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Abstract. We describe a binding schema markup language (BSML) for describing data interchange between scientific codes.
Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with
a PSE or application composition system that views model specification and execution as a problem of managing semistructured
data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and
conversion. We present BSML and describe its application to a PSE for wireless communications system design.

1. Introduction

Problem solving environments (PSEs) are high-level
software systems for doing computational science. A
simple example of a PSE is the Web PELLPACK sys-
tem [20] that addresses the domain of partial differential
equations (PDEs). Web PELLPACK allows the scien-
tist to access the system through a Web browser, define
PDE problems, choose and configure solution strate-
gies, manage appropriate hardware resources (for solv-
ing the PDE), and visualize and analyze the results. The
scientist thus communicates with the PSE in the vernac-
ular of the problem, ‘not in the language of a particular
operating system, programming language, or network
protocol’ [16]. It is 10 years since the goal of creating
PSEs was articulated by an NSF workshop (see [16] for
findings and recommendations). From providing high-
level programming interfaces for widely used software
libraries [22], PSEs have now expanded to diverse ap-

1The work presented in this paper is supported in part by National
Science Foundation grants EIA-9974956, EIA-9984317, and EIA-
0103660.

plication domains such as wood-based composites de-
sign [18], aircraft design [17], gas turbine dynamics
simulation [15], and microarray bioinformatics [4].

The basic functionalities expected of a PSE include
supporting the specification, monitoring, and coordi-
nation of extended problem solving tasks. Many PSE
system designs employ the compositional modeling
paradigm, where the scientist describes data-flow re-
lationships between codes in terms of a graphical net-
work and the PSE manages the details of composing
the application represented by the network. Composi-
tional modeling is not restricted to such model speci-
fication and execution but can also be used as an aid
in performance modeling of scientific codes [2] (model
analysis).

We view model specification and execution as a data
management problem and describe how a semistruc-
tured data model can be used to address data inter-
change problems in a PSE. Section 1.1 presents a mo-
tivating PSE scenario that will help articulate needs
from a data management perspective. Section 2 elab-
orates on these ideas and briefly reviews pertinent re-
lated work. In particular, it identifies three basic levels
of functionality – validation, binding, and conversion –
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at which data interchange in application composition
can be studied. Sections 4, 5, and 6 describe our spe-
cific contributions along these dimensions, in the form
of a binding schema markup language (BSML). Sec-
tion 7 outlines how these ideas can be integrated within
an existing PSE system design. A concluding discus-
sion is provided in Section 8. Aspects of the scenario
described next will be used throughout this paper as
running examples.

1.1. Motivating example

S4W (Site-Specific System Simulator for Wireless
system design) is a PSE being developed at Virginia
Tech. S4W provides deterministic electromagnetic
propagation and stochastic wireless system models for
predicting the performance of wireless systems in spe-
cific environments, such as office buildings. S4W is
also designed to support the inclusion of new models
into the system, visualization of results produced by
the models, integration of optimization loops around
the models, validation of models by comparison with
field measurements, and management of the results pro-
duced by a large series of experiments. S4W permits
a variety of usage scenarios. We will describe one
scenario in detail.

A wireless design engineer uses S4W to study trans-
mitter placement in an indoor environment located on
the fourth floor of Durham Hall at Virginia Tech. The
engineering goal is to achieve a certain performance
objective within the given cost constraints. For a nar-
rowband system, power levels at the receiver locations
are good indicators of system performance. Therefore,
minimizing the (spatial) average shortfall of received
power with respect to some power threshold is a mean-
ingful and well defined objective. The major cost con-
straints are the number of transmitters and their pow-
ers. Different transmitter locations and powers yield
different levels of coverage. The situation is more com-
plicated in a wideband system, but roughly the same
process applies. A wideband system includes extra
hardware not present in a narrowband system and the
performance objective is formulated in terms of the bit
error rate (BER), not just the power level.

The first step in this scenario is to construct a model
of signal propagation through the wireless communi-
cations channel. S4W provides ray tracing as the pri-
mary mechanism to model site-specific propagation ef-
fects such as transmission (penetration), reflection, and
diffraction. The second step is to take into account
antenna parameters and system resolution. These two

steps are often sufficient to model the performance of
a narrowband system. If a wideband system is being
considered, the third step is to configure the specific
wireless system. Parameters such as the number of
fingers of the rake receiver and forward error correc-
tion codes are considered at this step. S4W provides a
Monte-Carlo simulation of a WCDMA (wideband code
division multiple access) family of wireless systems.
In either case, the engineer configures a graph of com-
putational components as shown in Fig. 1. The ovals
correspond to computational components drawn from a
mix of languages and environments. Hexagons enclose
input and output data. Aggregation is used to simplify
the interfaces of the components to each other and to the
optimizer. In Fig. 1, rectangles represent aggregation.
The propagation model is a component that consists of
three connected subcomponents: triangulation, space
partitioning, and ray tracing. Similarly, the wireless
system model consists of (roughly) three components:
data encoding, channel modeling, and signal decoding.
All three steps are further aggregated into a complete
site-specific system model. This model is then used in
an optimization loop. The optimizer changes transmit-
ter parameters (all other parameters remain fixed) and
receives feedback on system performance.

For a given environment definition in AutoCAD, the
triangulation and space partitioning components are
used to reduce the number of geometric intersection
tests that will be performed by the ray tracer. Sev-
eral iterations over space partitioning are necessary to
achieve acceptable software performance. However,
once the objective (an average of ten triangles per voxel)
is met, the space partitioning can be reused in all fu-
ture experiments with this environment. The engineer
then configures the ray tracer to only capture reflec-
tion and transmission (penetration) effects. Although
diffraction and scattering are important in indoor prop-
agation [5], these phenomena are computationally ex-
pensive to model in an optimization loop. The triangu-
lation and space partitioning codes are meant for serial
execution, whereas the ray tracer and the Monte Carlo
wireless system models run on a 200 node Beowulf
cluster of workstations. Post processing is available in
both serial and parallel versions. The ray tracer and the
post processor are written in C, whereas the WCDMA
simulation is available in Matlab and Fortran 95 ver-
sions.

A series of experiments is performed for various
choices of antenna patterns, path loss parameters (in-
fluenced by material properties), and WCDMA system
parameters. The predicted power delay profiles (PDPs)
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Fig. 1. A site-specific system model in S4W. The system model consists of a propagation model, an antenna model (post processing), and a
wireless system model.
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Fig. 2. Optimizing placement of three transmitters to cover eighteen rooms and a corridor bounded by the box in the upper left corner. The bounds
for the placement of three transmitters are drawn with dotted lines. The initial transmitter positions are marked with crosses. The optimum
coverage transmitter positions are marked with dots.

are then compared with the measurements from a chan-
nel sounder and the predicted bit error rates are com-
pared with the published data. The parameters of the
propagation model are calibrated for various locations.
The validated propagation and wireless system models
are finally enclosed in an optimization loop to deter-
mine the locations of transmitters that will provide ad-
equate performance for a region of interest. The opti-
mizer, written in Fortran 95, uses the DIviding RECT-
angles (DIRECT) algorithm of Jones et al. [19]. The
parameters to the optimization problem and the opti-
mal transmitter placement are depicted in Fig. 2. The
optimizer decided to move the transmitter in the upper
right corner one room to the right of its initial position
and the transmitter in the lower left corner two rooms
to the right of its initial position.

What requirements can we abstract from this sce-
nario and how can they be flexibly supported by a data
model? We first observe the diversity in the compu-
tational environment. Component codes are written
in different languages and some of them are meant
for parallel execution. In a research project such as

S4W, many components are under active development,
so their I/O specifications change over time. Second,
the interconnection among components is also flexible.
Optimizing for power coverage and optimizing for bit
error rate, while having similar motivations, require dif-
ferent topologies of computational components. Third,
since different groups of researchers are involved in the
project, there exists significant cognitive discordance
among vocabularies, data formats, components, and
even methodologies. For example, ray tracing models
represent powers in a power delay profile in dBm (log
scale). However, WCDMA models work with a nor-
malized linear scale impulse response and an aggregate
called the ‘signal-to-noise ratio’. Also, there is more
than one way of calculating the signal-to-noise ratio.
Since antennas generate noise that depends on their pa-
rameters, detailed antenna descriptions are necessary
to calculate this ratio. However, researchers who are
not concerned with antenna design seldom model the
system at this level of detail. The typical practice is to
use a fixed noise level in the calculations. Simulations
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of wireless systems abound in such approximations, ad
hoc conversions, and simplifying assumptions.

2. PSE requirements for data interchange

Culling from the above scenario, we arrive at a more
formal list of data interchange requirements for appli-
cation composition in a PSE. The PSE must support:

1. components in multiple languages (C, FOR-
TRAN, Matlab, SQL);

2. changes in component interfaces;
3. changes in interconnections among components;
4. automatic unit conversion in data-flows;
5. user-defined conversion filters;
6. composition of components with slightly differ-

ent interfaces; and
7. stream processing.

The reader might be surprised that SQL is listed
alongside FORTRAN, but both languages are used in
S4W. Experiment simulations are written in procedural
languages, while experiment data is stored in a rela-
tional database. Thus, developing a system that inte-
grates with the PSE environment requires more than
the ability to link scientific computing languages. It
involves overcoming the impedance mismatch between
languages developed for fundamentally different pur-
poses.

The last requirement above – stream processing –
refers to processing data as soon as it is read from
an input stream, as opposed to waiting for the end of
the stream, and subsequently processing all the data
at once. This often neglected technical requirement is
related to composability – the ability to create arbitrary
component topologies. As data interchange is pushed
deeper into the computation, the unit of data granularity
needs to become correspondingly smaller. The opti-
mization loop is a good example of fine data granularity.
We cannot accumulate all transmitter parameters over
all iterations and later convert them to the format re-
quired by the simulation inside the loop, because trans-
mitter parameters generated by the optimizer depend
on the feedback computed by the simulation. Each
block of transmitters must be processed as soon as it is
available. Likewise, each value of the objective func-
tion must be made available to the optimizer before it
can produce the next block of transmitters. Usability
dictates a similar requirement. Since some models are
computationally expensive (e.g., those meant for par-
allel execution), incremental feedback should be pro-

vided to the user as early as possible. The stream pro-
cessing requirement improves composability and us-
ability, but limits conversions to being local. Global
conversions (e.g., XSLT [13]) cannot be performed be-
cause they assume that all the data is available at once.

While the requirements point to a semistructured
data model, no currently available data management
system supports all forms of PSE functionality. This
paper presents the prototype of such a system in the
form of a markup language. Observe that all of the
above requirements are summarized by three standard
techniques for working with semistructured data – vali-
dation, binding, and conversion. Validation establishes
data conformance to a given schema. It is a prerequisite
to most of the requirements. Binding refers to integrat-
ing semistructured data with languages that were de-
signed for different purposes (requirement 1). Conver-
sion (transformation) takes care of requirements 2–6.
Given two slightly different schemas, it is possible to
generate an edit script [11] that converts data instances
from one schema to another. Requirement 7 dictates
that all such conversions must be local.

2.1. Related work

While research in PSEs covers a broad territory, the
use of semistructured data representations in computa-
tional science is not established beyond a few projects.
Therefore, we only survey standard XML technolo-
gies and PSE-like systems that make (some) use of
semistructured data. It would be unfair to review some
of these systems against PSE data interchange require-
ments. Instead, our evaluation is based on how well
these systems support validation, binding, conversion,
and stream processing.

Specific XML technologies for document processing
are easy to classify in terms of our framework. Schema
languages (e.g., RELAX NG [12]) deal with valida-
tion and, possibly, binding. Transformation languages
(e.g., XSLT [13]) deal with conversion. Several proper-
ties of these technologies hinder their direct applicabil-
ity to a PSE setting. First and foremost, these technolo-
gies do not work with streams of data. Sophisticated
schema constraints and complex transformations can
require buffering the whole document before produc-
ing any output. Second, transformation languages are
simply vehicles for applying edit scripts. They cannot
be used to create edit scripts. Since our conversions
are local, edit script application is trivial, but edit script
creation is not.

Four major flavors of PSE-like projects that use
semistructured data representations can be identified:
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1. component metadata projects;
2. workflow projects;
3. scientific data interchange projects; and
4. scientific data management projects.

Projects in the first category use XML to store IDL-
like (interface definition language) component descrip-
tions and miscellaneous component execution parame-
ters. An example of such a project is CCAT [9], which
is a distributed object oriented system. CCAT also uses
XML for message transport between components, so
we say that it provides an OO binding. The second cat-
egory of projects augments component metadata with
workflow specifications. For example, GALE [8] is
a workflow specification language for executing simu-
lations on distributed systems. Unlike CCAT, GALE
provides XML specifications for some common types
of experiments, such as parameter sweeps (CCAT uses
a scripting language for workflow specification). How-
ever, GALE does not use XML for component data.
Both the component metadata and workflow projects
use XML to encode data that is not semistructured.
Their use of XML is not dictated by the need for auto-
matic conversion. Neither generic binding mechanisms
nor conversion are provided by these projects.

The latter two groups of projects use XML for appli-
cation data, not component metadata. Representatives
of the scientific data interchange group develop flexi-
ble all-encompassing schemas for specific application
domains. For example, CACTUS [7] deals with spatial
grid data. CACTUS’s schema is complex enough to be
considered semistructured and this project recognizes
the need for conversion filters. However, it does not
provide multiple language support and, more impor-
tantly, does not accommodate changes in the schema.
CACTUS’s conversion filters aim at code reuse, not
change management. This project has OO binding and
manual conversion (the sequence of conversions is not
determined automatically). Complexity of the data for-
mat precludes stream processing.

Perhaps the most relevant group of projects for
our purposes involves the scientific data management
community. Especially interesting are the projects
in rapidly evolving domains, such as bioinformatics.
DataFoundry [1,14] provides a unifying database inter-
face to diverse bioinformatics sources. Both the data
and the schema of these sources evolve quickly, so
DataFoundry has to deal with change management – by
far more complex change management than the kind we
consider here. However, DataFoundry only provides
mediators for database access. It does not integrate
with simulation execution. This system takes full ad-

vantage of conversion, but provides only an SQL bind-
ing. Introducing bindings for procedural languages
would involve significant changes to DataFoundry.

Table 1 summarizes related work. It turns out that
no known PSE-like system takes full advantage of both
binding and conversion. XML technologies for valida-
tion and binding are well established, but XML trans-
formation technologies do not support PSE-style con-
version. Very few systems can integrate with a PSE ex-
ecution environment because most of them do not meet
the stream processing requirement. This paper devel-
ops a system that satisfies all of our data interchange
requirements. The next section summarizes the con-
tributions made by our approach and also introduces
relevant background material. The following three sec-
tions describe our handling of validation, binding, and
conversion. System integration is outlined in Section 7.

3. In this paper

As mentioned earlier, our specific contributions are
in the form of a markup language called BSML. BSML
provides expressive access to objects and streams for
managing the execution environment of a PSE. It
should be remarked that BSML is not a data format
masquerading as a markup language, or even a high-
level abstraction of a programming environment. It
is meant to be a vehicle to capture assumptions about
data interchange happening in a PSE. Suitably defined
BSML schemas allow the programmer to describe map-
pings from internal representations to the execution en-
vironment. These mappings are used to perform vali-
dation, binding, and conversion functions. Validation
is achieved by ensuring that new documents (describing
PSE objects) conform to BSML schemas. Binding is
achieved by inserting special markup tags that describe
how PSE objects should be interpreted in an underly-
ing environment. Conversion is motivated by relating
BSML schemas. Specifically, we create a schema that
describes one data format but performs the bindings of
another data format.

The novelty of our work is a careful integration of
the relevant concepts – parsing theory as it relates to at-
tribute grammars, realistic PSE settings, and a markup
language as a mechanism to capture assumptions. A
core set of algorithmic ideas transcend all of BSML’s
capabilities. These specific ideas include: (i) relat-
ing stream processing requirements of PSEs to predic-
tive parsing theory, (ii) studying how PSE requirements
for binding manifest in attribute grammars, including



204 A. Verstak et al. / BSML: A binding schema markup language for data interchange

Table 1
A survey of PSE-like systems and XML technologies. The binding row shows that most systems
support only one paradigm. Only DataFoundry fully supports conversion. Other systems either
provide a library of conversion primitives and leave their composition up to the user (CACTUS)
or do not recognize the need for conversion at all (CCAT). No system or technology fully supports
validation, binding, and conversion. Most systems and technologies cannot dynamically process
streams of data

CCAT GALE CACTUS DataFoundry RELAX NG XSLT

Validation
√ √ √ √

Binding OO OO SQL OO
Conversion manual

√
manual

Stream Processing
√

their effect on predictive parsers, and (iii) using schema
transformations to provide conversionand change man-
agement functionality. Our work is one of the first ef-
forts to systematize the creation of conversion facilities
in a PSE.

3.1. Some pertinent background

We begin by reviewing some pertinent background
in the areas of markup languages and parsing theory.
Markup languages, like XML, HTML, and SGML, use
a tagged structure to describe documents. While the
types and intended semantics of tags are fixed in a
language like HTML, tags in XML do not have any
pre-defined meaning. This allows us to rapidly proto-
type domain-specific markup languages (like BSML)
and use document processing tools to harness descrip-
tions in such languages. Ultimately, this availability of
readymade software is what steers scientific computing
researchers to a markup language-based solution.

One typical use of a markup language is for defining
data formats. For instance, we can define a markup
language for describing time series data. Domains
such as bioinformatics abound in such markup lan-
guages. BSML’s approach is to employ tags that will
help realize data interchange functionality. There are
even projects that encapsulate a complete ontology in
a markup language!

Documents in a markup language can be displayed,
interpreted, and reasoned about in simple ways. For in-
stance, a web browser uses the <B>. . .</B> tag struc-
ture in a HTML document to recognize when to ren-
der text in bold. Similarly, we can assign any suitable
interpretation to a markup language in a PSE setting.

A markup language can be defined by its DTD (Doc-
ument Type Definition) which declares what a well
formed document should look like. Among other
things, the DTD helps validate new documents, to see
if they adhere to the markup specification. Other tools
use DTDs to automatically generate parsers for inter-

preting documents. XML Schema is a newer approach
for schema definition of XML documents and is widely
believed to eventually supersede DTDs. BSML can ac-
tually be thought of as a schema language specifically
designed for data interchange in PSEs.

Two technologies that are especially relevant here
are DOM and SAX. DOM (Document Object Model)
is an object model that uses a tree structure to represent
an XML document. This internal tree structure can
then be navigated and manipulated to provide many
facilities, e.g., searching the tree for the occurence of a
given string, or rearranging the tree structure to produce
a new document. The contrasting approach, SAX, is
an event-based technology that relates parsing events
back to an application, which can then use them to
implement specific functionality. Many parsing tools
use either or both these approaches. The reader is
referred to introductory resources such as [10] for more
details.

Besides markup language basics, this paper assumes
background knowledge of grammars and computer
languages, especially as encountered in a compilers
course. The most important concepts are LL grammars
and the construction of predictive parsing tables. For
our purposes, an LL grammar is one that supports iter-
ative and incremental parsing of input and as we will
show, this is a necessary pre-requisite to achieve data
interchange funtionality. The first ‘L’ denotes a ‘left-
to-right’ scan and the second ‘L’ denotes that we are
performing a leftmost derivation. We will devote con-
siderable attention to LL(1) grammars which are LL
with only one symbol of lookahead. These concepts
are well covered in [3].

4. Validation

The first function we study, validation, establishes
conformance of a data instance to a given schema. It
is a prerequisite to binding and conversion. (This def-
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inition of validation is a small part of the process of
validation in a PSE, which is concerned with the larger
issue of a model being appropriate to solve a given
problem; but, it suffices for the purpose of this paper.)
The schemas for PSE data are easy to obtain since com-
putational science traditionally uses rigid data struc-
tures, not loosely formatted documents. Describing the
data structures in terms of schemas has several bene-
fits. First, language-neutral schemas allow for inter-
operability between different languages (see require-
ment 1 in the previous section). Second, schemas fa-
cilitate database storage and retrieval. Third, appropri-
ate schemas help assign interpretations to various data
fields. It is such interpretation that makes automatic
conversion possible (requirements 2–6).

What kind of validation is appropriate for PSE data?
Requirement 7 calls for the most expressive schema
language that can be parsed by a stream parser. In other
words, we are looking for a schema language that can
be defined in terms of an LL(1) grammar [3]. (The
LR family of grammars is more expressive, but LR
parsers do not follow stream semantics.) Therefore, a
predictive parser generated for a given schema can val-
idate a data instance. This section describes a schema
language (BSML) appropriate for a PSE and the steps
for building a parser generator for this language. We
present an example, an informal overview of BSML
features, and a formal definition for a large subset of
BSML in terms of a context-free grammar. Further,
predictive parser generation is outlined and grammar
transformations specific to BSML are described in de-
tail. Finally, we show that BSML is strictly less ex-
pressive than LL(1) grammars.

Let us start with an example. Figures 3 and 4 depict a
(simplified) schema for an octree environment decom-
position. (Figure 3 describes it in XML notation while
Fig. 4 uses a non-XML format that will be useful for
describing some functionalities of BSML). This is the
most complex schema in S4W, not counting the schema
for the schema language itself. An octree consists of
internal and leaf nodes that delimit groups of triangles.
Recall from Section 1.1 that this grouping is used to
limit the intersection tests in ray tracing. The nested
structure of an octree maps nicely into an XML tree.
Since many components work with lists of triangles,
there is a separate schema for a list of triangles. As the
example shows, the features of BSML closely resemble
those of other schema languages, such as RELAX NG.
The only noticeable difference is the presence of units
in the definitions of primitive types. Units will be use-
ful for certain types of conversions. Figure 5 shows

an LL(1) grammar generated from the octree schema.
This grammar is then annotated with binding code and
used to generate a parser for octree data. The parser
can be linked with a parallel ray tracer written in C.

The DTD for the current version of BSML is given in
Appendix 8. The schema language describes primitive
types and schemas. There are four base primitive types:
integer, string, (IEEE) double, and boolean. Users can
derive their own primitive types by range restriction.
User-derived types usually have domain-specific flavor,
such as coordinates and distances in the example above.
We do not support more complicated primitive types,
such as dates and lists, because each PSE component
treats them differently. Schemas consist of four build-
ing blocks: elements, sequences, selections, and repeti-
tions. Strictly speaking, repetitions can be expressed as
selections and sequences, but they are so common that
they deserve special treatment. Derivation of schemas
by restriction is not supported, but derivation by exten-
sion can be implemented via inter-schema references.
Mixed content is not supported because it is only used
for documentation. Instead, BSML supports a wild-
card content type. The contents of this type matches
anything and is delivered to the component as a DOM
tree [6]. We do not support referential integrity con-
straints because they can delay binding and thus break
requirement 7. There is no explicit construct for inter-
leaves. In some ways, interleaves are handled by the
conversion algorithm. In other words, BSML is a sim-
ple schema language that incorporates most common
features that are useful in a PSE.

Parser generation for a BSML schema follows the
standard steps from compiler textbooks [3]:

1. convert the schema to an LL(1) grammar,
2. eliminate empty productions and self-derivations,
3. eliminate left recursion,
4. perform left factoring,
5. perform miscellaneous cleanup (described in de-

tail below),
6. compute a predictive parsing table, and
7. generate parsing code from the table.

The only steps specific to this schema language
are generating an LL(1) grammar (step 1) and mis-
cellaneous cleanup (step 5). Since grammars have
been in use for a long time, it is pertinent to define
BSML semantics in terms of how the schemas are
converted to grammars. The terminals are defined by
SAX events [10]. The start of element and end of el-
ement events are denoted s(name) and e(name), re-
spectively, where name is element name. We omit
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<type id=’distance’ base=’double’ number=’true’ finite=’true’/>
<type id=’coordinate’ base=’double’ number=’true’ finite=’true’/>

<schema id=’triangles’>
<repetition>
<element name=’tr’>

<repetition min=’3’ max=’3’>
<element name=’v’>
<attribute name=’x’ type=’coordinate’ units=’m’/>
<attribute name=’y’ type=’coordinate’ units=’m’/>
<attribute name=’z’ type=’coordinate’ units=’m’/>

</element>
</repetition>

</element>
</repetition>

</schema>

<schema id=’octree’>
<element name=’octree’>
<element name=’oi’ id=’oi’>

<attribute name=’x’ type=’coordinate’ units=’m’/>
<attribute name=’y’ type=’coordinate’ units=’m’/>
<attribute name=’z’ type=’coordinate’ units=’m’/>
<attribute name=’dx’ type=’distance’ units=’m’/>
<attribute name=’dy’ type=’distance’ units=’m’/>
<attribute name=’dz’ type=’distance’ units=’m’/>
<ref id=’triangles’/>
<repetition>

<selection>
<ref id=’oi’/>
<element name=’ol’>

<attribute name=’x’ type=’coordinate’ units=’m’/>
<attribute name=’y’ type=’coordinate’ units=’m’/>
<attribute name=’z’ type=’coordinate’ units=’m’/>
<attribute name=’dx’ type=’distance’ units=’m’/>
<attribute name=’dy’ type=’distance’ units=’m’/>
<attribute name=’dz’ type=’distance’ units=’m’/>
<ref id=’triangles’/>

</element>
</selection>

</repetition>
</element>

</element>
</schema>

Fig. 3. BSML schemas for an octree decomposition of an environment, in XML notation. ‘tr’ stands for a triangle, ‘v’ stands for a vertex, ‘oi’
stands for an internal node, and ‘ol’ stands for a leaf.

the attributes for simplicity, but BSML supports them
in an obvious way. Further, we assume that the
SAX parser inlines external entity references. Char-
acter data is accumulated until the next start of el-
ement or end of element event and delivered as a
d(base,min,max, number, finite, units) terminal,
abbreviated as d (see Appendix 8 for d’s attributes).
Generated code checks character data conformance to
the type constraints. This definition of d is appropriate
since BSML does not support selections based on the
type of character data.

One root non-terminal is initially generated for each
schema block (element, sequence, selection, repeti-
tion), each reference to a primitive type, and each string
of user code. We denote non-terminals by capital let-
ters, the start non-terminal by S, the empty string by ε,
and the root non-terminals generated for the children
of each schema block by X1, X2, . . . , Xn, ne0. Fur-
ther, lower-case Greek letters denote (possibly empty)
sequences of terminals, non-terminals, and, in the next
section, user codes. With this notation in mind, the def-
inition of BSML is in Fig. 6 (more details follow in fu-
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type(distance, double, $, $, true, true, $)
type(coordinate, double, $, $, true, true, $)

schema(triangles,
repetition($, $, $, $,
element($, $, tr,

repetition($, $, 3, 3,
element($, $, v,
attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m))

)
)

)
)

)

schema(octree,
element($, $, octree,
element(oi, $, oi,

attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m)),
attribute($, dx, data(coordinate,$,$,$,$,m)),
attribute($, dy, data(coordinate,$,$,$,$,m)),
attribute($, dz, data(coordinate,$,$,$,$,m)),
ref(triangles),
repetition($, $, $, $,

selection($, $,
ref(oi),
element($, $, ol,

attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m)),
attribute($, dx, data(coordinate,$,$,$,$,m)),
attribute($, dy, data(coordinate,$,$,$,$,m)),
attribute($, dz, data(coordinate,$,$,$,$,m)),
ref(triangles)

)
)

)
)

)
)

Fig. 4. BSML schemas from Fig. 3 in a non-XML notation. $ stands for a missing value, i.e., a suitable default value is supplied by BSML
software.

ture sections). We slightly deviate from a context-free
grammar to allow for the constraints on the number of
repetitions (see next section). To reiterate, a grammar
generated from a schema according to this definition
will undergo several standard equivalence transforma-
tions before a grammar of the form shown in Fig. 5 is
obtained.

The purpose of miscellaneous cleanup is to reduce
the number of non-terminals in the grammar. These
ad-hoc rewritings do not guarantee that the resultant
grammar is minimal in any strict sense. Instead, they
address some inefficiencies that other steps are likely
to introduce. These cleanup steps were also chosen

such that if the grammar were LL(1) before cleanup,
it would remain LL(1) after cleanup. The grammars
shown in this paper have undergone two cleanup rewrit-
ings. Each rewriting is applied until no further rewrit-
ing is possible.

1. Maximum length common suffixes are factored
out. β �= ε is the maximum length common suffix
of a non-terminal A �= S if (a) all of A’s produc-
tions have the form A → αiβ, 1 ≤ i ≤ n, (b) β
is of maximum length, and (c) neither β nor any
αi contain A. If n = 1, A is eliminated from the
grammar and all occurrences ofA in the grammar
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type(distance, double, $, $, true, true, $)
type(coordinate, double, $, $, true, true, $)

schema(triangles,
repetition($, $, $, $,
element($, $, tr,

repetition($, $, 3, 3,
element($, $, v,
attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m))

)
)

)
)

)

schema(octree,
element($, $, octree,
element(oi, $, oi,

attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m)),
attribute($, dx, data(coordinate,$,$,$,$,m)),
attribute($, dy, data(coordinate,$,$,$,$,m)),
attribute($, dz, data(coordinate,$,$,$,$,m)),
ref(triangles),
repetition($, $, $, $,

selection($, $,
ref(oi),
element($, $, ol,

attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m)),
attribute($, dx, data(coordinate,$,$,$,$,m)),
attribute($, dy, data(coordinate,$,$,$,$,m)),
attribute($, dz, data(coordinate,$,$,$,$,m)),
ref(triangles)

)
)

)
)

)
)

Fig. 5. LL(1) grammar corresponding to the octree schemas in Figures 3 and 4. Attributes are omitted for simplicity. Patterns of the form {c}
will be explained in the next section (they are related to repetitions). Non-terminals T , T′, and V are related to triangles; others are related to
octree decomposition of a set of triangles.

are replaced with β (α1 = ε because β is of max-
imum length). We call such non-terminals triv-
ial. Trivial non-terminals are often introduced by
schema-to-grammar conversion rules. If n > 1,
all occurrences ofA on the right-hand sides of all
grammar productions are replaced with Aβ and
the suffix β is deleted from all of A’s produc-
tions. The purpose of this rewriting is to uncover
duplicate non-terminals for the next step.

2. Only one of any two duplicate non-terminals is

retained. Two non-terminalsA �= B are duplicate
if whenever A → α is in the grammar, B → α
is also in the grammar, and vice versa. A is
eliminated if A �= S, B is eliminated otherwise.
This definition is weak, e.g., A and B are not
considered duplicate if A → αAβ and B →
αBβ are in the grammar. However, it suffices for
our purposes.

The expressive power of LL(1) grammars is well
known. In practice, the limiting factor is not that the
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Fig. 6. L-attributed definition of BSML. Schema primitives, in a non-XML notation, are on the left (see Figure 4 for an example) and
their translations to grammar productions are on the right. B1, B2, . . . , Bn are the children of the schema block and X1, X2, . . . , Xn are
the root non-terminals generated for B1, B2, . . . , Bn, respectively. opt is a boolean block attribute; true means that the block is optional.
{B}, {A}, {E}, and {c} are binding codes explained in the next section. References to schema blocks (denoted by ref(id)) are replaced with
root non-terminals of the blocks being referenced. Definitions related to XML attributes are omitted.

grammar is LL(1), but that the grammar is annotated
with user codes. The next section gives two examples
of grammars that are not convertible to LL(1) because
binding codes are present. A more interesting question
is how the expressive power of LL(1) grammars com-
pares to the expressive power of BSML. It is easy to
see that BSML can express a proper subset of LL(1)
grammars. For example, S → s(x), e(y) is a valid
LL(1) grammar, but BSML cannot express it since no
XML document that conforms to this grammar is well-
formed.

Observation 1 Consider a subset of BSML that ex-
cludes repetitions and user codes. We say that BSML
can express a grammar G if a predictive parser gener-
ated from some schema in this restricted subset of BSML
can recognize precisely the language L(G). Clearly,
BSML cannot express any grammarG that is not LL(1)
(by construction of the predictive parser). Further,
BSML cannot express an LL(1) grammar G unless:

1. if d1 and d2 are data terminals in G, then ∀α, β :
S �

+ α, d1, d2, β (data is atomic),
2. if d is a data terminal and S ⇒+ α, d, β is a

derivation in G, then

∀x, γ :
(
[β �

∗ s(x), γ] and [(β ⇒∗ e(x), γ)

implies (∀y, θ : α �
∗ θ, e(y))]

)
(no mixed con-

tents), and
3. if s(x) is a start of element terminal, g is ε or a

data terminal, and S ⇒+ α, s(x), β is a deriva-

tion in G, then
(
[β �

∗ g] and [(y �= x) implies

(∀γ : β �
∗ g, e(y), γ)]

)
; similarly, if e(y) is an

end of element terminal and S ⇒+ α, e(x), β is

a derivation in G, then
(
[α �

∗ g] and [(x �= y)

implies (∀θ : α �
∗ θ, s(x), g)]

)
(proper nesting

of elements).

The first two restrictions are specific to BSML and
easy to relax. However, the last restriction is inherent in
any XML schema language. A good schema language
cannot describe documents that are not well-formed.
These are the necessary conditions, but it is not clear
whether or not they are sufficient. We define schemas
in terms of the schema language, not in terms of LL(1)
grammars, so converting from grammars to schemas is
not considered in this paper.

This section provided an overview of BSML features
and defined BSML in terms of an ‘almost context-free’
grammar. We outlined automatic generation of pre-
dictive parsers that validate XML documents. Further,
we have shown that the descriptive power of BSML is
strictly less than that of an LL(1) grammar where the
terminals are SAX events. The next section extends
validation to perform binding.

5. Binding

Binding is a way to integrate semistructured data
with languages that were not designed to handle it (re-
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quirement 1). Binding can take several forms, depend-
ing on the language. For FORTRAN and C, binding
usually means assigning values to language variables
and calling user-defined code to process these values
(procedural binding). It can also mean writing the data
out in a format understood by the component (format
conversion). For Matlab and SQL, binding entails gen-
erating a script that contains embedded data and pro-
cessing this script by an interpreter (code generation).
The last two kinds of binding can be thought of as
XSLT-like transformations.

We implement all three kinds of binding by L-
attributed definitions. The schema language is ex-
tended by allowing user code to be injected in the
schema. Schema languages that provide binding are
called binding schema markup languages. This section
describes bindings in BSML and gives an example of
their use. Further, we show how arbitrary binding codes
limit the set of schemas supported by BSML. Predic-
tive parsing cannot handle common prefixes in alter-
native productions, so standard techniques are used to
eliminate such common prefixes. We show that these
techniques break when the common prefixes contain
binding codes. This limitation is rarely an issue and the
problems it causes can be remedied by simple modifi-
cations to the schema.

Let c denote an arbitrary string of code. Matching
{c} means executing code c while consuming no in-
put tokens. No assumptions are made about the nature
of c. In particular, c can (and usually does) produce
side effects, so A → {c1}, {c2} and A → {c2}, {c1}
can yield different results. A syntax-directed definition
is a context-free grammar extended by allowing {c j}
on the right-hand sides of productions. For a syntax-
directed definition to be useful in binding, c j must con-
tain references to parts of the document being parsed.
We denote such references by %x, where x is the id or
the name of some element or attribute. When x refers
to an attribute or an element of some primitive type,
%x is a value of the attribute or the data contents of the
element. The type of %x is determined by the corre-
sponding primitive type. When x refers to an element
of a wildcard type, %x is a DOM tree constructed from
all descendants of x, including itself. This feature can
be used for XHTML [21] documentation. The set of at-
tributes (elements) that are available to code c depends
on the placement of c in the syntax-directed definition
and the parsing strategy. A syntax-directed definition
is L-attributed if, for any derivation S ⇒+ α{c}β, any
x referenced in c is defined in all derivations of α. That
is, all attributes (elements) must be defined in a left-

to-right scan before they are referenced. L-attributed
definitions are easy to implement with an LL(1) parser,
but they restrict the set of grammars reducible to LL(1).
Luckily, these restrictions are not important in practice.

Figure 7 gives an example binding schema for a PDP
(see Section 1.1) and Fig. 8 shows how a parser gen-
erated from this schema converts a PDP encoded in
XML to a Matlab script. This script will then be ex-
ecuted by an execution manager (see Section 7). The
same schema, with different binding code, can convert
an XML file to a number of SQL INSERT statements
that record the data in a relational database. The se-
mantics of user codes are not limited to printing, so a
FORTRAN version of this binding can store the PDP in
an array to be processed later. In other words, BSML
bindings are compatible with any execution environ-
ment that processes streams of data (requirement 7).
We use the same approach to convert semistructured
data to relational data, Matlab scripts, and C structures.

The {B}, {A}, and {E} codes in Fig. 7 are gen-
erated for repetitions. They are not necessary for this
example, but are required to enforce that each triangle
has three vertices in the previous example. {B} (be-
gin repetition) initializes the repetition count to zero.
Each repetition has its own stack of counts. {A} (ap-
pend) ensures that the maximum allowed number of
repetitions is not exceeded. {E} (end) checks the min-
imum number of repetitions. Thus, even simple vali-
dation (without binding) is implemented in terms of an
L-attributed definition, not just an LL(1) grammar.

Unfortunately, L-attributed definitions make predic-
tive parsing of certain grammars impossible. User
codes can prevent elimination of left recursion or left
factoring of an L-attributed definition. In the two exam-
ples below, grammars induced from the left-attributed
definitions by removing all user code can be trans-
formed to LL(1). However, the original L-attributed
definitions cannot be transformed to LL(1) without los-
ing the stream semantics of the parser.

Example 1 Consider a left-recursive schema and the
corresponding left-recursive grammar (after eliminat-
ing trivial non-terminals):

<selection id=’s’> <sequence>
<!-- empty -->

</sequence> <sequence>
<code>c</code> <ref id=’s’/>
<element name=’x’> <code>b</code>
</element>

</sequence> </selection>
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Fig. 7. (top) Binding schema for a power delay profile. rds, med, and pp stand for various optional statistics: rms delay spread, mean excess
delay, and peak power. These statistics are ignored in this example. (left) L-attributed definition for a power delay profile. {B}, {A}, and {E}
stand for codes generated by the parser generator to handle repetitions. Otherwise, the meaning of {c} is to print string c, followed by a new line
character, after expanding element references. For clarity, full suffix factoring was not performed, but trivial productions were eliminated. (right)
Predictive parsing table for a power delay profile.

S → ε
S → {c}, S, s(x), {b}, e(x)

This grammar permits a derivation of the form
S ⇒+ {c}k, (s(x), {b}, e(x))k, k > 0. However, code
b cannot be executed before k is known since k exe-
cutions of code c must precede the first execution of
code b. Therefore, no LL(1) parser with stream seman-
tics can parse documents that conform to this schema.
On the other hand, removing {c} from the L-attributed
definition yields a grammar that is easily converted to
LL(1):

S → ε
S → S, s(x), {b}, e(x)
S → ε
S → s(x), {b}, e(x), S

This example is easy to generalize.

Observation 2 Consider a set of all productions for
a non-terminal A. Since any sequence {c1}{c2} can

be rewritten as {c}, where c = c1c2, we can uniquely
represent this set by

A→ {c1}Aα1|{c2}Aα2| · · · |
{cn}Aαn|β1|β2| · · · |βm,

where noβj, 1 ≤ j ≤ m, has a prefix {d}A. Immediate
left recursion can be eliminated from this production
without delaying user code execution if and only if

1. c1 = c2 = · · · = cn = ε (no user code to the left)
or

2.
(
[(βj ⇒∗ γ{d}θ, 1 ≤ j ≤ m) or (αi ⇒∗

γ{d}θ, 1 ≤ i ≤ n)] implies (d = ε)
)

(no user

code to the right) and (c1 = c2 = · · · = cn)
(same user code to the left).

In all other cases, execution of user code must be de-
layed until the last αi is matched.
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<pdp>
<rds>23.0998</rds>
<med>20.5691</med>
<pp>-75.5665</pp>
<ray><time>-4</time><power>-88.0937</power></ray>
<ray><time>-3</time><power>-82.4416</power></ray>
<ray><time>-2</time><power>-78.5346</power></ray>
<ray><time>-1</time><power>-76.2634</power></ray>
<ray><time>0</time><power>-75.5665</power></ray>
<ray><time>1</time><power>-76.4908</power></ray>
<ray><time>2</time><power>-79.2101</power></ray>
<ray><time>3</time><power>-84.0673</power></ray>
<ray><time>24</time><power>-86.4976</power></ray>
<ray><time>25</time><power>-84.3451</power></ray>
<ray><time>26</time><power>-84.3173</power></ray>
<ray><time>27</time><power>-85.963</power></ray>
<ray><time>28</time><power>-87.7374</power></ray>
<ray><time>29</time><power>-88.6525</power></ray>
<ray><time>43</time><power>-89.2007</power></ray>
<ray><time>44</time><power>-83.17</power></ray>
<ray><time>45</time><power>-79.2179</power></ray>
<ray><time>46</time><power>-77.3306</power></ray>
<ray><time>47</time><power>-77.4917</power></ray>
<ray><time>48</time><power>-79.645</power></ray>
<ray><time>49</time><power>-83.6205</power></ray>
<ray><time>50</time><power>-88.7676</power></ray>

</pdp>

M=[
-4 -88.0937
-3 -82.4416
-2 -78.5346
-1 -76.2634
0 -75.5665
1 -76.4908
2 -79.2101
3 -84.0673
24 -86.4976
25 -84.3451
26 -84.3173
27 -85.963
28 -87.7374
29 -88.6525
43 -89.2007
44 -83.17
45 -79.2179
46 -77.3306
47 -77.4917
48 -79.645
49 -83.6205
50 -88.7676
];

Fig. 8. (left) An example PDP in XML. The data corresponds to a simulated channel in the corridor of the fourth floor of Durham Hall, Virginia
Tech. The post processor samples the channel at 1 ns time intervals to match the output of a channel sounder. (right) Matlab encoding of the PDP
on the left, output by the parser generated from the schema in Fig. 7.

Consider a derivation of A that is no longer left-
recursive (i.e., does not have a prefix of {d}A). All
such derivations can be written as

A⇒ +{ci1}, {ci2}, . . . , {cik
},

βj , αik
, . . . , αi2 , αi1 ,

where βj , 1 ≤ j ≤ m, stops left recursion after (at
least) k + 1 steps and 1 ≤ i1, i2, . . . , ik ≤ n rep-
resent the choices for αi in the derivation. Suppose
βj ⇒∗ γ{d}θ orαi ⇒∗ γ{d}θ. The sequence of codes
ci1 , ci2 , . . . , cik

must be executed before code d, but the
LL(1) parser will only determine this sequence after it
has parsed all of βj , αik

, . . . , αi2 , αi1 . Thus, eliminat-
ing left recursion entails delaying user code execution
in all but the trivial cases mentioned above.

Example 2 Left factoring of L-attributed definitions
poses similar problems. Consider the following schema
and L-attributed definition (a more realistic version of
this example would have a repetition in place of the x
element):

<selection> <sequence>
<code>c</code>

<element name=’x’/><element
name=’y’/>

</sequence> <sequence>
<code>d</code>
<element name=’x’/><element
name=’z’/>

</sequence> </selection>

S → {c}, s(x), e(x), s(y), e(y)
S → {d}, s(x), e(x), s(z), e(z)

The decision about whether to execute code c or d
cannot be made until s(y) or s(z) is processed. How-
ever, removing user codes makes this L-attributed def-
inition easy to refactor. Again, we can show a more
general condition.

Observation 3 Consider a set of all productions for a
non-terminal A written as

A→ α1β1|α2β2| · · ·
|αnβn|γ1|γ2| · · · |γm,

such that α′
1 = α′

2 = · · · = α′
n = α �= ε (α′ denotes α

with all user code removed) and α is not a prefix of any
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γ′
1, γ

′
2, . . . , γ

′
m. Let the length of α be maximum and

the lengths of αi, 1 ≤ i ≤ n, be minimum subject to
ne2, in which case this representation of A is unique.
A can be left-factored without delaying execution of
user code if and only if

1. no rewriting ofA in the above form exists (no two
definitions of A share the same prefix, less user
codes), or

2. α1 = α2 = · · · = αn (same codes to the left) and
A → γ1|γ2| · · · |γm can be left-factored.

To summarize, we implement bindings in terms of L-
attributed definitions from parsing theory. These bind-
ings work well in practice, but, in theory, annotating a
schema that can be rewritten in LL(1) form can make
it no longer rewritable in LL(1) form. This difficulty
is inherent in L-attributed definitions. We currently as-
sume that the user is responsible for resolving such con-
flicts. In practice, schemas for PSE data rarely require
complicated grammars. Repetitions take care of most
of the recursive schema definitions. To make LL(1)
parsing possible, troublesome content can be simply
enclosed in an extra XML element, whose start and end
tags disambiguate the transitions of the LL(1) parser.

6. Conversion

Conversion is the cornerstone of a system’s ability to
handle changes and interface mismatches. Conversion
in a PSE helps to retain historical data and facilitates
inclusion of new components. We use change detection
principles from [11], with a few important differences.
First, our goal is not merely to detect changes, but to
make PSE components work despite the changes. Sec-
ond, we detect changes in the schema, not in the data.
The PSE environment must guarantee that the data is
in the right format for the component. The job of the
component is to process any data instance that con-
forms to the right format. Last, change detection and
conversion are local to the extent possible. Locality is a
virtue not only because it allows for stream processing,
but also because it limits sporadic conversions between
unrelated entities.

Similarly to the two previous sections, this section
starts with a comprehensive example. Then, we de-
scribe the core of the conversion algorithm and outline
its limitations. Finally, we extend the initial algorithm
to handle content replacements: unit conversion and
user-defined conversion filters. At this point, it should
not come as a surprise to the reader that most of the

technical limitations of conversion are due to binding
codes, not to the nature of the schema language. There-
fore, the tedious details of handling binding codes are
omitted. The emphasis is on non-technical limitations.
What forms of semantic conversions can be ‘syntac-
tized’ in a schema language? When does such ‘syntac-
tization’ back fire and produce undesired outcomes?

The functional statement of the conversion problem
can be given as follows. Given the actual schema Sa

and the required schema Sr, replace binding codes in
Sa with binding codes in Sr and conversion codes to
obtain the conversion schema Sc. Sc must describe
precisely the documents described by Sa, but perform
the same bindings as Sr.

Example 3 Figure 9 depicts two slightly different
schemas for antenna descriptions in S4W. The schema
at the bottom (actual schema) was our first attempt at
defining a data format for antenna descriptions. This
version supported only one antenna type and exhibited
several inadequate representation choices. E.g., polar
coordinates should have been used instead of Carte-
sian coordinates because antenna designers prefer to
work in the polar coordinate system. Antenna gain
was not considered in the first version because its ef-
fect is the same as that of changing transmitter power.
However, this seemingly unnecessary parameter should
have been included because it results in a more di-
rect correspondence of simulation input to a physical
system.

The schema at the top of Fig. 9 (required schema)
improves upon the actual schema in several ways. It
better adheres to common practices and supports more
antenna types. However, this schema is different from
the actual schema, while compatibility with old data
needs to be retained (requirement 2). Figure 10 illus-
trates how addition of conversion and binding codes to
the actual schema solves the compatibility problem. A
parser generated from the conversion schema in Fig. 10
will recognize the actual data and provide the required
binding.

Following [11], the basic assumption of the conver-
sion algorithm is that the actual schema Sa can be con-
verted to the required schema Sr by some sequence of
‘standard’ edits. This sequence of edits is called an
edit script. Once the possible types of edits are defined
(what we can call a ‘conversion library’), the job of the
conversion algorithm is to (a) find an edit script that
transforms the actual schemaSa to the required schema
Sr and (b) express this edit script as data transforma-
tions, not schema transformations. In other words, the
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<element name=’antennas’>
<repetition>
<element name=’antenna’>

<element name=’id’ type=’string’ min=’1’/>
<element name=’phi’ type=’angle’/>
<element name=’theta’ type=’angle’/>
<element name=’gain’ type=’ratio’ units=’dB’ optional=’true’ default=’0’/>
<code>puts stdout "%id: %phi %theta %gain"</code>
<selection>

<element name=’waveguide’>
<element name=’width’ type=’distance’ units=’mm’/>
<element name=’height’ type=’distance’ units=’mm’/>
<code>puts stdout "waveguide: %width %height"</code>

</element>
<element name=’pyramidal_horn’>
<element name=’width’ type=’distance’ units=’mm’/>
<element name=’rw’ type=’distance’ units=’mm’/>
<element name=’height’ type=’distance’ units=’mm’/>
<element name=’rh’ type=’distance’ units=’mm’/>
<code>puts stdout "pyramidal horn: %width %rw %height %rh"</code>

</element>
</selection>

</element>
</repetition>

</element>

<element name=’antennas’>
<repetition>
<element name=’antenna’>

<element name=’id’ type=’string’ min=’1’/>
<element name=’description’ type=’*’/>
<element name=’x’ type=’coordinate’/>
<element name=’y’ type=’coordinate’/>
<element name=’z’ type=’coordinate’/>
<element name=’waveguide’>

<element name=’width’ type=’distance’ units=’in’/>
<element name=’height’ type=’distance’ units=’in’/>

</element>
</element>

</repetition>
</element>

Fig. 9. Two slightly different schemas for a collection of antennas. The component requires the top schema, but the data conforms to the bottom
schema. The bottom schema (a) represents antenna orientation in Cartesian coordinates, not polar coordinates, (b) lacks antenna gain, (c) requires
antenna descriptions, (d) measures antenna dimensions in inches, not millimeters, and (e) covers only one antenna type. The schema at the bottom
does not contain binding codes because they are irrelevant for this example. All binding codes are in Tcl.

conversion algorithm looks for a systematic procedure
that converts actual data instances that conform to Sa

to the required format Sr. This procedure is expressed
as a conversion schema Sc that has the structure of Sa,
but binding codes from Sr and the conversion library.
Sc is then used to generate a parser that parses data
instances conforming to Sa and acts as if it parsed data
instances conforming to Sr.

Our conversion algorithm supports four kinds of
schema edits:

1. generalization,
2. restriction,

3. reordering, and
4. replacement.

We use these terms in reference to the required
schema, e.g., ‘the required schema is a generalization
of the actual schema.’ Generalization and restriction
of schema trees are similar to insertions and deletions
in sequence alignment problems. Reordering and re-
placement mostly retain their standard meaning, except
we consider replacements of sets of schema blocks, not
individual schema blocks. We first reduce the problem
of converting trees to an easier problem of converting
sequences (see Fig. 11). Sequence conversion (rule Q)
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<element name=’antennas’>
<repetition>
<element name=’antenna’>

<element name=’id’ type=’string’ min=’1’/>
<element name=’description’ type=’*’/>
<element name=’x’ type=’coordinate’/>
<element name=’y’ type=’coordinate’/>
<element name=’z’ type=’coordinate’/>
<code> <!-- convert coordinates from rectangular to polar -->

set _r [expr sqrt(%x*%x+%y*%y+%z*%z)]
set %phi [expr atan2(%y,%x)]
set %theta [expr acos(%z/$_r)]

</code>
<code> <!-- set default gain -->

set %gain 0
</code>
<code>puts stdout "%id: %phi %theta %gain"</code>
<element name=’waveguide’>

<element name=’width’ type=’distance’ units=’mm’/>
<code> <!-- convert units from inches to millimeters -->
set %width [expr 25.4*%width]

</code>
<element name=’height’ type=’distance’ units=’mm’/>
<code> <!-- convert units from inches to millimeters -->
set %height [expr 25.4*%height]

</code>
<code>puts stdout "waveguide: %width %height"</code>

</element>
</element>

</repetition>
</element>

Fig. 10. Actual schema from Fig. 9 (bottom) after inserting conversion and binding codes. This schema describes the actual documents, but
provides the bindings of the required schema (top of Fig. 9). We use r instead of %r because the latter could interfere with another use of the
name r.

in this initial formulation performs all conversions but
replacements. Then, we slightly restrict this definition
to make it practical and generalize rule Q to accom-
modate replacements (unit conversion and user-defined
conversion filters).

The conversion algorithm revolves around the ‘de-
termines’ relation between schemas. Intuitively, an ac-
tual schema Sa should determine a required schema
Sr if any document that conforms to Sa contains suf-
ficient information to construct an ‘appropriate’ doc-
ument that conforms to Sr. ‘Appropriate’ here is ob-
viously a domain-specific notion, and in the absence
of a domain theory, there is no hard and fast mea-
sure of ‘appropriateness’. Given two slightly different
schemas, only a domain expert can tell whether or not
it is meaningful to attempt a conversion from one form
to another. Therefore, our conversion rules should be
viewed as heuristics that we have found to be useful
enough to be supported in a conversion library. They
are neither sound nor complete in an algorithmic sense
(because we do not have an objective, external, mea-

sure of ‘conversion correctness’). Instead, they repre-
sent a tradeoff between soundness and completeness
and should be carefully evaluated for use in a particular
domain. With this disclaimer in mind, version 1 of the
determines relation between Sa and Sr (Sa determines
Sr; Sa 
 Sr) is defined in Fig. 11. We will also find
the notion of schema equivalence useful: we say that
two schemas Sa and Sr are equivalent if Sa 
 Sr and
Sr 
 Sa.

The first rule (Dr) in Fig. 11, for instance, says that
a value of primitive type (‘data’) can be substituted for
another if they have the same base type, their ranges
are compatible, and they have the same units. It en-
sures that all primitive type constraints of Sr are met
by Sa (restriction). Thus, Dr is simply a definition of
type derivation by range restriction (the ‘r’ subscript in
this and other rules stands for restriction; similarly, the
‘g’ subscript stands for generalization). Rules E, P ,
and R state the obvious: two black boxes are compat-
ible if they have compatible wrappers (restriction) and
compatible contents (any conversions). Rule C says
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Fig. 11. Version 1 of the ‘determines’ relation Xa(ida, opta, . . .) � Xr(idr , optr, . . .) between an actual schema block Xa(ida, opta, . . .)
and a required schema block Xr(idr , optr , . . .). We use the non-XML notation from Fig. 4 plus Xa(ida, opta, . . .) and Xr(idr , optr , . . .)
are shortcuts for any schema block (data blocks are never optional and have empty ids). ⇒ means logical implication and ∃! means ‘there exists
a unique.’ The rules are applied top to bottom, left to right. The first matching rule wins (no backtracking). This definition will be later restricted
to make it computable and rule Q will be extended to handle replacements.

that any choice in Sa must uniquely determine some
choice in Sr (restriction). Rule Q enforces that every
block in Sr is uniquely determined by some block in
Sa. This formulation of rule Q ignores extra blocks in
Sa (restriction), permits optional elements in Sr to be
unmatched (generalization), and allows for contents re-
ordering. RuleF deals with references. Only rulesDr,

E, P , C, and R are sound. Rule F looks sound, but it
makes the determines relation not computable. Rule Q
is unsound primarily because it ignores ‘unnecessary’
blocks in Sa.

Rules Eg , Pg , Cg , and Rg handle generalizations
across schema blocks of (possibly) different types.
Their counterparts Er and Pr handle symmetric re-
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strictions (why is there no Cr or Rr?). Rule Cg was
demonstrated in the example above. It is a base case
for rule C. Rule Cg states that one way to generalize a
schema block is to enclose it in a selection, i.e., provide
more choices in Sr than were available in Sa. This rule
is sound. Rules Eg , Pg , and Rg have similar motiva-
tions, but they are unsound. Essentially, we assume that
decorating any black box with any number of wrappers
does not change the meaning of the black box (gener-
alization). Similarly, we assume that wrappers can be
freely removed to expose the black box (restriction).

Consider a sequence of schemas that describes some
physical system in progressively greater detail. Sup-
pose some subsystem is described by a single param-
eter. Common practice is to allocate a single schema
block to this subsystem. What happens when a more
detailed description of this subsystem is incorporated
into the schema? Chances are, the original schema
block allocated to the subsystem will be either (a) aug-
mented with more contents (restriction part of rule Q)
or (b) wrapped in another block. The generalization
and restriction rules handle case (b). However, blind
application of these rules can lead to disaster because
these rules disregard some semantic information. Ex-
amples will make these points clearer.

Example 4 One common trick used to improve wire-
less system performance is space-time transmit diver-
sity (STTD). Instead of a single transmitter antenna, the
base station uses two transmitter antennas separated
by a small distance. PDPs are very sensitive to device
positioning, so two uncorrelated transmitter antennas
can produce widely different signals at the same re-
ceiver location. If the signal from one of the antennas
is weak, the signal from another antenna will probably
be strong, so the overall performance is expected to
improve. Consider how addition of STTD to the ray
tracer affects the schema of the transmitter file. The
original schema is on the left and the new schema (with
STTD support) is on the right. The second antenna is
optional because STTD is not used in every system due
to cost considerations.
(continued on next page)

<element name=’tx’>
<ref id=’coordinates’/>
<element name=’power’ type
=’power’/>
<element name=’freq’ type
=’double’/>

</element>
<element name=’base_station’>

<element name=’tx’>
<ref id=’coordinates’/>
<element name=’power’ type
=’power’/>
<element name=’freq’ type
=’double’/>

</element>
<element name=’tx’ optional
=’true’>

<ref id=’coordinates’/>
<element name=’power’ type
=’power’/>
<element name=’freq’ type
=’double’/>

</element>
</element>

The new ray tracer should be able to work with old
data because it supports one or two transmitter anten-
nas. The old ray tracer should be able to work with
new data, albeit the results will be approximate when
the new data contains two transmitter antennas. Fur-
ther generalizing this example to n transmitter anten-
nas would require a repetition. We support conver-
sion to repetitions, but not from repetitions. For this
example, we could extract any antenna because they
usually have the same parameters and are positioned
close together. However, we cannot extract an arbi-
trary ray from a PDP because the ray with maximum
power is usually intended. Extracting any other ray
would typically produce nonsense results.

Example 5 Havoc can result if rulesEr andEg are ap-
plied to the same element. Element names have seman-
tic meaning, but this particular composition of rules
allows arbitrary renaming of elements. Such renaming
would make the following two schemas equivalent.

<element name=’tx_gain’ type
=’ratio’/>

<element name=’snr’ type=’ratio’/>

Even though both transmitter antenna gain and
signal-to-noise ratio are ratios measured in the same
units (dB), they convey largely different information.
We avoid such blatant mistakes by limiting the appli-
cation of generalization and restriction rules. In par-
ticular, no element can be renamed.

As the last example illustrates, the ‘determines’ rela-
tion in Fig. 11 needs to be restricted. It is helpful to re-
define this relation in terms of a context-free grammar
that describes SaSr. Let the terminals be element(,
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sequence(, selection(, repetition(, ref(,
data(, ), and all element names and other values used
in two schemas under consideration. Let the non-
terminals be the labels of the rules in Fig. 11, a special
start non-terminal A, and intermediate non-terminals
introduced by the rules. We can formally define the
necessary restrictions by limiting the shape of the parse
tree for SaSr. Consider a path R1, R2, . . . , Rn, n > 0,
from some internal node R1 �= A to some internal
node Rn �= A, where all Ri, 1 ≤ i ≤ n, are rule la-
bels. If R is the set of restriction rules and G is the
set of generalization rules, we require that (Ri ∈ R)
implies (Ri−1 /∈ G and Ri+1 /∈ G), i.e., restriction
and generalization rules cannot be applied in sequence.
This restriction of the parse tree disallows renaming
of elements, but does not limit the number of wrap-
pers around black boxes. Bounded determination deals
with the latter problem. We say that Sa k-determines
Sr (Sa 
k Sr) if no path R1, R2, . . . , Rn contains a
substring of (possibly different) generalization (restric-
tion) rules of length greater than k. We leave it up to
the reader to appropriately restrict rule F (reference).
These restrictions make the ‘determines’ relation com-
putable and enforce locality of conversions. As a side
effect, we have shown that the problem of constructing
a conversion schema Sc from the actual schema Sa and
the required schemaSr can be reduced to validation and
binding (parsing and translation). However, schema
conversion need not work with streams of data, so a
parser more powerful than a predictive parser should
be used.

It remains to consider requirements 4 and 5: unit
conversion and user-defined conversion filters (replace-
ments). Let D be a set of all primitive types derived
from double (recall that a primitive type is defined by
the base type, the range of legal values, and a unit ex-
pression). Unit conversion, e.g., converting kg/m 2 to
lb/in2, is the simpler of the two replacements. Both
actual and required unit expressions are converted to
a canonical form (e.g., a fraction of products of sums
of CI units or dB) and then the conversion function is
found. Unit conversions are functions of the form

U : Da → Dr,

where Da, Dr ∈ D are specific primitive types. User-
defined conversion filters are functions of the form

H : Da1 ×Da2 × · · · ×Dan

→Dr1 ×Dr2 × · · · ×Drm,

where n,m > 0 and all Dai, Drj ∈ D, 1 ≤
i ≤ n, 1 ≤ j ≤ m, are specific primitive types.

Arithmetic operators and common mathematical func-
tions are allowed in user-defined conversion filters.
Each user-defined conversion filter is tagged with
element names namea1, namea2, . . . , namean and
namer1, namer2, . . . , namerm that determine when
the filter applies. Such filters define rules of the form

(element($, $, namea1, Da1),
element($, $, namea2, Da2), . . . ,
element($, $, namean, Dan)) 

(element($, $, namer1, Dr1),
element($, $, namer2, Dr2), . . . ,
element($, $, namerm, Drm)).

Both kinds of filters are compiled into codes such
as shown in Fig. 10. Rule Q is modified to take
advantage of replacements. Basically, we are look-
ing for (unique) partitions of the actual schema
blocks Ca1, Ca2, . . . , Can and required schema blocks
Cr1, Cr2, . . . , Crm such that each set of schema blocks
in the required partition is determined by some set of
schema blocks in the actual partition. Determination
can proceed through the rules in Fig. 11, unit conver-
sions, and user-defined conversion filters (if everything
else fails, optional blocks in the required schema can
remain unmatched).

The ultimate goal of the conversion algorithm is to
find a meaningful edit script. However, this goal is im-
possible to achieve without knowledge of the domain.
What happens when several edit scripts exist, i.e., the
problem of finding an edit script is ambiguous? De-
pending on the nature of the ambiguity, we can choose
any edit script, the minimal (in some sense) edit script,
or to refuse to perform conversion. The conversion
algorithm described here either settles for some local
minimum (e.g., rule E is preferred over rule Eg) or
requires uniqueness of conversions (rules C, Cg , and
most of rule Q). Ambiguity remains an open prob-
lem that is unlikely to be solved by a syntactic conver-
sion algorithm. Following the principle of least user
astonishment, we choose to reject most of ambiguous
conversions.

Finally, let us consider how binding codes limit con-
version. We omit formal treatment of the problem and
limit the discussion to an example. It is easy to see that
conversion may require delaying binding code execu-
tion. This should not be surprising since one kind of
conversion is reordering.

Example 6 Consider a required schema with binding
codes (left) and an actual schema (right).
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<sequence>
<element name=’a’ type=’double’/>
<code>c1</code>
<repetition>
<ref id=’b’/>
<code>c2</code>

</repetition>
<sequence>
<sequence>

<repetition><ref id=’b’/>
</repetition>
<element name=’x’ type=’double’/>
<element name=’y’ type=’double’/>

<sequence>

Assume that there exists a user-defined conversion
filter that calculates a from x and y. If we ignore
binding code c2, conversion is clearly local. However,
conversion with c2 present will require delaying all ex-
ecutions of c2 until c1 is executed. The latter can only
happen when the last piece of the schema is matched.
In other words, binding codes should be placed as late
as possible in the schema.

This section presented a number of local conver-
sions appropriate for PSE data. Conversions are car-
ried out by extra codes injected in the actual schema.
The conversion algorithm was built around the ‘deter-
mines’ relation between schemas. The algorithm has
some technical limitations related to binding codes, but
its major limitation is conceptual. Conversion, in the
form presented here, is syntactic. It is based on the
weak semistructured data model, not on the underlying
domain theory (wireless communications). Therefore,
we can only speculate about the causes of differences
between the actual and required schemas. There is
no guarantee that automatic conversion will produce
meaningful results. A stronger data model is necessary
to perform complex, yet meaningful, conversions.

7. Integration with a PSE

A complete PSE requires functionality far beyond
validation, binding, and conversion. BSML ensures
that the components can read streams of XML data, but
it does not support tasks such as scheduling, communi-
cation, database storage and retrieval, connecting mul-
tiple components into a given topology, and computa-
tional steering. We broadly call software that performs
all of these tasks an execution manager. Figure 12 illus-

trates how BSML software and the execution manager
function together.

From a systems point of view, BSML schemas are
metadata and the BSML software is a parser generator.
Recall that the parser generator generates parsers that
perform validation, binding, and conversion functions
(every such generated parser will be able to take input
data and stream it through the component). Both the
data and the metadata are stored in a database. We can
distinguish three kinds of metadata: schemas, com-
ponent metadata, and model instance metadata. Only
one form of metadata (schemas) was described in this
paper. Component metadata contains component’s lo-
cal parameters, such as executable name, programming
language, and input/output port schemas. It is the kind
of metadata used in CCAT. Model instance metadata,
i.e., component topology and other global execution pa-
rameters, serves a purpose similar to GALE’s workflow
specifications. It supports our requirement 3.

A parser is lazily generated for each used com-
bination of component’s input port schema (required
schema) and the schema of the data instance connected
to this port (actual schema). Component metadata spec-
ifies how linking must be performed (e.g., which of the
three kinds of bindings to use). Component instances
are further managed by the execution manager. Model
instance metadata specifies how to execute the model
instance (e.g., the topology and the number of proces-
sors), while model instance data serves as the actual
(data) input to the model instance. To summarize, the
BSML parser generator creates component instances –
programs that take a number of XML streams as in-
puts and produce a number of XML streams as outputs.
This representation is appropriate for management of a
PSE execution environment.

7.1. Status of prototype

In S4W, the execution manager is implemented in
Tcl/Tk and most of the component metadata is hard-
coded. Model instance metadata consists primarily
of the number of processors and a cross-product of
references to model instance data. An (incomplete)
example of such a specification is

‘compute power coverage maps for these three
transmitter locations in Torgersen Hall and show a
graph of BERs with the signal-to-noise ratio vary-
ing from zero to twenty dB in steps of two dB; use
thirty nodes of a 200-node Beowulf cluster.’
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Fig. 12. BSML integration with PSE execution environment. The BSML parser generator creates parsers that handle input ports of each
component. Execution manager controls the execution of a model instance that consists of components, model instance data, and model instance
metadata. Figure 1 partially defines one such instance.

PostgreSQL and the filesystem serve the role of the
database. Large files (e.g., floor plans) are typically
stored in the filesystem and small ones (e.g., PDPs)
are usually imported into PostgreSQL. The parser gen-
erator is written in SWI Prolog. It generates parsers
in Tcl. Our choice of languages was driven by the
existing in-house computational environment and the
ease of prototyping in these languages; their selection
is not the result of a systematic investigation of im-
plementation options. Currently, the generated parsers
are used mostly in the execution manager, visualization
components, and database interfacing components.

8. Discussion

We have described the use of validation, binding, and
conversion facilities to solve data interchange problems
in a PSE. Since all three concepts are closely related
to parsing and translation, viewing application com-
position in terms of data management uncovers well-
understood solutions to interface mismatch problems.
The semistructured data model allows us to syntacti-
cally define several forms of conversions that are usu-
ally implemented by hand-written mediators in PSEs.
Such automation reduces the cost of PSE development
and, more importantly, brings PSEs closer to their ulti-
mate goal – namely, PSE users should be solving their

domain-specific problems, not be beset by the technical
details of component composition in a heterogeneous
computing environment.

Several extensions to the present work are envi-
sioned. First, the expressiveness of schema languages
for data interchange and application composition can
be formally characterized. This will allow us to rea-
son about requirements such as stream processing from
a modeling perspective. Such a study will also lead
to a better understanding of the roles that a markup
language can play in a PSE. Second, dataflow rela-
tionships between components can be made explicit.
BSML guarantees that any component instance be able
to process streams of data, but synchronization issues
are meant to be resolved by the execution manager.
Tighter integration of BSML and composition frame-
works can be explored. Finally, the overall view of a
PSE as a semistructured data management system de-
serves further exploration. For example, it seems pos-
sible to automatically generate workflow specifications
from queries on a semistructured database of simulation
results.

Any good problem solving facility is characterized
by ‘what it lets you get away with.’ BSML is unique
among PSE projects in that it allows a modeler or en-
gineer to flexibly incorporate application-specific con-
siderations for data interchange, without insisting on
an implementation vocabulary for components.
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A BSML DTD

<!ENTITY % boolean "(true|false|t|f|yes|no|y|n)">

<!-- attributes of primitive types:
min - minimum value or string length (inclusive)
max - maximum value or string length (inclusive)
number - true means NaN is not allowed (doubles only)
finite - true means +/-infinity is not allowed (doubles only)
units - units for this type (doubles only)

-->
<!ENTITY % type_attributes "

min CDATA #IMPLIED
max CDATA #IMPLIED
number %boolean; #IMPLIED
finite %boolean; #IMPLIED
units CDATA #IMPLIED

">

<!-- what schemas and schema blocks are composed of -->
<!ENTITY % schema_contents "

(element | sequence | selection | repetition)
">
<!ENTITY % block_contents "

(%schema_contents; | default | ref | code)
">

<!-- a collection of schemas -->
<!ELEMENT schemas ((description)?, (type | schema)*)>
<!ATTLIST schemas>

<!-- primitive type: attributes above and an optional
enumeration of legal values; derivation works by restriction;
builtin base types are: integer, string, double, boolean -->
<!ELEMENT type ((description)?, (values)?)>
<!ATTLIST type

id CDATA #REQUIRED
base CDATA #REQUIRED
%type_attributes;

>
<!-- enumeration of legal values, no value is legal if empty -->
<!ELEMENT values ((value)*)>
<!ATTLIST values>
<!ELEMENT value (#PCDATA)>
<!ATTLIST value>

<!-- schema -->
<!ELEMENT schema ((description)?, (code)*, (%schema_contents;), (code)*)>
<!ATTLIST schema

id CDATA #REQUIRED
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>

<!-- an element can contain either
(a) character data of a primitive type (type attribute is present),
(b) zero or more schema blocks (type attribute is absent), or
(c) when type=’*’, any contents.

-->
<!ELEMENT element ((description)?, (attribute)*,

((values)? | (%block_contents;)*))>
<!ATTLIST element

name CDATA #REQUIRED
id CDATA #IMPLIED
optional %boolean; "false"
type CDATA #IMPLIED
%type_attributes;
default CDATA #IMPLIED

>

<!-- an attribute must contain a value of some primitive type -->
<!ELEMENT attribute ((description)?, (values)?)>
<!ATTLIST attribute

name CDATA #REQUIRED
id CDATA #IMPLIED
type CDATA "string"
%type_attributes;
default CDATA #IMPLIED

>

<!-- a sequence is just a grouping, for convenience -->
<!ELEMENT sequence ((description)?, (%block_contents;)*)>
<!ATTLIST sequence

id CDATA #IMPLIED
optional %boolean; "false"

>

<!-- a selection denotes a mutually exclusive choice of contents -->
<!ELEMENT selection ((description)?, (%block_contents;)+)>
<!ATTLIST selection

id CDATA #IMPLIED
optional %boolean; "false"

>

<!-- a repetition denotes [min..max] repetitions of contents -->
<!ELEMENT repetition ((description)?, (%block_contents)*)>
<!ATTLIST repetition

id CDATA #IMPLIED
optional %boolean; "false"
min CDATA "0"
max CDATA "inf"

>
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<!-- a reference to some block id in this schema,
or to an id of a different schema -->
<!ELEMENT ref ((description)?)>
<!ATTLIST ref

id CDATA #REQUIRED
>

<!-- user code; language and component attributes facilitate
schema reuse (different components can have the same schema,
but different binding codes) -->
<!ELEMENT code (#PCDATA)>
<!ATTLIST code

language CDATA #IMPLIED
component CDATA #IMPLIED

>

<!-- default contents must conform to BSML schema block -->
<!ELEMENT default ANY>

<!-- XHTML usually goes here -->
<!ELEMENT description ANY>
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