Scientific Programming 10 (2002) 329-337
10S Press

329

Scientific computing on the Itaniume

processor*

Bruce Greer, John Harrison, Greg Henry, Wei Li and Peter Tang

Computational Software Lab, Intel Corporation, USA

Abstract. The 64-bit Intelpsy210 Itanium® architecture is designed for high-performance scientific and enterprise comput-
ing, and the Itanium processor is its first silicon implementation. Features such as extensive arithmetic support, predication,
speculation, and explicit parallelism can be used to provide a sound infrastructure for supercomputing. A large number of

high-performance computer companies are offering Itani um® -based systems, some capable of peak performance exceeding 50
GFLOPS. In this paper we give an overview of the most relevant architectural features and provide illustrations of how these
features are used in both low-level and high-level support for scientific and engineering computing, including transcendental

functions and linear algebra kernels.

Keywords: EPIC, Itanium® processor, fused multiply-add, linear algebra, transcendental functions

1. Introduction

The64-bit Intel ® 1tanium® architectureisdes gned
for high-performance scientific and enterprise comput-
ing. Features such as extensive arithmetic support,
predication, speculation, and explicit parallelism can
be used to provideasound infrastructure for supercom-
puting. Thearchitecture hasbeen carefully designedto
allow efficient implementations and an effective com-
bination of hardware and software, not only with cur-
rent techniques but with a view to future trendsin, for
example, process technology and compiler optimiza-
tion.

The Intel Itanium® processor isthefirst in aline of
high-performanceimplementationsof thisarchitecture.
Later members of the Itanium Processor Family (IPF)
areexpected to bestill more powerful,with higher clock
speed, lower instruction latencies and greater memory

* Permission to makedigital or hard copiesof all or part of thiswork
for personal or classroom use is granted without fee provided that
copiesare not madeor distributed for profit or commercial advantage,
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or afee.

bandwidth. Economies of scale and improvementsin
process technology are also expected to make them
cheaper. Some preliminary facts about the second im-
plementation of the Itanium architecture, currently co-
denamed McKinley, can be found in Section 6.

We maintain that the IPF will have a profound im-
pact on supercomputing in the years to come. There
are severa reasons to believe this. Most importantly,
all the major Supercomputing key players (IBM, HP,
Compaqg, NEC, SGlI, Unisys, Hitachi, Fujitsu-Siemens,
etc.), with the possible exception of Sun Microsystems,
have plans to use Itanium processors in some of their
high-end future products. This paper will go over some
of the features that make this processor so attractive to
them. Itisour hopethat by establishing anew high-end
standard, the Itanium architecture will allow computer
designers to consolidate research efforts that are cur-
rently fragmented over a number of competing propri-
etary RISC architectures. This may lead to the same
efficiencies and economies of scale reaped as a result
of the wide acceptance of Intel’s 32-bit architecture
(IA-32) currently represented by the Intel Pentium® 4
processor.

Some features of the Itanium architecture are com-
pletely new, whereas others are known from previous

ISSN 1058-9244/02/$8.00 [1 2002, ACM. Reprinted with permission from Proceedings of ACM Supercomputing 2001, 10-16 November,

Denver, CO, USA. ACM portal: www.acm.org.

330 B. Greer et al. / Scientific computing on the Itaniun@ processor

architectures — for example predicated execution from
the Advanced Risc Machines Ltd. ARM! family [6]
and the fused multiply-add from the IBM RS/6000!
family [7]. Neverthelessthe Itanium architectureisthe
first to bring together a unique combination of these
features into a synergetic whole, intended to provide
new scope for the implementation of still more power-
ful processors over the coming decades. In later sec-
tions, some of the key architectural features will be
discussed in the context of their typical applications,
moving from the simplest kernelsto more complicated
serial and parallel libraries. One should recognize that
thesefeaturesare not all hardware-related, and that cer-
tain architectural featuresimply software methodol ogy
changes. The ability to use the rotating registersto get
potentially extremely complicated code into short and
simple loopsis described in Section 5, for example.
This paper elaborates on the thesis that the Itanium
processor is important to supercomputing. Section 2
surveys the key architectural features most relevant to
scientific computing, and Section 3 explains how opti-
mizing compilers can make use of thesefeaturesto pro-
duce high quality numeric code. Section 4 discusses
the construction of an accurate and fast run-time math
library and Section 5 shows how the crucial kernels
for linear algebra are optimized on the Itanium pro-
cessor. These libraries are important in themselves as
part of the software support for scientific computing,
and also provide an excellent illustration on how ar-
chitectural features can be exploited. Section 6 gives
a brief overview of some significant improvementsin
the second implementation of the Itanium architecture,
and finally Section 7 gives some concluding remarks.

2. Key architectural features

The Itanium architecture is based on the * Explicitly
Parallel Instruction Computer’ (EPIC) philosophy. The
basic EPIC principleisthat the programmer or compiler
should be able to indicate the inherent parallelism of
programs explicitly in the instruction sequence, rather
than obliging the processor to reconstruct it from a par-
ticular sequence of serial operations. In order to alow
the programmer to expose more instruction-level par-
alelism (ILP), the architecture offers a unique combi-
nation of features including full predication, specula-
tive and advance loads, and automatic register rotation

LAll other brands are the property of their respective owners.

for software-pipelined loops. In what follows we will
focus mainly on the special features of the floating-
point architecture; Dulong [2] discusses the rationale
for other architectural features.

The Itanium architecture’s floating-point instruction
set has been carefully designed to combine high perfor-
mance and good accuracy. A large floating-point reg-
ister set (128 registers) is provided, and aimost all op-
erations can read their arguments from and write their
results to arbitrary registers. Together with register ro-
tation for software pipelined loops, this allows the en-
coding of common algorithms without running short
of registers or needing to move data between them in
elaborateways. Registerscan storefloating-point num-
bersin avariety of formats, and the rounding of results
is determined by flexible combinations of several se-
lectable defaults and additional instruction completers.
The basic arithmetic operation, the fused multiply add,
allows higher accuracy and performancein many com-
mon algorithms. Several additional features are also
present to support common programming idioms.

2.1. Floating-point multiply-add

Thecenterpieceof theltaniumarchitecture’sfloating-
point instruction set isthef nma (floating-point multiply
add or fused multiply-accumulate) instruction, which
computes x x y + z in a single floating-point opera-
tion with no intermediate rounding of the product. Re-
lated instructions perform the same operation with a
sign change: f ns computes z x y — z while f nma
computes z — x x y. Addition and multiplication are
implemented as degenerate cases of thef ma: = x 1+y
and x x y-+0, which can be used without storing special
constants, since registers f 0 and f 1 are hardwired to
0 and 1 respectively.?

In implementations, there is amost no latency
penalty for a f ma operation over a direct implemen-
tation of a pure multiply. Thus, asingle f ma is sig-
nificantly faster than a separate multiply and add. On
codewhere adds and multipliesare heavily interleaved,
this can lead to a significant performanceincrease. Ob-
vious examples are the evaluation of polynomials and
of vector dot products of the form x x y. The latter
computation

2When the third argument is f 0, the f ma uses different rules
for the determination of zero signs, in accordance with the IEEE
Standard 754 [5].

B. Greer et al. / Scientific computing on the Itaniun@ processor 331

Table1
Some floating-point formats on the Itanium architecture

Format Precision Exponent range
Single 24 —126 < e < 127
Double 53 —1022 < e < 1023
Double-extended 64 —16382 < e < 16383
Register 64 —65534 < e < 65535

N—-1
p= 3w
=0

can be performed by a succession of f nma operations of
the form:

P=p+ X XY

Aside from its speed advantage, the fact that no in-
termediate rounding is performed on the product also
tends to reduce rounding errors. In common cases this
difference may be relatively unimportant, but can be
crucia in specia situations such astheimplementation
of division discussed later in this section or therun-time
library discussed in Section 4.

2.2. Extended precision

The Itanium architecture supports a variety of
floating-point formats, including those shown in Ta-
ble 1 and various intermediate types such as a ‘ stack
single’ type with precision 24 but exponent range
—16382 < e < 16383. Operations can be performed
on arguments of different formats, making it easy to
mix say, double-precision inputs with register-format
intermediateresultsfor better accuracy, or to store short
constants in single precision to economize on mem-
ory. Results can also be rounded back into any of the
supported formats, allowing narrowing casts without
incurring double-rounding.

Thanksto extended precision, rounding errorsareof -
tenlesssignificant than they would beonanarchitecture
where doubleis the highest available precision, yet the
speed of operationsis similar, far better than for a soft-
ware implementation of quad arithmetic. Even when
designing routines with a double-precision external in-
terface, extended precision can often be exploited for
internal calculations. An important application can be
found in double-precision polynomial evaluation (c.f.
Section 4).

2.3. Multiple status fields

Given the number of floating-point formats available
in the Itanium architecture, it is important to have a
flexible means of specifying the desired floating-point
format for aparticul ar result to be rounded into, aswell
asthedirection of rounding (e.g. rounding to nearest or
truncation). Having only a single status register would
beinconvenient wherethere are several paralel threads
of control, or where exceptions in some intermediate
instructions need to beignored. Therefore, the [tanium
architecturefeaturesfour different * statusfields' which
can be specified by completers in the main floating-
point instructions. An instruction with a given status
field completer is then controlled by that status field.

Software conventions determine many of the appro-
priate applications for particular status fields. Typi-
cally sf 0 isthemain ‘user’ status field used for most
floating-point calculations, and sf 1, with all excep-
tions disabled, is used for intermediate calculationsin
many standard numerical software kernels, e.g. those
for division, square root and transcendental functions.
However, the multiple status fields can be put to other
uses. In particular, when implementing interval arith-
metic one often wants to be able to switch repeatedly
between rounding up and rounding down in a short se-
guenceof calculations. Onmany existing architectures,
changing the rounding mode is so costly that perfor-
mance degradesdramatically. However, onthe [tanium
architecture, one can simply set up two status fields to
have different rounding directions and use whichever
is desired on each instruction.

2.4. Division and square root

There are no instructions specified in the Itanium
architecture (except in 1A-32 compatibility mode) for
performing floating-point division or sguare root op-
erations. Instead, the only instruction specifically in-
tended to support division is the floating-point recip-
rocal approximation instruction, f r cpa, which given
a floating-point number a, returns an approximation
to 1/a good to about 8 hits.> Similarly, the only
instruction to support square root is the frsqgrta
(floating-point reciprocal sguare root approximation)
instruction, which given a floating-point number a,
returns an approximation to 1/1/a good to about 8

31n special cases such asa = 0 the behavior isdifferent, indicated
by a predicate register setting.

332 B. Greer et al. / Scientific computing on the Itaniun@ processor

bits. These initial approximations are intended to be
refined to perfectly rounded quotients or square roots
by software. The refinement calculations can be effi-
ciently performed because of the f ma instruction, as
r = b — aq can be calculated accurately (without inter-
mediate rounding) for ¢ = b/a.

The decomposition of division and square root into
a number of simple, fast operations tends to increase
throughput, since these operations inherit the high de-
gree of pipelining in the basic f ma operations. For
example, in an implementation such as the Itanium
processor with two fully pipelined f ma units, double-
extended precision division has an throughput of one
operation every 7 cycles, far better than on most other
architectures. In addition, more flexibility is afforded
to the programmer or compiler to schedule the division
in conjunction with other instructions. Finaly, if an
| EEE-correct result isnot required (e.g. in graphicsap-
plications), much faster algorithms can be substituted.
Two other novel uses of f r cpa are givenin Section 4.

2.5. Other features

There are a number of other floating-point in-
structions designed to support common programming
idioms. For example famax and fam n return
whichever of the two argument values has the larger
absolute value, which is often useful in a variety of
computations. One interesting exampleis obtaining an
exact sum by performing a floating-point addition and
then subtracting off the summands, the larger onefirst,
to recover the rounding error:

Hi=x+y

max = famax(z, y)
min = famin(z, y)
tmp = max —H1

Lo =tmp+ min

3. Itanium architecture optimizing compilers

The features of the Itanium architecture provide
new opportunities for the compiler to optimize appli-
cations. In May of 2001, the Itanium processor set
the record-breaking floating-point performance of 711
Spec2000FP (base) using the Intel compiler.

4Described as “phenomena” by Stephen Shankland, Itanium
scores high in performance tests, CNET News.com, May 30, 2001,
12:50 p.m. PT, http://news.cnet.com/news/0-1003-200-6112206.
html.

The Intel compiler for the Itanium architecture tar-
gets two major goals: minimizing the impact of mem-
ory accesses, and maximizing parallelism. The com-
pilation techniques take advantage of the Itanium ar-
chitectural features. For instance, memory operations
are eliminated by effectively using the large register
file. Optimizations use rotating registers to reduce the
overhead of software register renaming in loops. Pred-
ication is used in many situations, such as removing
hard-to-predict branches and implementing an efficient
prefetching policy. The compiler uses control and data
speculation to eliminate redundant loads, stores, and
computations. An overview of the Intel compiler can
befoundin [3].

The compiler has a comprehensive set of optimiza-
tions targeting scientific applications, including loop
transformations, array dependence analysis, scaar re-
placement, data prefetching, datalayout optimizations,
software pipelining, locality analysis, and many more.
Below isasample list of these optimizations.

3.1. Software pipelining

Software pipelining improves the performance of
a loop by overlapping the execution of several itera-
tions to increase instruction-level paralelism. The In-
tel compiler pipelines both counted loops and while
loops. Control speculation is required to maximize
the parallelism of while loops. Data speculation helps
bypass the unlikely data dependencies often seen in
sparse matrix applications. Loopswith control flow are
transformed, using predication, into single block loops
suitable for pipelining.

In the Itanium architecture, rotating register support
obviatesthe need for extensiveunrolling, thetraditional
approach for RISC architectures. Rotating predicates
areused to control the execution of the stagesduring the
prologue and epilogue phases, so that only the kernel
loop is required. In RISC architectures, these three
execution phases are implemented using three distinct
blocks of code.

3.2. Data prefetching

The data prefetching implementation utilizes data-
locality analysisto selectively prefetch only those data
references that are likely to suffer cache misses. The
predication support in the Itaniumarchitecture provides
an efficient way of adding prefetch instructions. The
conditionalswithin theloop are converted to predicates

B. Greer et al. / Scientific computing on the Itaniun@ processor 333

through if-conversion, thus alleviating the need for un-
rolling, which would result in code expansion.

Therotating registers are used to reduce the number
of prefetching instructions required. Multiple arrays
accessed uniformly within a loop can be prefetched
with asinglel f et ch instruction using arotating reg-
ister that rotates the addresses of the different arrays
that have to be prefetched. This completely obviates
the need for predicate cal culations within the loop and
saves memory slots that would otherwise be occupied
by multiple! f et ch instructions[1].

3.3. Loop transformations

A large set of loop transformations have been im-
plemented. Linear loop transformations are compound
transformations representing sequences of 1oop rever-
sal, loop interchange, loop skew, and loop scaling.
These transformations can dramatically improve mem-
ory access locdlity, and improve the effectiveness of
other optimizations, such as scalar replacement, invari-
ant code motion, and software pipelining. Loop fusion
improves cache performance, and reduces the cost of
branches. Loop fusion in the Intel compiler for the Ita-
nium architecture is more aggressive than that in com-
pilers for RISC processors, since it takes advantage of
the large number of available registers in the Itanium
architecture. Loop unroll-and-jam unrolls the outer
loops and fuses the unrolled copies together to enable
more scalar replacement, which is very effective due
to the large number of registers and rotating register
support. Loop blocking is key to improving the cache
performance of libraries and applications that manip-
ulate large matrices of data items. Loop distribution
splitsasingle nested loop into multipl e adjacent nested
loops that have a similar loop structure. Besides en-
abling other transformations, loop distribution spreads
the potentially large cache context of the original loop
into different new loops, so that the new loops have
manageable cache contexts and higher cache hit rates.

3.4. Memory reference elimination

Scalar replacement replaces array memory refer-
ences with registers. The Itanium architecture pro-
vides rotating registers, which are rotated one regis-
ter position each time a special loop branch instruction
is executed. This hardware feature enables the com-
piler to map the compiler-inserted scalars directly onto
the rotating registers to eliminate the necessary moves
introduced by scalar replacement. On traditional ar-

chitectures, if one chooses to eliminate these moves,
unrolling normally has to be used, with code expan-
sion. Partial redundancy elimination is another tech-
nique to eliminate memory loads and stores for scalar
references.

3.5. Parallélization

The Intel compiler supports OpenMP, an industry
standard to specify shared memory parallelism. It con-
sistsof aset of compiler directives, library routines, and
environment variablesthat provideamodel for parallel
programming aimed at portability across shared mem-
ory systems from different vendors. It also supports
auto-parallelization, i.e. the compiler automatically
detects parallelism and generates parallel code.

4. Accurate and fast run-time math library

We must not lose sight of the fact that large-scale
computing also depends on low-level support for fun-
damental scientific computing. A run-time library of
mathematical functions is not only a well-accepted
common set whose reliability and efficiency are cru-
cial. It aso reflects characteristics of low-level com-
putational kernelsthat a specific large-scale computing
problem may depend on critically. Thus, an accurate
and fast run-time mathematical library gives two major
benefits. Firgt, the library itself is obviously valuable.
Second, thewaysin which architectural featuresareex-
ploited to construct this run-timelibrary are also likely
to be applicable elsewhere. For thisreason, we give an
overview of the techniques employed in the construc-
tion of our |EEE double-precision run-time mathemat-
ical library of transcendental functions[4].

4.1. Parallelismand extra precision

One important consequence of a combination of ex-
traprecision (64 significant bits) and parallelismisthat
degree-n polynomials, for fairly large degree, can be
evaluatedin about O(log,(n)) latency, in contrast with
O(n) that atradition Horner’s recurrence offers. The
method is simple recursive subdivision. The presence
of 11 extra bits of accuracy allows for basically any
algebraic decomposition of a polynomial and evalua-
tion order. We have, by exhaustive enumeration, de-
termined the optimal evaluation method (in terms of
latency) of general and some special polynomials up
to moderate degrees. Table 2 tabulates the results, for

334 B. Greer et al. / Scientific computing on the Itaniun@ processor

Table 2
Optimal latency of polynomial evaluation on the Itanium processor
Polynomial Latency (cycles)
co+cix 5
co + c1x + cox? 10

co+ciz+ ...+ ez 11
co+c1x+...+(:4x4 15
co+ciz+ ...+ cs5zd 16
co+ciz+ ...+ cexb 16
co+ciz+...+crz’ 17
co+ciz+ ...+ cgxd 20
co+ecixz+ ...+ cgz® 21

co+ciz + ...+ crozt® 21
co+ciz+...+ecrz! 22
co+cix + ...+ croxt? 22
co+ciz+ ...+ cizzt? 23
co+c1x+...+c14xl4 23
co+ciz+ ...+ cisxt® 24

example, of general polynomialsup to degree 15 onthe
Itanium processor. That we can evaluate long polyno-
mials very quickly leads to interesting algorithms. For
example, we no longer steadfastly shoot for very short
polynomials by using large tables [8] but instead use
smaller tables. In examples such as inverse tangents,
or sine, we employ polynomials with as many as 22
terms.

4.2. Multiply accumulate

Theutility of being ableto computea x b+ cwith just
oneroundingistremendous. Intranscendental function
calculations, we often need to compute the form X —
N x P. Here, X istypically theinput argument, and P
an approximation to a “period” such as 7/2, or log 2.
Let us elaborate on this somewhat subtle point. In a
typical situation, one needs to compute X — Np, N
being an integer value, to moderately more accuracy
than the working precision in question. If we set P to
be the machine representation of p, because by nature
of this kind of calculation cancellation occurs in the
subtraction, asimplef ma allows usto obtain the result
X —N x P exactly. Wedoincur asmall error N(p—P).
But since p isfixed a priori, we can compensate easily
for thelack of precisionin P. Without f ma, arounding
error will beincurredinthe calculation of V x P. This
error cannot be compensated easily as it depends on
the exact value of N x P and how it is rounded off.
The workaround in the absence of f ma is to reduce
the precision of P so that a number of trailing bits
are always zero. As long as this amount exceeds the
number of bitsin V, N x P iscomputed exactly. This
workaround in essence reduces the accuracy we can
have in P to such an extent that many extra steps are
usually needed to compensate for it.

In one interesting instance of the calculation of the
logarithm function log, f r cpa is used together with
f ma. Here P = frcpa(X) and log(X) is computed
via

log(X) = —log(P) + log(1 + (X P —1)).

The value log(P) is obtained from a table of values
calculated beforehand, and log(1 + (X P — 1)) iscom-
puted by ashort power seriesinthevariablet = X P—1
computed by asinglef ma instruction.

4.3. Paralléelism

Parallelism is exploited not only in the evaluation of
long expressions such as polynomials. In general, par-
alelism is exploited whenever along critical path can
be shortened significantly by an approximation whose
correction can be computed in parallel. A notable, but
by no means unique, situation involves division. Con-
sider for example the calculation of the atan2 func-
tion. This function takes two arguments X and Y
and essentially calculates the phase angle of the com-
plex number X + iY. The basic computation is of
the form atan(Y/X). On the surface, the division
Y/ X liesinthecritical path. We exploited parallelism
here by starting on the calculation of arctan(Z) where
Z =Y X frcpa(X) immediately. The correction
based on the formula

arctan(Y/X) = arctan(Z) + arctan(¢),
Y/X-7Z
IRz

involvesonly afew terms of the Taylor seriesexpansion
in ¢ and has alatency shorter than that of the main cal-
culation. The latency of the division is thus essentially
eliminated by use of paralelism. We note again that
the correction term calculation is not nearly as conve-
nient without the ever-useful multiply accumulate in-
struction. In another instance, we need to calculate
(1/X)?5. Instead of calculating 1/X followed by ex-
ponentiation, we start the computation of W 25 imme-
diately where W = frcpa(X). The correction needed
is(1—3)"% where3 = 1— XW. A polynomia
approximation to the function (1 —) ~2° isderived be-
forehand on the range |t| < 2%, and an evaluation of
this polynomial at 3 (obtained via one multiply accu-
mulate instruction) is carried out in parallel with the
calculation of W25,

B. Greer et al. / Scientific computing on the Itaniun@ processor 335

Table 3
Accuracy and speed of some run-time functions

Function Latency (cycles) Max. Error Observed (ulps)
exp 49 0.502
log 34 0.505
sin 62 0.502
atan 68 0.511
xY 79 0.502

4.4. Timing results

We summarize in Table 3 the timing in cycles and
accuracy in term of largest error observed in terms of
units-of-last-place (ulps) of some key double-precision
functions of the resulting run-time library.

5. Linear algebra

The same features used extensively in the scalar ex-
ample earlier can be extended to scientific and engi-
neering applications. We will discuss other features of
the architecture that support pipelined loops.

While many efforts have been underway at Intel and
other hardware and software vendors to port and opti-
mize code for the Itanium processor, we will discuss

our experiences with the creation of the Intel ® Math
Kernel Library® (MKL). The Itanium architecture vari-
ant has gone through several versions, with MKL 6.0
the current release. Many of the salient features of the
architecture are exploited in DGEMM from the level 3
BLAS.S We will use that as an example of how some
of the architectural features are used. A set of vec-
torized transcendental functions, collectively known as
the Vector Math Library (VML), is aso part of MKL.
We will briefly discuss how the Itanium architecture
has been used for these functions and compare their
performance on this processor with the same functions
on 32-hit Intel processors.

Because of the demand for optimal performance,
both the level 3 BLAS and the VML functionsinclude
extensive assembly codein them now. Asthe compiler
becomes increasingly capable, we will place greater
reliance on its optimization capabilities.

5.1. Level 3BLAS

For obviousreasonsalot of effort has been expended
on the level 3 BLAS, and DGEMM especially. For

5http://devel oper.intel .com/products/software/mkl/index.htm.
6 http://www.netlib.org/blas/index.html.

DGEMM, thetheoretical peak performance approaches
3.2 GFLOPS on an 800 MHz processor. Getting that
performance requires management of the multiple lev-
elsof cache, including effective use of the data prefetch
instructions [10]. DGEMM performs the operation
C = aAB + 3C where A, B and C are matrices
and « and 8 are scalars. A 4x4 block of A is mul-
tiplied by a 4x3 block of B. During each clock, two
multiply/accumul ate operations are possible. Thetotal
number of cycles for this inner loop, fully unrolled, is
4x4x3/2, or 24 instruction groups and clocks.

Predication is often presented in the context of a
means to eliminate branches within code. A pair of
predicate registers are set by some condition that re-
solvesto logicaly true or false. Afterwards these reg-
isters can be used to nullify or effect an operation by
preceding the operation with the predicate. Predication
can be used for a number of control operations within
aloop, asin the case of thiskernel, for such operations
as:

— Reset registersto control loop execution
— Store the C block

— Load the next C block

— Load the next A and B blocks.

What lookslikeasingleloopisinfact atriply nested
loop. Theinnermost loopisfully unrolled. Predication
controlsthe loop variables, moving the kernel multiply
operation over a larger block structure. In addition,
predication, along with other features of the architec-
ture, alows the loop to do its own prologue and epi-
logue, thus holding down the size of the object file and
making loops profitable even for small loop counts. A
typical operation to set a predicate register is:

cnp.eq pl, pO =1, count

Here, if count =1, p1 wouldget a1 and pO a0.

Thearchitectureof the processor is deeply pipelined.
To support software pipelining [9] the registers (gen-
era, floating-point and predicate) can be rotated, i.e.,
a set of registers can be identified to the processor as
belonging to a ring. Upon issuing certain branch or
exit instructions the registers are incremented, modulo
the number of registers in the set. This mechanism,
along with the predicate registers, provides support for
folding prologue and epilogue into the loop structure.

Data prefetch is used throughout the code to move
data to registers from cache. Since the architecture
of the processor is fully exposed, the programmer, or
compiler, must make a decision about wherethe datais
to determine what depth of memory pipelining should

336 B. Greer et al. / Scientific computing on the Itaniun@ processor

Table 4
DGEMMperformance on a 800 MHz Itanium™! processor

Matrix Size MFLOPS
32 155.7
64 21911

100 1927.6
128 2555.0
200 2295.1
256 2568.8
300 2483.1
400 2475.2
500 2490.8
600 2437.9
700 2489.3
800 25154
900 2578.5
1000 2596.6

be used. In the case of DGEMM, the assumptionisthe
dataisinthelevel 3 cache with a 24 clock latency.

Theuse of thesefeatures permitsthe codeto use both
fused multiply-add unitsin every instruction for atotal
of 96 floating-point operations per iteration of the loop.
On an 800 MHz system, the performance on DGEMM
isshownin Table 4.

On the current implementation, efficiencies in ex-
cess of 80% of peak are achieved. We expect that
level of efficiency to increase with the next member of
the Itanium processor family for reasons discussed in
Section 6.

5.2. VML

The second example is that of the vectorized tran-
scendental functions. These functions represent vec-
torizations of most of the libm functions. MKL con-
tainsversionsof thesefunctionsfor all Intel processors.
We will see how the arithmetic architecture of the Ita-
nium processor affects performance vis-a-vis the other
processors from Intel.

Vectorization of these functions (trigonometric, ex-
ponential, hyperboalic, etc.) allowsthe machinetowork
on evauating the function on severa input values si-
multaneously, thus giving the opportunity to keep the
arithmetic units productivein every clock cycle.

Multiple arithmetic units already help ensure good
performance on these functions. However, the ex-
tended precision and reduced rounding errors of the
fused multiply-add units further enhance performance
becausefull accuracy ismuch easier to maintain, reduc-
ing or eliminating costly steps needed on the other pro-
cessors to maintain high accuracy over more rounding

steps.

Table5
Comparing VML performance (clocks/element) between the Itanium
and Pentium |11 processors

VML Function

Itanium Processor Pentium 111 Processor

vdinv 4.3 11.5
vdSqrt 7.3 335
vdinvSgrt 6.2 318
vdExp 6.2 37.8
vdSin 9.3 49.9
vdTan 12.3 75.9

On the 32-bit processors the VML functions have 1
ulp (unitsin the last place) error limits. However, on
the Itanium processor, those same functionshaveerrors
rivaling those of thescalar libm, or about ulp, because
of the arithmetic behavior of the fused multiply-add
units.

The VML functions assume data is in cache. The
dominant task, as with the scalar functions, becomes
scheduling the arithmetic units. Table5 compares max-
imum performance between the Itanium and Pentium ®
I11 processors.

6. Futureltanium processor generations

The second member of the Itanium processor family,
codename McKinley, was demonstrated at the Intel ®
Developer Forum in February 2001. We will briefly
cover its enhancements relative to the Itanium proces-
sor, most of which will impact all of the functions dis-
cussed in this paper. In general, the architectural tun-
ings improve performance by increasing clock speed,
decreasing most latencies, improving memory band-
width and adding more integer units which support ad-
ditional memory accesses during each clock.

6.1. Frequency

The freguency of the processor increases from 800
MHz to the GHz range. Most of the software discussed
in this paper should see an ailmost linear boost in per-
formance from this frequency increase.

6.2. Bus

The system bus increases from 64 bits to 128 hits,
and bus bandwidth increases from 2.1 GBytes/s to 6.4
GBytes/s. This added bandwidth will improve perfor-
mance on vector operations (level 1 and level 2 BLAS,
for instance) and improve scaling on multithreaded
code.

B. Greer et al. / Scientific computing on the Itaniun@ processor 337

6.3. Caches

The L1 cache does not change in size, but the
latencies of L1, L2 and L3 caches are al reduced
compared with the Itanium processor. The L3 cache
moves on-die, is 12-way set-associative (versus 4-way
now), and is non-blocking, so it supports out-of-order
reads/writes. Bandwidth increasesfrom 11.7 GBytes/s
to 32 GByteg/s.

6.4. Execution units

The number of integer execution unitsincreasesfrom
4 to 6. These additional units support the increased
memory access capability, supporting two reads and
two writes per clock.

6.5. Other

There are numerous other enhancements to the ar-
chitecture including: revamped branch prediction, re-
duced branch prediction penalties, enhanced prefetch-
ing, including streaming prefetch, improved TLB
(trandation look-aside buffer) and hardware page
walker which will aso improve performance on scien-
tific and engineering applications.

7. Conclusions

We have presented some features of the Itanium ar-
chitecture that impact on technical computation. The
arithmetic behavior of the fused multiply-add unitsim-
proves performance by permitting substantial freedom
in order of operations for both libm and VML. Fea
tures such as predication and rotating registers con-
tribute to improved performance by reducing code size
and making loops profitable even for small trip counts.
Loop overhead is minimized by predication, as multi-
ply nested loopsareincorporatedinto asingleloopwith
predication affecting when registers are reset. Com-
piler development has been underway in concert with

the development of the processor to provide highly
effective compilation. The features of the architec-
ture provide the resources needed to build powerful,
highly optimizing compilers. We expect to rely in-
creasingly on the compiler to provide performance ap-
proaching that which we have accomplished in the ex-
amples presented in the paper. The McKinley proces-
sor has many improvements in memory performance,
cache size, structure and bandwidth, memory accesses
per instruction, clock frequency, and latenciesthat will,
in both obvious and more subtle ways, improve perfor-
mance.

References

[1] G. Doshi, R. Krishnaiyer and K. Muthukumar, Optimizing
softwaredataprefetcheswithrotating registers, in Proceedings
of PACT 2001, 2001.

[2] C. Dulong, The IA-64 architecture at work, |EEE Computer
64(7) (July 1998), 24-32.

[3] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W.
Li, J. Ng and D. Sehr, An overview of the Intel |A-64
compiler, Intel Technology Journal 1999-Q4 (1999), 1-15.
Available on the Web as http://devel oper.intel.com/technol -
ogy/itj/q41999/ articled/art. 1.htm.

[4] J. Harrison, T. Kubaska, S. Story and P. Tang. The com-
putation of transcendental functions on the |A-64 archi-
tecture, Intel Technology Journal 1999-Q4 (1999), 1-7.
Available on the Web as http://devel oper.intel.com/technolo-
oy/itj/q41999articles/art. 5.htm.

[5] IEEE, Standard for binary floating point arithmetic.
ANSI/IEEE Standard 754-1985, TheInstitute of Electrical and
Electronic Engineers, Inc., 345 East 47th Street, New York,
NY 10017, USA, 1985.

[6] D.Jagger and D. Sedl, eds, ARM Architecture Reference Man-
ual, (2nd ed.), Addison-Wesley, 2000.

[71 R. Montoye, E. Hokenek and S. Runyon, Design of the IBM
RISC System/6000 floating-point execution unit, IBM Journal
of research and development 34 (1990), 59-70.

[8] PT.P.Tang, Table-lookup algorithmsfor elementary functions
and their error analysis, in: Proceedings of the 10th Sympo-
sium on Computer Arithemtic, P. Kornerup and D.W. Matula,
eds, 1991, pp. 232—-236.

[9] W. Triebel, |A-64 Architecture for Software Developers, Intel
Press, 2000.

[10] S VanderWiel and D. Lilja, When caches aren’t enough: Data
prefetching techniques, Computer 30(7) (1997), 23-30.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

