
Scientific Programming 11 (2003) 125–131 125
IOS Press

An OpenMP compiler benchmark

Matthias S. Müller
HLRS, University of Stuttgart, Allmandring 30, D-70550 Stuttgart, Germany
Tel.: +49 711 685 8038; Fax: +49 711 6787 626; E-mail: mueller@hlrs.de

Accepted January, 2002

Abstract. The purpose of this benchmark is to propose several optimization techniques and to test their existence in current
OpenMP compilers. Examples are the removal of redundant synchronization constructs, effective constructs for alternative
code and orphaned directives. The effectiveness of the compiler generated code is measured by comparing different OpenMP
constructs and compilers. If possible, we also compare with the hand coded “equivalent” solution. Six out of seven proposed
optimization techniques are already implemented in different compilers. However, most compilers implement only one or two of
them.

1. Introduction

Implementations of OpenMP are available on almost
every shared memory platform. The portability of ap-
plications with OpenMP directives is therefore one of
the strong points of this standard. Others are the ad-
vantages of shared memory programming in general:
it allows an incremental approach to a fully parallel
program, and it is also possible to switch between se-
rial and parallel execution during runtime. This avoids
the overhead introduced by the parallelism whenever a
serial execution is faster.

A disadvantage of OpenMP is, that you need a com-
piler to generate the parallel code. Since the goal of
parallel programming is to achieve higher performance,
the further acceptance of OpenMP will strongly de-
pend on compiler optimization techniques especially
in the field where OpenMP has its possible benefits
as described above. The importance of benchmarks
to measure performance is reflected by many applica-
tion benchmarks [8,10,9,11] and also the well known
OpenMP Microbenchmarks [1]. To fully evaluate the
quality of optimizing compilers a combination of both
has to be used [3]. Microbenchmarks measure spe-
cific constructs directly, and can thus be used to drive
the development of OpenMP environments. The fo-
cus of the OpenMP Microbenchmarks [1] is the run-
time library, while this benchmark concentrates on the
OpenMP compiler itself. It tries to avoid the archi-

tectural dependency of a direct measurement of syn-
chronization and scheduling times and measures iso-
lated OpenMP related optimizations directly, without
introducing the complex behavior of a complete appli-
cation. The focus of a runtime library benchmark [1,7]
are questions like the scaling behavior of a barrier or
reduction directive. Within this compiler benchmark
the focus is whether overhead due to unnecessary syn-
chronization or parallelization can be totally avoided.

2. Benchmarks

To test whether an optimization technique is already
integrated in current compilers and to judge the effi-
ciency of the proposed manual solutions, several com-
pilers have been used. It should be noted that the major
motivation for this survey is not to judge the compiler
quality, but to check whether is is reasonable to expect
the incorporation of the proposed techniques into the
compiler. Due to the rapid development the results pre-
sented here are just an incomplete snapshot and results
of different compiler versions may vary strongly.

The compilers from PGI [6] (version 3.4), Hitachi,
NEC, SGI (version 7.30) and SUN (cc version 5.3,
f90 version 6.2) are compilers producing native code,
whereas the Omni [4] (Version 1.3) and guide [2] (Ver-
sion 4.0) compiler are front ends to native compilers.

With one exception all constructs use the work load
of Table 1. The fields a, b and c are double precision

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

126 M.S. M̈uller / An OpenMP compiler benchmark

0.1

1

10

100

1000

1 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

for construct
scalar code

if clause
manual solution

0.1

1

10

100

1000

1 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

for construct
scalar code

if clause
manual solution

Fig. 1. Performance of alternative code in million iterations per
second vs. loop length. The codes of the Guide compiler delivers
the same performance as the manual solution with Fortran (bottom).
With C the performance of the compiler generated code is worse
(top).

arrays. The outer loop count is adjusted to guarantee
a minimum runtime with a minimum execution count
of ten repetitions. Some magic tries to avoid that the
optimizer removes the outer loop. Here a zero is added
to some array elements. The value of offset is read
from file or passed as command line argument. Care
has been taken that the optimization is not affected by
the different aliasing prerequisites of Fortran and C.
The inner loop count length is changed to measure
the size dependent performance. This is not only im-
portant for the constructs that allow alternative code
generation for small loop counts, but also provides use-
ful informations for other situations. It shows where the
parallelization efforts pays of, and whether or not there
is a memory bottleneck. Where parallel and scalar per-
formance is compared, the inner loop count is fixed, i.e.
the iterations per thread vary. Since only relative per-
formance is relevant, the performance is given in mil-
lion loop iterations per second in this paper (see Figs 1

Table 1
Workload of the benchmark loops

C

for (n = 0; n < count; n + +) {
for (i = 0; i < length; i + +) {

a [i] = b [i] + c [i];
}
/∗ fake the optimizer: ∗/
b [n] + = offset∗a [n];
c [n] + = offset∗a [n];

}
Fortran

DO 10 n = 1, count
DO 20 i = 1, length

a (i) = b (i) + c (i)
20 CONTINUE

C fake the optimizer:
b (n) = b (n) + offset∗ a (n)
c (n) = c (n) + offset∗ a (n)

10 CONTINUE

and 3). Where the overhead is more interesting than the
performance, the absolute time spent inside the outer
loop is measured (see Fig. 2). As long as the overhead
is large enough, this time should reach a constant value
for a short inner loop length. This time is taken as the
overhead time. A comparison with the simple scalar
loop gives an estimation of the clock accuracy.

2.1. Overhead of thread start-up

This part of the benchmark first of all checks whether
Fortran and C compiler use the same thread implemen-
tation. It also checks how expensive it is to re-open
a parallel region, providing hints whether threads are
closed at the end of a parallel section or put into some
form of waiting state. Most implementations seem to
use the later approach and create the threads at the start
of the program or first parallel section, and close them
at the end of program. The SUN C compiler is the
only example, where re-opening a parallel region is
much more expensive than synchronizing and re-using
existing threads.

In principle there should be no difference in perfor-
mance between the two languages. Table 2 shows, that
the overhead of thread creation is mostly dominated
by the architecture. There are only small differences
between Fortran and C compilers. Under certain cir-
cumstances the Hitachi compiler fails to create efficient
solutions for parallel constructs, which makes some of
the later tests not applicable. E.g. there is no benefit
from parallel region merging, since two parallel
do construct are more efficient than twofor constructs
merged in one parallel region.

M.S. M̈uller / An OpenMP compiler benchmark 127

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

1 1e+01 1e+02 1e+03 1e+04

t
[s

]

size

Orphaned Directives C

scalar code
scalar code with function call

orphaned called from parallel region
orphaned called from serial region

manual solution

Fig. 2. Overhead of orphaned directives for the SGI compiler.

Table 2
Overhead of parallel for construct, compared to for
construct with or without barrier

Language C
parallel for for + barrier for

Compiler [µs] (cycles) [µs] (cycles) [µs] (cycles)
PC PGI 2.2 (2200) 2.5 (2500) 1.5 (1500)
PC Omni 3.0 (3000) 1.8 (1800) 1.2 (1200)
HP guide 15 (8250) 7.0 (3850) 4.0 (2200)
SGI 11 (3200) 11 (3500) 9 (2650)
SUN 180 (140000) 4.2 (3200) 3.3 (2500)
SR8K 1.9 (490) 2.4 (600) 1.7 (560)
SX5 − − −
Language Fortran

parallel for for + barrier for
Compiler [µs] (cycles) [µs] (cycles) [µs] (cycles)
PC PGI 2.6 (2600) 2.4 (2400) 1.5 (1500)
PC Omni 3.0 (3000) 1.6 (1600) 1.1 (1100)
HP guide 14 (7700) 6.7 (3700) 3.7 (2000)
SGI 10 (3000) 11 (3300) 8.7 (2600)
SUN 8.3 (6200) 4.4 (3300) 3.2 (2400)
SR8K 2.0 (500) 3.2 (800) 2.4 (600)
SX5 22 (5500) 10 (2500) 7.4 (1850)

2.2. Alternative code

Once the overhead to create threads is known, the
programmer can decide to avoid the overhead of par-
allel execution for small work load. For this purpose
OpenMP contains theif clause. A parallel region with
the if clause is only executed in parallel if the condi-
tion is true, otherwise the code is serialized. This dy-
namic behavior can be used to maximize performance.
The goal is to have the performance of the serial code if
it is faster than the parallel. To decide whether this goal
is achieved the performance of the serial and parallel
version is supplied. In addition, a manual solution is
shown in Table 3. It is expected that the if clause is
not much more than a convenient short hand notation
for this manual solution. However, the exact definition

Table 3
Manual solution for alternative code

C

if (condition) {
#pragma omp parallel

{
/∗ code ∗/

}
}
else {

/* code */
}

Fortran
IF (condition) THEN

!$OMP PARALLEL
C CODE

!$OMP END PARALLEL
ELSE

C CODE
END IF

in the OpenMP standard [5] is that the code is “serial-
ized”: it should behave as if the construct is executed by
a team of threads of size one. The difference between
serial and serialized execution affects the behavior of
OpenMP runtime library calls and outlining issues like
private variables. This may introduce some over-
head and the compiler needs to analyze to what extend
the code makes use of constructs that behave different
in serial and serialized execution.

Many compilers don’t perform this optimization (see
Tables 6 and 7. One example are the KAI compilers,
where the KAI Guidef77 compiler produces code that
is competitive with the manual solution, whereas the
Guidec compiler produces code that is much slower
(see Fig. 1).

One disadvantage the manual solution is the result-
ing code bloat. However, the same argument is true
for techniques like inlining, where methods have been
developed to balance speed and code size.

2.3. Orphaned directives

An orphaned directive is an OpenMP directive that
does not appear in the lexical extent of a parallel con-
struct, but lies in the dynamic extent. If such a work-
sharing construct is not enclosed dynamically within a
parallel region the OpenMP standard states “it is treated
as though the thread that it encounters it were a team
of size one”. This allows the user to write code that
can be used in a parallel and serial context. This could
be useful for library routines that can run in parallel if
called from within a parallel region. One question is,

128 M.S. M̈uller / An OpenMP compiler benchmark

Table 4
Manual solution for orphaned directives

C
if (omp in parallel()) {

#pragma omp for private (i)
for (i=0; i<length; i++) {

a [i] = b [i] + c [i];
}

}
else {

for (i=0; i<length; i++) {
a [i] = b [i] + c [i];

}
}

Fortran
IF (omp in parallel()) THEN

! $OMP DO
DO 10 i=1, length

a (i) = b (i) + c (i)
10 CONTINUE
! $OMP END DO

ELSE
DO 20 i=1, length

a (i) = b (i) + c (i)
20 CONTINUE

END IF

whether there will be a overhead if the code is called
from a serial context.

Several versions are compared against each other:

scalar: Performance of scalar code.
scalar with function call: Performance of scalar code

with function call. The called function contains
the working loop. This is done, because many
compiler put parallel regions inside functions.
This version checks whether a potential perfor-
mance reduction is caused by the introduced ad-
ditional call.

orphaned parallel: The working loop contains or-
phaned OpenMP directives. The loop is called
from a parallel region with a team of one thread.

orphaned serial: The working loop contains orphaned
OpenMP directives. The loop is called from a
serial region.

orphaned manual: Finally, the hand coded version of
Table 4 is used.

All tests are performed with the number of threads
set to one. Any performancedifferences between scalar
and parallel execution should therefore be due to the
overhead of the implementation. The compiler should
generate code that is faster or equal to the manual solu-
tion, depending on whether or not a call to the OpenMP
runtime library function omp in parallel is nec-
essary to check if the routine is called from a parallel
region.

0.1

1

10

100

1 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

SX5 native

scalar copy
OpenMP copy

Fig. 3. Performance of copy operations in million iterations per sec-
ond vs. loop length. OpenMP directives may help to optimize serial
code. Both versions run with one thread. The OpenMP directive
allows to vectorize the code.

With the PGI and SUN compilers it makes no dif-
ference whether the working function is called from a
serial region or from a parallel region with a team of
one thread. With the exception of the Hitachi com-
piler, the manual solution always results in the best
performance, although there is an additional call to
omp_in_parallel(). Figure 2 shows that the over-
head of orphaned directives is always huge.

In principle the compiler could generate code with-
out any overhead. For any function foo with or-
phaned directives, it could generate an additional func-
tion foo_scalar containing serial code and a func-
tion foo_parallel with parallel code. Depending
whether the function foo is called inside or outside a
parallel region the corresponding function call is sub-
stituted. The function foo with a solution equal to
the manual solution could be provided to maintain link
compatibility.

2.4. Removal of redundant synchronization

Three tiny examples check whether the OpenMP
compiler removes redundant synchronization.

2.4.1. Parallel region merge
This is simply a concatenation of two parallel

for directives. The execution time of one parallel
region with two work-sharing constructs is compared
to the time for two parallel regions with one construct
each. An optimizing compiler should merge the two
parallel regions. It is surprising that the Guide C com-
piler seems to implement this in contrast to the Guide
F77 compiler.

M.S. M̈uller / An OpenMP compiler benchmark 129

Table 5
Overhead of orphaned directives in µs for various compilers

Compiler scalar scalar + orphaned orphaned manual
f-call from parallel from serial solution

PGI (C) 0.11 0.12 0.20 0.20 0.15
PGI (Fortran) 0.10 0.11 0.19 0.19 0.14
OMNI (C) 0.09 0.10 0.35 0.23 0.14
OMNI (Fortran) 0.10 0.11 0.25 0.35 0.16
HP guide (C) 0.05 0.04 2.24 0.47 0.19
HP guide (Fortran) 0.09 0.07 0.59 2.25 0.37
SGI (C) 0.06 0.11 2.24 1.48 0.18
SGI (Fortran) 0.12 0.13 1.49 2.28 0.21
SUN (C) 0.05 0.05 0.43 0.39 0.15
SUN (Fortran) 0.15 0.17 0.52 0.53 0.24
SR8K (C) 0.17 0.24 0.54 0.43 0.42
SR8K (Fortran) 0.17 0.30 0.36 0.40 0.40
SX5 (Fortran) 0.11 0.33 10.6 9.57 2.46

Table 6
Summary of optimization techniques of native compilers

Compiler SUN SGI Hitachi NEC
Version C F77 C F77 C F77 C F77
Optimization
Alternative code competitive with manual solution no no yes yes n.a. n.a. − yes
Optimal Orphaned Directives no no no no no no − no
Orphaned Direct. competitive with manual solution no no no no yes yes − no
Parallel Region Merge no no yes yes n.a. n.a. − no
implicit NOWAIT due to independent blocks no no no no no no − yes
implicit NOWAIT due to end of region yes yes no no n.a. n.a. − yes
OpenMP directives used as optimization hint no no no no yes yes − yes

2.4.2. Removal of implicitnowait at end of region
The third is a for construct directly embedded in

a parallel region. It is checked whether there is
a difference between this version, a direct parallel
for and a for construct with a nowait clause. An
optimizing compiler should produce the same code for
all three versions. Since there is no code between the
for loop and the end of the parallel region, there is no
need for more than one barrier. In the case of C++
there might be a lot of side effects, because variables
go out of scope at the end of the for construct and
destructors are called. For Fortran and C the question is,
whether the information stored in these variables is still
needed by other threads. Since all these variables are
private by default, this is only possible if the content
of a private variable is exposed to another thread. It
is currently an open question whether this is legal in
OpenMP. Nevertheless, the compiler still can analyze
the code and remove the barrier if it is not required. The
Guide and NEC Compiler show the desired behavior.

2.4.3. Removal of implicitnowait between
independent blocks

It consists of two for constructs, that work on in-
dependent arrays. If the compiler detects that the two

basic blocks are independent of each other, it may re-
move the barrier between the two loops. To increase
the difference between a version with and without bar-
rier a load imbalance is introduced in the first loop, that
is balanced by a load imbalance in the second loop:

!$OMP DO PRIVATE(i)
DO 20 i$=$1, length

IF (i .LT. length/2) THEN
C Additional work for first half

a(i) $=$ b(i)$+$c(i)
& $+$offset*sin(cos(b(i)))

ELSE
a(i) $=$ b(i)$+$c(i)

END IF
20 CONTINUE
!$OMP END DO
C Same loop with additonal
C work on second half
!$OMP DO PRIVATE(j)

DO 30 j$=$1, length
IF (j .LT. length/2) THEN

d(j) $=$ e(j)$+$f(j)
& $+$offset*sin(cos(e(j)))

ELSE
d(j) $=$ e(j)$+$f(j)

130 M.S. M̈uller / An OpenMP compiler benchmark

Table 7
Summary of optimization techniques of third part compilers

Compiler Guide Omni PGI
Language C F77 C F77 C F77
Optimization
Alternative code competitive with manual solution no yes no no almost almost
Optimal Orphaned Directives no no no no no no
Orphaned Direct. competitive with manual solution no no no no almost almost
Parallel Region Merge yes no no no yes yes
implicit NOWAIT due to independent blocks no no no no no no
implicit NOWAIT due to end of region yes yes no no no no
OpenMP directives used as optimization hint no no no no no no

& $+$offset2*sin(cos(e(j)))
END IF

30 CONTINUE
!$OMP END DO

The removal of this barrier requires a detailed code
analysis. It is no surprise that the front end compilers
(Omni and Guide) do not implement this, since it re-
quires a detailed knowledge of the processor and archi-
tecture to perform possible optimizations. The NEC
compiler shows that a native compiler can perform op-
timizations for this case, especially if the OpenMP di-
rectives are mapped to vendor specific directives, that
will trigger parallelization and vectorization at the same
time.

2.5. Benefit of openMP directives for other
optimizations

This is maybe the most interesting test. The idea
behind it is, that OpenMP directives may help the com-
piler to generate better code because he knows that cer-
tain preconditions are fulfilled. In that sense OpenMP
could serve as a kind of portable pragmas for optimiza-
tion. As an example workload we use the loop

DO 20 i$=$1, length
a(idx(i)) $=$ a(idx(i))$+$b(i)

20 CONTINUE

Because the compiler does not know,howidx(i) looks
like, he cannot assume that the different iterations of
the loop are independent. The situation is different,
if there is an #pragma omp parallel for. If
the loop can be executed in parallel it is also subject
to optimization techniques like software pipelining or
vectorization. For large loop counts the performance
of the parallel version executed on one thread should
therefore exceed the performance of the serial code. Of
course, the compiler can only trust the promise of the
directive if OpenMP support is activated by the user. An
incorrect OpenMP directive could cause the sequential

version to behave differently from the one thread paral-
lel version. During the tests there were only two cases
(native compiler on Hitachi SR8000 and NEC SX5)
where the performance of the loop with OpenMP direc-
tives was increased (see Fig. 3). However, a possible
further cause might be, that it is impossible to increase
the performance of a loop with indirect addressing on
the tested architecture.

3. Conclusion

This small benchmark contains a collection of vari-
ous optimization techniques that might be implemented
in OpenMP compilers. The focus was to avoid architec-
ture dependent techniques on one hand and to concen-
trate on features that are crucial to achieve maximum
performance, especially in areas where the goal is to
avoid the parallel overhead whenever a scalar execution
is faster.

Both Fortran and C compilers lack many of the op-
timization techniques presented in this paper. How-
ever, six from seven proposed optimization techniques
are already implemented in different compilers. This
shows that it is a realistic demand to ask for the im-
plementation of these techniques. The only feature
that is not currently implemented in any compiler is
an optimal solution for orphaned directives. In the
case of alternative code generation and orphaned di-
rectives, the definition of “serialized” in the OpenMP
standard [5] is one reason that makes it difficult for
the compiler to generate efficient code. In both areas
huge improvements are necessary to increase the per-
formance of applications and parallel libraries. With
the upcoming multi-threaded processors and the result-
ing reduced general thread overhead, the elimination of
unnecessary overhead will become even more impor-
tant, because they open the possibility for fine grained
multi-threaded programming.

M.S. M̈uller / An OpenMP compiler benchmark 131

Acknowledgments

I would like to thank Sanjiv Shah (Intel) and Holger
Berger (NEC) for their helpful comments and fruitful
discussions.

References

[1] J.M. Bull, Measuring synchronization and scheduling over-
heads in OpenMP, In First European Workshop on OpenMP,
1999.

[2] http://www.kai.com.
[3] Kazuhiro Kusano, Shigehisa Satoh, and Mitsuhisa Sato, Per-

formance evaluation of the omni openmp compiler, In WOM-
PEI 2000, Tokyo, Japan, Oct. 2000.

[4] OMNI OpenMP compiler, http://pdplab.trc.rwcp.or.jp/Omni.
[5] OpenMP Architecture Review Board, OpenMP Specifications,

http://www.openmp.org/specs.

[6] http://www.pgroup.com.
[7] Achal Prabhakar, Vladimir Getow, and Barbara Chapman.

Performance comparisons of basic openmp constructs, in:
High Performance Computing, 4th International Symposium,
ISHPC 2002, Hans P. Zima, Kazuki Joe, Mutsuhisa Sata and
Yoshiki Seo adn Massaki Shimasaki, eds, vol. 2327 of Lecture
Notes in Computer Science, pp. 413–424, Springer, 2002.

[8] RWCP, Openmp version of NAS parallel benchmarks,
http://pdplab.trc.rwcp.or.jp/Omni/benchmarks/NPB/index.html.

[9] Mitsuhisa Sato, Kazuhiro Kusano, and Sigehisa Satoh,
Openmp benchmark using PARKBENCH, in: Proceeding of
Second European Workshop on OpenMP, Edinburgh, Scot-
land, U.K., Sept. 2000.

[10] SPEC, SPEComp 2001, http://www.spec.org.
[11] Daisuke Takahashi, Mitsuhisa Sato and Taisuke Boku, Perfor-

mance evaluation of the hitachi sr8000 using openmp bench-
marks, in: High Performance Computing, 4th International
Symposium, ISHPC 2002, Hans P. Zima, Kazuki Joe, Mut-
suhisa Sata and Yoshiki Seo adn Massaki Shimasaki, eds,
Vol 2327 of Lecture Notes in Computer Science, pp 390–400.
Springer, 2002.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

