Scientific Programming 10 (2002) 319-328 319
10S Press

Dynamic load balancing of SAMR
applications on distributed systems'

Zhiling Lan?, Valerie E. Taylor and Greg Bryan®

aDepartment of Computer Science, lllinois Institute of Technology, Chicago, IL 60616, USA

E-mail: lan@iit.edu

PDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
E-mail: taylor@ece.nwu.edu

°Nuclear and Astrophysics Laboratory, Oxford University, Oxford, OX13RH, UK

E-mail: gbryan@astro.ox.ac.uk

Abstract. Dynamic load balancing(DLB) for parallel systems has been studied extensively; however, DLB for distributed systems
isrelatively new. To efficiently utilize computing resources provided by distributed systems, an underlying DLB scheme must
address both heterogeneous and dynamic features of distributed systems. In this paper, we propose aDLB scheme for Structured
Adaptive Mesh Refinement(SAMR) applications on distributed systems. While the proposed scheme can take into consideration
(1) the heterogeneity of processors and (2) the heterogeneity and dynamic load of the networks, the focus of this paper is on
the latter. The load-balancing processes are divided into two phases: global load balancingand local load balancing We also
provide a heuristic method to evaluate the computational gain and redistribution cost for global redistribution. Experiments show
that by using our distributed DLB scheme, the execution time can be reduced by 9%—46% as compared to using parallel DLB
scheme which does not consider the heterogeneous and dynamic features of distributed systems.

Keywords: Dynamic load balancing, distributed systems, adaptive mesh refinement, heterogeneity, dynamic network loads

1. Introduction

Structured Adaptive Mesh Refinement (SAMR) isa
type of multiscale algorithm that dynamically achieves
high resolution in localized regions of multidimen-
sional numerical simulations. It shows incredible po-
tential as a means of expanding the tractability of a
variety of numerical experiments and has been suc-
cessfully applied to model multiscale phenomena in
a range of disciplines, such as computational fluid
dynamics, computational astrophysics, meteorological
simulations, structural dynamics, magnetic, and ther-

1Zhiling Lan is supported by a grant from the National Computa-
tional Science Alliance (ACI-9619019), Valerie Taylor is supported
in part by aNSF NGS grant (EIA-9974960), and Greg Bryan is sup-
ported in part by a NASA Hubble Fellowship grant (HF-01104.01-
98A).

mal dynamics. A typical SAMR application may re-
quirealargeamount of computing power. For example,
simulation of thefirst star requiresafew daysto execute
on four processorsof a SGI Origin2000 machine; how-
ever, the simulation is not sufficient, for which there
are some unresolved scales that would result in longer
execution time [3]. Simulation of the galaxy forma-
tion requires more than one day to execution on 128
processors of the SGI Origin2000 and requires more
than 10GB of memory. Distributed systems provide an
economical alternative to traditional parallel systems.
By using distributed systems, researchersare no longer
limited by the computing power of a single site, and
areableto execute SAMR applicationsthat requirevast
computing power (e.g., beyond that available at any
single site). A number of national technology grids
are being developed to provide access to many com-
pute resources regardless of the location, e.g., GUSTO

ISSN 1058-9244/02/$8.00 [1 2002, ACM. Reprinted with permission from Proceedings of ACM Supercomputing 2001, 10-16 November,

Denver, CO, USA. ACM portal: www.acm.org.

320 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

testbed11], NASA’s Information Power Grifll3], Na-
tional Technology Grid25]; severa research projects,
such as Globus[11] and Legion[12], are developing
software infrastructures for ease of use of distributed
systems.

Execution of SAMR applications on distributed sys-
tems involves dynamically distributing the workload
among the systems at runtime. A distributed sys-
tem may consist of heterogeneous machines connected
with heterogeneousnetworks; and the networksmay be
shared. Therefore, to efficiently utilize the computing
resources provided by distributed systems, the under-
lying dynamic load balancing (DL B) scheme must take
into consideration the heterogeneous and dynamic fea-
tures of distributed systems. DLB schemes have been
researched extensively, resulting in a number of pro-
posed approaches [14,7,8,17,21,22,24,26,27]. How-
ever, most of these approaches are inadequate for dis-
tributed systems. For example, some schemes assume
the multiprocessor system to be homogeneous, (e.g.,
all the processors have the same performance and the
underlying networks are dedicated and have the same
performance). Some schemes consider the system to
be heterogeneousin alimited way (e.g., the processors
may have different performance but the networks are
dedicated). To addressthe heterogeneity of processors,
awidely-used mechanismisto assign arelative weight
which measures the relative performance to each pro-
cessor. For example, Elsasser et al. [9] generalizeexist-
ing diffusive schemesfor heterogeneoussystems. Their
scheme considers the heterogeneity of processors, but
does not address the heterogeneity and dynamicity of
networks. In[5], aparallel partitioning tool ParaPART
for distributed systems is proposed. ParaPART takes
into consideration the heterogeneity of both processors
and networks; however, it is a static scheme and does
not address the dynamic features of the networks or
the application. Similar to PLUM [21], our scheme
also use some evaluation strategies, however, PLUM
addresses the issues related to homogeneous systems
while our work is focused on heterogeneous systems.
KelL P [14] is a system that provides block structured
domain decomposition for SPMD. Currently, the focus
of KeLP is on distributed memory parallel computers,
with future focus on distributed systems.

In this paper, we proposed a dynamic load balanc-
ing scheme for distributed systems. This scheme takes
into consideration (1) the heterogeneity of processors
and (2) the heterogeneity and dynamic load of the net-
works. Our DLB scheme address the heterogeneity of
processorshby generating arel ative performanceweight

for each processor. When distributing workload among
processors, the load is balanced proportional to these
weights. To deal withthe heterogeneity of network, our
scheme divides the load balancing process into global
load balancing phasand local load balancing phase
The primary objective is to minimize remote commu-
nication aswell asto efficiently balance theload onthe
processors. One of the key issues for global redistri-
bution is to decide when such an action should be per-
formed and whether it is advantageous to do so. This
decision making process must be fast and hence based
on simple models. In this paper, a heuristic method is
proposed to eval uate the computational gain and there-
distribution cost for global redistributions. The scheme
addresses the dynamic features of networks by adap-
tively choosing an appropriate action based on the cur-
rent observation of the traffic on the networks.

While our DLB takesinto consideration the two fea-
tures, the experiments presented in this paper focus on
the heterogeneity and dynamic load of the networks
due to the limited availability of distributed system
testbeds. The compute nodes used in the experiments
are dedicated to a single application and have the same
performance. Experiments show that by using this dis-
tributed DLB scheme, the total execution time can be
reduced by 9%-46% and the average improvement is
more than 26%, as compared with using parallel DLB
schemewhich does not consider the heterogeneousand
dynamicfeaturesof distributed systems. Whilethedis-
tributed DLB scheme is proposed for SAMR applica
tions, the techniques can be easily extended to other
applications executed on distributed systems.

The remainder of this paper is organized as follows.
Section 2 introduces SAMR algorithm and its parallel
implementation ENZO code. Section 3 identifies the
critical issues of executing SAMR applicationson dis-
tributed systems. Section 4 describes our proposed dy-
namic load balancing scheme for distributed systems.
Section 5 presents the experimental results comparing
the performance by this distributed DLB scheme with
parallel DLB scheme which does not consider the het-
erogeneous and dynamic features of distributed sys-
tems. Finaly, Section 6 summarizes the paper and
identifies our future work.

2. Structured adaptive mesh refinement
applications

Thissection givesan overview of the SAMR method,
developed by M. Berger et a., and ENZO, a parallel

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

321

Overall

Structure

Level O

S PR) E A
i
i
i
i

<SO—~w—O—T

o o £ o e o :| Level 1

Level 2

Fig. 1. SAMR grid hierarchy.

implementation of this method for astrophysical and
cosmological applications. Additional details about
ENZO and the SAMR method can befoundin[2,1,19,
3,20].

2.1. Layout of grid hierarchy

SAMR representsthe grid hierarchy asatree of grids
at any instant of time. The number of levels, the num-
ber of grids, and the locations of the grids change with
each adaptation. That is, a uniform mesh covers the
entire computational volumeandinregionsthat require
higher resolution, a finer subgrid is added. If a re-
gion needs still more resolution, a even finer subgrid
is added. This process repeats recursively with each
adaptation resulting in atree of gridslike that shownin
Fig. 1[19]. Thetop graphinthisfigure showsthe over-
all structureafter several adaptations. Theremainder of
thefigure showsthegrid hierarchy for the overall struc-
ture with the dotted regions corresponding to those that
underwent further refinement. In this grid hierarchy,
thereare four levels of grids going fromlevel O to level
3. Throughout execution of an SAMR application, the
grid hierarchy changes with each adaptation.

2.2. Integration execution order

The SAMR integration agorithm goes through the
various adaptation levels advancing each level by an
appropriatetime step, then recursively advancing to the
next finer level at asmaller time step until it reachesthe
same physical time asthat of the current level. Figure2
illustrates the execution sequence for an application
with four levels and a refinement factor of 2. First we
start with the first grid on level 0 with time step dt.
Thentheintegration continueswith one of the subgrids,
found on level one, with time step d¢/2. Next, the
integration continues with one of the subgrids on level
2, with time step dt/4, followed by the analysis of the
subgrids on level 3 with time step dt/8. The figure
illustrates the order for which the subgridsare analyzed
with the integration algorithm.

2.3. ENZO: A parallel implementation of SAMR

Although the SAMR strategy shows incredible po-
tential asameansfor simulating multiscale phenomena
and hasbeen availablefor over two decades, itisstill not
widely used due to the difficulty with implementation.
The agorithm is complicated because of dynamic na-
ture of memory usage, the interactions between differ-
ent subgrids and the algorithm itself. ENZO [3] is one

322 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems
1st
| evel 0O
2nd 9t h
Level 1
3rd 6t h 10t h 13t h
Level 2
4th | 5th | 7th | 8th |11th |12th 14th |15th
| | | | Level 3

Fig. 2. Integrated execution order (refinement factor = 2).

of the successful parallel implementations of SAMR,
which isprimarily intended for usein astrophysicsand
cosmology. It iswritten in C++ with Fortran routines
for computationally intensive sections and MPI func-
tions for message passing among processors. ENZO
was devel oped as acommunity code and is currently in
use on at least six different sites.

In[15,16], a DLB scheme was proposed for SAMR
on parallel systems. It was designed for efficient exe-
cution on homogeneous systems by considering some
unique adaptive characteristics of SAMR applications.
In the remainder of this paper, we denote this scheme
as parallel DLB scheme

3. Issues and motivations

Inthissection we comparethe performanceof ENZO
executed on a parallel machine with that executed on a
distributed system. It iswell-known that the distributed
system will have alarger executiontime than the paral-
lel system with the same number of processorsbecause
of the performance of the WANSs used to interconnect
the machines in a distributed system. WANSs gener-
ally have much larger latency than the interconnects
found in parallel machines. However, the comparison
is given in this paper to illustrate the amount of over-
head introduced by the WAN in the distributed system,
which is the focus of this paper. Our DLB attempts
to reduced this overhead to make distributed systems
more efficient. The experiments use small numbers of
processors to illustrate the concepts, but it is assumed
that in practice the distributed system will have alarge
number of processors to provide the needed compute
power, which is beyond any single, available parallel
machine.

The experiment used for the comparison uses the
parallel DLB schemeon both the parallel and dis-

tributed systems. The parallel system consists of a
250 MHz R10000 SGI Origin2000 machine at Ar-
gonne National Lab (ANL); the paralel executable
was compiled with SGI implemented MPI. The dis-
tributed system consists of two geographically dis-
tributed 250 MHz R10000 SGI Origin2000 machines:
one located at ANL and the other located at National
Center for Supercomputing Applications(NCSA). The
machines are connected by the MREN network con-
sisting of ATM OC-3 networks. The distributed ex-
ecutable was compiled with the grid-enabled imple-
mentation MPICH-G2 provided by ANL [18]. We
used Globus[11] tool to run the application on the
distributed system. The experiments used the dataset
ShockPool3Dwhichisdescribedin detail in Section 5.

Five configurations (1 + 1,2 + 2,4 + 4,6 + 6, and
8+ 8) aretested. For the distributed system, the config-
uration 4 + 4 implies four processorsat ANL and four
processor at NCSA; for the parallel system this config-
urationimplieseight processorsat ANL. Theresultsare
givenin Fig. 3. For al the configurations, the times for
paralel computation and distributed computation are
similar as expected since the ANL and NCSA proces-
sors have the same performance. However, since the
distributed system consists of two remotely connected
machines and the connectionisashared network, times
for distributed communication are much larger than
those for parallel communication. Therefore, in order
to get higher performancefrom distributed systems, the
key issues are how to reduce remote communication
and how to adaptively adjust to the dynamic feature of
networks. These results motivate us to design a dis-
tributed DLB scheme that considers the heterogeneity
in processors and the heterogeneity and dynamic load
of the networks.

Z.Lan et al. / Dynamic load balancing of SAMR applications on distributed systems 323

Comparison of Parallel and Distributed Execution

300+
. 2501 Oparallel
% computation
c 2001 Edistributed
8 computation
3 150 Oparallel
c communication
=
o 1004 Odistributed
e communication
504

0+£

1+1 2+2 4+4

number of processors

6+6

8+8

Fig. 3. Comparison of parallel and distributed execution.

4. Distributed dynamic load balancing scheme

In this section, we present aDLB schemefor SAMR
applicationson distributed systems. To addressthe het-
erogeneity of processors, each processor is assigned a
relative weight. To deal with the heterogeneity of net-
works, the scheme divides the load balancing process
into two steps: global load balancing phasand local
load balancing phase Further, the proposed scheme
addresses dynamic feature of networks by adaptively
choosing an appropriate action according to the traf-
fic on them. The details are given in the following
subsections.

4.1. Description

First, we define a “group” as a set of processors
which have the same performance and share an intra-
connected network; a group is a homogeneous system.
A group can be a shared-memory parallel computer,
a distributed-memory parallel computer, or a cluster
of workstations. Communications within a group are
referred as local communication, and those between
different groups are remote communications. A dis-
tributed system is composed of two or more groups.
Thisterminology is consistent with that givenin [6]

Our distributed DLB scheme entails two steps to
redistributetheworkload: global load balancing phase
and local load balancing phasevhich are described in
detail below.

— Global Load Balancing Phase
After each time-step at level 0 only, the scheme
evaluates the load distribution among the groups
by considering both heterogeneous and dynamic

features of the system. If imbalanceis detected, a
heuristic method described in the following sub-
sectionsis invoked to cal cul ate the computational
gain of removing the imbal ance and the overhead
of performing such a load redistribution among
groups. If the computational gainislarger thanthe
redistribution overhead, this step will be invoked.
All the processorswill beinvolvedin this process,
and both global and local communi cationsare con-
sidered. Workload will beredistributed by consid-
ering the heterogeneity of number of processors
and processor performance of each group.

Local Load Balancing

After each time-step at the finer levels, each group
entails a balancing process within the group. The
parallel DLB schemeas mentioned in section 2.3
is invoked, that is, the workload of each group
is evenly and equally distributed among the pro-
cessors. However, load balancing is only allowed
within the group. An overloaded processor can
migrate its workload to an underloaded processor
of the same group only. In this manner, children
grids are always|ocated at the same group astheir
parent grids; thus no remote communication is
needed between parent and children grids. There
may be some boundary information exchange be-
tween sibling grids which usualy is very small.
During this step, load imbalance may be detected
among groups at the finer levels, however, the
global balancingprocess will not be invoked until
the next time-step at level 0.

The flow control of this scheme is shown in Fig. 4.

Here, time(i) denotestheiterativetimefor level i, and
dt(i) is the time-step for level i. The left part of the

324 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

figure illustrates the global load balancing step, while
the right part represents the local load balancing step.

Following each time-step dt(0) at level O, there are
several smaller time-steps dt(i) at afiner level ¢ until

the finer level i reaches the same physical time as that

of level 0. Figure 5 illustrates the executing points
of global balancingand local balancingprocesses in

terms of the execution order given in Fig. 2. It is
shown that the local balancingprocess may beinvoked

after each smaller time-step while the global balancing
process may be invoked after each time-step of the top

level only. Therefore, there are fewer global balancing
processes during the run-time as compared to local

balancingprocesses.

4.2. Cost evaluation

To determine if a global redistribution is invoked,
an efficient evaluation model is required to calculate
the redistribution cost and the computational gain. The
evaluation should be very fast to minimize the overhead
imposed by the DLB. Basically, the redistribution cost
consists of both communicational and computational
overhead. The communicational overhead includesthe
time to migrate workload among processors. The com-
putational overhead includes the time to partition the
gridsat thetop level, rebuild theinternal datastructures,
and update boundary conditions.

We propose a heuristic method to evaluate the redis-
tribution cost as follows. First, the scheme checks the
load distribution of the system. If imbalance exists, the
scheme cal cul atesthe amount of |oad needed to migrate
between groups. In order to adaptively cal culate com-
munication cost, the network performance is modeled
by the conventional model, that isT .o, = o+ x L.
Here T ... 1S the communication time, « is the com-
munication latency, 5 is the communication transfer
rate, and L is the data size in bytes. Then the scheme
sends two messages between groups, and calculates
the network performance parameters o and 5. If the
amount of workload need to be redistributed is W, the
communication cost would be o + 5 x W. This com-
munication model is very simple so little overhead is
introduced.

To estimate the computational cost, the scheme uses
history information, that is, recording the computa-
tional overhead of the previous iteration. We denote
this portion of cost as §. Therefore, the total cost for
redistributionis:

Cost=(a+pBxW)+4§ (1)

4.3. Gain evaluation

SAMR allows local refining and coarsening of the
grid hierarchy during the execution to capture the phe-
nomena of interest, resulting in dynamically changing
workload. The total amount of workload at the time ¢
may not bethe same asthat at thetimet + dt. However,
the difference is usually not very much between time
steps. Thus, the scheme predicts the computational
gain by the following heuristic method. Between two
iterations at level 0, the scheme records several perfor-
mance data, such as the amount of load each proces-
sor has for all levels, the number of iterations for each
finer level, and the execution time for one time-step at
level 0. Note that there are several iterative steps for
each finer level between two iterations at level 0 (see
Fig. 5). For each group, the total workload (including
all the levels) is calculated for one time-step at level
0 using this recorded data. Then the difference of to-
tal workload between groups is estimated. Lastly, the
computational gainis estimated by using the difference
of total workload and the recorded execution time of
oneiteration at the top level. The detailed formulaare
asfollows:

W) = > who(t) 2
procegroup
Wg'roup(f') = Z W;roup(t)
o<i<maxlevel
X Niiter (t) (3)
Gain = T(t)

maz(Wyroup(t)) — min(Wyroup(t))
Number_Groups x maz(Wyroup(t))

(4)

Here, Gain denotes the estimated computational gain
for global load balancing at timet; w? . .(t) isthework-

proc
load of processor proc at level i for timet; W, (t)
isthe total amount of load of group at level i for time
t; Ni..(t) is the number of iterative steps of level i
fromthetimet to t + dt; Wyroup(t) denotes the total
workload of group at timet; and T'(¢) is the execution
time from the time (¢ — dt) to ¢, atime step. Hence,
the gain provides a very conservative estimate of the
amount of decrease in execution time that will occur

from the redistribution of load resulting from the DLB.
4.4. Global load redistribution

The global load redistribution is invoked when the
computational gain islarger than some factor timesthe

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

Yi
%@
No

Yes

Global Load Balancing: transfer grids at
level 0 by considering the heterogeneous
and dynamic features of the systems

| time(0)=time(0)+dit(0) |<—E—

325

Local Load Balancing: transfer grids evenly
at level i within group

| solver at level i

solver at level 0

~

Fig. 4. Flowchart of distributed DLB.

1st

Lovel0 | ¢ $
2nd 9th

Level 1 |]]] X

I T T T T
3rd 6th 10t h 13th

Level 2 | LA /Y N G W

I I I I I I I I I
4th 5th 7th 8th f11th Y12th Y14th K15th
Level 3

@ Globa Baancing
‘ Local Balancing

Fig. 5. Integrated execution order showing points of load balancing.

redistribution cost, that is, when Gain > v x Cost.
Here, ~ is a user-defined parameter (default is 2.0)
whichidentifieshow much the computational gain must
be for the redistribution to be invoked. The detailed
sengitivity analysis of this parameter will be included
in our future work. During the global redistribution
step, the scheme redistributes the workload by con-
sidering the heterogeneity of processors. For exam-
ple, suppose the total workload is W, which needs
to be partitioned into two groups. Group A consists
of n4 processors and each processor has the perfor-
mance of p 4; group B consists of n g processors and
each processor have the performance of p 5. Then the
global balancingprocess will partition the workload

H H . nAXpAa
into two portions:. (W x Y T e T X]DB) for group

npXpB

Aand (W x 2272) for group B. Basically,
thisstep entails moving the groups’ boundariesslightly
from underloaded groupsto overloaded groups so asto
balance the system. Further, only the grids at level 0
are involved in this process and the finer grids do not
need to be redistributed. The reason is that the finer
gridswould be reconstructed compl etely from the grids
at level 0 during the following smaller time-steps.
Figure 6 shows an example of global redistribution.
The top graph shows the overall grid hierarchy at time
t. Group A is overloaded because more refinements
occur in its local regions. After calculating the gain
and the cost of a global redistribution by using the
heuristic methods proposed in the previous subsections,
the scheme determines that performing a global load

326 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

Group A Group B
Proc #0 £ Proc #2
Proc #1 Proc #3
(a) overall grid hierarchy at timet workload redistributed
from group A to Group B.
Group A Group B Group A Group B
Rub% IUhﬁ': PIUb#G IUb#:
Global
Redistribution

I 4
o€ o€+

(b) level O gridsat timet

¥
E

1 40
OCFT TOC+P

(c) level O grids after global redistribution

Fig. 6. An example for global redistribution.

balancing is advantageous; thus, a global redistribu-
tion is invoked. Figure 6(b) shows the level O grids
at time t; and Fig. 6(c) represents the level 0 grids
after global redistribution process. The boundary be-
tween two groups are moved dlightly to the overloaded
group. The amount of level O grids in the shade, about
WAl el 5 W (1), is redistributed from the over-

2XWa(t)
loaded Group Ato the underloaded Group B.

5. Experimental results

Inthissection, we present the experimental resultson
two real SAMR datasets comparing the proposed dis-
tributed DLB with parallel DLB scheme on distributed
systems. Both of the executables were compiled with
MPICH-G2 library [18] and Globustoolkit was used to
launched the experiments. Since the processorsin the
systems (described below) have the same performance,
the difference in performance between two DLBs re-
flects the advantage of taking into consideration the
heterogeneity and dynamic load of the networks.

One dataset is AMR64 and the other is Shock-
Pool3D. ShockPool3Bolvesapurely hyperbolic equa
tion, while AMR64uses hyperbolic (fluid) equation and

elliptic (Poisson’s) equation aswell asaset of ordinary

differential equations for the particle trajectories. The
two datasets have different adaptive behaviors. AMR64
is designed to simulate the formation of a cluster of

galaxies, so many gridsarerandomly distributed across
the whole computational domain; ShockPool3Ds de-

signed to simulate the movement of a shock wave (i.e.,

aplane) that is dlightly tilted with respect to the edges
of the computational domain, so more and more grids

are created along the moving shock wave plane.

Two distributed systems are tested in our experi-
ments. one consists of two machines at ANL con-
nected by a local area network (fiber-based Gigabit
Ethernet); the other is a system connecting two ma-
chines at ANL and NCSA by a wide area network,
MREN that has ATM OC-3 networks. Note that both
networks are shared networks and all the machines are
250MHz SGI Origin2000. AMRG64 s tested on the
L AN-connected system, and ShockPool3Ds tested on
the WAN-connected system. For each configuration,
the distributed scheme was executed immediately fol-
lowing the parallel scheme. This was done so that the
two executions would have the similar network envi-
ronments (e.g., periods of high traffic due to sharing
of the networks or low traffic); thus, the performance

Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems 327

Execution Time for AMR64
on LAN-connected System

2000

« 1750

2 1500 DOparallel DLB
¢ 1250

g 1000 Bdistributed
S 750 DLB

,E 500

250

4+4 8+8 16+16

number of processors

Execution Time for ShockPool3D
on WAN-connected System

400
0 ggg Oparallel DLB
c
g 250 —
& 200 Qdistributed
£ 150 DLB
g 100
= 50

0
1+1 2+2 4+4 646 8+8

number of processors

Fig. 7. Execution time for AMR64 and ShockPool3D.

Efficiency for AMR64
on LAN-connected System

0.5

04 Oparallel DLB
>
§ 0.3
% 02 .dplfglbmed

0.1

444 8+8 16+16

number of processors

Efficiency for ShockPool3D
on WAN-connected System
1
0.8
- Oparallel DLB
2 06
2
o
£ 0.4 Bdistributed
DLB
0.2

0
141 242 444 6+6 848

number of processors

Fig. 8. Efficiency for AMR64 and ShockPool3D.

difference shown in the below is attributed to the dif-
ferencein the DLB schemes.

Figure 7 compares the total execution times with
varying configurations for both datasets. It is shown
that the total executiontime by using the proposed dis-
tributed DLB is reduced greatly as compared to using
parallel DLB, especially asthe number of processorsis
increased. The relative improvements are as follows:
for AMRG64 it isin the range of 9.0%-45.9% and the
average improvement is 29.7%,; for ShockPool3Dit is
ranging from 2.6% to 44.2% and the average improve-
ment is 23.7%.

Figure 8 gives the comparison of efficiency with
varying configurations. Here, the efficiency is defined
as: ef ficiency = £ where E(1) isthe sequential
execution time on one processor, E is the execution
time on the distributed system, and P is equal to the
summation of each processor’s performancerelative to
the performance used for sequential execution [4]. In
thisexperiment, all the processors havethe same perfor-
mance, so this P is equal to the number of processors.
As we can observe, the efficiency by using distributed
DLB is improved significantly. For AMR64 the effi-
ciency isimproved by 9.9%-84.8%; for ShockPool3D
the efficiency isincreased by 2.6%—79.4%.

6. Summary and futurework

In this paper, we proposed a dynamic load balancing
schemefor distributed systems. Thisschemetakesinto
consideration (1) the heterogeneity of processors and
(2) the heterogeneity and dynamicload of networks. To
address the heterogeneity of processors, each proces-
sor is assigned a relative performance weight. When
distributing workload among processors, the load is
distributed proportionally to these weights. To desal
with the heterogeneity of network, the scheme divides
the load balancing process into global load balancing
phaseand local load balancing phase Further, the
scheme addresses the dynamicity of networks by adap-
tively choosing an appropriate action based on the ob-
servation of the traffic on the networks. For global re-
distribution, a heuristic method was proposed to eval u-
ate the computational gain and the redistribution cost.
The experiments, however, illustrate the advantages of
our DLB to handlethe heterogeneity and dynamic load
of the networks. The experiments show that by using
this distributed DLB scheme, the total execution time
can be reduced by 9%—-46% and the average improve-
ment is more than 26%, as compared to using parallel

328 Z. Lan et al. / Dynamic load balancing of SAMR applications on distributed systems

DLB scheme which does not consider the heteroge-
neous and dynamic features of distributed systems.
Our future work will focus on including more het-
erogeneous machines and larger real datasets into our
experiments. Further, we will connect this proposed
DLB scheme with tools such as the NWS service [28]
to get more accurate eval uation of underlying networks.
Lastly, adetailed sensitivity analysisof parametersused
inthisdistributed DLB schemewill also be compl eted.

References

(1

(2

(3]

(4
(9]

(€l

(7

(8]

(9

(1]

(11

[12]

S. Baden, N. Chrisochoides, M. Norman and D. Gannon.
Structured Adaptive Adaptive M esh Refinement (SAMR) Grid
Methods, IMA Volumes in Mathematics and its Applications
vol. 117 Springer-Verlag, NY, 1999.

M. Berger and P. Colella, Local adaptive mesh refinement
for shock hydrodynamics, Journal of Computational Physics
82(1) (1989), 64-84.

G. Bryan, Fluid in the universe: Adaptive mesh refinement
in cosmology, Computing in Science and EngineeriaR)
(March/April, 1999), 46-53.

J. Chen, Mesh Partitioning for Distributed Systemfh.D.
Thesis, Northwestern University, 1999.

J. Chen and V. Taylor, ParaPART: Parallel Mesh Partition-
ing Tool for Distributed Systems, Concurrency: Practice and
Experiencel2 (2000), 111-123.

J. Chen and V. Taylor, PART: Mesh Partitioning for Efficient
Use of Distributed Systems, To appear in IEEE Transactions
on Parallel and Distributed Systems

G. Cybenko, Dynamic load balancing for distributed mem-
ory multiprocessors, IEEE Transactions on Parallel and Dis-
tributed computing’ (October, 1989), 279-301.

K. Dragon and J. Gustafson, A low-cost hypercube load bal-
ance algorithm Proc. Fourth Conf. Hypercubes, Concurrent
Comput. and Appl., 1989, pp. 583-590.

R. Elsasser, B. Monien and R. Preis, Diffusive Load Balanc-
ing Schemes for Heterogeneous NetwoFksc. SPAA’' 2000,
Maine, 2000.

|. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing InfrastructureMorgan Kaufmann Publishers, San
Francisco, California, 1999.

Globus Project Team, Globus Project World Wide Web,
http://www.globus.org, 1996.

A. Grimshaw and W. Wulf, The Legion Vision of a World-

[13]

[14]

[19]

(16]

[17]

(18]
[19]
[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

wide Virtual Computer, Communications of the ACMO(1)
(January, 1997).

W. Johnston, D. Gannon and B. Nitzberg, Grids as Produc-
tion Computing Environments: The Engineering Aspects of
NASA'’s Information Power GridlEEE Computer Society
Press, 1999.

The KeLP Programming System, World Wide Web, http://
www-cse.ucsd.edu/groups/hpcl/scg/kel p.html.

Z.Lan, V. Taylor and G. Bryan, Dynamic Load Balancing For
Structured Adaptive Mesh Refinement Applicatidtiec. of
ICPP’ 2001, Valencia, Spain, 2001.

Z.Lan, V. Taylor and G. Bryan, Dynamic Load Balancing For
Adaptive Mesh Refinement Applications: Improvements and
Sensitivity Analysisroc. of IASTED PDCS 2001, Anaheim,
CA, 2001.

F.Linand R. Keller, The gradient model load balancing meth-
ods, IEEE Transactions on Software Engineeritig(1) (Jan-
uary, 1987), 8-12.

MPICH Project Team, World Wide Web, http://www.niu.
edu/mpi/.

H. Neeman, Autonomous Hierarchical Adaptive Mesh Refine-
ment for Multiscale Simulation®h.D. Thesis, UIUC, 1996.

M. Norman and G. Bryan, Cosmological adaptive mesh re-
finementComputational Astrophysics, 1998.

L. Oliker and R. Biswas, PLUM: paralel load balancing for
adaptive refined meshes, Journal of Parallel and Distributed
Computingd7(2) (1997), 109-124.

K. Schloegel, G. Karypis and V. Kumar, Multilevel diffusion
schemesfor repartitioning of adaptive meshes, Journal of Par-
allel and Distributed Computing7(2) (1997), 109-124.

S. Sinha and M. Parashar, Adaptive Runtime Partitioning of
AMR Applications on Heterogeneous clustesabmitted to
the 3rd | EEE International Conference on Cluster Computing,
Newport Beach, CA, March, 2001.

A. Sohn and H. Simon, Jove: A dynamic load balancing
framework for adaptive computations on an sp-2 distributed
multiprocessoNJI T CISTechnical Report, New Jersey, 1994.

R. Steven, P. Woodward, T. DeFanti and C. Catelett, From the
I-WAY to the National Technology Grid, Communications of
the ACM40(11) (1997), 50-61.

C. Walshaw, Jostle: partitioning of unstructured meshes for
massively parallel machineBroc. Parallel CFD’ 94, 1994.

M. Willebeek-LeMair and A. Reeves, Strategies for dynamic
load balancing on highly parallel computers, IEEE Transac-
tions on Parallel and Distributed System§9) (September,
1993), 979-993.

R. Wolski, Dynamically Forcasting Network Performance us-
ing the Network Weather Servicgechnica Report CS-96-
494, U.C. San Diego, 1996.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

