
175

New OpenMP directives for irregular data
access loops

J. Labartaa, E. Ayguad́ea,∗, J. Olivera and
D.S. Hentyb
aEuropean Center for Parallelism of Barcelona,
Technical University of Catalunya, Barcelona 08034,
Spain
bEdinburgh Parallel Computing Center, The
University of Edinburgh, Edinburgh EH93JZ, UK

Many scientific applications involve array operations that are
sparse in nature, ie array elements depend on the values of rel-
atively few elements of the same or another array. When par-
allelised in the shared-memory model, there are often inter-
thread dependencies which require that the individual array
updates are protected in some way. Possible strategies include
protecting all the updates, or having each thread compute
local temporary results which are then combined globally
across threads. However, for the extremely common situa-
tion of sparse array access, neither of these approaches is par-
ticularly efficient. The key point is that data access patterns
usually remain constant for a long time, so it is possible to use
an inspector/executor approach. When the sparse operation
is first encountered, the access pattern is inspected to iden-
tify those updates which have potential inter-thread depen-
dencies. Whenever the code is actually executed, only these
selected updates are protected. We propose a new OpenMP
clause,indirect, for parallel loops that have irregular data
access patterns. This is trivial to implement in a conforming
way by protecting every array update, but also allows for an
inspector/executor compiler implementation which will be
more efficient in sparse cases. We describe efficient com-
piler implementation strategies for the new directive. We
also present timings from the kernels of a Discrete Element
Modelling application and a Finite Element code where the
inspector/executor approach is used. The results demonstrate
that the method can be extremely efficient in practice.

∗Corresponding author: E. Ayguade, CEPBA, Jordi Girona, 1-3.
Modul D6, 08034 Barcelona, Spain. Tel.: +34 934 01 5951; Fax:
+34 934 01 7055; E-mail: eduard@ac.upc.es.

1. Introduction

Many codes in science and engineering involve ar-
ray operations that are sparse in nature, i.e. array el-
ements are updated based on the values of relatively
few elements of the same or another array. Examples
include Molecular Dynamics (MD) simulations with
short-ranged interactions (the force depends on the po-
sitions of a few nearby particles) and Finite Element
(FE) calculations (eg the values of a node in an un-
structured mesh dependingon those nodes directly con-
nected to it). As these array operations often comprise
the most computationally intensive part of the code it
is essential to parallelise them efficiently.

A typical example is computing the total force
force(i) on each particlei in an MD code where
the neighbouring particle pairs are stored in a list. Fig-
ure 1 illustrates the main loop for a code such as the
DEMONS application (see Section 5). Similar access
patterns occur in FE codes where the main loop is over
the edges, faces or elements of a mesh, but the actual
computation involves updating the nodes attached to
them. The unstructured nature of the mesh again means
that there are potential inter-thread dependencies, and
that it is difficult for the programmer to predict in ad-
vance where they will occur for an arbitrary number of
threads.

The inter-thread dependencies require that the indi-
vidual array updates are protected in some way to en-
sure program correctness. If the loop in Fig. 1 is split
across threads then, although threads will always have
distinct values ofipair, the values ofi andjmay si-
multaneously have the same values on different threads.
As a result, there is a potential problem with updating
theforce array. Simple solutions to this problem in-
clude making all the updates atomic, or having each
thread compute temporary results which are then com-
bined across threads (in cases like Fig. 1 this amounts
to an array reduction which is currently supported in
OpenMP 2.0 [6]). However, for the extremely com-
mon situation of sparse array access neither of these
approaches is particularly efficient.

Scientific Programming 9 (2001) 175–183
ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

176 J. Labarta et al. / New OpenMP directives for irregular data access loops

do ipair = 1, npair
i = pairlist(1,ipair)
j = pairlist(2,ipair)
fij = pairforce(x(i), x(j))
force(i) = force(i) + fij
force(j) = force(j) - fij

end do

Fig. 1. Irregular reduction in the main loop of the DEMONS program.

Due to the sparse access pattern, the majority of up-
dates can actually take place with no protection; mak-
ing every update atomic therefore incurs an unneces-
sary overhead. If temporary arrays are created for each
thread, there is a bottleneck when they are combined
across threads; even if this is implemented in parallel
(i.e. not using the naive approach of a critical section)
the heavy load on the memory system may produce
poor scaling. When using many threads there will also
be a very high memory requirement for the temporary
arrays, most of which will in practice be filled with
zeroes.

The key point is that the irregular access patterns
usually remain constant for a long time (sometimes
the whole simulation) so it is possible to use a two-
pass or inspector/executor approach. In the first pass,
the data access pattern is inspected to identify those
updates which have potential inter-thread dependencies
and their locations are stored in a lookup table. When
the calculation is actually executed, only these selected
updates are protected (e.g. by an atomic update).

Unfortunately, the only way to do this in OpenMP
is to write the code by hand. Even if the array reduc-
tion features of OpenMP 2.0 could be used, a compiler
would be forced to use an inefficient method as there is
no way of knowing at compile time that the data access
patterns are constant (there is little benefit in using the
inspector/executorapproach if the lookup tables cannot
be reused). We therefore propose a new OpenMP di-
rective,indirect, for loops that have irregular data
access patterns. This is trivial to implement in a con-
forming way (e.g. by making every update in the MD
loop atomic) but also allows for a two-pass compiler
implementation which will be more efficient in sparse
cases. The directive will provide an efficient alternative
to array reduction (as in the above MD example), as
well as being of use in other situations such as the use
of ordered sections.

2. Related work

Similar problems have previously been been ad-
dressed in the context of High Performance Fortran.

The simplest constructs, eg specific cases of irregu-
lar array reductions, are dealt with by special rou-
tines in the HPF library such asSUM SCATTER and
MAXVAL SCATTER. Directives for the specification of
more general irregular data access loops have been used
previously in some versions of HPF [1]. These direc-
tives have influenced the one proposed in this paper.
The main difference is, however, that in the context
of HPF this directive is used to compute long-lived
communication patterns, while our proposal focuses on
iteration scheduling in the context of shared-memory
multiprocessors.

3. OpenMP extensions

This section presents the two proposed extensions to
OpenMP: theindirect clause and theschedule
directive.

3.1. The indirect clause

The problem of irregular data access patterns situa-
tions in loops can be described in simple words: they
are access patterns in which, given a loop, two different
iterations of the loop modify the same data. This sit-
uation prevents the loop from being parallel, and thus
serializes its execution. OpenMP provides two mech-
anisms that help in the parallelization of such loops:
atomic andcritical directives. These mecha-
nisms, however, are excessively expensive in codes
where not all the accesses need to be done in mutual
exclusion. This situation arises also in two other sit-
uations, which are irregular reductions with low level
of shared updates, and loops in which only some iter-
ations need to be executed in sequential ordered (and
thus, theordered clause is too restrictive). Such
codes can benefit from the use of the new proposed
clause (indirect). Theindirect clause can be
applied to theparallel do directive in one of the
three following situations:

1. In the presence of thereduction clause in the
directive: this tells the compiler that the reduction
that is being computed in the body of the loop
has an irregular data access pattern, and that some
different iterations can modify the same data.

2. In the presence of theordered clause in the di-
rective: this tells the compiler that the loop is par-
tially ordered; that is: some iterations access the
same data, and need to be executed sequentially
in order to guarantee sequential consistency, but
some other iterations access completely different
data, and thus can be executed in parallel.

J. Labarta et al. / New OpenMP directives for irregular data access loops 177

3. In the presence of somecritical or atomic
directive in the body of the loop: this is quite
similar to the case in theordered clause: not
all the elements need to be computed in mutual
exclusion; only those being accessed by different
iterations (in this case, order is not important).

Theindirect clause accepts a list of expressions
as parameters. These expressions are those causing the
irregular data access pattern:

!$omp parallel do [reduction|
ordered]
!$omp& indirect([expr1,. . .exprN])

3.2. Irregular reductions

Reduction operations are frequently found in the core
of scientific applications. Simplest reductions are those
in which the final result can be computed as a combi-
nation of partial results (ie an associative/commutative
operation). As result, these computations can be com-
puted in parallel, since each thread can compute its own
partial result which will be combined later (this can be
also done in parallel) with the partial results from the
other threads.

Some scientific applications, however, need to per-
form reduction operations which are not directly par-
allelizable. These kind of reductions are what we call
irregular reductions. The point that makes these reduc-
tions non-parallelizable is that the update index for the
element is not the induction variable of the loop, but
a function (f) of it, having the property that for two
given values of the induction variable (i,j, i �= j), it
can happen thatf(i) = f(j).

The code in Fig. 3 shows an example of such a case.
As can be observed, the updated elements offorce
depend on the lookup tablepairlist, which can
give the same values fori or j for different values of
ipair. The only way to parallelize this code using
OpenMP is to protect the update of theforce vec-
tor either withatomic or withcritical directives.
These solutions, however, are excessively expensive in
codes where not all the accesses need to be done in
mutual exclusion. The inclusion of theindirect
clause in theparallel do directive in the presence
of a reduction clause tells the compiler that the
reduction being performed in the parallel loop has an
irregular data access pattern, but some parts of it can
be executed in parallel, thus enabling the compiler to
generate code to deal with this situation. The naive
implementation of this thisindirect clause is to sur-

!$omp parallel do
!$omp& private(i,nn1,nn2,nn3,nn4)
!$omp& reduction (+:f)
!$omp& indirect(nn1,nn2,nn3,nn4)
do iel = ieli, ielf

nn1 = ix(1,iel)
nn2 = ix(2,iel)
nn3 = ix(3,iel)
nn4 = ix(4,iel)
do i=1,3

xn(i,1) = x(i,nn1)
xn(i,2) = x(i,nn2)
xn(i,3) = x(i,nn3)
xn(i,4) = x(i,nn4)

end do
call mforce(force,xn)
do i=1,6

f(i,nn1) = f(i,nn1) + force(i,1)
f(i,nn2) = f(i,nn2) + force(i,2)
f(i,nn3) = f(i,nn3) + force(i,3)
f(i,nn4) = f(i,nn4) + force(i,4)

end do
end do
!$omp end parallel do

Fig. 2. Irregular reduction in the main loop of the crash kernel.

!$omp parallel do
!$omp& reduction (+:force)
!$omp& indirect(i,j)
do ipair = 1, npair

i = pairlist(1,ipair)
j = pairlist(2,ipair)
fij = pairforce(x(i),x(j))
force(i) = force(i) + fij
force(j) = force(j) - fij

end do
!$omp end parallel do

Fig. 3. Extended OpenMP directives for the irregular reduction in
the main loop of the DEMONS application.

round the updates offorce either withcritical
oratomic directives, but more complex implementa-
tions can generate code for a two-pass implementation
of the reduction.

Another example taken for a crash kernel is shown
in Fig. 2. In this code, the computation of the forces
is done from the displacements using an indirect ad-
dressing to an structure that setups a highly complex
structured mesh. Again, the only way to parallelize
this loop using OpenMP is to protect the update of the
force vector either withatomic or withcritical
directives. The inclusion of theindirect clause
in the parallel do directive in the presence of a
reduction clause tells the compiler that the reduc-
tion being performed in the parallel loop has an ir-

178 J. Labarta et al. / New OpenMP directives for irregular data access loops

!$omp do indirect(j)
do i = 1,n

j = jindex(i)
!$omp critical

a(j) = compute(a(j), ...)
!$omp end critical
end do
!$omp end do

(a)

!$omp do ordered indirect(j)
do i = 1,n

j = jindex(i)
!$omp ordered

a(j) = b(i) op expression_1
!$omp end ordered
end do
!$omp end do

(b)

Fig. 4. Two synthetic examples in which the INDIRECT clause can
be applied to relax the synchronization imposed by CRITICAL or
ORDERED in OpenMP.

regular data access pattern which enables some some
iterations to be executed in parallel.

3.3. Relaxed Mutual Exclusion

As said in the previous subsection, a naive imple-
mentation of theindirect clause for irregular re-
ductions can be done with the use of the critical sec-
tions (achieved using thecritical directive). This
also implies that the use of theindirect clause can
also help in the code generation for cases in which
thecritical directive has been used to parallelize a
loop without a reduction, but with some shared updates
between iterations executed by diffferent processors.
An example of this case is shown in Fig. 4(a).

3.4. Partially ordered loops

A special case of the previous example occurs when
the shared updates need not only to be performed in
mutual exclusion, but also in an ordered way. The use
of theindirect clause in this case tells the compiler
that the only iterations that actually need to be executed
in an ordered way are those which are updating the
same data. An example of code using theindirect
clause in this manner is shown in Fig. 4(b).

!$omp schedule(S)
...
C outer sequential loop
do step = 1,nsteps
...
!$omp parallel do
!$omp& reduction (+:a)
!$omp& indirect(j:S)

do ipair = 1, npair
j = table(i)
...
a(j) = a(j) - update

end do
!$omp end parallel do
...
!$omp parallel do
!$omp& reduction (+:a)
!$omp& indirect(j:S)

do ipair = 1, npair
j = table(i)
...
a(j) = a(j) * another_update

end do
!$omp end parallel do

...
if (some_condition(x)) then

recalculate(table)
!$omp reset(S)

end if
...

end do

Fig. 5. Definition of a user–level schedule and its initialization, reuse
and reinitialization in a sequence of loops with indirect clauses.

3.5. Scheduling re-use

The typical structure of most scientific applications
follows an iterative outer loop which implies a number
of parallel computations, most of them over the same
data. In that scenario, it could be useful to communi-
cate scheduling information from one parallel region to
others. This idea has been applied previously to data
communication in HPF [1], with the use of the schedule
clause, and can be also applied to OpenMP.

The following mechanisms are provided to name/de-
fine/undefine user-level schedules originated from the
use of theindirect clause:

– Schedule naming:

!$omp schedule(schedule name)

This simply defines a symbolic nameschedule
name for a user-defined schedule.

– Schedule definition:

!$omp& indirect([expr1,. . .exprN]
!$omp& [:schedule name])

J. Labarta et al. / New OpenMP directives for irregular data access loops 179

! v(1:20)=(1,2,3,10,20,4,2,5,6,8,9,
! 3,10,3,11,12,13,14,15,16)
!$omp parallel do schedule (static)
!$omp& reduction(*:a) indirect (v(i))
do i = 1, 20

a(v(i)) = a(v(i)) * 2
end do

(a)

nintervals(1:4) = (3,3,3,1)
shared(1) = (false,true,false)
shared(2) = (false,true,false)
shared(3) = (false,true,false)
shared(4) = (false)
lower(1) = (1,2,4)
lower(2) = (6,7,8)
lower(3) = (11,12,15)
lower(4) = (16)
upper(1) = (1,3,5)
upper(2) = (6,7,10)
upper(3) = (11,14,15)
upper(4) = (20)

(b)

Fig. 6. a) Synthetic example with irregular reduction. b) Internal
data structures initialized during the inspector phase.

The symbolic nameschedule name included
in the indirect clause informs the com-
piler that the parallel loop uses the a user-
level scheduling identified by the symbolic name
schedule name. When such a definition is
found, the code generated by the compiler first
checks if the schedule has already been computed;
if not, then the inspector is invoked. The re-use
of an already defined schedule amortizes the over-
head associated with the inspector phase over a
large number of loops or instantiations of the same
one.

– Schedule invalidation:

!$omp reset(schedule name)

This directive tells the compiler that the schedule
associated to the symbolic nameschedule name
is not valid any more.

Figure 5 shows an example of the use of the
schedule directive combined with theindirect
clause and reset directive. In this case, the sched-
ule is defined once and re-used while condition
some condition(x) evaluates to false. At this
point, the original algorithm modifies the contents of
table and, as a consequence, the schedule reset.

4. Compiler implementations

This section outlines some implementations for the
indirect clause in the context of an irregular reduc-
tion or non-completemutual exclusion (using intervals)
and reviews some proposed implementations that can
be applied in the context of a partially ordered loop.

4.1. Intervals

The proposed implementation is based on the inspec-
tor/executor model. The first time that a parallel loop
marked with anindirect clause is reached, the pro-
gram starts the execution of the inspector code, which
has been generated by the compiler. This code basically
contains the same loop header, all those statements in
the original loop body that lead to the evaluation of the
expressions included in theindirect clause, and the
additional code that builds the schedule data structure.
Later executions of the same parallel loop (or other
loops with the same named schedule) make use of that
data structure.

The code in Fig. 6(a) presents a simple example
of parallel loop with an irregular reduction operation
that has been parallelized using theindirect clause.
Notice that there are some iterations of the loop that
modify the same data (positions 2, 3 and 10 of the
vectorv). But most of the iterations do not modify the
same data, and thus they can be executed in parallel.

Figure 7 shows an example of a data structure gen-
erated by the compiler during the inspector phase. For
each processor, there is a bitmap that shows which ele-
ments it is accessing in thev vector. After that, the in-
spector computes theshared elements vector, which
is a bitmap that tells, for each element in thev vector
whether it is shared or not (a position ofv is shared if
the bitmap count for the column is more than one; that
is: it is being modified by more than one processor).
Once this bitmap is computed, the inspector can build
the final data structure that will be used by the executor
phase: the intervals for each processor. The iteration
space of each processor is split up into intervals. An
interval is a range of consecutive iterations that are all
either completely shared or not shared. The data struc-
tures for the previous example result in the initializa-
tion shown in Fig. 6(b). Vectornintervals is used
to indicate the number of intervals that each processor
will execute. Three additional vectors are used to de-
fine the lower and upper bound for each interval and a
boolean indicating if the interval is shared or not.

180 J. Labarta et al. / New OpenMP directives for irregular data access loops

P0

P1

P2

P3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P0 P1 P2 P3

P2: 11,12-14(shared),15

P0: 1,2-3(shared),4-5
P1: 6,7(shared),8-10

P3: 16-20

x x x

Data(i)

Pr
oc

es
so

r

Iteration

Fig. 7. Construction of the intervals during the inspector phase using a bitmap for the example in Fig. 6.

!$omp parallel do schedule (static)
do p = 1, numprocs
my_proc = omp_get_threadnum()+1
do interval = 1,nintervals(my_proc)
if (shared(my_proc,interval)) then
do i = lower(my_proc,interval),&

upper(my_proc,interval)
!$omp critical

a(v(i)) = a(v(i)) * 2
!$omp end critical

end do
else
do i = lower(my_proc,interval),&

upper(my_proc,interval)
a(v(i)) = a(v(i)) * 2

end do
end if

end do
end do

Fig. 8. Executor for the loop in Fig. 6.

Subsequent executions of the parallel loop will use
the compiler’s generated executor code, which makes
use of the previous data structures to execute the par-
allel loop. This code executes in mutual exclusion (or
with atomic access) only those iterations (actually in-
tervals) that conflict with some other processor. Those
intervals that are accessed only by one processor are
executed without protection. The executor’s code for
the previous example is shown in Fig. 8.

It is important to point out that this method can be
further optimised by improving the executor phase in
order to classify the shared segments depending on the
processors that are accessing them (shared sets), and
utilizing different locks to access each one of the sets, in

order to reduce contention whenhot spots are detected.

4.2. Partially ordered loops

Partially ordered loops have been a case of study in
many previous works. One possible approach to the
parallelization of non-completely parallel loops is to
detect data dependencies at runtime, again using an
inspector/executor model. The basic idea is to move
data dependence detection from compile-time (where
data available for analysis is restricted) to runtime. In
most of the reviewed implementations, at runtime, the
inspector builds data dependence graphs based on the
addresses accessed by the loop and, based on those
graphs, schedules interations inwavefronts (sets of iter-
ations which are dependence-free among them) [2,7].
Many of these implementations can be applied by the
compiler to implement the semantics of theindirect
clause applied to anordered directive.

5. Experiments

In this section we present experimental results for
two codes whose whose major computational loop is
of the same form as the ones shown in Figs 2 and 3.
The first application, named DEMONS – Discrete Ele-
ment Modelling on SMP clusters –, is a Fortran 90 test
code used to evaluate the efficiency of hybrid message-
passing and shared-memory parallelism on clusters of
shared-memory machines [4]. Here we do not utilise
the MPI capabilities of the code,and run on a single pro-

J. Labarta et al. / New OpenMP directives for irregular data access loops 181

cess to investigate the performance of the pure OpenMP
implementation with varying numbers of threadsT .
The second one is a kernel extracted from an industrial
crash simulator.

5.1. DEMONS application

Discrete Element Models (DEMs) simulate the be-
haviour of systems of particles which interact via pair-
wise forces. The particle positions are evolved in time
using an iterative loop comprising many small, discrete
time-steps. A typical DEM might study the formation
of “sand piles” as grains of sand are dropped onto a solid
surface. The general properties of a DEM are: there
are many particles; particles remain relatively static;
the inter-particle force is very short-ranged; the time
taken to compute the forces dominates the simulation.
It is therefore very important to parallelise the force
calculation efficiently.

To avoid having to loop through all pairs of particles,
the DEMONS code maintains a list of pairs of all those
particles which are close together and therefore likely
to interact. As the force is short-ranged, this simple
and commonly used technique reduces the complexity
of the calculation fromO(N 2) to O(N). As particles
remain relatively stationary, this list only requires to
be recalculated fairly infrequently; in a real simulation,
the same list can typically be used for many hundreds
of iterations. Calculating the forces involves looping
over this list of pairs, computing the inter-particle force
for each pair, and updating the force on the two parti-
cles accordingly. Since the loop is over particle pairs
(not the particles themselves), and each particle be-
longs to many pairs, care must be taken when updating
the forces on each particle due to potential inter-thread
dependencies.

5.1.1. Implementation of force calculation
Three basic approaches were investigated for resolv-

ing the inter-thread dependencies in the force calcula-
tion

– making every force update atomic
– using array reduction
– using a two-pass inspector / executor approach

Since array reduction is not part of the OpenMP 1.0
standard we implemented it by hand in several ways

– first accumulating into private temporary arrays
and performing the final global array sum across
threads in a critical region

– accumulating into private arrays and performing
the global sum inT sections, striped across threads
and separated by barriers, so that there are no inter-
thread dependencies

– accumulating into different rows of a shared matrix
of dimensionT × N , then performing the global
sum in parallel over the transpose column direction

These are common approaches for performing irreg-
ular reducutions in OpenMP [5]. The use of critical sec-
tions gave very poor performance; the other two meth-
ods gave very similar timings. Here we quote results
from the third “transpose” approach. We implement
the inspector / executor approach in a very straightfor-
ward manner. Whenever a new list of pairs is created,
we identify particles receiving force updates from more
than one thread. When calculating the force, only these
updates are protected by anATOMIC directive.

5.1.2. Timings
The code for computing the force is almost identical

to that in Fig. 3 except that the calculation is done in
three dimensions so there are three position coordinates
x rather than just one. For the tests we use a million
particles, with the force law requiring one floating-point
inverse and one square root per call. All calculations
were performed in double precision.

The benchmark platforms used to run this application
were a Sun HPC 3500 (eight× 400 MHz UltraSPARC-
II CPUs) and a Compaq ES40 (four× 500 MHz Alpha
EV6 CPUs). For compilation on the Sun we used the
Kuck and Associates (KAI) Guide system version 3.7,
which uses source-to-source translation with calls to a
parallel runtime library; on the Compaq, OpenMP is
part of the standard f90 compiler. Sun’s own native
OpenMP compiler, part of the recently-released Work-
shop Forte 6.0 environment, was not available in time
for this paper.

We plot the parallel efficiencies of the three imple-
mentations of the force calculation on the Sun and Com-
paq in Figs 9 and 10. The timings for the serial code,
t(T = 1), were 4.16 and 1.89 seconds respectively.

Using the KAI compiler on the Sun, the atomic up-
dates are done using software locks which are rather
expensive. Contention for these locks makes using
atomic updates for all force calculations completely
infeasible. However, using the two-pass approach is
more effective than using array reduction despite the
high cost associated with atomic locks.

On the Compaq, atomic updates are much more ef-
ficient but they still incur a significant overhead. For

182 J. Labarta et al. / New OpenMP directives for irregular data access loops

Fig. 9. Parallel efficiency against threadsT on Sun for the DEMONS
code.

Fig. 10. Parallel efficiency againstT on Compaq for the DEMONS
code.

T < 4 the cost is such that array reduction is more ef-
ficient, although the atomic approach is slightly better
for T = 4. However, using the two-pass approach is
always the most efficient method.

5.2. Crash Kernel

This kernel has been extracted from an industrial
crash simulator. It is basically composed of a loop nest
that iterates over 1000 times. At each iteration of the
sequential loop, the computation of the forces is per-
formed from the displacements. The kernel uses in-
direct addressing to setup a highly complex structured

Fig. 11. Parallel efficiency against threadsT on SGI Origin 2000 for
the Crash Kernel.

mesh and performs memory accesses in a highly irreg-
ular way. The code for computing the force is similar to
the one shown in Fig. 2. For the tests we use a synthetic
case with a mesh composed of40 × 640 points. All
calculations were performed in double precision.

The benchmark platform used for this kernel was an
SGI Origin 2000 system with 64 R10k processors, run-
ning at 250 MHz with 4 Mb of secondary cache each.
For all compilations we use the nativef77 compiler.
On this machine, atomic updates are also implemented
in hardware.

Two versions of the code are evaluated. The first one
protects all force updates by anATOMIC directive. In
the second one only those updates identified during the
inspector phase are protected (i.e. updates from more
than one thread). For these two versions, Fig. 11 plots
the parallel efficiencies when using 8, 16, 24, 32 and 48
processors. The timing for the serial code,t(T = 1),
was 322.5 seconds. Notice that the two-pass approach
is always the most efficient method.

6. Conclusions

In this paper we have presented a set of extensions
to OpenMP and a possible efficient implementation in-
side the compiler that ease the parallelization of appli-
cations with irregular data accesses. Two examples are
used to prove the efficiency of the proposal, demon-
strating that the two-pass technique for irregular reduc-
tions outperforms the alternative methods in a real code
and a kernel extracted from an industrial application.

J. Labarta et al. / New OpenMP directives for irregular data access loops 183

For the DEMONS code, the calculation of the force is
relatively expensive; it was possible to use a very naive
approach to implement the two-pass method where the
decision as to whether or not to useatomic was
taken for each individual update. In other situations the
amount of work per update may be much smaller, for
example a single addition, and reducing the overheadof
the implementation will be important. Here, the tech-
nique of dividing the loop into intervals, as proposed in
Section 4, will be extremely beneficial to performance.
In a compiler implementation, theschedule direc-
tive could be used to re-run the inspector phase when-
ever the list of particle pairs was updated. For the crash
kernel, the parallelization using the proposed directives
and their translation using the inspector/executormodel
produce a speed-up up to 1.5 times better than using
ATOMIC for each individual update.

We conclude that our proposed new OpenMP direc-
tives would enable straightforward and efficient auto-
matic parallelisation of a wide range of scientific appli-
cations. The approach is currently being implemented
in the framework of the OpenMP NanosCompiler [3]
for Fortran77.

7. Acknowledgements

This research has been supported by the Ministry
of Education of Spain under contract TIC98-511,
by the CEPBA (European Center for Parallelism of
Barcelona), by EPCC (Edinburgh Parallel Computing

Center) and by the “Improving the Human Potential
Programme, Access to Research Infrastructures”, un-
der contract HPRI-1999-CT-00071 “Access to CESCA
and CEPBA Large Scale Facilities” established be-
tween The European Community and CESCA-CEPBA.
We acknowledge the use of the PPARC-funded Com-
paq MHD Cluster in St. Andrews.

References

[1] S. Benkner, K. Sanjari, V. Sipkova and B. Velkov, Parallelizing
irregular applications with the Vienna HPF+ Compiler VFC.
Proc. of HPCN’98, Amsterdam (The Netherlands), April 1998.

[2] D.K. Chen, P.C. Yew and J. Torrellas, An efficient algorithm for
the run-time parallelization of doacross loops, In proceedings
of Supercomputing ’94, Nov. 1994.

[3] M. Gonzalez, E. Ayguad́e, X. Martorell, J. Labarta, N. Navarro
and J. Oliver, NanosCompiler: Supporting Flexible Multilevel
Parallelism in OpenMP. Concurrency: Practice and Experience.
12 (12), pp. 1205–1218, October 2000. (Extended version of
paper presented at the 1st European Workshop on OpenMP,
Lund (Sweeden)).

[4] D.S. Henty, Performance of Hybrid Message-Passing and
Shared-Memory Parallelism for Discrete Element Modeling, In
proceedings of Supercomputing 2000, Nov. 2000.

[5] D. Hisley, G. Agrawal, P. Satya-narayana and L. Pollock,
Porting and Performance Evaluation of Irregular Codes us-
ing OpenMP, Proceedings of the First European Workshop on
OpenMP, Lund, Sweden, Sep. 1999, pp. 47–59.

[6] OpenMP Organization, OpenMP Fortran Application Interface,
v. 2.0, www.openmp.org, November 2000.

[7] L. Rauchwerger, N.M. Amato and D.A. Padua, Run-time
methods for parallelizing partially parallel loops, In proceed-
ings of the 1995 International Conference on Supercomputing,
Barcelona, Spain, July 3–7, 1995.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

