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Abstract. Template methods have opened up anew way of building C++ libraries. These methods allow thelibrariesto combine
the seemingly contradictory qualities of ease of use and uncompromising efficiency. However, libraries that use these methods
are notorioudly difficult to develop. This article examines the benefits reaped and the difficulties encountered in using these
methods to create a friendly, high performance, tensor library. We find that template methods mostly deliver on this promise,

though requiring moderate compromises in usability and efficiency.

1. Introduction

Tensorsareused in anumber of scientific fields, such
as geology, mechanical engineering, and astronomy.
They can be thought of as generalizations of vectors
and matrices. Consider the rather prosaic task of mul-
tiplying a vector P by a matrix T', yielding a vector

Qy = | Tya Tyy Ty= Py
QZ TZ.’E sz TZZ PZ

If we write out the equations explicitly then
Qo = Tpa Py + Toy Py + Ty P,
Qy =Ty Py + Tyy Py + Ty P,
Q:=TouPr +ToyPy + T, P,.
Alternatively, we can writeit as

Qe = Z Ty; P
j=x,y,z

Qy = Z Ty; P
Jj=x,y,z

Qz: Z szPj
j=x,y,z

or even moresimply as
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Qi = Z T;; Pj,
j=zy,z

where the index i is understood to stand for z, y, and
z inturn. In this example, P; and (); are vectors, but
could also be called rank 1 tensors (because they have
oneindex). T3; isamatrix, or arank 2tensor. Themore
indices, the higher the rank. So the Riemann tensor
in General Relativity, R;;x;, isarank 4 tensor, but can
also be envisioned as a matrix of matrices. There are
more subtleties involved in what defines a tensor, but
it is sufficient for our discussion to think of them as
generalizations of vectors and matrices.

Einstein introduced the convention that if an index
appears in two tensors that multiply each other, then
that index isimplicitly summed. This mostly removes
the need to write the summation symbol >, . .
Using this Einstein summation notation, the matrix-
vector multiplication becomes simply

Qi =T P;.

Of course, now that the notation has become so nice
and compact, it becomes easy to write much more com-
plicated formulas such as the definition of the Riemann
tensor

Ry = dGyy — dGiy; + GGy —

GGl

mj*

There are some subtle differences between tensors
withindicesthat are upstairs(like7"*), and tensorswith
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indices that are downstairs (like T7;), but for our pur-
poses we can treat them the same. Now consider eval-
uating this equation on an array with N points, where
N is much larger than the cache size of the processor.
We could use multidimensional arraysand start writing
lots of loops

for (i nt n=0; n<N; ++n)
for(int i=0;i<3;++i)
for(int j=0;j<3;++)
for (i nt k=0; k<3; ++k)
for(int |=0;I1<3;++l)

{
RECTLITTKITNI N =dG i J[j1[KI[ITIn]
- dd i [II0KILiTIN];
for(int nFO; Mk3; ++m
RECTLITIKITNIIn] +=E i [j]1[Kk][n]
*Gillm([1][n]
- Gm[I][Kk][n]
*Gillm[jlln];

}

Thisisadull, mechanical, error-pronetask, exactly the
sort of thing we want computersto dofor us. Thisstyle
of programming is often referred to as C-tran, since it
is programming in C++ but with all of the limitations
of Fortran 77. We would like to write something like
Ri,j,k, 1)=dGi,j, k1) - dG&i,l,k,j)

+ Gmj,k*Gi,ml)- Gml, k)

* Qi mij);
and have the computer do al of the summing and iter-
ating over the grid automatically.

Thereareanumber of librarieswith varying amounts
of tensor support [1-3,8-11]. With one exception,
they are all either difficult to use (primarily, not pro-
viding implicit summation), or they are not efficient.
GRPP [8] solves this conundrum with a proprietary
mini-language, making it difficult to customize and ex-
tend.

We have written a program to simulate neutron star
collisionsin General Relativity. It uses tensors exten-
sively, so we have developed alibrary to simplify their
use. In this paper, we start by describing our first, sim-
ple design for a tensor class within C++. We pro-
gressively refine the overall design to improve the per-
formance, while keeping most of the usability intact.
Then we describe the details of implementing natural
notation for tensor arithmetic within this final design.
We follow with asurvey of different compilers, testing
how proficient they are at compiling and optimizing the
library. We end with alook at a more generic version
of the library and how it affects performance.

2. Design choicesfor tensor libraries

There are a few different ways that a tensor library
can be constructed. Ideally, we want a solution that is
easy to implement, easy to use, and efficient.

2.1. Smpleclasses

The most straightforward way to proceed isto make
aset of classes(Tensorl, Tensor2, Tensor3, etc.) which
simply contains arrays of doubles of size N. Then we
overloadtheoperators+, — and * to performthe proper
calculation and return a tensor as a result. The well
known problemwiththisisthat it isslow and amemory
hog. For example, the expression

will generate code equivalent to

doubl e *tenpl=new double [N;
for (i nt n=0; n<N; ++n)
for(int i=0;i<3;++i)
templ[n]=D{i][n]*E[i][n];
doubl e *tenp2[ 3]
t enp2[ 0] =new doubl e[ N] ;
temp2[ 1] =new doubl e[ N] ;
tenp2[ 2] =new doubl e[ N] ;
for (i nt n=0; n<N; ++n)
for(int i=0;i<3;++i)
temp2[i][n]=Ci][n]*tenpl[n];
doubl e *tenp3[ 3]
t enp3[ 0] =new doubl e[ N ;
tenp3[ 1] =new doubl e[ N] ;
t enp3[ 2] =new doubl e[ N ;
for (i nt n=0; n<N; ++n)
for(int i=0;i<3;++i)
temp3[i][n]=B[i][n]+temp2[i][n];
for (i nt n=0; n<N; ++n)
for(int i=0;i<3;++i)
Ali][n]=temp3[i][n];
delete[] tenpl;
delete[] tenp2[O0];
delete[] tenp2[1];
del ete[] temp2[2];
delete[] tenp3[O0];
delete[] temp3[1];
delete[] tenp3[2];

This required three temporaries (templ = D, E;),
(temp2; = C; * templ), (temp3; = B; + temp2;))
requiring 7 N doubles of storage. None of these tem-
poraries disappear until the whole expression finishes.
For expressions with higher rank tensors, even more
temporary space is needed. Moreover, these tempo-
raries are too large to fit entirely into the cache, where
they can be quickly accessed. The temporarieshaveto
be moved to main memory as they are computed, even
though they will be needed for the next calculation.
With current architectures, the time required to move
al of this data back and forth between main memory
and the processor is much longer than the time required
to do all of the computations.
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2.2. Expression templates

Thisisthe sort of problem for which template meth-
ods are well-suited. Using expression templates [13],
we can write

A )=B(i )+C(i )* (DG )* EG ));
and have the compiler transform it into something like

for(int n=0; n<N; ++n)
for(int i=0;i<3;++i)

{
Alil[n]=B[i][n];
for(int j=0;]j<3;++j)
} ALil[n]+=Ci1[n]*(@OjI[n]l*E[j]1[n]);

The important difference hereis that thereisonly a
singleloop over theN points. Thelargetemporariesare
no longer required, and the intermediate results (like
DijlIn]*E[j][n])canstay inthe cache. Thisis
a specific instance of a more general code optimiza-
tion technique called loop-fusion. It keeps variables
that are needed for multiple computationsin the cache,
which hasmuch faster accessto the processor thanmain
memory.

This will have both nice notation and efficiency for
this expression. What about a group of expressions?
For example, consider inverting a symmetric, 3 x 3
matrix (rank 2 tensor) A. Because it is small, a fairly
good method isto do it directly

det =A(0, O)*A(L, 1)* A2, 2) + A(L, 0)*A(2, 1)* A0, 2)
+ A@2, 0)* A0, 1)*A(L, 2) - A®, 0)*A@2, 1)*A(l, 2)
- AL, 0)*A0, 1)*A(2, 2) - A(2, 0)*A(L, 1)*A(0, 2);
1(0,0)= (A(L, 1)*A@2, 2) - AL, 2)*A(l, 2))/ det ;
10, 1)= (A, 2)*AL, 2) - A0, 1)*A(2, 2))/ det ;
1(0,2)= (A, 1)*A(1, 2) - A0, 2)*A(L, 1))/ det ;
(1, 1)= (A, 0)*A@2, 2) - A0, 2)*A(0, 2))/ det ;
I (1,2)= (A0, 2)*A(, 1) - A0, 0)*A(1, 2))/ det ;
1(2,2)= (AL, 1)*AQ0, 0) - A(L, 0)*A(L, 0))/ det ;

Through the magic of expression templates, this will
then get transformed into something like

for (i nt n=0; n<N; ++n)

det[n] =A[O][0] [n] *A[ 1] [1][n]
* AL2][2][n]
+ AL1][O][n]*A[2][1][n]
* ALO][2][n]
+ AL2][0][n]*A[O][1][n]
* AL1][2][n]
- ALO][O][n]*A[2][1][n]
* AL1][2][n]
- AL1][O][n]*A[O][1][n]
* AL2][2][n]
- AL2][O][n]*A[1][1][n]
* NLOI[2][n];

for(int n=0; n<N; ++n)
I[OI[0][n]= (AL1][1][n]*A[ 2] [2][n]
- AL1I[2][n]*A[1][2][n])
/ det[n];
for(int n=0; n<N; ++n)
I[OI[1][n]= (A[O][2] [n]*A[ 1] [2][n]
- ALOJ[1][n]*A[2][2][n])
/ det[n];
for (i nt n=0; n<N; ++n)
Ifo1f2][n]= (A[O][1] [n]*A[ 1] [2][n]
- ALOI[2][n]*A[1][1][n])
/ det[n];
for(int n=0; n<N; ++n)
I[l][l][n]‘(A[O][O][n]*A[Z][Z][n]
ALOI[2][n]*A[0][2][n])
/ det[n];
for (i nt n=0; n<N; ++n)
I[1][2][n]= (ALO][2][n]*A[ O] [1][n]
- ALOJ[O][n]*A[1][2][n])
/ det[n];
for (i nt n=0; n<N; ++n)
I[21{2][n]= (AL1][1] [n]*A[ O] [0O] [n]
- AL1][O][n]*A[1][0][n])
/ det[n];

Once again, we have multiple loops over the grid of
N points. We aso have atemporary, det , which will
be moved between the processor and memory multiple
times and can not be saved in the cache. In addition,
each of the elementsof Awill get transferred four times.
If we instead manually fuse the loops together

for(int n=0; n<N; ++n)

doubl e det-A[O][O][n]*A[ 11011 n]
* AL2][2][n]
+ ALL][O] [n]*A[ 2] [1][n]
* ALO0][2][n]
+ AL2][0][n]*A[O][1][n]
* AL1][2][n]
- ALO][O][n]*A[2][1][n]
* AL1][2][n]
- AL1][O][n]*A[O][1][n]
* AL2][2][n]
- AL2][O0][n]*A[1][1][n]
* ALOI[2][n];
[[OI[0][n]=(A[1][1][n]*A[2][2][n]
- AL1][2][n]*A[1][2][n])/ det;
/1 and so on for the other

i ndi ces.

}
thendet andthe elementsof A at aparticular n can fit
inthe cache while computing all six elementsof | . Af-
ter that, they won’t be needed again. For N = 100, 000
this code takes anywhere from 10% to 50% less time

(depending on architecture) while using less memory.
This is not an isolated case. In Genera Relativity
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codes, there can be over 100 named temporaries like
det . Unless the compiler is omniscient, it will have
a hard time fusing all of the loops between statements
and removing extraneoustemporaries. It becomeseven
more difficult if there is an additional |oop on the out-
side which loops over multiple grids, as is common
when writing codes that deal with multiple processors
or adaptive grids.

Asan aside, theBlitz library [11] usesthis approach.
On the benchmark page for the Origin 2000/SGlI
C++ [12], there are results for a number of loop ker-
nels. For many of them, Blitz comparesquite favorably
with the Fortran versions. However, whenever thereis
more than one expression with terms common to both
expressions (as in loop tests #12-14, 16, 23-24) there
are dramatic slow downs. It even mentions explicitly
(after loop test #14) “The lack of loop fusion really
hurts the C+-+ versions.”

The POOMA library [9] uses an approach which
should solve some of these problems. It splitsup cal cu-
lationsinto chunks that fit neatly into the cache. Then,
multiple loops are no longer a problem, because al of
the variablesin each loop fit into the cache. Doing this
correctly is quite difficult, because the library writer
must be able to deduce how many different variables
are involved in each execution block. In addition, it
till requires storage for named temporaries.

Does all this mean that we have to go back to C-tran
for performance?

2.3. Expression templates + manual loop fusion

The flaw in the previous method is that it tried to do
two things at once: implicitly sum indices and iterate
over the grid. lterating over the grid while inside the
expression necessarily meant excluding other expres-
sions from that iteration. It also required temporaries
to be defined over the entire grid. To fix this, we need
to manually fuse al of the loops, and provide for tem-
poraries that won't be defined over the entire grid. We
do this by making two kinds of tensors. One of them
just holds the elements (so a Tensor1 would have three
doubles, and a Tensor2 has 9 doubles). This is used
for the local named temporaries. The other kind holds
pointers to arrays of the elements. To iterate over the
array, we overload oper at or ++. A rough sketch of
this tensor iterator classis

class Tensorl_iter

nut abl e doubl e *x, *y, *z;
public:

voi d operat or ++()

{
+4X;
tHy;
++z;

\

\\ I ndexi ng, assignment, initia-lization
operators etc.
}

Makingitasimpledoubl e * allowsusto use any
sort of contiguous storage format for the actua data.
The data may be managed by other libraries, giving us
access to a pointer that may change. In that sense, the
Tensor is not the only owner of the data, and all copies
of the Tensor have equal rights to access and modify
the data.

We make the pointers mut abl e so that we can
iterate over const Tensor 1. ter’s. The index-
ing operators for const Tensor 1. ter returns a
doubl e, notdoubl e * ordoubl e &, sotheactua
data can't be changed. This is different from how it-
erators in the Standard Template Library work. This
keeps the data logically const , while alowing us to
look at all of the points on the grid for that const
Tensorliter.

We would then write the matrix inversion example
as

for(int n=0; n<N; ++n)

doubl e det =A(0, 0)*A(1, 1)*A(2, 2) + A(1, 0)
* A2, 1)* A0, 2)
+ A2, 0)*A(0, 1)*A(1, 2) - A0, 0)
* A2, 1)*A(L, 2)
- A, 0)*A(0, 1)*A(2,2) - A2,0)
* A(1, 1)* A0, 2);
1 (0,0)= (A1, 1)*A2,2) - A1, 2)*A(1, 2))/ det;
1 (0,1)= (A, 2)*A(1, 2) - A(0, 1)*A(2, 2))/ det;
1 (0, 2)= (A, 1)*A(1, 2) - A(0, 2)*A(1, 1))/ det;
1 (1, 1)= (A0, 0)*A2, 2) - A(0, 2)*A(0, 2))/ det ;
I (1, 2)= (A, 2)*A(0, 1) - A(0, 0)*A(1, 2))/ det;
1(2,2)= (A(L, 1)*A(0, 0) - A1, 0)*A(1, 0))/ det ;
++] ;
++A;

}

Thissolutionis not ideal and has afew hidden traps,
butiscertainly better than C-tran. It requiresamanually
created loop over the grid, and all relevant variables
have to be incremented. Care must also be taken not
to iterate through a grid twice. For example, following
the above code fragment with

for (i nt n=0; n<N; ++n)

Trace=A(0, 0)+A(1, 1)+A(2, 2);
++A;
++Tr ace;

}
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will iterate off of the end of A, because the internal
pointer for A has not been reset.

For our specific application (Numerical General Rel-
ativity), these were not serious problems, because most
of the logic of our program is in the manipulation of
local named variables. Only a few variables (the input
and output) need to be explicitly iterated.

However, this may not be the right kind of solution
for generic arrays. They correspond to rank O tensors
(tensors without any indices). It is a win for higher
rank tensors because most of the complexity is in the
indices. But for generic arrays, thereare no indices. A
solution like thiswould look almost identical to C-tran.

3. Implementing natural notation efficiently

The previous section described the design choices
required for efficiency. In this section, we describe
how we achieve a natural tensor notation with minimal
overhead.

3.1. Basic classes

To illustrate our basic design, we start with rank 1
tensors. Thecodeissdlightly moreclear for Tensor 1's
thanfor Tensor 1. t er’s, so we will concentrate on
them. However, the techniques are the same, and al-
most all of the codeis used by both types.

We define a class Tensor 1 with three elements
correspondingtothex, y, and z components. Wedefine
oper at or ()(i nt) to return these elements, so if we
have a Tensor 1 named A, A(0) gives the = element,
A(1) givesthey element, and A(2) givesthe z element.
The outline of this class so far is

class Tensorl

doubl e dataO, datal, data2
public
doubl e & operator(int N
{
return (N==0 ? dataO
dat a2));

(N==1 ? datal

Note that there is no range check on the index, so
A(1221) will return the same result as A(2). We also
have a checked version selected at compile time with
#i f def DEBUGmacros, but we omit it for clarity.

We want to support the notation A(i) = B(i), where
i isimplicitly summed over 0, 1, and 2. To do this, we
use expression templates [13], because they transpar-
ently provide high performance. We define two aux-
iliary classes, | ndex and Tensor 1 _Expr. | ndex
is used to tell the compiler what the index of the
Tensor 1is. It usesatemplate parameter to store this
information, so it is otherwise empty. The definition of
| ndex isthus rather simple

tenpl at e<char i>
class I ndex {}

On the other hand, Tensor 1 _Expr is designed to
hold any kind of expression that eventually simplifies
to arank 1 tensor. For example, the expressions A(i )
and B(j )*T(j , i ) (which has an implicit summation
over j ) both simplify to a tensor with one index. To
accomplish this, Tensor 1_Expr has two template
parametersthat tell it 1) what kind of object it contains,
and 2) what itsindex is. This class is analogousto the
DExpr classin the original expression templates paper
[13]. Thedefinition for Tensor 1 Expr isthen

tenpl ate<cl ass A, char i>
cl ass Tensor1_Expr

{
Aiter

public
Tensor 1_Expr (A &): iter(a) {}
doubl e operator()(const int N) const

{

return iter(N);

}

Here, the template parameter cl ass A is the ob-
ject contained in the expression, and char i is
the tensor index. We overload the member func-
tion Tensor 1: : oper at or ()(I ndex) to return a
Tensor 1_Expr.
tenpl at e<char i>

Tensor 1_Expr<Tensor1,i> operator() (I ndex<i >
i ndex)
{

}
Anexampleof itsuseis

return Tensor1l Expr<Tensorl,i>(*this);

I ndex<‘i’>i;
Tensorl A
Al );
Here, the statement A(i ); creates a Tensor 1 _Ex
pr<Tensor1l, ‘i’ >. Thisjust illustrates the sim-

plest case, whereaTensor 1_Expr holdsaTensor 1.
To assign one tensor to another, we create a partia
specialization of Tensor 1_Expr for the case when it
containsaTensor 1
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tenpl at e<char i>
cl ass Tensor1_Expr<Tensorl, i>

{

Tensorl &iter;
publi c:
Tensor1_Expr(Tensorl &a): iter(a) {}
doubl e & operator()(const int N)
{

return iter(N);

}
t enpl at e<cl ass B>
const Tensor1_Expr<Tensorl,i> &
oper at or=(const Tensorl Expr<B,i>& esult)

{
i ter(0)=result(0);
iter(1)=result (1)
iter(2)=result(2);
return *this;

}

const Tensor1_Expr<Tensorl,i> &
oper at or =(const Tensor1_Expr
<Tensor1,i> &result)
{

return operator=<Tensor1>(result);

}

Thisisamost the sameasthe general Tensor 1 _Ex
pr . The only differences are that it defines the equals
operator, and it takes a reference to the object that
it contains (Tensor 1 &iter), instead of acopy (A
iter). The second change is needed in order for
assignment to work. Our example now becomes
I ndex<'i’'>i;

Tensorl A B;

A )=B(i );

The last statement creates two Tensor 1_Expr <Ten
sorl, ‘i’ >'s,onefor Aandonefor B. It then assigns
the elements of B to the elements of A. If we had tried
something like

I ndex<‘i’>i;

I ndex<'j’ > j;

Tensorl A B;

Al )=B( );

then the compiler would not have found a suitable
oper at or =(). Thesecond Tensor 1_Expr <> tem-
plate parameter (char), which was obtained from
Tensor 1: : oper at or ()(I ndex<i > i ndex), wo
uld not match. This provides strong compile-time
checking of tensor expressions.

Generalizing this to higher rank tensors is fairly
straightforward. We define the appropriate Tensor N
class to hold more elements (3V). We overload
operator()(int,int,...)andoperat or ()(I nd
ex, I ndex, ...). We define a Tensor N.Expr <>
class and overload its operat or ()(i nt, i nt, ...).
We partially speciaizeit for Tensor N'sand definean
equal’s operator.

3.2. Arithmetic operators

Now we want to do something really useful. We
want to add two Tensor 1's together. This is where
expression templates really comeinto play. We do this
by creating ahelper classTensor 1 pl us _Tensor 1.
In the origina expression templates paper[13], there
was a generalized DBinOpEXxpr class. However, the
action of * isvery different from + and —, and / is not
well defined for tensors of rank 1 or higher, so there
isno real advantageto a generalized BinOpExpr class.
The helper classis defined as

tenpl ate<cl ass A, class B, char i>
class Tensor1_plus_Tensor1
{
const Tensor1l_Expr<A/i> iterA;
const Tensorl Expr<B,i> iterB;
publi c:
doubl e operator()(const int N) const

{
return iter A(N)+iterB(N);

Tensor1_pl us_Tensor 1(const Tensor 1_Expr <A, i>
&a,
const Tensor1_Expr<B,i>
&b): iterA(a),
iterBb) {}

This helper class contains the two objects that are
being added. When we use oper at or ()(i nt) to
ask for an element, it returns the sum of the two
objects. This class is used in the definition of
oper at or +(Tensor 1_Expr, Tensor 1_Expr)

tenpl ate<cl ass A, class B, char i>
inline Tensor1l Expr<const Tensorl_plus_Tensorl
<const Tensor 1_Expr<A, i>, const
Tensorl Expr<B,i>i>i>
oper at or +(const Tensor 1_Expr <A, i >&a,
const Tensor 1_Expr<B, i >&b)
{

typedef const Tensor1_plus_Tensor1
<const Tensor1l Expr<A i>,
const Tensor 1_Expr<B,i>,i>Tensor Expr;
return Tensor 1_Expr<Tensor Expr,i>
(Tensor Expr (a, b));
}

Note that the indices of the two Tensor 1 _Expr'’s
have to match up, or they won’t have the same char
template parameter. This is another example of strict
compile-time checking for validity of tensor expres-
sions.

Tomakemoresenseof this, let’sconsider an example
I ndex<'i’'>i;

Tensorl A B, C
A )=B(i )*+C(i );



W. Landry / Implementing a high performance tensor library 279

The individual expressions A(i ), B(i ) and C(i )

al createaTensor 1_Expr<Tensor 1, ‘i’ >. The
plusoperator createsaTensor 1 Expr <Tensor 1 p
| us_Tensor 1<Tensor 1, Tensor1, ‘i’ >,
‘i’ >. Theequalsoperator then asksfor oper at or ()
(0), oper at or ()(1), and oper at or ()(2) from this
compound object. The Tensor 1 Expr<> aob-
ject passes these calls to it's contained object, the
Tensor 1_pl us_Tensor 1. TheTensor 1 pl us_T
ensor 1 object returns the sum of the calls to the
two objects (Tensor 1 _Expr’s) it contains. The
Tensor 1_Expr's pass the cal to the Tensor 1 it
contains, and we finally get the results.

The code for subtraction is exactly the same with +
replaced with — and _pl us _replaced with _m nus ..
The* operator has avery different meaning which de-
pendsonwhat theindicesare. For example, A(i )* B(i )
contracts the two tensors together, implicitly summing
theindices, yieldingadoubl e, while A(i )* B(j ) cre-
ates a new Tensor 2 with indicesof i andj. Im-
plicit summation is described in the next section, but
the solution to the latter is quite similar to the addition
operator described before. We first need a helper class

tenpl ate<cl ass A, class B, char i, char j>
class Tensor1_tinmes_Tensor1l
{

const Tensorl Expr<A/i> iterA
const Tensorl Expr<B,j> iterB;

publi c:
Tensor1_tines_Tensor 1(const Tensor1_Expr <A,
i> &a,
const Tensor1_Expr
<B,j > &b)

iterA@), iterB(b) {}
doubl e operator()(const int N1, const int N2)
const
{

return iter A(NL)*iter B(N2);
}
H

and then we overload oper at or *(Tensor 1 E
Xpr, Tensor 1_Expr)

tenpl ate<cl ass A, class B, char i,
char j> inline
Tensor 2_Expr<const Tensorl_tinmes_Tensorl
<const Tensorl Expr<A i>,
const Tensor1_Expr<B,j>,i,]>,
i,j>
operat or*(const Tensor1_Expr<A, i> &a,
const Tensor1_Expr<B,j> &b)

typedef const Tensorl_times_Tensorl
<const Tensor 1l Expr<A i>,

const Tensor1l_Expr<B,j>,i,j> Tensor Expr;
return Tensor 2_Expr<Tensor Expr,i,j>
(Tensor Expr (a, b));

3.3. Implicit summation

The preceding work is not really that interesting.
Blitz [11] aready implements something almost like
this. What really distinguishesthis library from others
isits natural notation for implicit summation, or con-
traction. There are two kinds of contraction: external
and internal.

3.3.1. External contraction

External contraction is when the index of one tensor
contracts with the index of another tensor. Thisisthe
most common case. Consider the simple contraction
of two rank 1 tensors
I ndex<'i’>i;
Tensorl A B;
doubl e resul t=A(i )*B(i );

Toaccomplishthis, wespecializeoper at or * (Ten
sor 1_Expr, Tensor 1_Expr)

tenpl ate<cl ass A, class B, char i>
inline doubl e operator*(const Tensor1l_Expr

<A i> &a,
const Tensor 1_Expr<B,
i >&b)
{
return a(0)*b(0) + a(1)*b(1) + a(2)*b(2);
}

Because the function is typed on the template pa-
rameter i , which comes from the | ndex when the
Tensor 1_Expr is created, it will only be called for
operandsthat have the sameindex (i.e. A(i )* B(i ), not
Al )*B( ).

We also want to contract tensors together that result
in atensor expression, such asaTensor 1 contracted
withaTensor 2 (A(i )*T(i , j )). Aswiththeaddition
and subtraction operators, we use a helper class

tenpl ate<cl ass A, class B, char i,char j>
class Tensor2_tines_Tensorl_ 0

{
const Tensor2_Expr<A,j,i> iterA
const Tensor1l_Expr<B,j> iterB;
publi c:
Tensor2_ti mes_Tensor 1_0(const Tensor 2_Expr
<A j,i> &a,
const Tensor1_Expr
<B,j > &b)

iterA@), iterB() {}
doubl e operator()(const int Nl) const
{
return iterAQ, N1)*i t er B(O)
+ iterA(l, N1)*iterB(1)
+ iterA2,Nl)*iterB
()
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The _0 appended to the end of the class is asimple
way of naming the classes, since we will need a sim-
ilar class for the case of A(i )*T(j , i ) (as opposed to
A@ )*T(i , j ), which we have here). Then we special-
ize operator*(Tensor 1_Expr, Tensor 2_Ex-
pr)

tenpl ate<cl ass A, class B, char i, char j>
inline
Tensor 1_Expr<const Tensor2_times_Tensorl_1
<const Tensor2_Expr<Ai,j>,
const Tensorl1l_Expr<B,j>,i,
j> 0>
oper at or *(const Tensor1_Expr<B,j> &b,
const Tensor2_Expr<Ai,j> &)

typedef const Tensor2_times_Tensorl_1
<const Tensor2_Expr<A i,j>,
const Tensor1l_Expr<B,j>,i,j> Tensor Expr;
return Tensor 1_Expr<Tensor Expr,i>
(Tensor Expr (a, b));

3.3.2. Internal contraction

Contraction can also occur within a single tensor.
The only requirement is that there are two indices to
contract against each other. A simple example would
be

I ndex<‘i’>i;
Tensor2 T,
doubl e resul t =T(i,i);

Thelast lineis equivalent to

doubl e resul t =T(0, 0)+T(1, 1)+T(2, 2);

Thisinternal contractionissimply implemented by spe-
cidizingTensor 2: : oper at or ()(I ndex, | ndex)

tenpl at e<char i>
doubl e operat or ()(const | ndex<i > ind-exl1,
const | ndex<i > i ndex2)

return data00 + datall + data22;
}

There is also a more complicated case where there
isaninternal contraction, but theresult is still atensor.
For example, arank 3 tensor Wcontracting to arank 1
Wi, j,j). Forthis, we define a helper class

tenpl at e<cl ass A, char i>
cl ass Tensor3_contracted_12
{
const AiterA
publi c:
doubl e operator()(const int N) const

{
return iterAN,0,0) + iterAN,1,1) + iterA

(N, 2, 2);

Tensor 3_contracted_12(const A &a):
{}
H

iterA@)

Then we define aspecialization of oper at or ()(I n
dex, | ndex, | ndex) to create one of these objects

tenpl ate<char i, char j> inline
Tensor 1_Expr<const Tensor3_contracted_12
<Tensor3_dg,i >, i>
oper at or ()(const | ndex<i > i ndex1,
const | ndex<j > i ndex2,
const | ndex<j> index3) const

typedef const Tensor3_contracted_12
<Tensor 3_dg, i > Tensor Expr;

return Tensor 1 Expr<Tensor Expr,i>
(Tensor Expr (*t hi s));

Now, if we ask for the x component of Wi , j , j ),
the compiler will automatically sum over the second
and third indices, returning WO, 0, 0)+W0, 1, 1)+
WO, 2, 2).

3.4. Reduced rank tensors

Expressions like A(i )=T(0, i ) can sometimes pop
up. To handlethis, we make a helper class

tenpl at e<cl ass A>
cl ass Tensor2_nuneral _0
{
AiterA
const int N,
publi c:
doubl e operator()(const int Nl) const
{
return iterA(N, N1);
}
Tensor 2_nuneral _0(A &, const intNN):iterA@),
N(NN) {}

This class is instantiated when oper at or ()(I nd
ex<>, int)iscaledonaTensor 2

t enpl at e<char i>
Tensor 1_Expr<const Tensor 2_nuner al _0<const
Tensor 2>,i > operator()(constint int N,
{
typedef const Tensor2_nuneral _0<const
Tensor 2> Tensor Expr;
return Tensor 1_Expr<Tensor Expr,i>
(Tensor Expr (*t hi s, N);
}

The end result of all of thisis that when we write
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I ndex<'i’>i;
Tensorl A
Tensor2 T,;
A )=T(, i);

wecreateaTensor 1 Expr <Tensor 2_numner al 0
<Tensor 2>, ‘i’ > which then gets assighed to the
Tensor 1 _Expr <Tensor 1, ‘i’ > created by A(i ).

Unfortunately, a syntax like T(0, i) is inefficient,
because the value of the first index (0) is difficult, even
in simple cases, for compilers to deduce and apply at
compiletime. To aid the compiler in the casewherethe
programmer does know at compile-timewhat the value
of theindex is, we introduce a new auxiliary class

tenpl ate<int N>
cl ass Nunber

{

publi c:
Nurber () {};
operator int() const

return N;

}
b

Like | ndex, thereis very little to the actual class.
Because of the conversion operator, it can be used any-
whereani nt can be used. For example

Number <1> N1;
Tensorl A B;
A(N1)=B(NL1);

is eguivalent to

Tensorl A B;
A(1)=B(1);

We also create another helper class

tenpl ate<class A, char i, int N>
cl ass Tensor2_nunber_0
{
const A & terA
publi c:
doubl e & operator()(const int N1)
{
return iter AN, N1);
}

doubl e operator()(const int Nl) const

{
return iterA(N, N1);

}
Tensor 2_nunber _O(A &a): iterA@) {}

As with i nt’s, this class is instantiated when
oper at or ()(Nunber <>, | ndex<>) is called on a
Tensor 2

tenpl ate<char i, int N>

Tensor 1_Expr<const Tensor2_nunber _0<const
Tensor2,i, N>, i>

oper at or ()(const Nunber <N> nl1, const | ndex<i>
i ndex1) const

{
typedef const Tensor2_nunber _0O<const
Tensor 2,i, N> Tensor Expr;
return Tensor 1 _Expr<Tensor Expr,i>
(Tensor Expr (*t hi s));

An example of usageis

Nunmber <0> NO;
I ndex<‘i’>i;
Tensorl A;
Tensor2 T;

A( )=T(NO, i );

Simple tests show that a good compiler can use the
template argumentsto optimize this expression as well
asif it were written with simple arrays, while it can’t
optimize expressionswith smplei nt 'sasindices.

3.5. Symmetric/antisymmetric tensors

Itisoften the casethat atensor will havevarioussym-
metries or antisymmetries, such as S(i , j )=S(j , i ),
or A(i,j)= —A(,i). Taking advantage of these
symmetries can significantly reduce storage and com-
putation requirements. For example, a symmetric
rank 2 tensor S only has 6 truly independent elements
(s(0, 0), S(0, 1), (0, 2), (1, 1), S(1, 2),S(2, 2)),
instead of 9. The other three elements (S(1, 0),
S(2, 0), S(2, 1)) aresimply related to the previous el -
ements. An antisymmetric rank 2 tensor A only has
3 independent elements (A(0, 1), A(0, 2), A(1, 2)).
Three of the other elements are ssimply related to
these three (A(1, 0)= —A(O, 1), A(2, 0)= —A(0, 2),
A2, 1)= —A(1, 2)). Therest (A0, 0), A(1, 1), and
A(2, 2)) must be zero, since A0, 0)=- A(0, 0) etc.
The effect becomes more dramatic with higher rank
tensors. The Riemann tensor mentioned before has
four indices, making a total of 81 possible elements,
but symmetriesand antisymmetriesreduce that number
to 6.

3.5.1. Symmetric tensors

It turns out that implementing a symmetric ten-
sor is quite simple.  First, we define a class (e.g.
Tensor 2_symmet ri ¢) with the minimum number
of elements. Then we write the indexing operators
(operator ()(i nt,int,...)) sothat, if an element
that is not available is requested, it uses the symme-
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try and returns the equivalent one. For example, for
a symmetric rank 2 tensor, we only define dat a00,
dat a01,dat a02,dat all,dat al2,anddat a22.
Then, if element (2, 1) is requested, we just return
dat al2.

Second, we simplify the equals operator so that it
only sets the elements we have. That is, for a normal
Tensor 2, we would have

iter(0, 0)=result (0, 0);
iter(0,1)=result (0, 1),
iter (0, 2)=resul t (0, 2);
iter(1, O)=result(1,0);
iter(1, 1)=resul t(1, 1);
iter(1, 2)=result(1,2);
iter(2,0)=result(2,0);
iter(2,1)=result (2, 1),
iter(2, 2)=result (2, 2),

whileforaTensor 2_symret ri ¢ weonly have

iter(0, 0)=result (0, 0);
iter(0,1)=result (0, 1),
iter(0, 2)=result (0, 2);
iter(1, 1)=resul t(1, 1);
iter(1, 2)=result(1,2),
iter(2,2)=result(2,2);

We aso have to write al of the arithmetic and con-
traction operators that use Tensor 2 symetri c’s,
but they are basically the same as the no-symmetry
case.

3.5.2. Antisymmetric tensors

Implementing antisymmetric tensors is a bit more
tricky. The same kinds of changes are made
to the definitions of Tensor and Tensor Expr,
but it is not clear what should be returned when
an operator()(int,int,...) asks for an ele-
ment that is identically zero (such as A(O, 0)) or
is the negative of the value that we store (such as
A(1, 0)). The imperfect solution that we have is
to rename T& operator()(int,int,...) to T&
unsafe(int,int,...). However, T operat or ()
(int,int,...) const isdtill defined, and returns
the appropriate value. This alows a library user to
access the elements of the antisymmetric tensor using
the natural syntax, but assigning to it will be obviously
unsafe. However, if only | ndex’sareused, thentheli-
brary will automatically sum over the correct elements.
It uses unsaf e internally, so most of the time, the li-
brary user will not even need to know about unsaf e.
Inthose caseswherethe user doeshavetouseunsaf e,
debug buildsshould catch any illegal assignment during
runtime.

4. Implementation and testing

We have implemented the (inefficient) “Simple
Classes’ method (Section 2.1) and the (efficient) “Ex-
pression Templates + Manua Loop Fusion” method
(Section 2.3). We did not attempt to implement “Ex-
pression Templates’ (Section 2.2), becauseit was clear
that it could not be as efficient as the method with man-
ual loop fusion, while still being a difficult chore to
implement.

4.1. Compiler compatibility

Not all compilers support enough of the C+-+ stan-
dard to compile expression templates, while simple
classes work with almost any compiler. A compari-
son of twelve combinations of compiler and operating
systemisshownin Table 1.

The template support of these compilersis actualy
quitegood. A year ago many of these compilerswould
not have been able to compile the efficient library. We
tested a dlightly out of date version of SGI's compiler,
withthecurrent versionbeing 7.3.1.3. Evenso, it’sonly
problemisthat it does not make <cmath> available, and
it is easy to work around that. IBM’s compiler seems
to be immature, with a remarkable number of cases of
Internal Compiler Errors (ICE's). They are currently
in beta testing for version 6.0 which may rectify that.
The Sun compiler is the only one that was completely
unable to compile the efficient library. They have also
come out with a new version recently, which may fix
those problems.

The C++ standard specifies that compliant pro-
grams can only rely on 17 levels of template instan-
tiation. Otherwise, it would be difficult to detect and
prevent infinite recursion. However, the intermediate
types produced by template expression techniques can
exceed this limit. Most compilers allowed us to over-
ride the limit on the number of pending instantiations,
with the exception of the SGI, Portland Group, and
IBM compilers (although the Intel command line op-
tion, “-Qoption,cpp,—pending.instantiations,N”, is not
documented). The SGI and Portland group compilers
would not compile any program with too many levels.
ThelBM compiler did not honor the standard and hap-
pily compiled programs with more than 50 levels of
template instantiation.

This is not a complete list of C++ compilers.
Notably, it does not include the Microsoft, Borland,
Metrowerks, or HP compilers. The Microsoft com-
piler probably can not compiletheefficient library since
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Table 1

Compilers comparison

Compiler/Operating System

Compiles efficient library?

Comeau como 4.2.45.2 + libcomobetald/Linux x86 [15]  Yes

Compaq cxx 6.3/Tru64 [16]

GNU gce 3.1/Linux x86, Solaris, AlIX [17]
KAl KCC 4.0d/Linux x86, 3.4/A1X [18]
Intel icc 6.0-149/Linux x86 [21]

Portland Group pgCC 4.0-1/Linux x86 [22]

IBM XIC 5.0.0.1/AIX [19]
SGI CC 7.3.1.1m/lrix [20]

Sun CC 6.2/Solaris Sparc [23]

Yes- with occasional ICE’s

Somewhat-no <cmath> and
can't override template
instantiation limit

No, doesn’'t support partial
specidization with non-type
template parameters

it does not implement partial specialization [24]. On
Linux, the Metrowerks compiler is actually the GNU
gec 2.95.2 compiler with afancy GUI. That version of
gce will compile this library, but it can’t compile the
more general version that will be described in Section 5.
As for Metrowerks on other platforms, as well as the
Borland and HP compilers, it isimpossible to say any-
thing without actually trying them out. This template
library tendsto flush out obscure bugsin compilersthat
claim full compliance. It isuseful enoughinthat regard
to become part of the official release criteriafor GNU
gcc [25], in addition to the POOMA [9] and Blitz [11]
template libraries.

4.2. Benchmarks

We have three tests to measure the efficiency of the
various methods relative to each other and to C-tran.
We have not attempted a direct comparison with other
tensor libraries, because most do not support implicit
summation and none of them support the wide range of
tensor types needed (ranks 1, 2, 3 and 4 with various
symmetries). This makes replicating the functionality
in the tests extremely time consuming.

4.2.1. Small loop kernel: Implementation test

To make sure that we didn’t make any gross errors
in implementing expression templates, we use a small
loop kernel to compare the efficient library against C-
tran style. Thetensor versionis simply

Tensor1l x(0, 1, 2), y(3,4,5), z(6,7,8);
for(int n=0; n<1000000; n++)

{
I ndex<‘i’> i;
X(i )+=y (i )+z(i);
Hy (i )+z @0 ))- (@i )+z(i))
Hy (i )+z (i ))- (y(i )+z(i))

+Hy (i )+z (@ )- (v )+z(i))

}

The complexity of the expression is determined by
how many (y (i )+z(i ))—(y(i )+z(i )) termsthere are
in the final expression. Note that since we're adding
and subtracting the same amounts, the essential com-
putation has not changed. We aso coded a version
of the code in C-tran style using ordinary arrays, and
compared the execution speeds of the two versions.

For large expressions, KCC was the only compiler
that could fully optimize away the overhead from the
expression templates, although we had to turn off ex-
ceptions. This is good evidence that we didn't make
any serious optimization errorsin implementation. For
the other compilers, the slowdown increased with the
number of expressions, becoming more than 100 times
slower than the C-tran version.

This benchmark may be deceiving, though. The C-
tranversionsall run at the same speed regardlessof how
many terms we added. An examination of the assem-
bler output shows that the compiler removesthe identi-
cally zero subexpressions. Thiswouldn’t bepossiblein
most production codes, so the relative slowdown may
not be as great.

4.2.2. Small loop kernel: Compiler optimization test

To get a better handle on how well the compilers
optimizemorerealistic code, wewrote several versions
of acode to compute an infinite sum

o o
al; » 01" +2-a2; »_0.02" + 3 (al;a27)

n=0 n=0

ad; i 0.006™ + ....

n=0
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Fig. 1. Relative execution times of C-tran and Tensor1's. Any points less than one mean that the Tensor code is slower than C-tran.

The simplest version computesthe sum that only has
the(al;) term, thesecond versionhasboththe (a1 ;) and
the (2 - a2;) terms, and so on. This gives the compiler
a more and more complicated expression to optimize.
The code for the tensor version is then

Tensor 1l
Tensor 1l
Tensor 1l
Tensor 1
Tensor 1l
Tensor 1

y(@©, 1, 2);
al(2, 3, 4);
a2(5, 6, 7);
a3(8, 9, 10);
a4(11, 12, 13);
a5(14, 15, 16);

for(int n=0; n<1000000; ++n)
{
const
const
const

I ndex<'i’
I ndex<‘j’
I ndex<' k’
const | ndex<'l’
const | ndex<'m
y(i )+=al(i)
2*a2(i)
3*al(j )*a2(j )*a3()

4*al(j )*a3(j )*a2(k)*a2(k)*a4( )
5*al(j )*a4(j )*a2(k)*a3(k)*a5( )

VVVVYV

i
is
k;
I
m

+

+ 4+ +

al(i )*=0.
a2(i )*=0.
a3(i )* =0.
a4(i )*=0.

PobR

a5(i )*=0. 5;

}
with complexity determined by how much we fill in
the ellipses. After n getsto about fifteen, the sum con-
verges to machine precision, although current compil-
ers can not deduce that. We vary the number of it-
erations (1000000 here), so that the run finishes in a
reasonable time. We also laboriously coded a C-tran
version and compared the execution speed of the two.
Figure 1 plots the relative execution times of the the
Tensorl and C-tran versions versus the number of op-
erators (+ and *) in the expressions.

The specific compiler options used to create this plot
are listed in the appendix. The performance of some
of the compilers may be a little overstated since they
don’t optimize the C-tran code as well as some other
compilers. On Linux x86, the fastest compiler for the
C-tran code was either the Intel or KAI compiler, and
on AlX, it was IBM’sxIC. So in Figs 2 and 3 we plot
the relative execution time of the fastest C-tran codes
versus the various Tensor codes for Linux and AlX.

These are busy plots, but the main thing to noticeis
that sometimes the compilers can optimize the expres-
sions well, though often not. Some compilers do well
with small expressions, and some do better with larger
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Fig. 2. Relative execution times of fastest C-tran and Tensor’s on Linux x86.

expressions. However, even for the best compilers, the
Tensor1 class can run much slower than C-tran. In par-
ticular, the non-x86 compilers seem to fare worse than
their x86 cousins.

4.2.3. Complete application: Numerical relativity

To gauge how much the lack of optimization matters
in real codes, we used our application for simulating
neutron star collisions in General Relativity [5]. This
code has to compute many complicated formulas on
grids much too large to fit into processor caches. We
found that, when compiled with KAI’'s KCC 4.0d com-
piler on an IBM SP2 running AlX, the “Expression
Templates+Manual Loop Fusion” library (Section 2.3)
runs about twice as fast and uses athird of the memory
of the* Simple Classes” library (Section 2.1). Thiswas
after we attempted to optimize the “Simple Classes’
code by manually constructing expression trees to re-
duce temporaries [26]. Unfortunately, the expression
trees quickly becametoo numerousand varied to create
by hand.

When compiled with GNU gcc 2.95.2 or IBM’sxIC
5.0.1.0, the “ Expression Templates+Manual Loop Fu-
sion” library code was 10-20% slower than when com-
piled with KCC. The logic was far too complicated to
create a C-tran version.

Because these tests were run with different compiler
versions on different machines than that used for the

loop kernels, we plot the results analogous to Fig. 3
in Fig. 4. KAI's compiler does well with small ex-
pressions, which may imply that the application spends
more time in small tensor expressions. It is difficult to
tell for sure, because the compiler inlines almost every-
thing, making direct measurement tricky. But in that
case, the difference between KCC and gcc would be
much larger. Thissuggeststhat the differenceslie else-
where, and the bottleneck is not expression templates.
Itisimpossible to say anything for sure.

5. Extending thelibrary

An experienced reader may havelooked at the rough
declaration of Tensor 1 and thought that hard coding
it to be made up of doubl e israther short sighted. It
is not so difficult to envision the need for tensors made
up of i nt’sor conpl ex<doubl e>’s. It might aso
be nice to use two or four dimensiona tensors (so a
Tensor 1 would have 2 or 4 elements, a Tensor 2
would have4 or 16 elements). Theobviousanswer isto
make the type and dimension into template parameters.
We can use arrays for the elements, in which case the
class becomes

tenpl ate<class™T, int Dine class Ten
sorl {
T data[Dinl;
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T & operator()(int N) { Thereis aminor wrinkle if we want to use asimple
) return data[N; constructor syntax like

Tensor 1<i nt, 3> T1(1, 2, 3);

If we simply add in the constructors for two and
¥ three dimensions, then an unwitting user might write
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something like

Tensor 1<i nt, 3> T1(1, 2);

and thus not set all of the elements. Worse, they might
write

Tensor 1<i nt, 2> T1(1, 2, 3);

and write off of the end of the array. This could be a
source of subtle bugs. Since compile-time checks are
better than run-time checks, we solve this with a hel per
class. For Tensor 1, thisclassis

tenpl ate<class T, int Dinp class Ten
sorl_constructor;

tenpl at e<cl ass T> cl ass Tensor1l _constructor
<T, 2> {
publi c:
Tensor1_constructor (T data[], T dO, T dl) {
dat a[ 0] =dO;
dat a[ 1] =d1;
}
H
tenpl at e<cl ass T> cl ass Tensor1l_constructor
<T, 3> {
publi c:
Tensor1_constructor (T data[], T dO, T dl, T
d2) {
dat a[ 0] =dO;
dat a[ 1] =d1;
dat a[ 2] =d2;
}
H

/1l And simlarly for 4,5,6,... dinmensions.

Inthe Tensor 1 class, we define the constructorsto
just call Tensor 1_const r uct or 'sconstructor

Tensor 1(T dO, T di) {
Tensor 1_construct or <T, Di m>(dat a, dO, d1);

}

Tensor 1(T dO, T di, T d2) {
Tensor1_construct or <T, Di n>(dat a, dO, d1, d2);

}

Now, if someone tries to give too many or
too few arguments to the constructor, the compiler
will not be able to find the correct constructor for
Tensor 1_construct or. The partialy speciaized
versionsof Tensor 1_const r uct or only have con-
structors for the correct number of arguments.

Indexing is aso much simpler when using ar-
rays, athough symmetric and antisymmetric ten-
Sors require some attention. A rank 2 symmet-
ric tensor in Di m dimensions has (Dim(Dim-+1)/2)
independent elements, while an antisymmetric ten-
sor has (Dim(Dim-1)/2) independent elements. We

store them in a one-dimensional array and trans-
late between the tensor indices and the array in-
dex. For Tensor2_symmetri c, this means that
oper at or ()(i nt, i nt ) becomes

T& operator()(const int N1, const int N2)

return N1>N2 ? dat a[ NL+(N2* (2* Tensor _Di m
- N2-1))/2]:
dat a[ N2+(N1* (2* Tensor _Di m
- N1-1))/ 2];
}

A similar technique works for antisymmetric tensors
T operator()(const int N1, const int N2) const

return N2<N3 ? dat a[ N1] [ N3- 1+(N2* (2* (Tensor
_Di mL2- 1)- N2- 1))/ 2]
(N2>N3 ? -dat a[ N1] [ N2- 1+(N3* (2* (Tensor
_Di mL2- 1)- N3- 1))/ 2]
0.0);

We also modify the Tensor N.Expr classes so that
they carry information about their dimension and type.
We can use traits [7] to automatically promote types
(eg. fromint to doubl e, or from doubl e to
conpl ex<doubl e>). We can also make the arith-
metic operators dimension agnostic with sometemplate
meta-programming[14]. It turnsout that theonly place
where the dimension comesin isin assignment and in
implicit summation. For the case of assignment to a
Tensor 1 _Expr , the code becomes

tenpl ate<class A, class B, class U, int Dm
char i,
int Current_Dink inline
void Tl _equals_T1(A &iter,
const Tensor 1_Expr
<B,U D mi>result,
const Nunber <Current _Di nm>

&N)
{

iter(Current _Dim 1l)=result(Current_Di m 1);

Tl equals_Ti(iter,result, Nunber

<Current _Di m 1>());
}
tenpl ate<class A class B, class U, int Dm
char i>inline
void T1_equal s_T1(A & ter, const
Tensor1_Expr<B,U,Dimi> result,

const Nunber <1> &N)

i ter(0)=result(0);
}
tenpl ate<class A, class T, int Tensor_Dim
int DDm char i>
tenpl at e<cl ass B, class U> inline const
Tensor 1_Expr <Tensor 1<A, Tensor _Dinm>, T,Dimi> &
Tensor 1_Expr <Tensor 1<A, Tensor _Dinme>, T,Dimi >::



288 W, Landry / Implementing a high performance tensor library
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oper at or =(const Tensor1l_ Expr<B,U Dmi>
&result)

Tl equal s_Ti(iter, result, Nunber <Di n»());
return *this;

}

That is, we've used templates to do a simple loop
fromDi m 1 to 0. Defining assignment operators for
higher rank tensors as well as the implicit summation
functions uses similar loops. Now, if we're trying to
follow Buckaroo Banzai across the 8th dimension, we
only have to define the constructors for Tensor 1,
Tensor 2, Tensor 3, etc. classes for eight dimen-
sions, and all of the Tensor Expr classes and arith-
metic operators are ready to use.

Inthisframework, we canalso definel ndex to have
adimension

tenpl ate<char i, int D np
class I ndex{};

When creating a Tensor _Expr, we can use the
dimension of the | ndex rather than the dimension
of the Tensor todetermine Tensor Expr 'sdimen-
sion. Then if we have afour-dimensional tensor, it be-
comessimpleto manipulate only thelower three dimen-
sional parts by using only three dimensional | ndex’s.
There is a danger, though. What if we use a four-

ran and more general Tensor's.

dimensional | ndex in athree dimensional Tensor ?
Range-checked builds should catch this kind of error.

We have implemented this generalization [6]. 1B-
M’s xIC can not compile it, always aborting with an
Internal Compiler Error. Also, KCC can't fully opti-
mize complicated expressionsin the first benchmark as
it could with the simpler version of the library, leading
to code that runs hundreds of times slower. Interest-
ingly enough, the TinyVector classes in Blitz [11] are
also templated on type and dimension, and complicated
expressions can not be fully optimized in that kind of
benchmark as well.

However, the performancein the second benchmark
isnot affectedinthe sameway. Figure5 showstherela-
tive execution times for C-tran versus the more general
Tensor’s, and Fig. 6 directly comparesthe two versions
of the Tensor library.

The results are generally mixed, athough the KAI,
Portland Group, and I ntel compilersgenerally do better
while the Comeau compiler does worse. Once again,
the non-x86 compilersdo not perform very well. How-
ever, the overall conclusions from the last section are
unchanged. Thisisnice, in the sense that using amore
general library doesn’t necessarily cause another hit in
performance.
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6. Conclusion

We have described the design of a freely available,
high performancetensor library [6]. It usesanumber of
modern C++ template tricks, supported by most, but
not all, compilers, to produce generic, flexible, and fast
code. These tricks include expression templates [13],
template metaprograms [14], and traits [7], mixed in
with anumber of helper classes. They alow thelibrary
to express indices, tensors, tensor expressions, binary
operators on these expressions, internal and external
contractions, reduced rank tensors, and tensor symme-
tries in an efficient, type-safe framework, generalized
for any dimension or type, using natural notation.

However, the original promise of expression tem-
plates as a way to get away from C-tran is not com-
pletely fulfilled. Although the syntax is much im-
proved, there are still cases where a programmer must
resort to at least some manual loops in order to get
maximum performance. Evenwith thiswork, there are
still performance penalties, sometimes severe, which
vary from problem to problem, although in some cases
making alibrary moregeneral and using template tech-
niques in more places can improve performance. In
particular, non-x86 compilers seem to do a bad job of
optimizing complicated template expressions. Thisis
probably just areflection of the relative effortsthat has
been put into optimizing for the x86 platform.

Despite these caveats, for our General Relativity ap-
plication expression templates were a huge win. Com-
pared to simple tensor classes, template techniques en-
abled faster, smaller executables, though at the cost
of longer compilation times and stringent compiler re-
quirements. Even compared to C-tran, it is not clear
that thereisasignificant speed penalty. Whatisclearis
that the program would never have been finished with-
out the syntactic simplicity afforded by tensor classes
of somesort. Furthermore, compiler requirementshave
become much less onerous as C++ compiler technol-
ogy has caught up with the SO standard.
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Appendix: Compiler options

Comeau

Compaqg

GNU

IBM

Intel

KAI 3.4/
AlIX

KAl 4.0d/
Linux

Portland
Group

—Drestrict=

-03

—remove_unneeded. entities
—pending_instantiations=100

—std ansi

—model ansi

—nousing-std

—noexceptions

—nortti

—Drestrict=__restrict

—assume noptrs.to_globals

—assume whole_program

—assume noaccuracy-sensitive

—inline all

—fast

-05

—non_shared

—tune host

—pending_instantiations 1000

—nocleanup

-03

—ffast-math

—finline-functions -finline-limit-1000
—funroll-loops

—ftemplate-depth-100

—Drestrict=

—Drestrict=

-03

—restrict

-03

—Xi

—-ipo

—Qoption,c,-ip_ninl_max_stats=10000

+K3

—restrict

—no_exceptions
—inline_auto_space_time=750000000000000
—inline_implicit spacetime=200000000000000
—inline_generated. space time=40000000000000.0
—inline_auto_space_time=100000000000000.0
—max_pending-instantiations 100
—gmaxmem=100000

+K3

—restrict

—no_exceptions

—inline_auto_space. time=750000000000000
—inline_implicit space time=200000000000000
—inline_generated. space time=40000000000000.0
—inline_auto_space_time=100000000000000.0
—max_pending-instantiations 100

—Drestrict=

—fast

—Minline=levels:10

—no_exceptions

SGI

—-LANG:std
—LANG:restrict=ON

64

-03
—LANG:exceptions=0FF
—IPA:space=1000000000
—IPA:plimit=1000000000
—OPT:unroll _times_max=100000
—OPT:unroll_size=1000000
—INLINE=4ll
—IPA:aias=ON
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