % isaDOM tree constructed from
all descendants of x, including itself. Thisfeature can
beused for XHTML [21] documentation. The set of at-
tributes (elements) that are available to code ¢ depends
on the placement of ¢ in the syntax-directed definition
and the parsing strategy. A syntax-directed definition
isL-attributed if, for any derivation S =+ a{c} 3, any
x referencedin cisdefinedin al derivationsof «. That
is, al attributes (elements) must be defined in a left-

to-right scan before they are referenced. L-attributed
definitionsare easy to implement with an LL (1) parser,
but they restrict the set of grammarsreducibleto LL(1).
Luckily, theserestrictions are not important in practice.

Figure 7 gives an example binding schemafor aPDP
(see Section 1.1) and Fig. 8 shows how a parser gen-
erated from this schema converts a PDP encoded in
XML to a Matlab script. This script will then be ex-
ecuted by an execution manager (see Section 7). The
same schema, with different binding code, can convert
an XML file to a number of SQL INSERT statements
that record the data in a relational database. The se-
mantics of user codes are not limited to printing, so a
FORTRAN version of thishinding can storethe PDPin
an array to be processed later. In other words, BSML
bindings are compatible with any execution environ-
ment that processes streams of data (requirement 7).
We use the same approach to convert semistructured
datato relational data, Matlab scripts, and C structures.

The {B}, {A}, and {E} codes in Fig. 7 are gen-
erated for repetitions. They are not necessary for this
example, but are required to enforce that each triangle
has three vertices in the previous example. {B} (be-
gin repetition) initializes the repetition count to zero.
Each repetition has its own stack of counts. {A} (ap-
pend) ensures that the maximum allowed number of
repetitionsis not exceeded. { E'} (end) checksthe min-
imum number of repetitions. Thus, even simple vali-
dation (without binding) isimplemented in terms of an
L-attributed definition, not just an LL(1) grammar.

Unfortunately, L -attributed definitions make predic-
tive parsing of certain grammars impossible. User
codes can prevent elimination of left recursion or left
factoring of an L-attributed definition. Inthetwo exam-
ples below, grammars induced from the left-attributed
definitions by removing all user code can be trans-
formed to LL(1). However, the original L-attributed
definitions cannot betransformedto L L (1) without los-
ing the stream semantics of the parser.

Example 1 Consider a left-recursive schema and the
corresponding left-recursive grammar (after eliminat-
ing trivial non-terminals):

<sel ection i d="s’ > <sequence>
<l-- enmpty -->

</ sequence> <sequence>
<code>c</code> <ref id="s'/>
<el ement nane=’ x’ > <code>b</code>
</ el ement >

</ sequence> </sel ection>

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 211

calament names'pdpt s
calement nane="rds’ opticnal='true’ Eyvpe="time* units='ns'/=
caleament nanes"med” opticnals'trues’ EypeEsttime® unitss‘ne' [=
¢alement nane="pp° opticnal=‘'trus’ bype="power® units='dEN' /=
woode wMe [« codes
crepeticions
<element name=*ray’s
<element nanE="tims*' type-'time’ units="ns)/:
selement name=‘power® type='power’ unitgs*dBE =
« el enent =
soodexftine ¥powers/codes
«frepetitions
sonde=] ;< fcodas
< /element s

1551 L a w-l.-.v..'_ul. T -:H | I L I | 2 I vl pefe|
[R a
| Hg] M Al Pars), o, elrala)
A1 M i
| M) M TR A T] Al | alrids} simed] s{ppl sieay] e :|.|I'|III
1] H i] i
| Fal P + |, o, el) i 4 My 5] iy N
€51 &F i 1 Wy i 14 Ay
|C%5) O 10} slrog), sl ferme), o, o Lo | I o 5 o] M
Al e b, dl, e e e rod) v 1% [
1Rrime kpower), fAL X E] \ Ko Yy
[Xg) A <
| Xa) X « ey), el fdme |, o el M |
| e by i, & panwer e roy

18time Epower], (A A

Fig. 7. (top) Binding schema for a power delay profile. rds, med, and pp stand for various optional statistics: rms delay spread, mean excess
delay, and peak power. These statistics are ignored in this example. (left) L-attributed definition for a power delay profile. {B}, {A}, and {E}
stand for codes generated by the parser generator to handle repetitions. Otherwise, the meaning of {c} isto print string ¢, followed by anew line
character, after expanding element references. For clarity, full suffix factoring was not performed, but trivial productions were eliminated. (right)

Predictive parsing table for a power delay profile.

S —e€
S —{c}, S, s(x), {b}, e(x)

This grammar permits a derivation of the form
S =+ {c}*, (s(z), {b},e(x))*, k > 0. However, code
b cannot be executed before £ is known since k exe-
cutions of code ¢ must precede the first execution of
codeb. Therefore, no LL(1) parser with stream seman-
tics can parse documents that conformto this schema.
On the other hand, removing {c} fromthe L-attributed
definition yields a grammar that is easily converted to
LL(2):

S —e€
S — S, s(x), {b}, e(x)
S —e€
S — s(x),{b},e(x), S
This exampleis easy to generalize.

Observation 2 Consider a set of all productions for
a non-terminal A. Since any seguence {c1}{c2} can

be rewritten as {c}, where ¢ = ¢y ¢z, we can uniquely
represent this set by

A—{c}Aarl{ca}Aag]|---|
{en}Aan|B1|B2| - - - |Bm,

whereno 5;,1 < j < m, hasaprefix{d}A. Immediate
left recursion can be eliminated from this production
without delaying user code execution if and only if

1l ¢y =cy=--=c, = e(nouser codeto theleft)
or
2. (6 = Hd}o.1 < j < m)or (a; =

v{d}0,1 < i < n)] implies (d = e)) (no user
code to the right) and (¢1 = ¢2 = -+ = ¢,)
(same user code to the left).

In all other cases, execution of user code must be de-
layed until the last «; is matched.

212 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

<pdp>
<rds>23. 0998</rds>
<med>20. 5691</ ned>

<pp>- 75. 5665</ pp> PZ[-88.0937
<ray><tine>-4</ti ne><power >- 88. 0937</ power ></ r ay> -3 -82.4416
<ray><tine>- 3</ti ne><power >- 82. 4416</ power ></ r ay> -2 -78.5346
<ray><ti me>- 2</ ti me><power >- 78. 5346</ power ></ r ay> -1 -76.2634
<ray><time>-1</ti me><power >- 76. 2634</ power ></ r ay> 0 -75.5665
<ray><ti me>0</ti me><power >- 75. 5665</ power ></ r ay> 1 -76.4908
<ray><time>1</ti me><power >- 76. 4908</ power ></ray> 2 -79.2101
<ray><tinme>2</ti me><power >- 79. 2101</ power ></ r ay> 3 -84.0673
<ray><time>3</ti ne><power >- 84. 0673</ power ></ray> 24 -86.4976
<ray><time>24</ti me><power >- 86. 4976</ power ></r ay> 25 -84.3451
<ray><ti me>25</ti me><power >- 84. 3451</ power ></r ay> 26 -84.3173
<ray><ti me>26</ti me><power >- 84. 3173</ power ></r ay> 27 -85.963
<ray><tinme>27</ti nme><power >- 85. 963</ power ></r ay> 28 -87.7374
<ray><ti me>28</ti me><power >-87. 7374</ power ></r ay> 29 -88.6525
<ray><t i me>29</ti me><power >- 88. 6525</ power ></ r ay> 43 -89. 2007
<ray><tinme>43</ti me><power >- 89. 2007</ power ></ r ay> 44 -83.17
<ray><time>44</ti me><power >- 83. 17</ power ></ ray> 45 -79.2179
<ray><ti me>45</ti me><power >-79. 2179</ power ></r ay> 46 -77.3306
<ray><ti me>46</ti me><power >- 77. 3306</ power ></ r ay> A7 -77. 4917
<ray><ti me>47</ti me><power >- 77. 4917</ pover ></ r ay> 48 -79. 645
<ray><ti me>48</ti me><power>-79. 645</ power ></ray> 49 -83.6205
<ray><ti me>49</ti me><power >- 83. 6205</ power ></ r ay> 50 -88.7676

<ray><ti me>50</ti me><power >- 88.

</ pdp>

7676</ power ></r ay>

1.

Fig. 8. (Ieft) An example PDPin XML. The data corresponds to asimulated channel in the corridor of the fourth floor of Durham Hall, Virginia
Tech. The post processor samples the channel at 1 nstime intervals to match the output of a channel sounder. (right) Matlab encoding of the PDP

on the left, output by the parser generated from the schemain Fig. 7.

Consider a derivation of A that is no longer |eft-
recursive (i.e., does not have a prefix of {d}A). All
such derivations can be written as

A= +{Ci1}a {ciz}a .. -7{Cik}v
ﬁj?aik7" oy Qg Oty

where 3;,1 < j < m, stops left recursion after (at
least) kK + 1 steps and 1 < dq,i9,...,0x < n rep-
resent the choices for «; in the derivation. Suppose
B; =* v{d}0ora; =* v{d}6. Thesequenceof codes
Ciy, Cig, - - - » G, MUSt be executed before coded, but the
LL (1) parser will only determine this sequence after it
has parsed al of 8;, a, , - . ., @, o, . Thus, eliminat-
ing left recursion entails delaying user code execution
inall but the trivial cases mentioned above.

Example 2 Left factoring of L-attributed definitions
posessimilar problems. Consider thefollowing schema
and L-attributed definition (a more realistic version of
this example would have a repetition in place of the x
element):

<sel ecti on> <sequence>
<code>c</ code>

<el ement nane=' x’' / ><el enent
nane="y' />

</ sequence> <sequence>
<code>d</ code>
<el enent nane=' x' / ><el enent
nane='z'/>

</ sequence> </sel ection>

S —{c},s(x),e(x), s(y), e(y)
S — {d}, s(z),e(x),s(2),e(2)

The decision about whether to execute code ¢ or d
cannot be made until s(y) or s(z) is processed. How-
ever, removing user codes makes this L-attributed def-
inition easy to refactor. Again, we can show a more
general condition.

Observation 3 Consider a set of all productionsfor a
non-terminal A written as

A— 041ﬁ1|04252| te

|t Brlvi 2l -+ - [¥ms

suchthat o) = afy =--- = af, = a # € (o denotes
with all user code removed) and « is not a prefix of any

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 213

Y1y Vhy - -+ Vi Let the length of o be maximum and
the lengths of a;, 1 < i < n, be minimum subject to
ne2, in which case this representation of A is unique.
A can be left-factored without delaying execution of
user codeif and only if

1. norewriting of A inthe above formexists (no two
definitions of A share the same prefix, less user
codes), or

2. a1 = as = --- = a, (Samecodesto theleft) and
A — y1]72| - - - |7m can beleft-factored.

To summarize, weimplement bindingsin termsof L-
attributed definitions from parsing theory. These bind-
ings work well in practice, but, in theory, annotating a
schema that can be rewritten in LL(1) form can make
it no longer rewritable in LL(1) form. This difficulty
isinherent in L-attributed definitions. We currently as-
sumethat the user isresponsiblefor resolving such con-
flicts. In practice, schemas for PSE datararely require
complicated grammars. Repetitions take care of most
of the recursive schema definitions. To make LL(1)
parsing possible, troublesome content can be simply
enclosedin an extraXML element, whose start and end
tags disambiguate the transitions of the LL (1) parser.

6. Conversion

Conversionisthe cornerstone of asystem’sability to
handle changes and interface mismatches. Conversion
in a PSE helps to retain historical data and facilitates
inclusion of new components. We use change detection
principlesfrom [11], with afew important differences.
First, our goal is not merely to detect changes, but to
make PSE componentswork despite the changes. Sec-
ond, we detect changes in the schema, not in the data.
The PSE environment must guarantee that the data is
in the right format for the component. The job of the
component is to process any data instance that con-
forms to the right format. Last, change detection and
conversionarelocal to the extent possible. Locality isa
virtue not only becauseit allowsfor stream processing,
but al so becauseit limits sporadic conversions between
unrelated entities.

Similarly to the two previous sections, this section
starts with a comprehensive example. Then, we de-
scribe the core of the conversion algorithm and outline
its limitations. Finally, we extend the initial algorithm
to handle content replacements: unit conversion and
user-defined conversion filters. At this point, it should
not come as a surprise to the reader that most of the

technical limitations of conversion are due to binding
codes, not to the nature of the schemalanguage. There-
fore, the tedious details of handling binding codes are
omitted. The emphasisis on non-technical limitations.
What forms of semantic conversions can be ‘syntac-
tized' in a schemalanguage? When does such ‘ syntac-
tization' back fire and produce undesired outcomes?

The functional statement of the conversion problem
can be given as follows. Given the actual schema S,
and the required schema S, replace binding codes in
S, with binding codes in .S,. and conversion codes to
obtain the conversion schema S.. S. must describe
precisely the documents described by S, but perform
the same bindingsas S....

Example 3 Figure 9 depicts two dlightly different
schemas for antenna descriptions in S*W. The schema
at the bottom (actual schema) was our first attempt at
defining a data format for antenna descriptions. This
version supported only one antenna type and exhibited
several inadequate representation choices. E.g., polar
coordinates should have been used instead of Carte-
sian coordinates because antenna designers prefer to
work in the polar coordinate system. Antenna gain
was not considered in the first version because its ef-
fect is the same as that of changing transmitter power.
However, thisseemingly unnecessary parameter should
have been included because it results in a more di-
rect correspondence of simulation input to a physical
system.

The schema at the top of Fig. 9 (required schema)
improves upon the actual schema in several ways. It
better adheresto common practices and supports more
antenna types. However, this schema is different from
the actual schema, while compatibility with old data
needs to be retained (requirement 2). Figure 10 illus-
trates how addition of conversion and binding codesto
the actual schema solves the compatibility problem. A
parser generated fromthe conversion schemain Fig. 10
will recognize the actual data and provide the required
binding.

Following [11], the basic assumption of the conver-
sion algorithm is that the actual schema S, can be con-
verted to the required schema.S,. by some segquence of
‘standard’ edits. This sequence of edits is called an
edit script. Oncethe possible types of edits are defined
(what we can call a‘conversionlibrary’), thejob of the
conversion algorithm is to (a) find an edit script that
transformsthe actual schema.S, to therequired schema
S, and (b) express this edit script as data transforma-
tions, not schematransformations. In other words, the

214

<el enent nane=' ant ennas’ >
<repetition>
<el ement name=' antenna’ >
<el enent nanme='id’
<el ement name='phi’ type="angle' />
<el ement name='theta’ type="angle'/>
<el enent nanme='gain’ type='ratio’
<code>puts stdout "%d: %phi
<sel ecti on>
<el emrent name=' wavegui de’ >
<el ement name='w dt h’
<el ement nane=' hei ght’
<code>put s st dout
</ el ement >
<el enment name=' pyram dal _horn’ >
<el ement name='w dt h’
<el ement name='rw
<el ement nanme=' hei ght’
<el ement name='rh’
<code>put s st dout
</ el ement >
</ sel ecti on>
</ el ement >
</repetition>
</ el ement >

"wavegui de:

" pyramn dal

<el enent nane=' ant ennas’ >
<repetition>
<el enent nane=' antenna’ >
<el ement nanme="id’
<el ement name=' descri ption’
<el enent nanme=' x’
<el enent nanme='y’
<el ement name='z’
<el ement nane=' wavegui de’ >
<el ement nanme="wi dt h’
<el ement name=' hei ght’
</ el ement >
</ el enent >
</repetition>
</ el ement >

uni ts="dB’
% heta %gai n" </ code>

type='di st ance’
type='di st ance’
%ni dt h %hei ght " </ code>

type='di st ance’
type='di st ance’
type='di st ance’
type='di st ance’
hor n:

type='di st ance’
type='di st ance’

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

type='string’ mn=1/>

optional = true’ default="0"/>

units=" nm />
units="nm/>

units="nm />
units="mi/>
units="nmm/>
units="mi/>

% dth % w %hei ght % h" </ code>

type='string’ mn=1/>
type="*"/>
type=' coordi nate’ />
type=' coordi nate’ />
type=' coordi nate' />

units="in/>
units="in />

Fig. 9. Two dlightly different schemas for a collection of antennas. The component requires the top schema, but the data conforms to the bottom
schema. The bottom schema (a) represents antenna orientation in Cartesian coordinates, not polar coordinates, (b) lacks antenna gain, (c) requires
antenna descriptions, (d) measures antenna dimensionsin inches, not millimeters, and (€) covers only one antennatype. The schemaat the bottom

does not contain binding codes because they are irrelevant for this example. All binding codes areiin Tcl.

conversion algorithm looks for a systematic procedure
that converts actual data instances that conformto S,
to the required format .S,.. This procedureis expressed
as aconversion schema S.. that hasthe structure of S,
but binding codes from .S,. and the conversion library.
S. is then used to generate a parser that parses data
instances conformingto S, and acts asif it parsed data
instances conformingto .S.,..

Our conversion algorithm supports four kinds of
schema edits:

1. generdization,
2. restriction,

3. reordering, and
4. replacement.

We use these terms in reference to the required
schema, e.g., ‘the required schema is a generalization
of the actual schema’ Generalization and restriction
of schema trees are similar to insertions and deletions
in sequence alignment problems. Reordering and re-
placement mostly retain their standard meaning, except
we consider replacements of sets of schemablocks, not
individual schemablocks. We first reduce the problem
of converting trees to an easier problem of converting
seguences (see Fig. 11). Sequence conversion (rule Q)

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 215

<el ement nane=' ant ennas’ >
<repetition>
<el ement nane=' ant enna’ >
<el ement nane='id’
<el enent nane='descri ption’
<el ement nane=' x’
<el ement nanme='y’
<el ement nane='z’
<code>

type='string’ mn=1/>

type="*'/>

type='coordi nate’' />

type='coordi nate’' />

type='coordi nate’ />

<l-- convert coordinates fromrectangular to polar -->

set _r [expr sqrt(9%* Wx+%*W+%*%)]

set Y%hi [expr atan2(%, %)]
set % heta [expr acos(%/$_r)]
</ code>
<code> <!-- set default gain -->
set %gain O
</ code>

<code>puts stdout "% d: Y%phi

<el emrent nanme=' wavegui de’' >
<el ement nane="wi dth’
<code> <!-- convert

t ype='di st ance’
units frominches to millinmeters -->

% het a %gai n" </ code>

units='nm/>

set % dth [expr 25.4*% dth]

</ code>
<el enment
<code>

narme=' hei ght’
<l-- convert

type='di st ance’
units frominches to millineters -->

uni ts="nmm />

set %ei ght [expr 25.4*%eight]

</ code>

<code>puts stdout "wavegui de:

</ el emrent >
</ el ement >
</repetition>
</ el emrent >

% dt h 9%ei ght " </ code>

Fig. 10. Actua schema from Fig. 9 (bottom) after inserting conversion and binding codes. This schema describes the actual documents, but
provides the bindings of the required schema (top of Fig. 9). We use_r instead of % because the latter could interfere with another use of the

namer .

in thisinitial formulation performsall conversions but
replacements. Then, we dlightly restrict this definition
to make it practical and generalize rule) to accom-
modate replacements (unit conversion and user-defined
conversion filters).

The conversion algorithm revolves around the ‘de-
termines’ relation between schemas. Intuitively, an ac-
tual schema S, should determine a required schema
S, if any document that conformsto .S, contains suf-
ficient information to construct an ‘appropriate’ doc-
ument that conformsto S,.. ‘Appropriate’ here is ob-
viously a domain-specific notion, and in the absence
of a domain theory, there is no hard and fast mea
sure of ‘appropriateness’. Given two slightly different
schemas, only a domain expert can tell whether or not
it is meaningful to attempt a conversion from one form
to another. Therefore, our conversion rules should be
viewed as heurigtics that we have found to be useful
enough to be supported in a conversion library. They
are neither sound nor completein an algorithmic sense
(because we do not have an objective, external, mea-

sure of ‘conversion correctness’). Instead, they repre-
sent a tradeoff between soundness and compl eteness
and should be carefully evaluated for usein aparticular
domain. With this disclaimer in mind, version 1 of the
determinesrelation between S, and S.. (S,, determines
Sr; Sq = S;) isdefined in Fig. 11. We will aso find
the notion of schema equivalence useful: we say that
two schemas S, and S,. are equivalent if S, > .S, and
Sy = Sa.

Thefirst rule (D) in Fig. 11, for instance, says that
avalue of primitive type (‘data’) can be substituted for
another if they have the same base type, their ranges
are compatible, and they have the same units. It en-
sures that all primitive type constraints of S,. are met
by S, (restriction). Thus, D, issimply a definition of
type derivation by rangerestriction (the ‘r’ subscript in
this and other rules stands for restriction; similarly, the
‘g’ subscript stands for generalization). Rules F, P,
and R state the obvious. two black boxes are compat-
ibleif they have compatible wrappers (restriction) and
compatible contents (any conversions). Rule C says

216 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

Lo datalbase,, mring, mar,, rumher,, Findte,, wnids,) = datalbase,, meing, mor,, nuember,, finife., units,)

il braseg = base,, meing = meine, max, < mare, nwmbere = number,, findte, = finiteg,
LTEFTE (TEFFT 4

E . elementiid, . ol ey, Oy, Cagy -y Con b = clementi i, e S T | TECR o T sy
if purriee, = swame,, opty = opfe, Qe (00 . Caz, RS Bl 1 ST T T Crm

I'.:, - X -ff:.'._..rl,l.ll'... o) oelement| iy, ol e, Ly, [Giys s -3 [

if oty = oy, Qo Xaltde. opta,) = Q0 0, Cra, .ol [|

Ee o element| i, . oy, mameg, Cap, Cagy . ooy Can b = Aplity, opty, ... 1

i.fr.l.r.tl . =N |-'||-1'..{|?._.:f'..| N Oonl = X |-'|'..-:-'||-|'.. .

M sequence|dd,, opdy, sy, O, ..., Can] = sequence|ide, apte, Oy, Cenn - - L Do)
if oply = 0Pt Qu{Caty Cagy o v+« Can) = @elCris Crger vy Com)

J": - Agling. opty, ...) = sequence]inl., ople, O, U, oo Dem)
if ol = gy, Qo Xaltdg. opty,) = QT Cra, .ol - |

Fe o sequence|dd;, opty, Oy, Caay -0 Canl) = Xplide, opte, ... 1
if iy = opd, .E}._.:I:".” A L L I | .

L selectyon|dd,, opdy, Cap Caay oo o s | = selection|ide, opte, Cep Cean - oo Dl)
Lfr.l_r.tl._ == |.l.|-1'..".-‘lf',., : ::.!{".l - oy = O

v!".J o Aglinlg opty,, ..) = selectiondioe, ot O, Cler, .o oy Coem
if oy = apy, (300« Xplids, oplg, .. .) = Oyl
= repetitioni i, opt,, meng, marg, O O, oo Ulag) = mepetihion | id-, apte., min., mare, O, e oo Deg

il sraine, = g, ey = o, apty == ople, G (001 Caze oo Do) = QrlC . Oy oo O

.|'1'.|. 1 Aglidg,opty,) = repetition] dd, , opl,, ming, mex,, Uey, Cia .0,

i)
il min. < 1, wer, = 1 qopty = oplp, Clal g iy, opdy, oo b)) = el Cipg Oy - ooy e)
F reflid,) = refiid. |

il Xgledy, apty, .. .0 = X (ade, apte, ...

00 Ol Catre e s Com) = Ol Crt e e 2 Coa)
YO optey,) 2 (A O i o) o o g]

Fig. 11. Version 1 of the ‘determines’ relation X, (ida, opta, . ..) = X (idr, optr, ...) between an actual schema block X, (ida, opta, . . .)
and a required schema block X (id;, opt,,...). We use the non-XML notation from Fig. 4 plus X, (ida, opta, . ..) and X, (id,, optr, . ..)
are shortcuts for any schema block (data blocks are never optiona and have empty ids). = meanslogica implication and 3! means ‘there exists
aunique. Therulesare applied top to bottom, left to right. Thefirst matching rule wins (no backtracking). This definition will be later restricted
to make it computable and rule Q will be extended to handle replacements.

that any choicein S, must uniquely determine some
choicein S, (restriction). Rule @) enforces that every
block in S, is uniquely determined by some block in
S,.. Thisformulation of rule @) ignores extrablocksin
S, (restriction), permits optional elementsin S, to be
unmatched (generalization), and allowsfor contentsre-
ordering. Rule F' dealswithreferences. Only rules D .,

E, P, C,and R are sound. Rule F' looks sound, but it
makes the determines relation not computable. Rule
is unsound primarily because it ignores ‘ unnecessary’
blocksin S,.

Rules £, P;, Cg4, and R, handle generaizations
across schema blocks of (possibly) different types.
Their counterparts E,. and P, handle symmetric re-

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 217

strictions (why is there no C,. or R,.?). Rule C,; was
demonstrated in the example above. It is a base case
for rule C. Rule C, states that one way to generaize a
schemablock isto encloseit inaselection, i.e., provide
morechoicesin S, thanwereavailablein S,,. Thisrule
is sound. Rules E,, P, and R, have similar motiva-
tions, but they areunsound. Essentialy, we assumethat
decorating any black box with any number of wrappers
does not change the meaning of the black box (gener-
alization). Similarly, we assume that wrappers can be
freely removed to expose the black box (restriction).

Consider a sequence of schemasthat describes some
physical system in progressively greater detail. Sup-
pose some subsystem is described by a single param-
eter. Common practice is to alocate a single schema
block to this subsystem. What happens when a more
detailed description of this subsystem is incorporated
into the schema? Chances are, the origina schema
block alocated to the subsystem will be either (a) aug-
mented with more contents (restriction part of rule Q)
or (b) wrapped in another block. The generalization
and restriction rules handle case (b). However, blind
application of these rules can lead to disaster because
these rules disregard some semantic information. Ex-
amples will make these points clearer.

Example 4 One common trick used to improve wire-
less system performance is space-time transmit diver-
sity (STTD). Instead of a singletransmitter antenna, the
base station uses two transmitter antennas separated
by a small distance. PDPs are very sensitive to device
positioning, so two uncorrelated transmitter antennas
can produce widely different signals at the same re-
ceiver location. If the signal from one of the antennas
isweak, the signal from another antenna will probably
be strong, so the overall performance is expected to
improve. Consider how addition of STTD to the ray
tracer affects the schema of the transmitter file. The
original schemaisontheleft and the new schema (with
STTD support) is on the right. The second antenna is
optional because STTD isnot used in every system due
to cost considerations.

(continued on next page)

<el ement nane="tx’' >
<ref id="coordinates’/>
<el enent name=’ power’ type
= power’'/>
<el enent name="freq type
=" doubl e’ />

</ el ement >

<el emrent nane=' base_station’ >

<el ement nane="tx’ >
<ref id="coordinates’/>
<el enent name=' power’ type
= power’ />
<el enent name="freq type
=" doubl e’ / >

</ el ement >

<el enent name="tx’ optional

="true’ >
<ref id="coordinates’/>
<el enent name=' power’ type
= power’ />
<el enent name='freq type
=" doubl e’ / >

</ el enent >

</ el ement >

The new ray tracer should be able to work with old
data because it supports one or two transmitter anten-
nas. The old ray tracer should be able to work with
new data, albeit the results will be approximate when
the new data contains two transmitter antennas. Fur-
ther generalizing this example to n transmitter anten-
nas would require a repetition. e support conver-
sion to repetitions, but not from repetitions. For this
example, we could extract any antenna because they
usually have the same parameters and are positioned
close together. However, we cannot extract an arbi-
trary ray from a PDP because the ray with maximum
power is usually intended. Extracting any other ray
would typically produce nonsense resullts.

Example5 Havoc canresultifrules £, and E, areap-
plied to the same element. Element names have seman-
tic meaning, but this particular composition of rules
allows arbitrary renaming of elements. Such renaming
would make the following two schemas equivalent.

<el enent name="tx_gain type
='ratio />
<el enent name="snr’ type='ratio’ />

Even though both transmitter antenna gain and
signal-to-noise ratio are ratios measured in the same
units (dB), they convey largely different information.
We avoid such blatant mistakes by limiting the appli-
cation of generalization and restriction rules. In par-
ticular, no element can be renamed.

Asthelast exampleillustrates, the determines’ rela
tionin Fig. 11 needsto berestricted. Itishelpful tore-
define this relation in terms of a context-free grammar
that describes S,,.S,.. Let the terminals be el enent (,

218 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

sequence(, sel ection(, repetition(ref(,
dat a(,), and all element names and other values used
in two schemas under consideration. Let the non-
terminals be the labels of therulesin Fig. 11, a special
start non-terminal A, and intermediate non-terminals
introduced by the rules. We can formally define the
necessary restrictions by limiting the shape of the parse
treefor S,S,.. Consider apath Ry, Ry, ..., R,,n > 0,
from some interna node R; # A to some internal
node R,, # A, wheredl R;,1 < i < n, aerulela
bels. If R is the set of restriction rules and G is the
set of generalization rules, we require that (R; € R)
implies (R,—1 ¢ G and R;41 ¢ G), i.e, restriction
and generalization rules cannot be applied in sequence.
This restriction of the parse tree disallows renaming
of elements, but does not limit the number of wrap-
persaround black boxes. Bounded determination deals
with the latter problem. We say that S, k-determines
S, (S, =F S,) if no path Ry, R, ..., R, contains a
substring of (possibly different) generalization (restric-
tion) rules of length greater than k. We leave it up to
the reader to appropriately restrict rule I (reference).
These restrictions make the ‘ determines’ relation com-
putable and enforce locality of conversions. Asaside
effect, we have shown that the problem of constructing
aconversion schemaS.. fromthe actual schema S, and
therequired schema S, can bereduced to validation and
binding (parsing and translation). However, schema
conversion need not work with streams of data, so a
parser more powerful than a predictive parser should
be used.

It remains to consider requirements 4 and 5: unit
conversionand user-defined conversionfilters (replace-
ments). Let D be a set of all primitive types derived
from double (recall that a primitive type is defined by
the base type, the range of legal values, and a unit ex-
pression). Unit conversion, e.g., converting kg/m? to
Ib/in?, is the simpler of the two replacements. Both
actual and required unit expressions are converted to
a canonical form (e.g., a fraction of products of sums
of CI units or dB) and then the conversion function is
found. Unit conversions are functions of the form

U:D, — D,,

where D,, D, € D are specific primitive types. User-
defined conversion filters are functions of the form

H:Dg1 X Dgo X -+ X Dy
*)DTIXDTQX"'XDrm;

where n,m > 0 and al Dy, D,; € D,1 <
i < n,1 < j < m, are specific primitive types.

Arithmetic operators and common mathematical func-
tions are allowed in user-defined conversion filters.
Each user-defined conversion filter is tagged with
gement names nameg;, namegs, . .., nameq, and
nameri, NAMeEy2, . .., name., that determine when
thefilter applies. Such filters define rules of the form

(element($, $, nameq1, Da1),
element($, $, namegqs, DaQ)v sy
element($, $, namean, Dan)) =
(element($, $, name,1, Dy1),
element($, $, name,2, Dy2), . . .,
element($, $, namerm, D'rm))'

Both kinds of filters are compiled into codes such
as shown in Fig. 10. Rule @ is modified to take
advantage of replacements. Basicaly, we are look-
ing for (unique) partitions of the actual schema
blocks Cy1,Cha, - . ., Cqaypn and required schema blocks
Cr1,Cra, ..., Cry, suchthat each set of schemablocks
in the required partition is determined by some set of
schema blocks in the actual partition. Determination
can proceed through the rules in Fig. 11, unit conver-
sions, and user-defined conversion filters (if everything
else fails, optional blocks in the required schema can
remain unmatched).

The ultimate goa of the conversion algorithm is to
find ameaningful edit script. However, thisgoa isim-
possible to achieve without knowledge of the domain.
What happens when several edit scripts exist, i.e., the
problem of finding an edit script is ambiguous? De-
pending on the nature of the ambiguity, we can choose
any edit script, the minimal (in some sense) edit script,
or to refuse to perform conversion. The conversion
algorithm described here either settles for some local
minimum (e.g., rule E is preferred over rule E,) or
requires uniqueness of conversions (rules C, C, and
most of rule Q). Ambiguity remains an open prob-
lem that is unlikely to be solved by a syntactic conver-
sion algorithm. Following the principle of least user
astonishment, we choose to reject most of ambiguous
conversions.

Finally, let us consider how binding codeslimit con-
version. We omit formal treatment of the problem and
limit the discussion to an example. It is easy to seethat
conversion may require delaying binding code execu-
tion. This should not be surprising since one kind of
conversion is reordering.

Example 6 Consider a required schema with binding
codes (left) and an actual schema (right).

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 219

<sequence>
<el enent nanme="a’' type='double' />
<code>c1l</ code>
<repetition>
<ref id="b'/>
<code>c2</ code>
</repetition>
<sequence>
<sequence>
<repetition><ref id="b' />
</repetition>
<el enent nanme="x' type='double' />
<el enent nanme="y’' type='double' />
<sequence>

Assume that there exists a user-defined conversion
filter that calculates a from x and y. If we ignore
binding codec2, conversionisclearly local. However,
conversionwith c 2 present will requiredelaying all ex-
ecutionsof c2 until c1 isexecuted. Thelatter can only
happen when the last piece of the schema is matched.
In other words, binding codes should be placed aslate
as possiblein the schema.

This section presented a number of local conver-
sions appropriate for PSE data. Conversions are car-
ried out by extra codes injected in the actual schema.
The conversion agorithm was built around the ‘ deter-
mines' relation between schemas. The algorithm has
sometechnical limitations related to binding codes, but
its major limitation is conceptual. Conversion, in the
form presented here, is syntactic. It is based on the
weak semistructured datamodel, not on the underlying
domain theory (wireless communications). Therefore,
we can only speculate about the causes of differences
between the actual and required schemas. There is
no guarantee that automatic conversion will produce
meaningful results. A stronger datamodel is necessary
to perform complex, yet meaningful, conversions.

7. Integration with a PSE

A complete PSE requires functionality far beyond
validation, binding, and conversion. BSML ensures
that the components can read streams of XML data, but
it does not support tasks such as scheduling, communi-
cation, database storage and retrieval, connecting mul-
tiple components into a given topology, and computa-
tional steering. We broadly call software that performs
all of thesetasksan executionmanager. Figure12illus-

trates how BSML software and the execution manager
function together.

From a systems point of view, BSML schemas are
metadata and the BSML softwareis a parser generator.
Recall that the parser generator generates parsers that
perform validation, binding, and conversion functions
(every such generated parser will be able to take input
data and stream it through the component). Both the
data and the metadata are stored in a database. We can
distinguish three kinds of metadata: schemas, com-
ponent metadata, and model instance metadata. Only
one form of metadata (schemas) was described in this
paper. Component metadata contains component’slo-
cal parameters, such as executable name, programming
language, and input/output port schemas. Itisthekind
of metadata used in CCAT. Model instance metadata,
i.e., component topology and other global execution pa-
rameters, servesapurposesimilar to GALE’sworkflow
specifications. It supports our requirement 3.

A parser is lazily generated for each used com-
bination of component’s input port schema (required
schema) and the schema of the datainstance connected
tothisport (actual schema). Component metadata spec-
ifies how linking must be performed (e.g., which of the
three kinds of bindings to use). Component instances
are further managed by the execution manager. Model
instance metadata specifies how to execute the model
instance (e.g., the topology and the number of proces-
sors), while model instance data serves as the actual
(data) input to the model instance. To summarize, the
BSML parser generator creates component instances —
programs that take a number of XML streams as in-
puts and produce anumber of XML streams as outputs.
Thisrepresentationis appropriatefor management of a
PSE execution environment.

7.1. Satus of prototype

In S*W, the execution manager is implemented in
Tcl/Tk and most of the component metadata is hard-
coded. Model instance metadata consists primarily
of the number of processors and a cross-product of
references to model instance data. An (incomplete)
example of such a specificationis

‘compute power coverage maps for these three
transmitter locations in Torgersen Hall and show a
graph of BERs with the signal-to-noise ratio vary-
ing from zero to twenty dB in steps of two dB; use
thirty nodes of a 200-node Beowulf cluster.

220 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

Component
Metadata

R
Required
Schemas

Parsers

Parser
Generator

|

Model Instance
Data

Component
Instance

Execution

Component
Manager

Instance

Component
Instance

Model Instance I
Metadata

}

Fig. 12. BSML integration with PSE execution environment. The BSML parser generator creates parsers that handle input ports of each
component. Execution manager controls the execution of amodel instance that consists of components, model instance data, and model instance

metadata. Figure 1 partially defines one such instance.

PostgreSQL and the filesystem serve the role of the
database. Large files (e.g., floor plans) are typically
stored in the filesystem and small ones (e.g., PDPs)
are usually imported into PostgreSQL . The parser gen-
erator is written in SWI Prolog. It generates parsers
in Tcl. Our choice of languages was driven by the
existing in-house computational environment and the
ease of prototyping in these languages; their selection
is not the result of a systematic investigation of im-
plementation options. Currently, the generated parsers
areused mostly in the execution manager, visualization
components, and database interfacing components.

8. Discussion

We have described the use of validation, binding, and
conversionfacilitiesto solvedatainterchange problems
in a PSE. Since al three concepts are closely related
to parsing and trandation, viewing application com-
position in terms of data management uncovers well-
understood solutions to interface mismatch problems.
The semistructured data model alows us to syntacti-
cally define several forms of conversions that are usu-
ally implemented by hand-written mediators in PSEs.
Such automation reduces the cost of PSE development
and, moreimportantly, brings PSEs closer to their ulti-
mate goal —namely, PSE users should be solving their

domain-specific problems, not be beset by the technical
details of component composition in a heterogeneous
computing environment.

Several extensions to the present work are envi-
sioned. First, the expressiveness of schema languages
for data interchange and application composition can
be formally characterized. This will alow us to rea-
son about requirements such as stream processing from
a modeling perspective. Such a study will also lead
to a better understanding of the roles that a markup
language can play in a PSE. Second, dataflow rela-
tionships between components can be made explicit.
BSML guaranteesthat any component instance be able
to process streams of data, but synchronization issues
are meant to be resolved by the execution manager.
Tighter integration of BSML and composition frame-
works can be explored. Finally, the overall view of a
PSE as a semistructured data management system de-
serves further exploration. For example, it seems pos-
sibleto automatically generate workfl ow specifications
from querieson asemistructured database of simulation
results.

Any good problem solving facility is characterized
by ‘what it lets you get away with. BSML is unique
among PSE projectsin that it allows a modeler or en-
gineer to flexibly incorporate application-specific con-
siderations for data interchange, without insisting on
an implementation vocabulary for components.

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange 221
A BSML DTD
<IENTITY % bool ean "(true|fal se|t]|f]|yes|no|y|n) >

<l-- attributes of primtive types:
mn - mnimmvalue or string | ength (i nclusive)
max - maxi mum val ue or string length (i nclusive)
nunber - true neans NaN is not allowed (doubl es only)
finite - true nmeans +/ -infinity is not all owed (doubles only)
units - units for this type (doubl es only)

-->
<IENTITY % type_attributes "
nmn CDATA #| MPLI ED
max CDATA #| MPLI ED
nunber %ool ean; #1 MPLI ED
finite %bool ean; #|1 MPLI ED
units CDATA #| MPLI ED
">
<I-- what schemas and schena bl ocks are conposed of -->

<IENTITY % schena_contents "
(el enent | sequence | selection | repetition)

"
<IENTITY % bl ock_contents "

(schema_contents; | default | ref | code)
s
<l-- a collection of schemas -->

<l ELEMENT schemas ((description)?, (type | schema)*)>
<! ATTLI ST schenas>

<l-- primtive type: attributes above and an optiona

enuner ation of |egal values; derivation works by restriction
builtin base types are: integer, string, double, boolean -->
<!l ELEMENT type ((description)?, (val ues)?)>

<I ATTLI ST type

id CDATA #REQUI RED
base CDATA #REQUI RED
% ype_attributes;
>
<l-- enuneration of legal values, no value is legal if enpty -->

<! ELEMENT val ues ((val ue)*)>
<! ATTLI ST val ues>

<! ELEMENT val ue (#PCDATA)>
<! ATTLI ST val ue>

<!-- schema -->
<l ELEMENT schema ((descri ption)?, (code)*, (¥%schena_contents;), (code)*)>
<! ATTLI ST schema

id CDATA #REQUI RED

222 A. Verstak et al. / BSMIL: A binding schema markup language for data interchange
>

<l-- an element can contain either
(@) character data of a prinmtive type (type attribute is present),
(b) zero or nmore schena bl ocks (type attribute is absent), or
(c) when type="*', any contents.
-->
<l ELEMENT el enent ((description)?, (attribute)*,
((val ues)? | (%l ock_contents;)*))>
<I ATTLI ST el enment

nanme CDATA #REQUI RED
id CDATA #| MPLI ED
opti onal %bool ean; "fal se”
type CDATA #| MPLI ED
% ype_attributes;
def aul t CDATA #| MPLI ED
>
<l-- an attribute nust contain a value of sone primtive type -->

<l ELEMENT attribute ((description)?, (val ues)?)>
<I ATTLI ST attribute

nane CDATA #REQUI RED
id CDATA #| MPLI ED
type CDATA "string"
% ype_attributes;
def aul t CDATA #| MPLI ED
>
<l-- a sequence is just a grouping, for convenience -->

<! ELEMENT sequence ((descri ption)?, (%l ock contents;)*)>
<I ATTLI ST sequence

id CDATA #| MPLI ED
opti onal %bool ean; "fal se”
>
<l-- a selection denotes a nutually exclusive choice of contents -->

<! ELEMENT sel ecti on ((description)?, (%l ock _contents;)+)>
<I ATTLI ST sel ecti on

id CDATA #| MPLI ED
optional %ool ean; "fal se"
>
<l-- arepetition denotes [nmin..nmax] repetitions of contents -->

<I ELEMENT repetition ((description)?, (¥l ock_contents)*)>
<I ATTLI ST repetition

id CDATA #| MPLI ED
opti onal %ool ean; "fal se"
mn CDATA " 0"

max CDATA "inf"

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

<l-- areference to sonme block id in this schemn
or to an id of a different schema -->
<! ELEMENT ref ((description)?)>
<! ATTLI ST ref
id CDATA #REQUI RED
>

<l-- user code; |anguage and conmponent attributes facilitate
schema reuse (di fferent conponents can have the same schenm,
but different binding codes) -->

<! ELEMENT code (#PCDATA)>

<! ATTLI ST code

| anguage CDATA #| MPLI ED
conmponent CDATA #| MPLI ED
>
<!-- default contents nust conformto BSM. schenmn bl ock -->

<! ELEMENT defaul t ANY>

<l-- XHTM. usually goes here -->
<! ELEMENT descri ption ANY>

223

224

A. Verstak et al. / BSMIL: A binding schema markup language for data interchange

References

(1

(2

(3]
(4

(9]

(€l

(7

(8]

(9

[10]
(11

N.R. Adam, I. Adiwijaya, T. Critchlow and R. Musick. De-
tecting Data and Schema Changes in Scientific Documents,
in: Advancesin Digital Libraries, 2000, pp. 160-172.

V.S. Adve, R. Bagrodia, J.S. Browne, E. Deelman, A. Dube,
E.N. Houstis, JR. Rice, R. Sakellariou, D.J. Sundaram-Stukel,
PJ. Teller and M.K. Vernon, POEMS: End-to-End Perfor-
mance Design of Large Parallel Adaptive Computational Sys-
tems, |EEE Transactions on Software Engineering 26(11)
(November 2000), 1027-1048.

A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wesley, 1986.

R.G. Alscher, B.l. Chevone, L.S. Heath and N. Ramakrish-
nan, Expresso — A PSE for Bioinformatics: Finding Answers
with Microarray Technology, in: Proceedings of the High Per-
formance Computing Symposium, Advanced Simulation Tech-
nologies Conference, A. Tentner, ed., April 2001, pp. 64-69.

J.B. Andersen, T.S. Rappaport and S. Yoshida, Propaga-
tion Measurements and Models for Wireless Communications
Channels, IEEE Communications Magazine 33(1) (January
1995), 42—49.

V. Apparao, S. Byrne, M. Champion, S. Isaacs, |. Jacabs, A.
LeHors, G. Nicol, J. Robie, R. Sutor, C. Wilson and L. Wood,
Document Object Model (DOM) Level 1 Specification Version
1.0, W3C Recommendation Document, October 1998.

W. Benger, H.-C. Hege, T. Radke and E. Seidel, Data De-
scription via a Generalized Fiber Bundle Data Model, in:
Tenth IEEE International Symposium on High Performance
Distributed Computing, 2001.

H.P. Bivens, Grid Workflow, Grid Computing Environments
Working Group Document, Global Grid Forum, 2001.

R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju,
N. Mukhi, B. Temko, and M. Yochuri, A Component Based
Services Architecture for Building Distributed Applications,
in: Proceedings of the Ninth IEEE International Symposium
on High Performance Distributed Computing (HPDC'00),
| EEE Press, 2000.

D. Brownell, SAX2, O’ Reilly Books, January 2002.

S. Chawathe and H. Garcia-Molina, Meaningful Change De-
tection in Structured Data, in: Proceedings of the ACM-
S GMOD International Conference on Management of Data,

[12]
[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Tucson, Arizona, USA, 1997, pp. 26-37.

J. Clark and M. Makoto, eds, RELAX NG Specification, OA-
SIS Committee Specification Document, December 2001.

J. Clark, ed., XSL Transformations (XSLT) Version 1.0. W3C
Recommendation Document, November 1999.

T. Critchlow, M. Ganesh and R. Musick, Meta-Data Based
Mediator Generation, in: Proceedings of the Third Interna-
tional Conference on Cooperative Information Systems, 1998,
pp. 168-176.

T.T. Drashansky, E.N. Houstis, N. Ramakrishnan and J.R.
Rice, Networked Agents for Scientific Computing, Communi-
cations of the ACM 42(3) (March 1999), 48-54.

E. Gallopoulos, E.N. Houstis and JR. Rice, Computer as
Thinker/Doer: Problem-Solving Environments for Computa-
tional Science, |EEE Computational Science and Engineering
1(2) (1994), 11-23.

A.Goel, C.A.Baker, C.A. Shaffer, B. Grossman, W.H. Mason,
L.T. Watson and R.T. Haftka, VizCraft: A Problem-Solving
Environment for Aircraft Configuration Design, |EEE/AIP
Computing in Science and Engineering 3(1) (2001), 56-66.
A.Godl, C. Phanouriou, FA. Kamke, C.J. Ribbens, C.A. Shaf-
fer and L.T. Watson, WBCSim: A Prototype Problem Solving
Environment for Wood-Based Composites Simulation, Engi-
neering with Computers 15 (1999), 198-210.

D.R. Jones, C.D. Perttunen and B.E. Stuckman, Lipschitzian
optimization without the Lipschitz Constant, Journal of Opti-
mization Theory and Applications 79(1) (1993), 157-181.

S. Markus, S. Weerawarana, E.N. Houstis and J.R. Rice, Sci-
entific Computing via the World Wide Web: The Net PELL-
PACK PSE Server, IEEE Computational Science & Engineer-
ing 4(3) (July—September 1997), 43-51.

S. Pemberton, M. Altheim, D. Austin, F. Boumphrey, J.
Burger, A.W. Donoho, S. Dooley, K. Hofrichter, P. Hoschka,
M. Ishikawa, W. ten Tate, P. King, P. Klante, S. Matsui, S.
McCarron, A. Navarro, Z. Nies, D. Raggett, P. Schmitz, S.
Schnitzenbaumer, P. Stark, C. Wilson, T. Wugofski and D.
Zigmond, XHTML 1.0: The Extensible HyperText Markup
Language, W3C Recommendation Document, January 2000.
JR. Riceand R.F. Boisvert, From Scientific SoftwareLibraries
to Problem-Solving Environments, |EEE Computational Sci-
ence & Engineering 3(3) (Fall 1996), 44-53.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

