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CX, a network-based computational exchange, is presented.
The system’s design integrates variations of ideas from other
researchers, such as work stealing, non-blocking tasks, ea-
ger scheduling, and space-based coordination. The object-
oriented API is simple, compact, and cleanly separates appli-
cation logic from the logic that supports interprocess commu-
nication and fault tolerance. Computations, of course, run to
completion in the presence of computational hosts that join
and leave the ongoing computation. Such hosts, or produc-
ers, use task caching and prefetching to overlap computa-
tion with interprocessor communication. To break a poten-
tial task server bottleneck, a network of task servers is pre-
sented. Even though task servers are envisioned as reliable,
the self-organizing, scalable network ofn servers, described
as asibling-connected height-balanced fat tree, tolerates a se-
quence ofn−1 server failures. Tasks are distributed through-
out the server network via a simple “diffusion” process.

CX is intended as a test bed for research on automated
silent auctions, reputation services, authentication services,
and bonding services. CX also provides a test bed for algo-
rithm research into network-based parallel computation.

1. Introduction

The ocean contains many tons of gold. But, the gold
atoms are too diffuse to extract usefully. Idle cycles
on the Internet, like gold atoms in the ocean, seem too
diffuse to extract usefully. If we could harness effec-
tively the vast quantities of idle cycles, we could greatly
accelerate our acquisition of scientific knowledge, suc-
cessfully undertake grand challenge computations, and
reap the rewards in physics, chemistry, bioinformatics,
and medicine, among other fields of knowledge.

Several trends, when combined, point to an opportu-
nity:

– The number of networked computing devices is
increasing: Computation is getting faster and
cheaper: The number of unused cycles per second
is growing rapidly

– Bandwidth is increasing and getting cheaper
– Communication latency isnot decreasing
– Humans are gettingneither fasternor cheaper.

These trends and other technological advances
lead to opportunities whose surface we have barely
scratched. It now is technically feasible to undertake
“Internet computations” that are technicallyinfeasi-
ble for a network of supercomputers in the same time
frame. The maximum feasible problem size for “In-
ternet computations” is growing more rapidly than that
for supercomputer networks. The SETI@home project
discloses an emerging global computational organism,
bringing “life” to Sun Microsystem’s phrase “The net-
work is the computer”. The underlying concept holds
the promise of a huge computational capacity, in which
users pay only for the computational capacity actually
used, increasing the utilization of existing computers.

1.1. Project goals

In the CX project, we are designing an open, exten-
sible Computation eXchange that can be instantiated
privately, within a single organization (e.g., a univer-
sity, distributed set of researchers, or corporation), or
publicly as part of a market in computation, including
charitable computations (e.g., AIDS or cancer research,
SETI). Application-specific computation services con-
stitute one kind of extension, in which computational
consumers directly contact specialized computational
producers, which provide computational support for
particular applications.

The system must enable application programmers
to design, implement, and deploy large computations,
using computers on the Internet. It must reduce human
administrative costs, such as costs associated with:

– downloading and executing a program on hetero-
geneous sets of machines and operating systems
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– distributing software component upgrades.

It should reduce application design costs by:

– giving the application programmer a simple but
general programming abstraction

– freeing the application programmer from concerns
of interprocessor communication and fault toler-
ance.

System performance must scale both up and down,
despite communication latency, to a set of computa-
tion producers whose size varies widely even within
the execution of a single computation. It must serve
several consumers concurrently, associating different
consumers with different priorities. It should support
computations of widely varying lifetimes, from a few
minutes to several months. Producers must be secure
from the code they execute. Discriminating among
consumers is supported, both for security and privacy,
and for prioritizing the allocation of resources, such as
compute producers.

After initial installation of system software, no hu-
man intervention is required to upgrade those compo-
nents. The computational model must enable general
task decomposition and composition. The API must be
simple but general. Communication and fault tolerance
must be transparent to the user. Producers’ interests
must be aligned with their consumer’s interests: com-
putations are completed according to how highly they
are valued.

1.2. Some Fundamental Issues

It is a challenge to achieve the goals of this system
with respect to performance, inter-operability [1], cor-
rectness, ease of use, incentive to participate, security,
and privacy. Although this paper does not focus on se-
curity and privacy, the Java security model [17] and the
“Davis” release of Jini address network security [27]
(covering authentication, confidentiality, and integrity)
clearly are intended to support such concerns. Our
choice of the Java programmingsystem and Jini reflects
these benefits implicitly.

In this paper, we present theProduction Network
service subsystem of CX, focusing on its design with
respect to application programming complexity, ad-
ministrative complexity, and performance. Applica-
tion programming complexity is managed by present-
ing the programmer with a simple, compact, general
API, briefly presented in the next section. Administra-
tive complexity is managed by using the Java program-
ming system: Its virtual machine provides a homoge-

neous platform on top of otherwise heterogeneous sets
of machines and operating systems. The Production
Network is a service that interfaces with every other
CX client and service. We however focus in this paper
on the Task Server, the Producer, and Consumer.

Performance issues can be decomposed into several
sub-issues.

Heterogeneity of machines/OS: The goal is to over-
come the administrative complexity associated
with multiple hardware platforms and operating
systems, incurring an acceptable loss of execu-
tion performance. The tradeoff is between the ef-
ficiency of native machine code vs. the univer-
sality of virtual machine code. For the applica-
tions targeted (not, e.g., real-time applications) the
benefits of Java JITs reduce the benefits of native
machine code: Java wins by reducing application
programming complexity and administrative com-
plexity, whose costs are not declining as fast as
execution times.

Communication latency: There is little reason to be-
lieve that technologicaladvances will significantly
decrease communication latency. Hiding latency,
to the extent that it is possible, thus is central to
our design.

Scalability: The architecture must scale to a higher
degree than existing multiprocessor architectures,
such as workstation clusters. Login privileges
must not be required for the consumer to use a ma-
chine; such an administrative requirement limits
scalability.

Robustness: An architecture that scales to thousands
of computational producers must tolerate faults,
particularly when participating machines, in ad-
dition to failing, can disengage from an ongoing
computation.

1.2.1. Ease of use
The computation consumer distributes code/data to a

heterogeneousset of machines/OSs. This motivates us-
ing avirtual machine, in particular, the JVM. Compu-
tational producers must download/install/upgrade sys-
tem software (not just application code). Use of a
screensaver/daemon obviates the need for human ad-
ministration beyond the one-time installation of pro-
ducer software. The screensaver/daemon is a wrapper
for a client that downloads a “task server” service proxy
every time it starts, automatically distributing system
software upgrades.
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1.3. Paper organization

In the next section, we discuss related work, partic-
ularly noting those ideas of others that we have incor-
porated into CX. In Section 3, we introduce the API. In
Section 4, we describe CX’s architecture. In Section 5,
we present results from preliminary experiments. The
Conclusion summarizes our contributions and some di-
rections for future work.

2. Related work

Legion [18] and Condor [13] were early successes
in network computing. They predate Java, hence are
not Java-centric, and indeed do not use a virtual ma-
chine to overcome the portability/interoperabilityprob-
lem associated with heterogeneous machines and OSs.
The use of a virtual machine is a significant differ-
ence between Java-centric and previous systems. Java-
centric systems, among other differences, do not re-
quire computational consumers to have login privi-
leges on host machines. Indeed, administration even
of clusters is a challenge [20]. Charlotte [5] was the
first research project, to our knowledge, that was Java-
centric. Charlotte used eager scheduling, introduced
by the Charlotte team, and implemented a full dis-
tributed shared memory. Cilk-NOW [7], based on
Cilk 2, provides for “well-structured” computations (a
strict subset of dag-structuredcomputations, wheredag
means directed acyclic graph). It uses work-stealing
and checkpointing (to a shared filesystem, such as
NFS) for adaptively parallel computations (i.e., compu-
tations hosted by machines that may join/retreat from
the computation dynamically [10]). Nibhanupudi et
al. [24,25] present work on adaptive BSP, an efficient,
programmer-friendly model of parallel computation
suitable for the harvesting of idle cycles. Atlas [4],
a version of Cilk-NOW intended for the Internet set-
ting, put three important concepts into a Java-centric
package: a computational model that supports well-
structured computations, work-stealing, and the Inter-
net. It was an attempt to create a Java-centric parallel
processor with machines on the Internet. As a mas-
ters project, it terminated abruptly, and, in our opin-
ion, without reaching its full potential. CX shares
these three properties. However, we have discovered
that the dag-structured task model, eager scheduling
(instead of Atlas’s checkpointing), work-stealing, and
space-based coordination integrate so elegantly as to
be “made for each other” when an adaptively parallel

computation is deployed on a network. Globus [15] is a
metacomputing or umbrella project. It consequently is
not Java-centric, and indeedmust be language-neutral.
CX is intended to fit under Globus’s umbrella via a
portal [30]. Javelin [11,22,23] is Java-centric, imple-
ments work stealing and eager scheduling, and has a
host/broker/client architecture. Javelin’s implementa-
tion of eager scheduling is centralized on the client pro-
cess. Manta [29] elegantly shows that wide-area net-
works can efficiently support large, coarse-grainpar-
allel computation. Manta however does not provide
for adaptive parallelism (the situation where the actual
processors join and retreat during the computation).
Systems that make use of idle processors must be adap-
tive (i.e., permit processors to join and retreat from a
computation dynamically). Adaptivity, unfortunately,
materially complicates certain parallel computations.

Recently, several systems have emerged fordis-
tributed computations on the Internet. Wendelborn
et al. [32] describe an ongoing project to develop a
geographical information system (PAGIS) for defin-
ing and implementing processing networks on di-
verse computational and data resources. Hawick et
al. [19] describe an environment for service-based
meta-computing (DISCWorld). Fink et al. [14] de-
scribe Amica, a meta-computing system to support the
development of coarse grained location-transparent ap-
plications for distributed systems on the Internet, and
includes a memory subsystem. Bakker et al. [3] take the
view of distributed objects as their unifying paradigm
for building large-scale wide area distributed systems.
They appear to intend to do for objects what the world
wide web did for documents. Objects can differ in
their scheme, if any, for partitioning, replication, con-
sistency, and fault tolerance, in a way that is opaque to
clients.

Huberman et al. [2] relate anonymity to incentives,
in their application of the “tragedy of the commons” to
anonymous peer-to-peer networks.

Securing the infrastructure is not the focus of this
project; commercial efforts are under way to secure
Jini, for example.

Recent commercial ventures attest to the perception
that unused cycles can be made available in a com-
putationally meaningful way. Such ventures, while
still in their infancy, include EnFuzion (targeted at
intranets), Applied Metacomputing (the commercial-
ization of Legion), Distributed Science (aka the Pro-
cessTree), Entropia, Parabon Computation, Popular
Power, and United Devices.

The setting for CX is the Internet (or an intranet).
It comprises a set of interrelated services and clients
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implemented in Java. From a performance point of
view, its goal is somewhat different from both the com-
mercial ventures and the early systems such as Legion
and Condor. These systems are intended primarily to
increase system throughput or utilization of idle cy-
cles. CX is intended topush the limits of parallel
computing in a network setting, despite long commu-
nication latencies. Its architecture incorporates ideas
from a variety of sources, integrating them in a unique
way. Briefly, it uses thread programming model ideas
from Cilk [6]; scheduling ideas from Enterprise [21],
Spawn [31], and Cilk; classic decoupled communica-
tion ideas from Linda [10] (and JavaSpaces [16], its
Java incarnation); eager scheduling ideas for fault tol-
erance from Charlotte; and the host/broker/client archi-
tectural ideas from Javelin. To match supply with de-
mand [8,9] in time and space, the system incorporates
the concept of auctions [12] via a market maker.

This article outlines the rationale for these choices,as
they pertain to the design of CX’s ProductionNetwork
subsystem.

3. API

Computational model

The computational model reflects the dominating
physical constraint on networked computation among
compute producers whose availability may be short-
lived: long communication latency relative to execu-
tion speed. Computation is modeled with a dag ofnon-
blocking tasks, analogous to Cilk threads. Such a dag
is illustrated in Fig. 1. Producer cycles are too precious
and volatile to waste in a blocked state.

Programming model

In the programming model, the “task server” is the
single abstraction through which applications com-
municate with the system. To minimize commu-
nication, the application programmer chooses where
[de]composition occurs: the consumer, the producer,
even the task server, or some combination thereof. For
communication efficiency, an application can batch the
communication of tasks and computed arguments.

The programmer view is that of a single task
server, despite its implementation as a network of
servers. The consumer stores a computational
task into “the” task server, and receives a callback
(processResult(Object o)) when the result be-

comes available. Producers repeatedly take tasks from
“the” task server and compute them. See Fig. 2. Such
computation results in either the creation of new sub-
tasks and/or arguments that are sent to successor tasks.

The application programming methods for commu-
nicating with “the” task server include:

storeTask (Task t): store a task on the task server
storeResult(Task t, int argNo, Object value): store

an argument of a successor task on the task
server (pseudocode:t.inputs[argNo] =
value)

The method processResult (Object re-
sult) is invoked when a result is available. In the
JavaSpace specification, clients cannot compute within
the space. This is to prevent a client from grabbing the
space’s computational capacity, which would reduce its
responsiveness to other clients. In CX, a production
network (i.e., a particular set of task servers and their
associated producers), executes one computation at a
time. Consequently, the application can execute tasks
on a task server (by setting the Task’s boolean execu-
teOnServer member to true). (This is in the spirit of
the original tuple space design of the Linda system.).
Computed arguments are stored on the server, using
storeResult. Tasks areready for execution only
after receiving all their arguments, if any. For commu-
nication efficiency, the above methods have a variant
where aset of tasks/arguments is stored.

4. Architecture

First, we note some performance constraints. The
scheduling mechanisms must be general, subject to the
constraint that scheduling operations are of low time
complexity: O(1) in the number of tasks and produc-
ers. The system must be scalable, high-performance,
and tolerate any single component failure. Failure of
compute producers must be transparent to the progress
of the computation. Recovering from a failed server
must require no human intervention and complete in a
few seconds. After a server failure, restoring the sys-
tem’s ability to tolerate another server failure requires
no human intervention, and completes in less than one
minute.

The basic entities relevant to the focus of this paper
are:

Consumer (C): a process seeking computing resources.
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Fig. 1. Task dag for computing the 4th Fibonacci number.

Task Server

Consumer

Producern

Fib(5)

Fib(4) Fib(3)

Sum

1. put
2. get

3. put

4. put

5. get

6. put

Producer1

Fig. 2. Process communication abstraction. Illustrates the first few tasks of the Fib(5) computation.

Producer(P): a process offering or hosting computing
resources. It is wrapped in a screen saver or unix
daemon, depending on its operating system.

Task Server (S): a process that coordinates task dis-
tribution among a set of producers. Servers de-
couple communication: consumers and producers
do not need to know each other or be active at the
same time.

Producer Network (N): A robust network of task
servers and their associated producers, which ne-
gotiates as a single entity with consumers. Net-
works solve the dynamic discovery problem be-
tween active consumers and available producers.

Technological trends imply that network computa-
tion must decompose into tasks of sufficient computa-
tional complexity to hide communication latency: CX
thus isnot suitable for computations with short-latency
feedback loops. Also, we must avoid human operations
(e.g., a system requiring a human to restart a crashed

server). They are too slow, too expensive, and unreli-
able.

Why use Java? Since computation time is becom-
ing less expensive and human labor is becoming more
expensive, it makes sense to use a virtual machine
(VM). Each computational “cell” in the global com-
puter speaks the same language. One might argue that
increased complexity associated with generating and
distributing binaries for each machine type and OS is
an up-front, one-time cost, whereas the increased run-
time of a virtual machine is for the entire computa-
tion, every time it executes. JITs tend to negate this
argument. For some applications, machine- and OS-
dependent binaries make sense. The cost derivatives
(human vs. computation) suggest that thepercentage
of such applications is declining with time. Of the pos-
sible VMs, it also makes sense to leverage the industrial
strengthJava VM and its just-in-time (JIT) compiler
technology, which continues to improve. The increase
in programmer productivity from Java technology jus-
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tifies its use. Finally, many programmerslike to pro-
gram in Java, a feature that should be elevated to the set
of fundamental considerations, given the economics of
software development.

There are a few relevant design principles that we ad-
here to. The first principle concerns scalability: Each
system component consumes resources (e.g., band-
width and memory) at a rate that must be independent
of the number of system components, consumers, jobs,
and tasks. Any component that violates this principle
will become a bottleneck when the number of compo-
nents gets sufficiently large. Secondly, tasks are pre-
fetched in order to hide communication latency. This
implies multi-threaded Producers and TaskServers. Fi-
nally, we batch objects to be communicated, when pos-
sible.

There also is a requirement that is needed to achieve
high performance. To focus producers on jobcom-
pletion, producer networks must complete their con-
sumer’s job before becoming “free agents” again.

The design of the computational part of the system is
briefly elaborated in two steps: 1) the isolatedcluster:
a task server with its associated producers, and 2) a
producer network (of clusters). The producer network
is used to make the design scale and be fault tolerant.

4.1. The isolated cluster

An isolated cluster (See Fig. 3) supports the task
graph model of computation, and tolerates producer
failure, both node and link.

A consumer starts a computation by putting the
“root” task of its computation into a task server. When
a producer registers with a server, it downloads the
server’s proxy. The main proxy method repeatedly gets
a task, computes it, and, when successfully completed,
removes the task from the server. Since the task is not
removed from the server until completion notification
is given, transactions are unnecessary: A task is reas-
signed until some producer successfully completes it.
(The priority rules for assignment are given in the next
paragraph.) When a producer computes a task, it either
creates subtasks and puts them into the server, and/or
computes arguments needed by successor subtasks (the
“argument” computed by the sink task is the final re-
sult). Putting intermediate results into the server forms
a checkpoint that occurs as a natural byproduct of the
computation’s decomposition into subtasks. Applica-
tion logic thus is cleanly separated from fault tolerance
logic. Once the consumer deposits the root task into
the server, it can deactivate until it retrieves the final

result. Task server fault tolerance derives from their
replication, provided in the network discussed below.

We now discuss task caching. It increases perfor-
mance by hiding communication latency between pro-
ducers and their server. Each producer’s server proxy
has a task cache. Besides caching tasks, proxies copy
forward arguments and tasks to the server, which main-
tains aready task heap: The ordering of ready tasks
within the heap is based on 2 components: The dom-
inant component is how many times a task has been
assigned. If task A has been assigned fewer times than
Task B, then Task A is higher in the heap than Task B.
Within that, tasks are ordered by dag level (see [6]).
This minor ordering mechanism is exposed to the appli-
cation programmer: dag level is the default implemen-
tation of the Task’s booleanis Higher Priority method.
For example, it makes sense to give a Fibonacci task that
computes a bigger Fibonacci number a higher priority
than a Fibonacci task that computes a smaller num-
ber (because the task that computes the smaller num-
ber ultimately spawns fewer tasks). In this case, the
application programmer can implement the Fibonacci
decomposition task’s isHigherPriority method accord-
ingly. This is a simple application-level scheduling [28]
mechanism.

When the number of tasks in a proxy’s task cache
falls below a watermark (see [16]), itpre-fetches a copy
of a task[s] from the server. For each task, the server
maintains the names of the producers whose proxies
have a copy of the task. A pre-fetch request returns
the task with thelowest level (i.e., is earliest in the task
dag) among those that have been assigned thefewest
times. After the task is complete, the proxy notifies the
server which removes the task from its task heapand
from all proxy caches containing it.

The task server also maintains an unready task col-
lection (of tasks that have not yet received all their in-
put arguments). When a task in this collection receives
all its arguments, and hence becomes ready, it is in-
serted into the ready task heap, and becomes available
for pre-fetching. The producer’s task cache is orga-
nized similarly, with a ready task heap and unready task
collection.

Although the task graph can be a dag, thespawn
graph is a tree. In Fig. 1, the sub-graph of solid edges
is the spawn tree. Hence, there is a unique path from
the root task to any subtask. This path is the basis
of a unique task identifier. Using this identifier, the
server discards duplicate tasks. Duplicate computed
arguments also are discarded.

The server, in concert with its proxies, balances the
task load among its producers: A taskmay be concur-
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Fig. 3. A task server and its associated set of Producers.

rently assigned to many producers (particularly at the
end of a computation, when there are fewer tasks than
producers). This reduces completion time, in the pres-
ence of aggressive task pre-fetching: Producers should
not be idle while other possiblyslower producers, have
tasks in their cache. Via pre-fetching, when producers
deplete their task cache, they steal tasks spawned by
other producers. Each producer thus is kept supplied
with tasks, regardless of differences in producer com-
putation rates. Our design goal: producers experience
no communication delay when they request tasks; there
always is a cached copy of a task waiting for them
(Exception: the producer just completed thelast task).

4.2. The production network of clusters

The server can service only a bounded number of
producers before becoming a bottleneck. Server net-
works break this bottleneck. Each server (and proxy)
retains the functionality of the isolated cluster. Ad-
ditionally, servers balance the task load (“concentra-
tion”) among themselves via a diffusion process: Like
producers, diffusion of tasks throughout the server net-
work is based on a system of low/high water marks for
efficient inter-server communication. Onlyready tasks
move via this diffusion process. Similarly, a task that
has beendownloaded from some task server to one of
its producers, no longer moves to other task servers.
However, other producers associated with the same task
server can download it. This policy facilitates task re-
moval, upon completion. Task diffusion among task
servers is a “background” pre-fetch process: Producers
are oblivious to it. One design goal:producers endure
no communication delays from their task server beyond
the basic request/receive latency: Each server has tasks
for its producers, provided the server network has more
ready tasks than servers.

Fig. 4. A sibling-connected fat tree.

We now impose a special topology, that tolerates
a sequence of server failures. Servers should have
the same mean time between failure as mission-critical
commercial web servers. However, even these are not
available 100% of the time. We want computation to
progress without re-computation in the presence of a
sequence of single server failures. To tolerate a server
failure, its state (tasks and shared variables) must be
recoverable. This information could be recovered from
a transaction log (i.e., logging transactions against the
object store, for example, using a persistent implemen-
tation of JavaSpaces). It also could be recovered if it is
replicated on other servers (see [24,25] for a discussion
of automatic state replication and recovery in a virtual
ring). The first case suffers from a long recovery time,
often requiring the human intervention. Since humans
are gettingneither fasternor cheaper, we omit human-
mediated computer/network administration. The sec-
ond option can be fully automatic and faster at the cost
of increased design complexity.

We enhance the design via replication of task state,
by organizing the server network as asibling-connected
fat tree (see Fig. 4) We can define such a tree opera-
tionally:

– start with a height-balanced tree;
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– add another “root”;
– add edges between siblings;
– add edges so that each node is adjacent to its par-

ent’s siblings.

Each server has amirror group: its siblings in the
fat tree. (Since the tree does not need to be complete,
it may be that there exists a parent that has only one
child. That child uses its parent as its mirror. This is a
boundary condition.) Every state change to a server is
mirrored: A server’s task state is updated if and only if
its sibling’s task states are identically updated. When
the task state update transaction fails:

– The server (or server proxy) that detects the fail-
ure notifies the primary root server (the secondary
root, if the primary rootis the failed server).

– Each proxy of the failed server, upon receiving
RemoteExceptions, contacts a randomly selected
member of the mirror group of the failed server.

– The root directs the most recently added leaf server
to migrate (with its associated Producers) to the
failed server’s position in the network. Its former
and new mirror groups are updated to reflect this
change.

Automatically reconfiguring the network after a
server failure requiresO(B) time, whereB is the max-
imum degree of any server, and which isO(1) in the
size of the network. When a server joins a network,
it becomes the new rightmost leaf in the network. In-
sertion thus requiresO(B) time, independent of the
network size.

This design scales in the sense that each server is
connected to bounded number of servers, independent
of the total number of servers: Port consumption is
bounded. The diameter of the network ofn servers (the
maximum distance between any task and any producer)
is O(log n). Most importantly, the network repairs
itself: the above properties hold after the failure of a
server. Hence, the network can recover from asequence
of such failures.

The consumer submits the “root” task of a com-
putation to the primary root task server. The com-
putation begins when a producer associated with this
task server executes this root task, which undoubtedly
spawns other tasks. Diffusion then begins.

4.3. Code distribution via the ClassLoader

Omitted from the discussion thus far is our strategy
for distributing code. If we make no special provision,
task class files are downloaded from the Consumer’s

codebase. This clearly is a bottleneck, given the degree
of parallelism we seek from CX. To scale, the code
distribution scheme must have only a bounded number
of producers downloading code from any one location,
independent of the total number of producers. This im-
plies that the number of download points must increase
linearly with the number of producers. There is a nat-
ural way to provide for this: Each task server becomes
a download location for task class files. The CX class
loader downloads task class files to the primary root
task server via the consumer’s class loader. From there
the classes are loaded down through the task server
tree. Each producer loads the class files from its task
server. This scheme achieves our primary objective:
code distribution scales to an arbitrarily large number
of producers without a bottleneck emerging.

5. Preliminary experiments

All experimentswere run on our DepartmentalLinux
cluster. Each machine has 2 Intel EtherExpress Pro
100 Mb/s Ethernet cards, and is running Red Hat Linux
6.0 and JDK 1.2.2RC3. These machines are all con-
nected to a 100 port Lucent P550 Cajun Gigabit Switch.

Let us first define the sequence of Fibonacci num-
bers [26] as:

F (0) = 1;

F (1) = 1;

F (n) = F (n − 1) + F (n − 2), n > 1.

We tested a CX TaskServer cluster on a doubly recur-
sive computation of thenth Fibonacci number,F (n),
augmented with a synthetic workload. Neither the
value ofF (n) is of interest here nor is the algorithm
used efficient, since there is a formula forF (n) that
can be computed inO(1) time, given the RAM com-
putational model. Rather, this computation is of in-
terest precisely because it is computationally simple,
yet requires a lot of synchronization: By contributing
essentially no computational complexity of its own, it
clearly discloses CX system overhead associated with
task synchronization.

Indeed, we augment this trivial computation with a
parameterized synthetic workload. Using the parame-
ter, we vary the computational load in order to establish
the multiprocessor speedup efficiency as a function of
the size of the computational load. LetN(n) denote the
number of tasks spawned by computingF (n). Clearly,

N(n) = N(n − 1) + N(n − 2) + 2,
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Table 1
A table of efficiency (TSEQ/T1) as a function of the workload for
computingF (8). Times are given in seconds.

Workload TSEQ T1 Efficiency

4522 497.420 518.816 0.96
3740 415.140 436.897 0.95
2504 280.448 297.474 0.94
1576 179.664 199.423 0.90
914 106.024 120.807 0.88
468 56.160 65.767 0.85
198 24.750 29.553 0.84
58 8.120 11.386 0.71

with initial conditionsN(0) = N(1) = 1. By inspect-
ing the dags associated with the doubly recursive Fi-
bonacci computation, we see thatN(n) = 3F (n) − 2.
Thus,

N(n) = 3


 1√

5

(
1 +

√
5

2

)n+1

−
(

1 −√
5

2

)n+1

− 2.

This is the total number of tasks for computingF (n)
recursively. The critical path length forF (n) is2n−1.

TSEQ denotes the time for to computeF (n) with a
doubly recursive sequential Java program.T1 denotes
the time to computeF (n) with a doubly recursive Java
program for CX that has exactly one producer: each
recursive method invocation translates into two sub-
task plus a composition task to sum their results. Ta-
ble 1 presents a table of times for workload,TSEQ,
T1, and their ratio, which is referred to as theefficiency
of the CX application. The times given suggest the
intuitive conclusion: As the workload increases, the
efficiency of CX increases. The efficiencies given rep-
resent “best” case, since both the producer and its task
server were running on the same machine.

TP denotes the time for the computation usingP
Producers.T∞ denotes the time to complete the com-
putation’s critical path of tasks. Thus, as has been
reported in the Cilk project:

TP � max{T∞, T1/P}
To ensure thatTP is dominated by the total work and

not the critical path, we thus must haveT1/P > T∞:

P <

3
(

1√
5

(
1+

√
5

2

)n+1

−
(

1−√
5

2

)n+1
)
− 2

2n − 1
.

For P = 60, this inequality holds forn � 14. Our
experiments computeF (n), for n = [13, 18]. For

larger values ofn, the total workload would more
clearly dominate the time to completeF (n)’s critical
path.

Traditionally, speedup is measured on adedicated
multiprocessor, where all processors are homogeneous
in hardware and software configuration. Thus, speedup
is well defined asT1/Tp, whereT1 is the time a program
takes on one processor andTp is the time the same
program takes onp processors. The fraction of speedup
obtained is the ratio of ideal parallel time over the actual
parallel time:

T1/p

Tp

We now generalize this formula to a vectorp =
[p1 p2 · · · pd]T of d different processor types, where
there arep1 processors of type1, p2 processors of
type 2, etc. The basic idea is simply thatwork =
work rate × time. Let:

– w denote the amount of work
– ri denote the work rate for1 processor of typei
– T i

p(w) denote the time forp processors of typei
to complete workw.

Clearly,

ri = w/T i
1.

Ideally, work rates are additive: The work rate
for p1 machines of type1 plus p2 machines of type
2 plus . . . plus pd machines of typed is just pT r,
wherer = [r1 r2 . . . rd]T . Let τp(w) denote the
ideal parallel time to complete workw with a vector
p = [p1 p2 . . . pd]T of processors. We have

τp(w) =
w

pT r

=
(

p1

T 1
1 (w)

+
p2

T 2
1 (w)

+ · · · + pd

T d
1 (w)

)−1

.

When there is only 1 processor type, the formula
above for usingp of them reduces to the familiarT1/p.
Let Tp(w) denote theactual time to complete workw
with a vectorp of processors. The general formula for
the fraction of speedup obtained thus is

τp/Tp(w).

While this definition does not incorporate machine
and network load factors, it does reflect the heteroge-
neous nature of the set of machines.

The virtue of having a formula forN(n), the num-
ber of tasks to computeF (n), now comes into play.
Clearly, the experiments that take the longest are those
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Table 2
The number and processors types for Producers and TaskServers

Producers Dual 512 34
Dual 1024 22
Quad 4

TaskServers Quad 2

that involve only 1 processor: computingT i
1 for vari-

ous machines types,i. Let W (n) denote the computa-
tional work associated with computingF (n) (with an
augmented work load). LetT i

1(W (n)) denote the time
to completeW (n) on 1 processor of typei. Wemodel
the computation time ofW (n) on 1 machine of typei
as the sum of:

– a portion of time that is independent ofn to start
and stop the program, denotedα i

– an amount of time that depends onn: β iN(n).

That is,

T i
1(W (n)) = αi + βiN(n).

We take actual measurements ofT i
1(W (n)), for 2

values ofn chosen such that they result in a system of
two independent linear equations. We then solve forα
andβ. For example, sayT i

1(W (5)) = 27 seconds and
T i

1(W (7)) = 66 seconds. Then,

27 = αi + 22βi (1)

66 = αi + 61βi. (2)

Solving, we obtain thatαi = 5 seconds andβi = 1 sec-
ond on machine typei. We now estimateT i

1(W (n)) =
5 + 1N(n), for any natural numbern. Thus, 2 small
experiments suffice for producing a good estimate of
a very large sequential execution time. We used this
technique to compute the base cases used in the follow-
ing speedup calculations. This technique obviates the
need for extremely large sequential executions that oth-
erwise would be needed to calculate speedups. Large
multiprocessor runs require large problem instances.
Computing times for the base cases for such runs (e.g.,
1000 processor experiments) can, in principle, require
many days of processor time. Thus, using this tech-
nique, we avoid the most computationally extended
experiments, which are consequently quite precarious
(e.g., a momentary power loss requires restarting from
the beginning).

Table 2 presents the number of processors of each
type that were used in our experiments.

Table 3 gives the actual times for 2 synthetic work-
loads on the processor types used in the experiments.
We have 3 task types: Decomposition (D), boundary
(B), and composition (C).

Table 3
Task times, for the 2 processor types. Each had 2 workloads. The
3 task types are decomposition (D), boundary (B), and composition
(C). Times are in milliseconds

Dual 512 D B C
Workload 1 41 1720 41
Workload 2 41 3650 41
Quad D B C
Workload 1 32 1377 32
Workload 2 32 2925 32

The ratio of ideal speedup over actual speedup is less
than or equal to 1. Figure 5 shows the ratio of ideal
speedup over actual speedup. The figure shows exe-
cution times for Fibonacci computations varying from
F (13) toF (18). ForF (14), the ratio of ideal speedup
over actual speedup is 0.87. ForF (18), the ratio of
ideal speedup over actual speedup is 0.99. CX achieves
essentially 0.99 of ideal speedup using 60 processors
on a complex dag-structured computation with small
tasks (average task time is 1.8 seconds for Workload
1 and 3.7 seconds for Workload 2). This is encour-
aging: The tasks do not need to be too coarse for re-
spectable speedups. For these preliminary performance
experiments, the task servers did not mirror their state
changes.

Figure 6 shows what percentage of idle time was
spent during the transient parts of the computation: The
initial transient is when the computation begins, and
most processors are starving for tasks; the termination
transient is when the computation is winding down,
and most processors again are starving for tasks. These
inevitable transients account for 25% of idle cycles,
when the system is achieving 0.99 of optimal speedup.
In particular, the idleness due to the initial transient in
that case is 0.1% of idle cycles. This suggests that tasks
are distributed to the 60 processors rapidly.

We also performed experiments (on 16 processors)
to measure the effect of pre-fetching. For small compu-
tations (few tasks and/or short tasks) and fast commu-
nication, performance gain via pre-fetching is minimal.
As the number of tasks increase and/or the task time in-
creases and/or the communication times increase, pre-
fetching helps more and more. Since our cluster has fast
communication, we did not obtain data for the case of
communications with relatively long latencies. Specif-
ically, for F (11), speedup with pre-fetching was 0.51
of optimal; whereas without pre-fetching, speedup was
0.54. However, forF (15), speedup with pre-fetching
was 0.93 of optimal; whereas without pre-fetching,
speedup was 0.80. We believe that as the number of
tasks increases and/or the task sizes increase and/or
communication latencies increase, the benefits of pre-
fetching increase commensurately.



P. Cappello and D. Mourloukos / CX: A scalable, robust network for parallel computing 169

Speedup over 60 nodes
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Fig. 5. Fraction of ideal speedup for computingF (n), n = 13, 14, 15, 16, 17, 18 under2 workloads, using 60 processors.
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Fig. 6. Percentage of idle cycles that are due to start and stop transients, forF (n), n = 13, 14, 15, 16, 17, 18 under2 workloads.

6. Conclusion

CX is a network-based computational exchange. It
can be used in a variety of environments, from a small
laboratory within a single department of a university,
to a corporate producer network, to millions of inde-
pendent producersspontaneouslyorganized into a giant
producer network.

We have chosen Java for CX because Java increases
application programmer productivity (e.g., is object-
oriented, yet serializes objects for communication), re-
duces application portability and interoperability prob-
lems, enables mobile code, will support a high level
security API (RMI), and does all this with an accept-
able and decreasing penalty vis a vis native machine
execution.

We believe that our contributions to networked-
based, object-oriented parallel computing include:

– The novelcombination of variations on ideas by
other researchers, including work stealing of non-
blocking tasks, eager task scheduling, and space-
based coordination.

– A simple, compact API that enables the ex-
pression of object-oriented, task-level parallelism.
It cleanly separates application logic from the
logic that supports interprocess communication
and fault tolerance.

– The sibling-connected, fat tree of servers, a re-
cursive, short-diameter, scalable network of task
servers that self-repairs in the face of a sequence
of faults: The network gracefully degrades from
n servers to one server, provided that the failures
occur sequentially.

– A simple diffusion process for distributing tasks
among the network of task servers. Since the di-
ameter of the network isO(log n), the number of
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edges between any task and any producer is no
more than2 logn: Using only local information,
task “concentrations” rapidly diffuse into the net-
work.

– The use of task caching/replication and two levels
of pre-fetching (including inter-server task diffu-
sion) to hide the large communication latency that
is intrinsic to networks.

– A simple, general expression for ideal speedup,
τp(w), when performing workw on a vectorp =
[p1 p2 · · · pd]T of processors:

τp(w) =
w

pT r

=
(

p1

T 1
1 (w)

+
p2

T 2
1 (w)

+ · · · + pd

T d
1 (w)

)−1

.

– A load generator, using theF (n) computation,
that strenuously exercises the dag model of com-
putation: It spawns many tasks that require syn-
chronization of predecessor tasks. This load gen-
erator is versatile because it augments theF (n)
computation with a parameterized synthetic load.

– A technique for accurately estimating long se-
quential execution times, based on 2 short execu-
tions, that obviates the need for the most time-
consuming experiments, potentially saving days
of experimental work.

– A test bed for a variety of research topics, such
as automated trading, reputation services, authen-
tication services, and bonding services. CX also
provides a test bed for algorithm research into
network-based parallel computation.

The API can serve as a target for a higher level no-
tation for the object-oriented expression of parallel al-
gorithms. As future work, we may work on an exten-
sion to Java, an object-oriented analog to Cilk’s exten-
sions to C. The extensions (which, when elided, leave
a valid Java program) could be preprocessed into an-
other Java program – one that exploits the algorithm’s
task-level parallelism when run on CX’s network com-
puting system. We would like to more deeply analyze
and experiment with diffusion, modelling task servers
and producers as adaptive controllers.

We also would like to experiment with various trad-
ing strategies, and program applications for CX that
have value to the scientific community.
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