
Scientific Programming 10 (2002) 319–328 319
IOS Press

Dynamic load balancing of SAMR
applications on distributed systems1

Zhiling Lana, Valerie E. Taylorb and Greg Bryanc

aDepartment of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
E-mail: lan@iit.edu
bDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
E-mail: taylor@ece.nwu.edu
cNuclear and Astrophysics Laboratory, Oxford University, Oxford, OX13RH, UK
E-mail: gbryan@astro.ox.ac.uk

Abstract. Dynamic load balancing(DLB) for parallel systems has been studied extensively; however, DLB for distributed systems
is relatively new. To efficiently utilize computing resources provided by distributed systems, an underlying DLB scheme must
address both heterogeneous and dynamic features of distributed systems. In this paper, we propose a DLB scheme for Structured
Adaptive Mesh Refinement(SAMR) applications on distributed systems. While the proposed scheme can take into consideration
(1) the heterogeneity of processors and (2) the heterogeneity and dynamic load of the networks, the focus of this paper is on
the latter. The load-balancing processes are divided into two phases: global load balancingand local load balancing. We also
provide a heuristic method to evaluate the computational gain and redistribution cost for global redistribution. Experiments show
that by using our distributed DLB scheme, the execution time can be reduced by 9%–46% as compared to using parallel DLB
scheme which does not consider the heterogeneous and dynamic features of distributed systems.

Keywords: Dynamic load balancing, distributed systems, adaptive mesh refinement, heterogeneity, dynamic network loads

1. Introduction

Structured Adaptive Mesh Refinement (SAMR) is a
type of multiscale algorithm that dynamically achieves
high resolution in localized regions of multidimen-
sional numerical simulations. It shows incredible po-
tential as a means of expanding the tractability of a
variety of numerical experiments and has been suc-
cessfully applied to model multiscale phenomena in
a range of disciplines, such as computational fluid
dynamics, computational astrophysics, meteorological
simulations, structural dynamics, magnetic, and ther-

1Zhiling Lan is supported by a grant from the National Computa-
tional Science Alliance (ACI-9619019), Valerie Taylor is supported
in part by a NSF NGS grant (EIA-9974960), and Greg Bryan is sup-
ported in part by a NASA Hubble Fellowship grant (HF-01104.01-
98A).

mal dynamics. A typical SAMR application may re-
quire a large amount of computing power. For example,
simulation of the first star requires a few days to execute
on four processors of a SGI Origin2000 machine; how-
ever, the simulation is not sufficient, for which there
are some unresolved scales that would result in longer
execution time [3]. Simulation of the galaxy forma-
tion requires more than one day to execution on 128
processors of the SGI Origin2000 and requires more
than 10GB of memory. Distributed systems provide an
economical alternative to traditional parallel systems.
By using distributed systems, researchers are no longer
limited by the computing power of a single site, and
are able to execute SAMR applications that require vast
computing power (e.g., beyond that available at any
single site). A number of national technology grids
are being developed to provide access to many com-
pute resources regardless of the location, e.g., GUSTO

ISSN 1058-9244/02/$8.00  2002, ACM. Reprinted with permission from Proceedings of ACM Supercomputing 2001, 10–16 November,
Denver, CO, USA. ACM portal: www.acm.org.

320 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

testbed[11], NASA’s Information Power Grid[13], Na-
tional Technology Grid[25]; several research projects,
such as Globus[11] and Legion [12], are developing
software infrastructures for ease of use of distributed
systems.

Execution of SAMR applications on distributed sys-
tems involves dynamically distributing the workload
among the systems at runtime. A distributed sys-
tem may consist of heterogeneous machines connected
with heterogeneous networks; and the networks may be
shared. Therefore, to efficiently utilize the computing
resources provided by distributed systems, the under-
lying dynamic load balancing (DLB) scheme must take
into consideration the heterogeneous and dynamic fea-
tures of distributed systems. DLB schemes have been
researched extensively, resulting in a number of pro-
posed approaches [14,7,8,17,21,22,24,26,27]. How-
ever, most of these approaches are inadequate for dis-
tributed systems. For example, some schemes assume
the multiprocessor system to be homogeneous, (e.g.,
all the processors have the same performance and the
underlying networks are dedicated and have the same
performance). Some schemes consider the system to
be heterogeneous in a limited way (e.g., the processors
may have different performance but the networks are
dedicated). To address the heterogeneity of processors,
a widely-used mechanism is to assign a relative weight
which measures the relative performance to each pro-
cessor. For example, Elsasser et al. [9] generalize exist-
ing diffusive schemes for heterogeneous systems. Their
scheme considers the heterogeneity of processors, but
does not address the heterogeneity and dynamicity of
networks. In [5], a parallel partitioning tool ParaPART
for distributed systems is proposed. ParaPART takes
into consideration the heterogeneity of both processors
and networks; however, it is a static scheme and does
not address the dynamic features of the networks or
the application. Similar to PLUM [21], our scheme
also use some evaluation strategies; however, PLUM
addresses the issues related to homogeneous systems
while our work is focused on heterogeneous systems.
KeLP [14] is a system that provides block structured
domain decomposition for SPMD. Currently, the focus
of KeLP is on distributed memory parallel computers,
with future focus on distributed systems.

In this paper, we proposed a dynamic load balanc-
ing scheme for distributed systems. This scheme takes
into consideration (1) the heterogeneity of processors
and (2) the heterogeneity and dynamic load of the net-
works. Our DLB scheme address the heterogeneity of
processors by generating a relative performance weight

for each processor. When distributing workload among
processors, the load is balanced proportional to these
weights. To deal with the heterogeneity of network, our
scheme divides the load balancing process into global
load balancing phaseand local load balancing phase.
The primary objective is to minimize remote commu-
nication as well as to efficiently balance the load on the
processors. One of the key issues for global redistri-
bution is to decide when such an action should be per-
formed and whether it is advantageous to do so. This
decision making process must be fast and hence based
on simple models. In this paper, a heuristic method is
proposed to evaluate the computational gain and the re-
distribution cost for global redistributions. The scheme
addresses the dynamic features of networks by adap-
tively choosing an appropriate action based on the cur-
rent observation of the traffic on the networks.

While our DLB takes into consideration the two fea-
tures, the experiments presented in this paper focus on
the heterogeneity and dynamic load of the networks
due to the limited availability of distributed system
testbeds. The compute nodes used in the experiments
are dedicated to a single application and have the same
performance. Experiments show that by using this dis-
tributed DLB scheme, the total execution time can be
reduced by 9%–46% and the average improvement is
more than 26%, as compared with using parallel DLB
scheme which does not consider the heterogeneous and
dynamic features of distributed systems. While the dis-
tributed DLB scheme is proposed for SAMR applica-
tions, the techniques can be easily extended to other
applications executed on distributed systems.

The remainder of this paper is organized as follows.
Section 2 introduces SAMR algorithm and its parallel
implementation ENZO code. Section 3 identifies the
critical issues of executing SAMR applications on dis-
tributed systems. Section 4 describes our proposed dy-
namic load balancing scheme for distributed systems.
Section 5 presents the experimental results comparing
the performance by this distributed DLB scheme with
parallel DLB scheme which does not consider the het-
erogeneous and dynamic features of distributed sys-
tems. Finally, Section 6 summarizes the paper and
identifies our future work.

2. Structured adaptive mesh refinement
applications

This section gives an overview of the SAMR method,
developed by M. Berger et al., and ENZO, a parallel

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems 321

Overall
Structure

H
i
e
r
a
r
c
h
y

Level 1

Level 0

Level 2

Level 3

Fig. 1. SAMR grid hierarchy.

implementation of this method for astrophysical and
cosmological applications. Additional details about
ENZO and the SAMR method can be found in [2,1,19,
3,20].

2.1. Layout of grid hierarchy

SAMR represents the grid hierarchy as a tree of grids
at any instant of time. The number of levels, the num-
ber of grids, and the locations of the grids change with
each adaptation. That is, a uniform mesh covers the
entire computational volume and in regions that require
higher resolution, a finer subgrid is added. If a re-
gion needs still more resolution, a even finer subgrid
is added. This process repeats recursively with each
adaptation resulting in a tree of grids like that shown in
Fig. 1 [19]. The top graph in this figure shows the over-
all structure after several adaptations. The remainder of
the figure shows the grid hierarchy for the overall struc-
ture with the dotted regions corresponding to those that
underwent further refinement. In this grid hierarchy,
there are four levels of grids going from level 0 to level
3. Throughout execution of an SAMR application, the
grid hierarchy changes with each adaptation.

2.2. Integration execution order

The SAMR integration algorithm goes through the
various adaptation levels advancing each level by an
appropriate time step, then recursively advancing to the
next finer level at a smaller time step until it reaches the
same physical time as that of the current level. Figure 2
illustrates the execution sequence for an application
with four levels and a refinement factor of 2. First we
start with the first grid on level 0 with time step dt.
Then the integration continues with one of the subgrids,
found on level one, with time step dt/2. Next, the
integration continues with one of the subgrids on level
2, with time step dt/4, followed by the analysis of the
subgrids on level 3 with time step dt/8. The figure
illustrates the order for which the subgrids are analyzed
with the integration algorithm.

2.3. ENZO: A parallel implementation of SAMR

Although the SAMR strategy shows incredible po-
tential as a means for simulating multiscale phenomena
and has been available for over two decades, it is still not
widely used due to the difficulty with implementation.
The algorithm is complicated because of dynamic na-
ture of memory usage, the interactions between differ-
ent subgrids and the algorithm itself. ENZO [3] is one

322 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

10th 13th

4th 5th 7th 8th 11th 12th 14th 15th

3rd 6th

9th2nd

1st

Level 1

level 0

Level 2

Level 3

Fig. 2. Integrated execution order (refinement factor = 2).

of the successful parallel implementations of SAMR,
which is primarily intended for use in astrophysics and
cosmology. It is written in C++ with Fortran routines
for computationally intensive sections and MPI func-
tions for message passing among processors. ENZO
was developed as a community code and is currently in
use on at least six different sites.

In [15,16], a DLB scheme was proposed for SAMR
on parallel systems. It was designed for efficient exe-
cution on homogeneous systems by considering some
unique adaptive characteristics of SAMR applications.
In the remainder of this paper, we denote this scheme
as parallel DLB scheme.

3. Issues and motivations

In this section we compare the performance of ENZO
executed on a parallel machine with that executed on a
distributed system. It is well-known that the distributed
system will have a larger execution time than the paral-
lel system with the same number of processors because
of the performance of the WANs used to interconnect
the machines in a distributed system. WANs gener-
ally have much larger latency than the interconnects
found in parallel machines. However, the comparison
is given in this paper to illustrate the amount of over-
head introduced by the WAN in the distributed system,
which is the focus of this paper. Our DLB attempts
to reduced this overhead to make distributed systems
more efficient. The experiments use small numbers of
processors to illustrate the concepts, but it is assumed
that in practice the distributed system will have a large
number of processors to provide the needed compute
power, which is beyond any single, available parallel
machine.

The experiment used for the comparison uses the
parallel DLB schemeon both the parallel and dis-

tributed systems. The parallel system consists of a
250 MHz R10000 SGI Origin2000 machine at Ar-
gonne National Lab (ANL); the parallel executable
was compiled with SGI implemented MPI. The dis-
tributed system consists of two geographically dis-
tributed 250 MHz R10000 SGI Origin2000 machines:
one located at ANL and the other located at National
Center for Supercomputing Applications(NCSA). The
machines are connected by the MREN network con-
sisting of ATM OC-3 networks. The distributed ex-
ecutable was compiled with the grid-enabled imple-
mentation MPICH-G2 provided by ANL [18]. We
used Globus [11] tool to run the application on the
distributed system. The experiments used the dataset
ShockPool3D, which is described in detail in Section 5.

Five configurations (1 + 1, 2 + 2, 4 + 4, 6 + 6, and
8+8) are tested. For the distributed system, the config-
uration 4 + 4 implies four processors at ANL and four
processor at NCSA; for the parallel system this config-
uration implies eight processors at ANL. The results are
given in Fig. 3. For all the configurations, the times for
parallel computation and distributed computation are
similar as expected since the ANL and NCSA proces-
sors have the same performance. However, since the
distributed system consists of two remotely connected
machines and the connection is a shared network, times
for distributed communication are much larger than
those for parallel communication. Therefore, in order
to get higher performance from distributed systems, the
key issues are how to reduce remote communication
and how to adaptively adjust to the dynamic feature of
networks. These results motivate us to design a dis-
tributed DLB scheme that considers the heterogeneity
in processors and the heterogeneity and dynamic load
of the networks.

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems 323

Fig. 3. Comparison of parallel and distributed execution.

4. Distributed dynamic load balancing scheme

In this section, we present a DLB scheme for SAMR
applications on distributed systems. To address the het-
erogeneity of processors, each processor is assigned a
relative weight. To deal with the heterogeneity of net-
works, the scheme divides the load balancing process
into two steps: global load balancing phaseand local
load balancing phase. Further, the proposed scheme
addresses dynamic feature of networks by adaptively
choosing an appropriate action according to the traf-
fic on them. The details are given in the following
subsections.

4.1. Description

First, we define a “group” as a set of processors
which have the same performance and share an intra-
connected network; a group is a homogeneous system.
A group can be a shared-memory parallel computer,
a distributed-memory parallel computer, or a cluster
of workstations. Communications within a group are
referred as local communication, and those between
different groups are remote communications. A dis-
tributed system is composed of two or more groups.
This terminology is consistent with that given in [6]

Our distributed DLB scheme entails two steps to
redistribute the workload: global load balancing phase
and local load balancing phase, which are described in
detail below.

– Global Load Balancing Phase
After each time-step at level 0 only, the scheme
evaluates the load distribution among the groups
by considering both heterogeneous and dynamic

features of the system. If imbalance is detected, a
heuristic method described in the following sub-
sections is invoked to calculate the computational
gain of removing the imbalance and the overhead
of performing such a load redistribution among
groups. If the computational gain is larger than the
redistribution overhead, this step will be invoked.
All the processors will be involved in this process,
and both global and local communications are con-
sidered. Workload will be redistributed by consid-
ering the heterogeneity of number of processors
and processor performance of each group.

– Local Load Balancing
After each time-step at the finer levels, each group
entails a balancing process within the group. The
parallel DLB schemeas mentioned in section 2.3
is invoked, that is, the workload of each group
is evenly and equally distributed among the pro-
cessors. However, load balancing is only allowed
within the group. An overloaded processor can
migrate its workload to an underloaded processor
of the same group only. In this manner, children
grids are always located at the same group as their
parent grids; thus no remote communication is
needed between parent and children grids. There
may be some boundary information exchange be-
tween sibling grids which usually is very small.
During this step, load imbalance may be detected
among groups at the finer levels, however, the
global balancingprocess will not be invoked until
the next time-step at level 0.

The flow control of this scheme is shown in Fig. 4.
Here, time(i) denotes the iterative time for level i, and
dt(i) is the time-step for level i. The left part of the

324 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

figure illustrates the global load balancing step, while
the right part represents the local load balancing step.
Following each time-step dt(0) at level 0, there are
several smaller time-steps dt(i) at a finer level i until
the finer level i reaches the same physical time as that
of level 0. Figure 5 illustrates the executing points
of global balancingand local balancingprocesses in
terms of the execution order given in Fig. 2. It is
shown that the local balancingprocess may be invoked
after each smaller time-step while the global balancing
process may be invoked after each time-step of the top
level only. Therefore, there are fewer global balancing
processes during the run-time as compared to local
balancingprocesses.

4.2. Cost evaluation

To determine if a global redistribution is invoked,
an efficient evaluation model is required to calculate
the redistribution cost and the computational gain. The
evaluation should be very fast to minimize the overhead
imposed by the DLB. Basically, the redistribution cost
consists of both communicational and computational
overhead. The communicational overhead includes the
time to migrate workload among processors. The com-
putational overhead includes the time to partition the
grids at the top level, rebuild the internal data structures,
and update boundary conditions.

We propose a heuristic method to evaluate the redis-
tribution cost as follows. First, the scheme checks the
load distribution of the system. If imbalance exists, the
scheme calculates the amount of load needed to migrate
between groups. In order to adaptively calculate com-
munication cost, the network performance is modeled
by the conventional model, that is Tcomm = α+β×L.
Here Tcomm is the communication time, α is the com-
munication latency, β is the communication transfer
rate, and L is the data size in bytes. Then the scheme
sends two messages between groups, and calculates
the network performance parameters α and β. If the
amount of workload need to be redistributed is W , the
communication cost would be α+ β ×W . This com-
munication model is very simple so little overhead is
introduced.

To estimate the computational cost, the scheme uses
history information, that is, recording the computa-
tional overhead of the previous iteration. We denote
this portion of cost as δ. Therefore, the total cost for
redistribution is:

Cost = (α+ β ×W) + δ (1)

4.3. Gain evaluation

SAMR allows local refining and coarsening of the
grid hierarchy during the execution to capture the phe-
nomena of interest, resulting in dynamically changing
workload. The total amount of workload at the time t
may not be the same as that at the time t+dt. However,
the difference is usually not very much between time
steps. Thus, the scheme predicts the computational
gain by the following heuristic method. Between two
iterations at level 0, the scheme records several perfor-
mance data, such as the amount of load each proces-
sor has for all levels, the number of iterations for each
finer level, and the execution time for one time-step at
level 0. Note that there are several iterative steps for
each finer level between two iterations at level 0 (see
Fig. 5). For each group, the total workload (including
all the levels) is calculated for one time-step at level
0 using this recorded data. Then the difference of to-
tal workload between groups is estimated. Lastly, the
computational gain is estimated by using the difference
of total workload and the recorded execution time of
one iteration at the top level. The detailed formula are
as follows:

W i
group(t) =

∑

proc∈group

wi
proc(t) (2)

Wgroup(t) =
∑

0�i�maxlevel

W i
group(t)

×N i
iter(t) (3)

Gain = T (t)

× max(Wgroup(t)) −min(Wgroup(t))
Number Groups×max(Wgroup(t))

(4)

Here, Gain denotes the estimated computational gain
for global load balancing at time t;w i

proc(t) is the work-
load of processor proc at level i for time t; W i

group(t)
is the total amount of load of group at level i for time
t; N i

iter(t) is the number of iterative steps of level i
from the time t to t + dt; Wgroup(t) denotes the total
workload of group at time t; and T (t) is the execution
time from the time (t − dt) to t, a time step. Hence,
the gain provides a very conservative estimate of the
amount of decrease in execution time that will occur
from the redistribution of load resulting from the DLB.

4.4. Global load redistribution

The global load redistribution is invoked when the
computational gain is larger than some factor times the

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems 325

time(i)=time(i)+dt(i)

Global Load Balancing: transfer grids at
level 0 by considering the heterogeneous
and dynamic features of the systems

solver at level 0

stop

time(0)=time(0)+dt(0)

YesYes

No

time(i)>time(0)

gain > γ *cost

time(0)>stop_time

No

Yes

at level i within group
Local Load Balancing: transfer grids evenly

solver at level i

imbalance exist?

Yes

No No

Fig. 4. Flowchart of distributed DLB.

Global Balancing

Local Balancing

10th 13th

4th 5th 7th 8th 11th 12th 14th 15th

3rd 6th

9th2nd

1st

Level 0

Level 1

Level 2

Level 3

Fig. 5. Integrated execution order showing points of load balancing.

redistribution cost, that is, when Gain > γ × Cost.
Here, γ is a user-defined parameter (default is 2.0)
which identifies how much the computational gain must
be for the redistribution to be invoked. The detailed
sensitivity analysis of this parameter will be included
in our future work. During the global redistribution
step, the scheme redistributes the workload by con-
sidering the heterogeneity of processors. For exam-
ple, suppose the total workload is W , which needs
to be partitioned into two groups. Group A consists
of nA processors and each processor has the perfor-
mance of pA; group B consists of nB processors and
each processor have the performance of pB . Then the
global balancingprocess will partition the workload
into two portions: (W × nA×pA

nA×pA+nB×pB
) for group

A and (W × nB×pB

nA×pA+nB×pB
) for group B. Basically,

this step entails moving the groups’ boundaries slightly
from underloaded groups to overloaded groups so as to
balance the system. Further, only the grids at level 0
are involved in this process and the finer grids do not
need to be redistributed. The reason is that the finer
grids would be reconstructed completely from the grids
at level 0 during the following smaller time-steps.

Figure 6 shows an example of global redistribution.
The top graph shows the overall grid hierarchy at time
t. Group A is overloaded because more refinements
occur in its local regions. After calculating the gain
and the cost of a global redistribution by using the
heuristic methods proposed in the previous subsections,
the scheme determines that performing a global load

326 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

(c) level 0 grids after global redistribution(b) level 0 grids at time t

workload redistributed
from group A to Group B.

Group A Group B

Proc #0

Proc #1

Proc #2

Proc #3

Global

Redistribution

Proc #0

Proc #1

Proc #2

Proc #3

Group A Group B

Proc #0

Proc #1

Proc #2

Proc #3

Group A Group B

 (a) overall grid hierarchy at time t

Fig. 6. An example for global redistribution.

balancing is advantageous; thus, a global redistribu-
tion is invoked. Figure 6(b) shows the level 0 grids
at time t; and Fig. 6(c) represents the level 0 grids
after global redistribution process. The boundary be-
tween two groups are moved slightly to the overloaded
group. The amount of level 0 grids in the shade, about
WA(t)−WB(t)

2×WA(t) ×W 0
A(t), is redistributed from the over-

loaded Group A to the underloaded Group B.

5. Experimental results

In this section, we present the experimental results on
two real SAMR datasets comparing the proposed dis-
tributed DLB with parallel DLB scheme on distributed
systems. Both of the executables were compiled with
MPICH-G2 library [18] and Globustoolkit was used to
launched the experiments. Since the processors in the
systems (described below) have the same performance,
the difference in performance between two DLBs re-
flects the advantage of taking into consideration the
heterogeneity and dynamic load of the networks.

One dataset is AMR64 and the other is Shock-
Pool3D. ShockPool3Dsolves a purely hyperbolic equa-
tion, while AMR64uses hyperbolic (fluid) equation and

elliptic (Poisson’s) equation as well as a set of ordinary
differential equations for the particle trajectories. The
two datasets have different adaptive behaviors. AMR64
is designed to simulate the formation of a cluster of
galaxies, so many grids are randomly distributed across
the whole computational domain; ShockPool3Dis de-
signed to simulate the movement of a shock wave (i.e.,
a plane) that is slightly tilted with respect to the edges
of the computational domain, so more and more grids
are created along the moving shock wave plane.

Two distributed systems are tested in our experi-
ments: one consists of two machines at ANL con-
nected by a local area network (fiber-based Gigabit
Ethernet); the other is a system connecting two ma-
chines at ANL and NCSA by a wide area network,
MREN that has ATM OC-3 networks. Note that both
networks are shared networks and all the machines are
250MHz SGI Origin2000. AMR64 is tested on the
LAN-connected system, and ShockPool3Dis tested on
the WAN-connected system. For each configuration,
the distributed scheme was executed immediately fol-
lowing the parallel scheme. This was done so that the
two executions would have the similar network envi-
ronments (e.g., periods of high traffic due to sharing
of the networks or low traffic); thus, the performance

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems 327

Fig. 7. Execution time for AMR64 and ShockPool3D.

Fig. 8. Efficiency for AMR64 and ShockPool3D.

difference shown in the below is attributed to the dif-
ference in the DLB schemes.

Figure 7 compares the total execution times with
varying configurations for both datasets. It is shown
that the total execution time by using the proposed dis-
tributed DLB is reduced greatly as compared to using
parallel DLB, especially as the number of processors is
increased. The relative improvements are as follows:
for AMR64, it is in the range of 9.0%–45.9% and the
average improvement is 29.7%; for ShockPool3D, it is
ranging from 2.6% to 44.2% and the average improve-
ment is 23.7%.

Figure 8 gives the comparison of efficiency with
varying configurations. Here, the efficiency is defined
as: efficiency = E(1)

E×P , where E(1) is the sequential
execution time on one processor, E is the execution
time on the distributed system, and P is equal to the
summation of each processor’s performance relative to
the performance used for sequential execution [4]. In
this experiment, all the processors have the same perfor-
mance, so this P is equal to the number of processors.
As we can observe, the efficiency by using distributed
DLB is improved significantly. For AMR64, the effi-
ciency is improved by 9.9%–84.8%; for ShockPool3D,
the efficiency is increased by 2.6%–79.4%.

6. Summary and future work

In this paper, we proposed a dynamic load balancing
scheme for distributed systems. This scheme takes into
consideration (1) the heterogeneity of processors and
(2) the heterogeneity and dynamic load of networks. To
address the heterogeneity of processors, each proces-
sor is assigned a relative performance weight. When
distributing workload among processors, the load is
distributed proportionally to these weights. To deal
with the heterogeneity of network, the scheme divides
the load balancing process into global load balancing
phaseand local load balancing phase. Further, the
scheme addresses the dynamicity of networks by adap-
tively choosing an appropriate action based on the ob-
servation of the traffic on the networks. For global re-
distribution, a heuristic method was proposed to evalu-
ate the computational gain and the redistribution cost.
The experiments, however, illustrate the advantages of
our DLB to handle the heterogeneity and dynamic load
of the networks. The experiments show that by using
this distributed DLB scheme, the total execution time
can be reduced by 9%–46% and the average improve-
ment is more than 26%, as compared to using parallel

328 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

DLB scheme which does not consider the heteroge-
neous and dynamic features of distributed systems.

Our future work will focus on including more het-
erogeneous machines and larger real datasets into our
experiments. Further, we will connect this proposed
DLB scheme with tools such as the NWS service [28]
to get more accurate evaluation of underlying networks.
Lastly, a detailed sensitivity analysis of parameters used
in this distributed DLB scheme will also be completed.

References

[1] S. Baden, N. Chrisochoides, M. Norman and D. Gannon.
Structured Adaptive Adaptive Mesh Refinement (SAMR) Grid
Methods, IMA Volumes in Mathematics and its Applications,
vol. 117 Springer-Verlag, NY, 1999.

[2] M. Berger and P. Colella, Local adaptive mesh refinement
for shock hydrodynamics, Journal of Computational Physics
82(1) (1989), 64–84.

[3] G. Bryan, Fluid in the universe: Adaptive mesh refinement
in cosmology, Computing in Science and Engineering1(2)
(March/April, 1999), 46–53.

[4] J. Chen, Mesh Partitioning for Distributed Systems,Ph.D.
Thesis, Northwestern University, 1999.

[5] J. Chen and V. Taylor, ParaPART: Parallel Mesh Partition-
ing Tool for Distributed Systems, Concurrency: Practice and
Experience12 (2000), 111–123.

[6] J. Chen and V. Taylor, PART: Mesh Partitioning for Efficient
Use of Distributed Systems, To appear in IEEE Transactions
on Parallel and Distributed Systems.

[7] G. Cybenko, Dynamic load balancing for distributed mem-
ory multiprocessors, IEEE Transactions on Parallel and Dis-
tributed computing7 (October, 1989), 279–301.

[8] K. Dragon and J. Gustafson, A low-cost hypercube load bal-
ance algorithm,Proc. Fourth Conf. Hypercubes, Concurrent
Comput. and Appl., 1989, pp. 583–590.

[9] R. Elsasser, B. Monien and R. Preis, Diffusive Load Balanc-
ing Schemes for Heterogeneous Networks,Proc. SPAA’2000,
Maine, 2000.

[10] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, San
Francisco, California, 1999.

[11] Globus Project Team, Globus Project, World Wide Web,
http://www.globus.org, 1996.

[12] A. Grimshaw and W. Wulf, The Legion Vision of a World-

wide Virtual Computer, Communications of the ACM40(1)
(January, 1997).

[13] W. Johnston, D. Gannon and B. Nitzberg, Grids as Produc-
tion Computing Environments: The Engineering Aspects of
NASA’s Information Power Grid,IEEE Computer Society
Press, 1999.

[14] The KeLP Programming System, World Wide Web, http://
www-cse.ucsd.edu/groups/hpcl/scg/kelp.html.

[15] Z. Lan, V. Taylor and G. Bryan, Dynamic Load Balancing For
Structured Adaptive Mesh Refinement Applications,Proc. of
ICPP’2001, Valencia, Spain, 2001.

[16] Z. Lan, V. Taylor and G. Bryan, Dynamic Load Balancing For
Adaptive Mesh Refinement Applications: Improvements and
Sensitivity Analysis,Proc. of IASTED PDCS’2001, Anaheim,
CA, 2001.

[17] F. Lin and R. Keller, The gradient model load balancing meth-
ods, IEEE Transactions on Software Engineering13(1) (Jan-
uary, 1987), 8–12.

[18] MPICH Project Team, World Wide Web, http://www.niu.
edu/mpi/.

[19] H. Neeman, Autonomous Hierarchical Adaptive Mesh Refine-
ment for Multiscale Simulations,Ph.D. Thesis, UIUC, 1996.

[20] M. Norman and G. Bryan, Cosmological adaptive mesh re-
finement,Computational Astrophysics, 1998.

[21] L. Oliker and R. Biswas, PLUM: parallel load balancing for
adaptive refined meshes, Journal of Parallel and Distributed
Computing47(2) (1997), 109–124.

[22] K. Schloegel, G. Karypis and V. Kumar, Multilevel diffusion
schemes for repartitioning of adaptive meshes, Journal of Par-
allel and Distributed Computing47(2) (1997), 109–124.

[23] S. Sinha and M. Parashar, Adaptive Runtime Partitioning of
AMR Applications on Heterogeneous clusters,submitted to
the 3rd IEEE International Conference on Cluster Computing,
Newport Beach, CA, March, 2001.

[24] A. Sohn and H. Simon, Jove: A dynamic load balancing
framework for adaptive computations on an sp-2 distributed
multiprocessor,NJIT CIS Technical Report, New Jersey, 1994.

[25] R. Steven, P. Woodward, T. DeFanti and C. Catelett, From the
I-WAY to the National Technology Grid, Communications of
the ACM40(11) (1997), 50–61.

[26] C. Walshaw, Jostle: partitioning of unstructured meshes for
massively parallel machines,Proc. Parallel CFD’94, 1994.

[27] M. Willebeek-LeMair and A. Reeves, Strategies for dynamic
load balancing on highly parallel computers, IEEE Transac-
tions on Parallel and Distributed Systems4(9) (September,
1993), 979–993.

[28] R. Wolski, Dynamically Forcasting Network Performance us-
ing the Network Weather Service,Technical Report CS-96-
494, U.C. San Diego, 1996.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

