
99

Application of OpenMP to weather, wave and
ocean codes

Paolo Malfetti
CINECA, via Magnanelli 6/3, I-40033 Casalecchio di
Reno, Italy
Tel.: +39 051 6171411; Fax: +39 051 6132198;
E-mail: p.malfetti@cineca.it

Weather forecast limited area models,wavemodels and ocean
models run commonly on vector machines or on MPP sys-
tems. Recently shared memory multiprocessor systems with
ccNUMA architecture (SMP-ccNUMA) have been shown to
deliver very good performances on many applications. It is
important to know that the SMP-ccNUMA systems perform
and scale well even for the above mentioned models and that
a relatively simple effort is needed to parallelize the codes
on these systems due to the availability of OpenMP as stan-
dard shared memory paradigm. This paper will deal with the
implementation on a SGI Origin 2000 of a weather forecast
model (LAMBO – Limited Area Model Bologna, the NCEP
ETA model adapted to the Italian territory), awavemodel
(WA.M. – Wave Model, on the Mediterranean Sea and on the
Adriatic Sea) and an ocean model (M.O.M. – Modular Ocean
Model, used with data assimilation). These three models
were written for vector machines, so the paper will describe
the technique used to port a vector code to a SMP-ccNUMA
architecture. Another aspect covered by this paper are the
performances that these models have on these systems.

1. Introduction

In recent years it has been a common perception
that only vector processor machines are appropriate for
running limited area weather forecast models, wave
models and ocean models. Few recent models have
been developed on MPP systems, while others have
been ported using the message passing paradigm.

This paper will deal with the implementation, the
porting and the performances on a SGI Origin 2000 of
a weather forecast model, a wave model and an ocean
model.

After the description of the memory and commu-
nication architecture of the SGI Origin 2000 in Sec-
tion 1, Section 2 describes a weather forecast model

(LAMBO – Limited Area Model Bologna), a wave
model (WA.M. – Wave Model) and an ocean model
(M.O.M. – Modular Ocean Model). Section 3 describes
the parallelization techniques adopted at CINECA to
port these array-native codes from a vector to a shared
memory multiprocessor machine using OpenMP [5].
In order to evaluate the parallel execution time perfor-
mance, results are compared with those theoretically
predicted. Section 4 also shows how different scalabil-
ity curves can be experimentally obtained varying the
size of input data; this will be done on data coming
from a realistic case using three different spatial reso-
lutions. Moreover the paper will point out the effects
on the efficiency curve of the cpu upgrade without up-
grading the interconnection network. Numerical rep-
resentation effects on weather forecast will be briefly
studied. Finally the paper provides some conclusions.

1.1. Programming environment

The SGI Origin 2000 [9] is a scalable shared-memory
multiprocessing architecture. It provides global ad-
dress spaces for memory and for the I/O subsystem.
The communication architecture is much more tightly
integrated than in other recent commercial distributed
shared memory (DSM) systems, with the stated goal
of treating a local access as simply an optimization of
a general DSM memory reference. The two proces-
sors within a node do not work as a snoopy SMP clus-
ter but operate separately over the single multiplexed
physical bus and are governed by the same, on-level
directory protocol. Less snooping keeps low both ab-
solute memory latency and the ratio of remote to local
latency, and provides remote memory bandwidth equal
to local memory bandwidth (380 MB/s each). The two
processors within a node share a hardwired coherence
controller, called a hub, that implements the directory
based cache coherence protocol.

The Origin includes other architectural features for
good performance, including support for dynamic page
migration and prefetching, a high-performance local
and global interconnect design, coherence protocol fea-

Scientific Programming 9 (2001) 99–107
ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

100 P. Malfetti / Application of OpenMP to weather,wave andocean codes

tures to minimize latency and bandwidth needs per ac-
cess, and synchronization primitives like LL/SC and
at-memory fetch-and-op to reduce the serialization for
highly contended synchronization events.

Within a node each processor has separate 32 KB
first-level instruction and data caches (L1 cache) and
a unified 4 MB second-level cache (L2 cache) with 2-
way associativity on R10000 processor (from now on
indicated by R10K); second level cache is 8 MB on
R12000 processor (R12K).

2. Applications

2.1. LAMBO

LAMBO, Limited Area Model BOlogna, is a grid-
point primitive equations model, based on the 1989 and
1993 versions of the ETA model, operationally used
at the National Centre for Environmental Prediction
of Washington. The model, originally developed in
its former adiabatic version during the early seventies,
has been consistently improved during the years, both
with regards to numerical schemes, related to the adi-
abatic part of the model, and also with respect to the
parametrization of the physical processes [2,8,12].

LAMBO has been running operationally since
1993 [14] at Agenzia Regionale Prevenzione Ambi-
ente – Servizio Meteorologico Regionale where it has
been almost completely reformulated in its pre- and
post-processing sections.

As mentioned earlier, LAMBO is a grid-point, prim-
itive equations limited-area model: in such models the
only basic approximation, which is well justified by the
scale analysis of the vertical component of the momen-
tum equation, is the hydrostatic approximation, which
assumes that the pressure at any point is simply equal to
the weight of the unit cross-section column of air above
that point. In general, a primitive equations model is
a model in which, assuming that the atmosphere is in
hydrostatic equilibrium, the motion is predicted by ap-
plying the principles of conservation of momentum,
energy and mass (separately for dry air and moisture)
and using the law of ideal gases. Such a set of differen-
tial equations constitutes the initial and boundary value
problem, the solution of which provides the future state
of the atmosphere. The equations of motion are solved
in practice using finite difference methods and all model
variables are defined on the so-called Arakawa E-type
grid. Particular numerical schemes were developed to
integrate on the E-grid the part of the equations re-
lated to adiabatic processes and precisely to horizontal
advection [7] and geostrophic adjustment [11].

2.2. WA.M.

The Wave Model, WA.M., has been developed by a
group of international scientists with the aim of pro-
ducing a tool for the forecast of the waves based only
on physical principles.

The WA.M. describes the sea state at a certain time
in a certain position as the overlapping of many sinu-
soidals with different frequencies and directions. The
energy distribution on these components is called the
“sea spectrum”.

The model integrates numerically the “energy bal-
ance equation”, that expresses the equilibrium between
the energy associated to the sea state in a fixed position,
its advection energy and the local velocity to produce
and dissipate the undulatory motion. This includes the
generation from wind, energy exchange between the
wave components, dissipation phenomena (as white-
capping and sea bottom friction), shoaling, refraction
from the bottom and interaction with the streams. The
equations are solved on all the grid points and for each
spectrum component.

2.3. M.O.M.

Any Ocean Data Assimilation system consists of
three components: the dynamical model, the data and
quality control procedures and the insertion technique.
The numerical model is a modified version of the Mod-
ular Ocean Model, M.O.M., implementation in the
global ocean [4,16]. M.O.M. solves the primitive equa-
tions under hydrostatic, Boussinesq and rigid lid ap-
proximations using finite difference methods. All vari-
ables are defined on the so called “B-grid” of Arakawa
and Lamb [1]. The horizontal resolution is 1x1 degree
almost everywhere except in the tropical area where
the north-south resolution is increased to 1/3 of a de-
gree. There are 15 levels unevenly spaced down to 3000
meters and the first 11 levels are confined in the first
250 m. The vertical diffusion and horizontal viscosity
are parameterized with the Mellor-Yamada [10] turbu-
lence closure scheme and Smagorinsky non-linear vis-
cosity [17], respectively. At the surface the ECMWF
atmospheric reanalysis fields are used to compute mo-
mentum and heat fluxes with the method implemented
by Rosati and Miyakoda [13]. The surface salinity
boundary condition is still a relaxation to climatologi-
cal monthly mean values.

The data set assimilated into the ocean model con-
sists of both XBT and CTD temperature profiles con-
tained in the World Ocean Data Bank-94 [3] and

P. Malfetti / Application of OpenMP to weather,wave andocean codes 101

the Reynolds weekly sea surface temperature analy-
ses [15].

The preassimilation procedure has been imple-
mented and checked in order to ensure the most effec-
tive use of the observations.

The assimilation scheme consists of the univariate
variational optimal interpolation scheme developed by
Derber and Rosati [6].

3. Porting techniques

All the three codes described were running on
CINECA CRAY C90 (from now on indicated with C90)
and had to be ported on a Origin with 16 R10K pro-
cessors at 195 MHz, with 8 GB global shared mem-
ory (from now on indicated with Origin-R10K). Later
CINECA’s Origin was upgraded to a 64 R12K proces-
sors at 300 MHz, with 32 GB of global shared memory
(from now on indicated with Origin-R12K).

The migration of these codes to the parallel Origin
system has been structured in four major steps:

– porting;
– single processor tuning;
– parallelization;
– performance analysis.

In order to obtain good MFLOP performance from
porting a code written for a vector machine to a RISC
processor, it is necessary to use well all memory hier-
archies (especially the L1 and L2 caches) to minimize
data movement from RAM and feed the cpu registers;
for this reason single processor tuning is a crucial step
for the scalability of these codes.

The parallel version of these codes has been writ-
ten in a shared memory programming model, which is
by far the most natural and efficient way to implement
parallel code on Origin systems. Thus the parallelism
has been achieved by the insertion of OpenMP stan-
dard directives and by exploiting the auto-parallelizing
compiler features.

OpenMP permits the use of different parallelization
schemes inside the same code; this flexibility is not
present with other programming models (e.g. message
passing).

Another advantage given by OpenMP is the possi-
bility of using an incremental code parallelization ap-
proach: at the beginning the parallelization effort has
been applied to the most time consuming routines, in-
crementally considering other routines to reach the de-
sired parallelization level. SGI’s ssrun tool has been

fundamental in recognizing the most time consuming
subroutines.

Unless specified the experiments were run using
SGI’s miser (or equivalent tool), so that the CPUs were
dedicated to the application.

3.1. LAMBO

The purpose of this work was to follow two basic
criteria:

– the parallel version of LAMBO had to run on the
Origin-R10K at least in the same time as the serial
C90 version;

– to retain code readability and portability the code
modifications had to be kept to a minimum.

The porting process has been straightforward: the
only important issue was related to the numerical preci-
sion required, due to the different default variable size
on C90 (64 bits) and on Origin-R10K (32 bits).

Single processor tuning: in order to run efficiently
the LAMBO vector code on the cache-based Origin ar-
chitecture, aggressive optimization compiler flags had
to be turned on, in particular for loop nesting and cache
prefetching analysis.

The major problem arose when considering the code
parallelization: the original version of LAMBO made
a large use of equivalenced variables, to save memory,
but the presence of an equivalenced variable in a loop
inhibits its parallelization. In order to achieve a sig-
nificant level of parallelism, it has been necessary to
remove most of the EQUIVALENCE statements, thus
reducing the code readability for the original authors.

Different parallelization schemes have been applied
to different subroutines, always choosing the best ap-
proach according to the algorithm implemented: as an
example, in the horizontal diffusion subroutine, HD-
IFF, the vertical level outer loop has been chosen for
parallelization, while in the vertical advection subrou-
tine, VTADV, the parallelization has been applied to
the horizontal inner loop.

In the end it turned out that 10 subroutines were
manually parallelized by the insertion of OpenMP di-
rectives and 6 were automatically parallelized by the
compiler. In the case of the radiation package, the
parallelization has been achieved at a higher level, by
parallelizing the main loop in the driver routine which
calls the other radiation routines.

The experiment was done on a125× 111× 31 grid,
with a 60 seconds timestep, for 20 timesteps, and time
redistribution between LAMBO subroutines is shown
in Table 1.

102 P. Malfetti / Application of OpenMP to weather,wave andocean codes

Table 1
Time redistribution between LAMBO subroutines

Function Time (s) %

Hdiff 60,2 22
Hzadv 56,5 21
Pfdht 41,7 15
Vtadv 16,6 7
Profq2 19,1 6
Profs 14,0 5
Cucnvc 7,1 3
Ddamp 6,9 2
Rain 7,9 3
Pargel 6,6 2
Tridi 5,1 2
Qsmth 5,7 2
Pdte 4,7 2
Cloudcov 2,3 1
Rdtemp 1,5 1
Radiaz 2,0 1
Radgel 3,1 1
Compsp 1,2 0
Ritem 0,8 0

Table 2
cpu time varying optimization level

Optimization level Time (s)

O2 1289
O3 1038
Ofast 918
Ofast+IEEE+r12k+lno 878

Table 3
Time redistribution between WA.M. subroutines

Function Time (s) %

Snonlin 4056,550 40.2
Implsch 3510,170 34.8
Propags 1562,490 15.5
Wamodel 370,056 3.7

qerf 184,012 1.8
Stresso 178,986 1.8

qj1 174,706 1.7
Other ∼ 40,000 0.5

3.2. WA.M.

Porting: this code needed minor modifications, such
as the modularization of some PARAMETERs and
EQUIVALENCEs and the substitution of some CRAY
proprietary subroutines.

This model was tested with a 1/8 of a degree config-
uration on the Mediterranean Sea, so the grid is made
by 337 longitudinal points by 129 latitudinal points;
moreover for each grid point 25 frequencies and 12
angles have been considered.

Single processor tuning: this model works with
64 bit numerical precision (both real and integer arith-
metic) and doesn’t show any numerical instabilities.

For a 6 hour time integration run Table 2 shows that
cpu time decreases when the optimization level grows;
the code is fastest when the optimization is refined
asking for an arithmetic not compliant to the IEEE-754
standard, a code optimized for the R12K processor,
with aggressive prefetching and loop fusion.

Time redistribution between WA.M. subroutines for
a 72 hours run is summarized in Table 3.

Parallelization: the first four subroutines listed in
Table 3 (and six subroutines called by them) were par-
allelized manually inserting OpenMP directives.

3.3. M.O.M.

Porting: initially the model was run with a 32 bit
arithmetic and numerical representation to obtain
higher execution speed but losing numerical precision.
This test, however, didn’t give the expected benefits,
because the model has some numerically unstable ker-
nels and it diverges when a 32 bit arithmetic is used.
The model instability has been shown also for the 64 bit
numerical representation when the high optimization
level (that implies a non standard IEEE-754 arithmetic)
has been used, in particular some transformations, such
asx/y = x∗1/y, introduced the presence of NaN (Not
a Number) quantities.

Single processor tuning: due to numerical instability
a non highly aggressive optimization level was selected
for the numerical point of view and performance of
the model was improved using the software pipelining
option. The introduction of a flag that switches on the
data caches prefetch (both primary and secondary) has
slightly lowered the execution time, while loop fusion
and loop fission flags didn’t give any substantial bene-
fit; the same happened for the interprocedural analysis
option.

Profiling tools have been useful in analyzing the
model behaviour and in locating a numerical kernel
where most of the execution time is spent. This kernel
is a nested do loop containing an instruction similar to:

aij = (bij ∗ hij + cij−1 ∗ hij−1 + dij+1 ∗ hij+1

+eij ∗ (hi+1j + hi−1j)) ∗ fij

A floating point analysis shows that this instruction
can’t exceed the 45 MFLOP/s on the Origin-R12K. The
performancetools showed that with all the optimization
options turned on the compiler doesn’t reach this upper
bound.

Loop fission, array automatic padding, array group-
ing (automatic and manual) inside a common block
didn’t give any performance gain as well as re-writing

P. Malfetti / Application of OpenMP to weather,wave andocean codes 103

Fig. 1. Time redistribution between M.O.M. subroutines varying the
number of timesteps.

the code using FORTRAN 90 for grouping the data
structures involved in the loop – so to use better the
primary data cache.

The cpu time redistribution of M.O.M. subroutines
has been studied varying the number of timesteps, to
find out a number of timesteps sufficiently small to be
a good and representative sample of the model for long
integrations and to minimize the execution time. The
behaviour of the seven most time consuming subrou-
tines has been observed for 4, 8, 16, 32, 64, 128 and
256 timesteps configurations.

The redistribution time in the two last configurations
is almost the same. For previous configurations only
a high evolution (when the configuration passes from
4 to 8, from 8 to 16 and from 16 to 32 timesteps)
can be observed, then a smooth evolution (when the
configuration passes from 32 to 64 and from 64 to128
timesteps) up to reach an arrangement when the con-
figuration passes from 128 to 256 timesteps, as shown
in Fig. 1.

Parallelization: the code has been passed in the
Power Fortran Accelerator (pfa) to obtain a parallel
version of the code.

4. Experimental results

In order to evaluate the parallel performance, the re-
sults are compared with those predicted by the so-called
Amdhal’s law which represents the parallel execution
time T (p) as a function of the number of processorp
and of the parallel fractionfp of the serial timeTs.
According to Amdhal’s law:

Table 4
LAMBO parallel execution: cpu time, theoretical speedup forfp =
0.90, real speedup, theoretical speedup forfp = 0.92

CPUs Time (s) Sfp = 0.90 S Sfp = 0.92

1 275 1,00 1,00 1,00
2 150 1,82 1,83 1,85
4 87 3,08 3,16 3,23
6 66 4,00 4,17 4,29
8 56 4,71 4,91 5,13

10 50 5,26 5,50 5,81
12 46 5,71 5,98 6,38
14 43 6,09 6,40 6,86
16 40 6,40 6,88 7,27

T (p) ≡ Ts

[
(1 − fp) +

fp

p

]
;

S(p) ≡ T (1)
T (p)

=
Ts

T (p)

whereS(p) is the speed-up function definition. Speed-
up is used to evaluate the parallel performance; in the
ideal case, when all the code is perfectly parallel(fp =
1), the speed-up function is the linear functionS(p) =
p.

4.1. LAMBO performance analysis

Since only routines that together account for the
96% of the total execution time were considered for
parallelization, the Amdhal’s curve corresponding to
fp = 0.92 should be considered.

Due to imperfect load balancing, cache misses and
data contention between processors that fraction is po-
sitioned between 90% and 92%.

Table 4 reports the parallel execution time obtained
running the experiment described previously in Sec-
tion 3.1 for 20 timesteps on Origin-R10K.

Table 4 reports also the real speedup between the
theoretical speedup calculated forfp = 0.90 and for
fp = 0.92.

LAMBO has been operative on CINECA’s Origin-
R10K since the 1st July 1998. Using 10 R10K proces-
sors the first run takes about 5 minutes while the second
takes about 32 minutes. This should be compared with
the 10 minutes and 50 minutes, respectively required
by the previous C90 runs.

4.2. WA.M. performance analysis

Parallel execution time obtained running the experi-
ment described before in Section 3.2 for an integration
of 72 hours on Origin-R12K are shown in Table 5.

104 P. Malfetti / Application of OpenMP to weather,wave andocean codes

Table 5
WA.M. parallel execution: cpu time, theoretical speedup forfp =
0.90, real speedup, theoretical speedup forfp = 0.92

CPUs Time (s) S fp=.90 S S fp=.92

1 878,708 1,00 1,00 1,00
2 546,574 1,82 1,61 1,85
4 290,694 3,08 3,02 3,23
8 175,943 4,71 4,99 5,13

16 129,220 6,40 6,80 7,27

Table 6
M.O.M. parallel execution: elapsed time, theoretical speedup for
fp = 0.90, real speedup, theoretical speedup forfp = 0.92

CPUs Time (h) S fp=.90 S S fp=.92

1 34:34 1,00 1,00 1,00
8 7:02 4,71 4,91 5,13

10 6.11 5,26 5,59 5,81
12 5.46 5,71 5,99 6,38
14 6.14 6,09 5,55 6,86

Performance tools demonstrate that the subroutines
that have been parallelized sum up to the 92% of the
serial execution time. The asymptotic behaviour of
the two curves is similar so the parallelization can be
considered satisfactory.

4.3. M.O.M. performance analysis

The elapsed time on Origin-R12K for one month
integration shown in the Table 6 were obtained with a
partially loaded machine and without using miser.

The higher execution time when the number of pro-
cessor passes from 12 to 14 is probably due to a high
machine load. Another cause that can generate such
behaviour is a bad process workload distribution or
when an higher number of processors is not exploited
fully in terms of memory use. In addition, the usage
of another router on the communication network can
increase the communication overhead because of the
growth of the bisection bandwidth, in other words the
maximum number of hops required for a message to
reach another node grows.

M.O.M. on 12 R12K processors outperforms the 10
hours needed by the C90 run.

4.4. Input size effects

Some experiments taking as input the dataset relating
to the south Ticino flood (Sept. 1995) have been done
to understand the impact on the model scalability when
the resolution is changed.

Under the IRIX 6.5.2 environment LAMBO has been
compiled with MIPSpro 7.3 and has been run using
miser on Origin-R12K.

The experiments had these configurations:

– Father:65 × 65 × 32 grid, timestep 120 seconds
– Son:129 × 129 × 32 grid, timestep 60 seconds
– Grandson:197 × 197 × 32 grid, timestep 30 sec-

onds

Figure 2 summarizes the efficiencies coming from
experimental results together with the efficiencies pre-
dicted by Amdhal’s law when the parallel fraction fp is
70%, 80% and 90%. It’s easy to see that LAMBO scal-
ability (and in general all model scalability) is strongly
related to the configuration of the experiment or bet-
ter to the input size. This observation leads to two
other considerations: to obtain models that scale well
on shared memory machines, data structures have to
be large enough to be distributed among the proces-
sors that have to be used, otherwise the overhead that
comes from remote memory access will bring down the
performances; OpenMP implementation overhead (al-
ways present) can be percentually reduced increasing
the input size so as to enlarge the computational part of
the model.

All these three configurations scale up to 16 pro-
cessors with quite different efficiencies but when more
CPUs are added there is no gain in time performance
due to overheads (synchronization and remote ac-
cesses). LAMBO scales up to 32 processors if the con-
figuration is greater than Grandson but, as mentioned
earlier, LAMBO is a hydrostatic model and this kind
of model can not be used for very fine grids. It has
been noticed that the thread control overhead explodes
over 16 processors: the experiment configuration has
to be very big so that the computational part hides the
overhead.

Moreover it is possible to observe that the Son con-
figuration on Origin-R12K is larger than the one that
has been used to port the code on the Origin-R10K but
the former configuration has a poorer scalability: this
behaviour is due to the change of cpu. Passing from
R10K, 195 MHz, 4 MB L2 cache to R12K, 300 MHz,
8 MB L2 cache leads the model to run faster on a single
cpu and to fit in a secondary data cache using a smaller
number of processors.

The same behaviour can be observed in Fig. 3:
this picture shows the WA.M. cpu time obtained on
the CINECA’s Origin-R12K and on CINECA’s Onyx
equipped with 8 R10K processors, running at 275 MHz,
with 64 KB L1 cache, 4 MB L2 cache and 4 GB of
memory. The experiment configuration in this case
was 1/12 of a degree on the Adriatic Sea represented
as a97 × 73 grid, for each grid point 25 frequencies
and 12 angles have been considered. The model in-
tegrates 6 hours forecast. Since the WA.M. for this

P. Malfetti / Application of OpenMP to weather,wave andocean codes 105

Fig. 2. Father, Son, Grandson and theoretical Amdhal’s efficiencies forfp = 0.7, fp = 0.8, fp = 0.9.

Fig. 3. W.A.M. cpu Time on R12K and R10K.

configuration scales up to 4 processors there is no more
benefit in adding CPUs infact the model is quite small.
WA.M. on the Mediterranean Sea, instead, scales up to
12 processors.

4.5. Effect on numerical representation

Some experiments has been done in order to evaluate
the relation between LAMBO output and numerical

106 P. Malfetti / Application of OpenMP to weather,wave andocean codes

Fig. 4. Total precipitation 72 hours forecast 32 bit numerical representation.

Fig. 5. Total precipitation 72 hours forecast 64 bit numerical representation.

representation. The input dataset chosen is still the one
related to the south Ticino flood. This meteorological
situation has been chosen because it is characterized
by intense phenomena in order to have extreme values

for some model variables and to highlight numerical
differences and any fatal errors; moreover, with such
a situation, the convective scheme has been frequently
used during the computation.

P. Malfetti / Application of OpenMP to weather,wave andocean codes 107

The variable chosen for the comparison is the total
precipitation (which is the most interesting variable for
the end users). The comparison has been done on the
last snapshot released by the model (after 72 hours in-
tegration) because numerical differences between two
different computations grow with integration time.

Figures 4 and 5 shows respectively the total precipi-
tation for a run with 32 bit numerical representation and
a 64 bit one: the areas where total precipitation is inten-
sive have the same structure in both the figures, while
some differences are present where total precipitation
is light. This qualitative analysis has been completed
with a statistical analysis and also other model variables
have been examined (relative humidity at 850 hPa and
mean sea level pressure).

A similar comparison has been done between a scalar
and a parallel run in order to test the numerical impact
of parallelization on the output. Also in this case there
were not quantitative and qualitative differences in test
variables.

5. Conclusions

During this paper it has been shown that:

– these kinds of models do not seem to be suited
only for vector machines: it has been observed
that cpu time performances for all these three con-
figurations can be better than the respective ones
obtained on a CRAY C90;

– the possibility of using an incremental code par-
allelization approach and of using different paral-
lelization schemes inside the same code are two big
advantages given by OpenMP. A relatively sim-
ple parallelization effort has been done for port-
ing these codes: a much greater effort would have
been necessary in the case of a message passing
implementation;

– single processor tuning is a crucial step: the port-
ing of a vector code requires particular attention,
especially loop nesting, prefetching and cache op-
timization;

– scalability is strictly dependent on the input size,
the processor, the L1 and L2 cache sizes;

– these models can perform well on scalable shared
memory parallel computers providing satisfactory
operational forecasts also with 32 bit numerical
representation.

Future work: to experiment with new commercial
systems. The LAMBO serial version has been run on
IBM Power3 processor at 200 MHz with 128 KB of
L1 cache and 4 MB of L2 cache: a 6 hour integration
takes 1823 and 4500 seconds respectively for the south
Ticino flood Son and Grandson configurations, instead
of 2207 and 7247 seconds were necessary for the same
configurations on a R12K.

References

[1] A. Arakawa and V.R. Lamb, Computational design of the basic
dynamical processes of the UCLA general circulation model,
Methods in Computational Physics 17, Academic Press, 1977,
pp. 174–265.

[2] T.L. Black, The step mountain, eta coordinate regional model:
a documentation, NOAA/NWS/NMC, 1988.

[3] T.P. Boyer and S. Levitus,NOAA Technical Report NESDIS
81 (1994), 65.

[4] M.D. Cox, GFDL Ocean Group Tech. Rep. 1 (1984), 143.
[5] L. Dagum and R. Menon, OpenMP: An Industry-Standard

API for Shared-Memory Programming,Computational Sci-
ence and Engineering 5(1) (1998).

[6] J. Derber and A. Rosati,J. Phys. Oceanogr. 19 (1989), 1333.
[7] Z. Janjic, Non linear advection schemes and energy cascade on

semistaggered grids,Mon. Wea. Rev. 112 (1984), 1234–1245.
[8] Z. Janjic, The step-mountain coordinate: physical package,

Mon. Wea. Rev. 118 (1990), 1429–1443.
[9] J. Laudon and D. Lenoski, The SGI Origin: a ccNUMA highly

scalable server, inProceeedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, 1997.

[10] G.L. Mellor and T. Yamada,Rev. Geophys. Space Phys. 20
(1982), 851.

[11] F. Mesinger, A method for construction of second-order accu-
racy difference schemes permitting no false two-grid interval
wave in theheight field,Tellus 25 (1973), 444–458.

[12] F. Mesinger, Z.I. Janjic, S. Nickovic, D. Gavrilov and D.G.
Deaven, The step-mountain coordinate: Model description
and performance for cases of Alpine lee cyclogenesis and for
a case of Appalachian redevelopment,Mon. Wea. Rev. 116
(1988), 1493–1518.

[13] K. Miyakoda, A. Rosati and R.G. Gudgel, Prediction of In-
ternal Climate Variations, NATO-ASI series, 16, Springer-
Verlag, Berlin, 1997, pp. 125.

[14] T. Paccagnella, Operativo un Modello ad Area Limitata Presso
il Servizio Meteorologico Regionale dell’Emilia-Romagna.
AER available at Regional Meteorological Service of Emilia-
Romagna, 1994.

[15] R.W. Reynolds and T.M. Smith,J. Climate 7 (1994), 929.
[16] A. Rosati and K. Miyakoda,J. Phys. Oceanogr. 18 (1988),

1601.
[17] J. Smagorinsky,Large Eddy Simulation of Complex Engi-

neering and Geophysical Flows, Cambridge University Press,
1997.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

