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In this paper we discuss the use of nested parallelism. Our
claim is that if the problem naturally possesses multiple levels
of parallelism, then applying parallelism to all levels may
significantly enhance the scalability of your algorithm. This
claim is sustained by numerical experiments.

We also discuss how to implement multi-level parallelism
using OpenMP. We find current OpenMP implementation,
based on version 1.0, to have severe limitation for implement-
ing nested parallelization. We then show how this can be
circumvented by explicitly assign task to threads.

Load balancing issues become more complicated with two
(or more) levels of parallelism. To handle this problem, we
have designed a distribution algorithm which groups threads
into teams, each team being responsible for one course grain
outer-level task. This algorithm is proven to produce the
optimal load balance, under given assumptions.
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1. Introduction

Computational demanding problems, where parallel
computing is needed for finding a solution within rea-
sonable time, also tend to be complex problems. When
breaking complex problems into smaller independent
subproblems for parallel processing, one typically finds
several layers. The first level or outer-level consists of
few, but large tasks. Next each of these outer-level tasks
may split into a number of fine grained tasks, which
again may consist of even finer subtasks, and so on.

In this paper we investigate the advantage and prob-
lems when implementing multi-level parallelism. The
great advantage we claim is enhanced scalability. We
see two main problems. The first is how to achieve
a good load balance. The second problem is that of
increased complexity in implementation. We inves-
tigate the latter in the context of OpenMP, the new
standard for SMP-programming. The popularity of
SMP-programming is mainly due to its ease of pro-
gramming. Its main drawback has been limited scal-
ability. As long as SMP hardware was bus-connected
UMA system with a small number of processors, the
limited scalability of the programming model was re-
flected in the hardware. In the last few years we have,
however, witnessed some great successes for scalable
cc-NUMA systems with distributed shared memory.
These systems support OpenMP program across hun-
dreds of processors. There is no doubt that this trend
will be picked up by an increasing number of vendors
and that future HPC-hardware will as a rule support
SMP-programming across hundreds, and soon thou-
sands, of processors. At this background the limited
scalability of any SMP-programming model becomes
a serious bottleneck.

The poor scalability of SMP-programs is, to a great
extent, due to the fact that most SMP-program is lim-
ited to fine grained loop-level parallelism. An impor-
tant goal for the OpenMP standard is to enhance scala-
bility by encourage more course grain parallelism than
possible with loop-level parallelism. In this paper we
study the possibilities and limitations of OpenMP to
2-level parallelism.

To set the stage we first would like to give a mo-
tivating example. This is meant to illustrate some of
the possibilities and problems of 2-level parallelism.
Suppose that each outer-level task,i, has a parallel part
of sequential computational cost,wi, and a sequential
part of cost,si. The sequential part consists of the code
which is not easily parallelized by inner-level paral-
lelization, but can also consist of parallel overhead. For
N tasks, the total sequential runtime for all the tasks is
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T1 =
N∑

i=1

(wi + si) = W + S. (1)

Applying inner-level parallelization the runtime us-
ing P threads will be

TP =
N∑

i=1

(wi

P
+ si

)
=

W

P
+ S. (2)

For nested parallelism (NP) we need to distribute
the threads among the outer-level tasks. Letp i be the
number of threads associated with taski. Now the
runtime forP threads will be

TNP = max
i=1,...,N

(
wi

pi
+ si

)
. (3)

If the load balance in the nested version is perfect,
wi/pi = W/P for theN outer-level tasks. Then the
runtime for 2-level parallelism will be

TNP � W

P
+ max

i=1,...,N
si. (4)

Optimal 2-level parallelism is achieved when we
haves1 = s2 = . . . = sN = S/N . Then

TNP � W

P
+

S

N
. (5)

It follows that whenTNP is close toW
P + S

N , then
TP > TNP . The level of improvement depends on the
actual numbers forP andN as well as the ratioS/W .
This dependency is illustrated in Fig. 1. As usual we
define speed-up onP threads asSp = T1/Tp, where
Tp is the runtime onP threads.

This example illustrates that optimal use of nested
parallelism can give significant improvements for a
large number of threads. But it is important to stress
that a necessary requirement for this is an optimal or
near optimal distribution of threads to tasks. Thus
finding an optimal distribution of threads to outer-level
tasks is very important for good efficiency. This ques-
tion is addressed in Section 2, where we give an algo-
rithm which distributes threads to tasks. We prove that
this algorithm gives the optimal solution and give its
complexity.

In Section 3, we discuss how to implement 2-level
parallelism in OpenMP. First we look at the possibilities
and shortcomings of directive based implementations,
and then we show how to implement 2-level parallelism
by explicit programming the tasks of the individual
threads. In Section 4, we test the effect of 2-level
parallelism on two test problems, an artificial problem,
a matrix multiplication code, and a real life problem,

a wavelet based data compression code. In Section 5
we will discuss the extensions to OpenMP 1.0 we find
necessary to express nesting appropriately. Finally the
conclusions will be given.

2. The distribution algorithm

In cases where the number of outer-level tasks are
greater than the number of threads, the most coarse
grain parallelism is achieved by assigning multiple
tasks to each thread and not using any inner-level par-
allelism. If there is no dependencies between the outer
tasks, achieving the optimal load balance reduces to the
standard bin-packing problem in this case. We will not
consider this case here and therefore assume that the
number of available threads is larger than the number
of outer-level tasks.

The threads should be grouped together in teams,
where each team is responsible for doing the work as-
sociated with one task. The allocation of threads to
tasks can be done in the following way: First assign
one thread to each task. Then find the task with highest
‘work-to-thread-ratio’and assign an extra thread to this
task. Repeat until all threads are assigned to a task.

In the sequel we will give a formal definition of our
distribution problem, formalize the above algorithm
and prove its optimality. For efficiency we store the
tasks in a heap with the task having the highest ‘work-
to-thread-ratio’ as the root node. Then finding the task
with highest ‘work-to-thread-ratio’ is done inO(1),
while O(log N) is needed to update the heap.

Notice that the enumeration of the tasks changes dur-
ing the distribution in such a way that the first task al-
ways has the largest work to threads ratio. The work-
load, or parallel part of sequential computational cost,
of a task is given by its weight, denotedwi.

Definition 1: The optimal distribution problem

Find an optimal distribution ofP threads toN tasks

such thatmaxi=1,...,N

(
wi

pi

)
is minimized over all par-

titions{p1, . . . , pN} given the constraints:
∑N

i=1 pi =
P ; ∀pi positive integers.

Algorithm 1: Distribution of threads to tasks
for i = 1,N

pi = 1;
end for
for j = N + 1, P

update the heap such that
w1
p1

� maxi=2,...,N(wi

pi
);

p1 = p1 + 1;
end for
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Fig. 1. Speed-up curves for inner-level parallelism as described by Eq. (2) and 2-level parallelism obeying the r.h.s. of Eq. (5) for the idealized
cases above withN = 10 andS = 0.01W .

This extremely simple algorithm produces not only
a good partition, but the optimal one. The reminder
of this section is devoted to prove the optimality of
Algorithm 1. First we need the following lemma.

Lemma 1: After the update of the heap in any iteration,
j, of Algorithm 1, wi

pi−1 � w1
p1
∀i.

For simplicity we assumewi

0 to be a well defined
number larger thanmaxi=1,···,N wi. The proof holds
without this dubious assumption, but without it we need
to treat this as a special case making the proof rather
messy.

Proof: The lemma is proved by induction onj:
A) The lemma is true after the initializationj = N

since by definitionwi

0 > w1
1 ∀i.

B) Assume the lemma is true for fixedj. Let{wi, pi}
be the indexing after the heap reordering in stepj, and
definermax(j) = maxi=1,...,N(wi

pi
) = w1

p1
.

Then for j + 1: rmax(j + 1) = max( w1
p1+1 ,

maxi=2,...,N (wi

pi
)) � w1

p1
= rmax(j).

Then since wi

pi−1 � rmax(j) � rmax(j + 1) for
i = 2, . . . , N by the induction assumption, andw1

p1
=

rmax(j) � rmax(j + 1), the hypothesis is true for
j + 1 as well.✷

Theorem 1: Algorithm 1 gives the optimal distribution
to the distribution problem, with optimality defined as
in Definition 1.

Proof: Theorem 1 can be proved by self-contradiction
using Lemma 1:

Suppose that there is another distributionq1, . . . , qN

which gives w1
q1

< w1
p1

that impliesq1 > p1. Since

P =
∑N

i=1 qi =
∑N

i=1 pi it therefore must exist a
k such thatqk < pk for a 1 < k � N . But then
w1
q1

� wk

qk
� wk

pk+1 � w1
p1

, the last inequality coming
from Lemma 1. This obviously contradicts the assump-
tion thatq1, . . . , qN is a better distribution. Thus the
assumption must be wrong and the theorem proved ad
absurdum.✷

The main loop is repeatedP − N times. Inside the
loop we extract the top of the heap, update that element
and reorganize the heap. The two first operations are
done in constant time, the second is at worstO(log N).
This gives an overall complexity ofO((P−N) log N).

3. Implementation of nested parallelism in
OpenMP

Nested parallelism is possible to implement using
message passing parallelization. In MPI [7], creating
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communicators will make it possible to form groups
of threads working together in teams and sending mes-
sages to other members within the team for fine grain
parallelism, while the coarse grain parallelism implies
communication between communicators.

The distribution of work to multiple threads in SMP
programming is usually done by the compiler. The pro-
grammer’s job is only to insert directives in the code
to assist the compiler with its job. A more explicit
approach, where the programmer explicitly allocates
tasks to threads is also possible. The explicit approach
gives the programmer full control, but does require a
much higher level of programmer intervention. There-
for directive based SMP programming is usually the
recommended approach. Below we discuss the possi-
bilities and limitations of the two approaches for mul-
tilevel parallelism.

3.1. Directives for nested parallelism

Explicit construct for expressing multilevel paral-
lelism is not usually found in directive based, multi-
threaded programming for SMP. OpenMP, the new
industry-standard for SMP-programming, does how-
ever allow some form of nested parallelism. The
OpenMP group released its Fortran standard version 1.0
in October 1997 [1,2], and the first commercial im-
plementations of this were available in the spring of
1998. It is supported by all major vendors of SMP-
systems and has now become the de facto standard for
SMP-programming.

In OpenMP a parallel region in Fortran starts by
the directive!$OMP PARALLEL and ends by!$OMP
END PARALLEL. The standard allows these to be
nested, as shown in Example 1. To enable the nesting
one has to set the environment variableOMP NESTED
to TRUE or call the subroutineOMP SET NESTED.

Example 1:

!$OMP PARALLEL DO PRIVATE(i)
do i = 1, N

!$OMP PARALLEL DO PRIVATE(j)
!$OMP& SHARED(i)

do j = 1, w(i)
< WORK(i,j) >

end do
!$OMP END PARALLEL DO

end do
!$OMP END PARALLEL DO

If nothing else is specified, all variables used in a
parallel region getsSHARED by default if they are not
put in lists of other clauses. It is not well explained
in the 1.0 spec. how the variables should be declared
in nested regions. Nevertheless, we find it naturally to
declare thei index asPRIVATE in the outer loop, and
asSHARED in the inner loop, since it should be private
to each team and shared among the threads within the
same team.

When nested parallelism is enabled, the number of
threads used to execute nested parallel regions is imple-
mentation dependent. As a result, OpenMP-compliant
implementations are allowed to serialize nested parallel
regions even when nested parallelism is enabled. As far
as we know, none of the vendors supporting OpenMP
Fortran version 1.0 have implemented nesting.

SGI’s MIPSpro compiler has a restricted form for
nested parallelism. This does however not follow the
OpenMP 1.0 standard. It applies only to do-loops in
Fortran and demands the loops to be perfectly nested
(Loops areperfectly nested in Fortran if there is no
code between theDO statements and between theEND
DO statements.). The following example shows how
the SGI nesting is supposed to work. In this case, 2
threads will be created in the outer-loop. These will act
as masters for two teams of threads working together
on the inner-loop.

Example 2:

!$OMP PARALLEL DO
!$SGI+NEST(i,j) ONTO(2,*)

do i = 1, N
do j = 1, w(i)

< WORK(i,j) >
end do

end do
!$OMP END PARALLEL DO

3.2. Explicit thread programming

In this approach the user has to manually change
the code to distribute tasks to threads. Here we show
a simple example of how this can be done, and then
parallelize the code in Example 1 in two levels.

Suppose a problem consists ofN = 4 outer-level
tasks, each of them with a different amount of work.
The work in each task is given as weightswi. The prob-
lem can be illustrated as in Fig. 2, where the balls sym-
bol fine grain tasks of unit weight. HavingP = 8 avail-
able threads and the weightswT = (10, 8, 2, 7), using
Algorithm 1 will give the distributionpT = (3, 2, 1, 2)
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Fig. 2. Problem which consist of four tasks of work, each with a
different amount of work.

Table 1
‘thread’ will work on ‘mytask’ and do the iterations from ‘jbegin’ to
‘jend’

thread mytask jbegin jend

0 1 1 4
1 1 5 7
2 1 8 10
3 2 1 4
4 2 5 8
5 3 1 2
6 4 1 4
7 4 5 7

of threads to outer-level tasks. In the next step the
threads within each team have to divide the work within
each task among each other. If one weight unit equals
the work associated with one inner loop iterations, the
threads will divide the iterations as shown in Table 1.
thread will then work onmytask, and do the iter-
ations fromjbegin to jend. The data in Table 1
describe exactly the mapping of threads to outer-level
tasks and the portion of inner-level task to be carried out
of each thread. With this information in hand, nested
parallelism in Example 1 can now be implemented as:

Example 3:
P = OMP GET MAX THREADS

!$OMP PARALLEL DO PRIVATE(thread,i,j)
do thread = 0, P-1

i = mytask(thread)
do j = jbegin(thread), &
jend(thread)

< WORK(i,j) >
end do

end do
!$OMP END PARALLEL DO

The values of the arraysmytask, jbegin and
jend have to be carefully decided by the user in ad-
vance in order to make sure that the exact same com-

putations are done in parallel as in sequential. Since
the values of these arrays decide the distribution of
work to threads, they dictates the load balancing. In
the example above and the test cases presented in the
next section, each item ofWORK(i,j) require the same
amount of work. This means that good load balance
is achieved ifjend(thread) –jbegin(thread) is
approximately the same for allthreads. In our test
cases,mytask is computed using Algorithm 1.

The kind of programmer interventions needed for
these changes are to some degree similar to the work
needed when parallelization using MPI [7], except for
the fact that no explicit communication is needed in
OpenMP. In both cases the programmer has to split
the work and data and allocate it to specific threads by
carefully rewriting the program. The correctness of the
program is her full responsibility.

4. Experiments

In this section we report on two experiments on 2-
level parallelism. The load balancing is done using
the work allocation algorithm presented in Section 2.
For implementation we have used the explicit thread
programming technique outlined in Section 3.2. The
first experiment is done on a synthetic test example, a
matrix multiplication test code. Our second example
is a real application, a wavelet based data compression
routine.

4.1. Matrix-multiplication

To test our ideas on the importance of utilizing multi-
level parallelism, we made an artificial test code, using
a simple matrix multiply as the computational kernel.

Suppose we haveN tasks, where a task,i =
1, · · · , N is a multiplication of the matricesAm×wi and
Bwi×m. Each task has an amount of work proportional
to the weightwi. Again we assume that the number of
threads is larger thanN , the number of tasks. 1-level
parallelization of the matrix-multiplication where we
parallelize each of theN matrix-multiplications can be
implemented like in Example 4, assumingN < P .

Example 4:

C = 0
do i = 1, N

!$OMPPARALLEL DO PRIVATE(j,k,l)
do j = 1, w(i)

do k = 1, m
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do l = 1, m
C(l,j,i) = C(l,j,i) &
+ A(l,k,i) * B(k,j,i)

end do
end do

end do
!$OMPEND PARALLEL DO

end do

Parallelizing Example 4 by explicit thread program-
ming, as explained in Section 3.2, we get:

Example 5:

C = 0
!$OMP PARALLEL DO
!$OMP& PRIVATE(thread,i,j,k,l)

do thread = 0, P-1
i = mytask(thread)
do j = jbegin(thread), &
jend(thread)

do k = 1, m
do l = 1, m

C(l,j,i) = C(l,j,i) &
+ A(l,k,i) * B(k,j,i)

end do
end do

end do
end do

!$OMP END PARALLEL DO

These two cases have been tested form = 700 and
for N = 1, 10. wi is chosen uniformly random from
the interval700 � wi � 7000.

In Fig. 3 we display the linear speed-up,together with
the speed-up achieved for 2-level nested parallelization
and 1-level parallelization as a function of threads. For
this particular case the number of outer-level tasks is
N = 4. The runs are on a dedicated Origin 2000 using
MIPSpro Fortran Compilers, Version 7.3.1.1m. For
the other values ofN the details are different, but the
overall picture is the same as forN = 4.

For up to about 20 threads the 1-level parallelization
shows super linear speed-up, probably due to cache ef-
fects. However, as the number of threads increases,
some unavoidable overhead starts to creep in for the 1-
level parallelism. The 2-level parallelization speed-up
is for up to 50 threads lower than the 1-level speedup.
This is naturally since the load balance among the tasks
in 2-level parallelism is bad for a low number of threads.
However, adding CPU/threads beyond 50, the 2-level
parallelism still increases the speed-up, while the 1-
level speed-up starts to fall below. The 2-level paral-

lelization speedup increases until 100 threads, where
its speedup is about 50.

The reason for sub-linear speed-up in this case is not
sequential executionof part of our application program.
But most likely the extra cost of forking and joining
threads in OpenMP and the increased number of syn-
chronization points. The difference in the two imple-
mentations than is that in the inner-level parallelismP
threads are forkedN times, while they in the 2-level
case only is forked once. The cost for this saving is
some extra index juggling and a slightly lower bound
for theoretical speed-up. The later having a measurable
effect on small number of threads. See [10] for docu-
mentation on the cost of fork-join and synchronization
in OpenMP.

This example modify slightly the assumption in the
introduction. It does not have a perfect load balance in
the 2-level case. But even with this (realistic!) modifi-
cation it confirms our fundamental hypothesis: 2-level
parallelism scales better and for high thread-numbers
it shows better speed-up than 1-level parallelism!

4.2. Data compression

To try our ideas on a more realistic test case, we
moved on to a data compression routine which are used
in an out-of-core earthquake simulator.

The underlying idea of the compression algorithm is
to first transform the data into wavelet-space using a 2d-
wavelet transform and then storing only the non-zero
wavelet coefficients [9]. To increase the compression
rate, two more techniques are used.

Thresholding: What we have is approximate values
to inaccurate data. Thus all data less than a certain value
should be regarded as noise and could be represented
by zero without loss of significance.

Quantization: In essence thresholding says that only
theM first binary digits are significant. Thus without
any further loss of accuracy the wavelet coefficients
can be represented by onlyM bits, giving us an extra
saving factor of M/64.

After the wavelet coefficients have been massaged by
thresholding and quantization they are encoded. In the
parallel version this is done by dividing the data inP
separate streams, making this an embarrassing parallel
operation.

The wavelet routine only works for arraysm × n
wherem andn are integers power of 2. Thus we first
chop up the array inN blocks of (different) power of 2
sizes. For each of these blocks a 2d-wavelet transform
is carried out. A 2d-wavelet transform is done by ap-
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Fig. 3. Linear speed-up, speed-up for 1-level inner-loop parallelization and speed-up for 2-level parallelization forN = 4 outer-level tasks of
matrix multiplication.

plying multiple, independent 1d-wavelet transform to
each row in the block matrix, and next on the columns.

The overall compression algorithm is displayed in
Algorithm 2.

Algorithm 2: Compression
input: UU, N, M
/*The wavelet transform for all UU blocks*/
for i = 1, N

wavelet2d(block no. i of UU);
end for
Umax = max∀(i,j) | UU(i, j) |;
where(| UU |< Umax × 2−M ) UU = 0 ;

/* Thresholding */
end where
UUI = UU; /* quantization */
encode (UUI);

The time consuming part is the wavelet transform
(typical 60–70%). This is also the only part having
2-level parallelism.

As our test case we have chosen a 2d array of size
1792× 1792. For the wavelet transforms this is di-
vided into 9 pieces of unequal sizes. We are using a
fast wavelet transform which is known to have linear
complexity. Thus the work is proportional to the size
of the corresponding array.

In this example we can not expect perfect load bal-
ance due to the integer restriction on the number of
threads. If we assume no extra parallel overhead and
perfect load balancing within an outer-level task, but
not necessarily between outer level tasks, we obtain a
sharper bound on the 2-level speed-up. We may define
T̂p = maxi Ti/pi as the theoretical bound on the run-
time of 2-level parallelism. The theoretical bound on
the 2-level speed-up is then given asŜp = T1/T̂p. (In
the example displayed in Table 1 and Fig. 2,T̂8 = 4
andŜ8 = 27

4 = 6.75.)
In Fig. 4 we display the linear speed-up and theo-

retical upper bound on the 2-level speed-up, together
with the speed-up achieved for 2-level and 1-level
parallelization. The runs are done on a dedicated
Origin 2000 using MIPSpro Fortran Compilers, Ver-
sion 7.3.1.1m. It is not possible to run the nested ver-
sion on less than 9 threads, which is the reason why the
curve starts at this point. The 1-level parallelized code
reaches its maximum speed-up at about 20 threads,
while the 2-level parallelized code increases its speed-
up up to at least 64 threads, where the speed-up is 33. In
particular notice that for less than about 40 threads, the
speed-up curve of the 2-level parallelized code mimics
the shape of the theoretical upper bound.
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Fig. 4. Linear speed-up, theoretical bound for 2-level speed-up, speed-up for 1-level inner-loop parallelization and 2-level parallelization fora
1792× 1792 data compression problem.

We find that these results to be very encouraging,
in particular the fact that the 2-level parallelism shows
the same improvements in scaling as indicated for the
theoretical case displayed in Fig. 1.

5. Shortcomings of the OpenMP directives

In Section 3 we showed how to implement multi-
level parallelism in OpenMP using explicit thread pro-
gramming. But as we argued in Section 3, for sim-
plicity we would prefer programming this with direc-
tives and/or function calls only. In this section we
will discuss briefly some of the current shortcomings
of OpenMP 1.0 and the needed extensions to enable
directive based multilevel parallelism.

The work described in this paper was done in the
spring of year 2000. At that time only version 1.0 of the
OpenMP Fortran compiler was available to us. Nov 3,
2000 the OpenMP ARB released version 2.0 [3] of the
Fortran specification. As of writing, still no working
version of 2.0 is available. Thus our experiences is with
version 1.0, but we’ll try to comment on whether or not
version 2.0 will cure the problems we describe.

Setting the number of threads by call to the
OMP SET NUM THREADS routine in OpenMP is only

legal outside a parallel region. If nesting is imple-
mented, and nested directives are applied in 2 levels,
the total number of threads created in the inner-level
becomes the same as the number set outside the outer-
level, sayP. But as aPARALLEL DO directive at the
outer-level will apply to all the threads set, no addi-
tional threads is available at the inner-level, and nested
parallelism is not obtained.

In the recent released OpenMP 2.0 there is a new
clause,NUM THREADS(scalar integer expression), to
the parallel regions directives. This clause requests that
a specific number of threads are used in the region.
This also works for nested regions, and as far as we can
see, it solves the problem described above. The code
in Example 1, 2 and 3 can now be written as:

Example 6:
!$OMP PARALLEL DO PRIVATE(i)
!$OMP& NUM THREADS(N)

do i = 1, N
!$OMP PARALLEL DO PRIVATE(j)
!$OMP& SHARED(i), NUM THREADS(p(i))

do j = 1, w(i)
< WORK(i,j) >

end do
!$OMP END PARALLEL DO
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end do
!$OMP END PARALLEL DO

When parallelizing the data compression code in 2
levels, it was necessary to have two inner-level loops
with a synchronization barrier in between, like this:

Example 7:

P = OMP GET MAX THREADS
!$OMP PARALLEL DO PRIVATE(thread,i,j)

do thread = 0, P-1
i = mytask(thread)
do j = jbegin(thread), &
jend(thread)

< WORK1(i,j) >
end do
< . . .>
< BARRIER >
< . . .>
do j = jbegin(thread), &
jend(thread)

< WORK2(i,j) >
end do

end do
!$OMP END PARALLEL DO

When a!$OMP PARALLEL DO directive is used
on a loop in 1-level parallelism the loop iterations must
be data independent, and consequently synchronization
inside the region makes no sence. Since version 1.0
of OpenMP seems to be targeting 1-level parallelism
only, the!$OMP BARRIER is not, allowed inside of a
!$OMP PARALLEL DO-directive.

In explicit thread programming the!$OMP PARA-
LLEL DO directive is used in combination with
changes in the code to create nesting, and in the data
compression code a barrier is needed between the inner-
levels, as indicated in example 7. We therefore run
into problems since a barrier is not allowed inside of
a PARALLEL DO region. Calling the SGI’s global
barrier routinemp barrier partly solved our prob-
lem, but what we really needed for this construct, was
a team barrier synchronizing only threads within the
same team.

If OpenMP 2.0 was available and nesting was imple-
mented, the code in Example 7 could have been written
as in Example 8. Notice that computingjbegin and
jend will not be needed. Only the number of threads
working in each teamp(:) has to be computed by Al-
gorithm 1 to get the optimal load balance. But best of
all, no changes in the code will be needed!

Example 8:
!$OMP PARALLEL DO PRIVATE(i)
!$OMP& NUM THREADS(N)

do i = 1, N
!$OMP PARALLEL PRIVATE(j) SHARED(i)
!$OMP& NUM THREADS(p(i))
!$OMP DO

do j = 1, w(i)
< WORK1(i,j) >

end do
< . . .>

!$OMP BARRIER
< . . .>

!$OMP DO
do j = 1, w(i)

< WORK2(i,j) >
end do

!$OMP END PARALLEL
end do

!$OMP END PARALLEL DO

In OpenMP 2.0 the!$OMP BARRIER-directive
binds to the closest enclosingPARALLEL directive.
This implementation will therefore create barriers for
teams of threads.

Unfortunately, also in 2.0 of the Fortran version
nested parallelism still is implementation dependent.
We are afraid this will imply that many (most?) ven-
dors still will choose to serialize nested parallelism.
But at least one vendor promise to have this feature
available in near future [8]. The effect of making true
2-level parallelism implementation dependent is that
programs which relies on nesting for scalability, will
not be ‘performance portable’ when coded in OpenMP,
and since performance is at the very heart of parallel
programming, while portability and ease of program-
ming is the selling argument of OpenMP, we are afraid
the lack of performance portability will be held as a
strong argument against OpenMP!

The OpenMP Nanos Compiler [4] is a source-to-
source parallelizing compiler implemented around a hi-
erarchical internal program representation that captures
the parallelism expressed by the user through OpenMP
directives and extensions, and the parallelism automat-
ically discovered by the compiler. One of the main fea-
tures of this compiler is the ability to exploit multiple
levels of parallelism. In [4] two sets of extensions to
OpenMP is described. One of them is oriented towards
the definition of threads groups. These proposed exten-
sions allow 1) the definition of the groups (how many
groups, and how many thread in each group); and 2)
the assignment of work to the groups (user controlled).
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TheGROUP clause can be applied to any parallel con-
struct. We find this an interesting concept which should
work well on our problem. It also shows that when
nested parallelism is possible to implement for a small
research group, with limited resources, there should be
no excuses for large vendors not to implement it.

6. Conclusions and future work

The main purpose of this paper has been to examine
the possible gain of utilizing nested parallelism when
available in the problem. Our findings is very encour-
aging. Using the two levels of parallelism turned out
to be imperative for good scaling on our test cases.

As always good load balancing is essential in achiev-
ing good scalability. This becomes more difficult when
applying multilevel parallelism. In Section 2 we give an
algorithm which, undersome well-definedassumptions
compute the optimal allocation of threads to tasks. We
also show how 2-level parallelism can be implemented
in OpenMP, using explicit thread programming, and
discuss some of the shortcoming of the current OpenMP
directives for implementing the same algorithm using
directives.

As we see more and more large SMP-systems being
installed, the scalability of OpenMP becomes increas-
ingly important. Utilizing multilevel parallelism will
become an important issue in this context. The sug-
gested extension for OpenMP 2.0 points in the right di-
rection. We are, however, very unhappy with with the
fact that serializing nested parallelism is still compliant
with the OpenMP spec.

Our ultimate target application for nested parallelism
is the numerical simulation of PDE’s, using adaptive
mesh refinement (AMR) [5,6]. In AMR grid points
are clustered adaptively in regions where they are most
needed. Refined grids are created or existing ones re-
moved based upon estimates of the truncation error.
Finer grids consists of independent patches, and the
work associated with each patch can be done by a team
of threads. This problem has the kind of multilevel

parallelism discussed in this paper. It also lends itself
naturally to SMP-programming as refined patches are
created and dismissed as the computation proceeds in
an unpredictable way. This makes distributing data
evenly hard and expensive, and a (virtually) shared
memory programming much more attractive.
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