
123

Cluster-enabled OpenMP: An OpenMP
compiler for the SCASH software distributed
shared memory system

Mitsuhisa Satoa, Hiroshi Haradaa,
Atsushi Hasegawab and Yutaka Ishikawaa
aReal World Computing Partnership, 1-6-1 Takezono,
Tsukuba Mitsui-Blg. 16F, Tsukuba, Ibaraki 305-0032,
Japan
E-mail:msato@trc.rwcp.or.jp
bNEC Informatec Systems, Ltd., Japan

OpenMP is attracting wide-spread interest because of its
easy-to-use parallel programming model for shared memory
multiprocessors. We have implemented a “cluster-enabled”
OpenMP compiler for a page-based software distributed
shared memory system, SCASH, which works on a cluster
of PCs. It allows OpenMP programs to run transparently in
a distributed memory environment. The compiler transforms
OpenMP programs into parallel programs using SCASH so
that shared global variables are allocated at run time in the
shared address space of SCASH. A set of directives is added
to specify data mapping and loop scheduling method which
schedules iterations onto threads associated with the data
mapping. Our experimental results show that the data map-
ping may greatly impact on the performance of OpenMP pro-
grams in the software distributed shared memory system. The
performance of some NAS parallel benchmark programs in
OpenMP is improved by using our extended directives.

1. Introduction

In this paper, we present an implementation of a
“cluster-enabled” OpenMP compiler for a page-based
software distributed shared memory system called
SCASH, on a cluster of PCs.

For programming distributed memory multiproces-
sors such as clusters of PC/WS and MPPs, message
passing is usually used. A message passing system re-
quires programmers to explicitly code the communica-
tion and makes writing parallel programs cumbersome.

OpenMP is attracting wide-spread interest because
of its easy-to-use parallel programming model. While

OpenMP is designed as a programming model for
shared memory hardware, one way to support OpenMP
in a distributed memory environment is to use a soft-
ware distributed shared memory system (SDSM) as an
underlying runtime system for OpenMP.

Our target SDSM is a page-based software dis-
tributed shared memory system, SCASH [2], which
runs on a cluster of PCs connected by a high speed
network such as Myrinet.

In most SDSMs, only part of the address space is
shared. In SCASH, the address space allocated by
a shared memory allocation primitive can be shared
among the processors. Variables declared in the global
scope are private in the processor. We call this mem-
ory model the “shmem memory model”. Parallel pro-
grams using Unix “shmem” system calls use this mem-
ory model. In this model, all shared variables must
be allocated at run-time at the beginning of execu-
tion. We have implemented the OpenMP compiler for
our “shmem memory model” using the Omni OpenMP
compiler system [7]. The compiler detects references
to a shared data object, and rewrites them into the object
re-allocated in the shared memory area.

The data mapping to processors is the key to achiev-
ing good performance on the SDSM. We have added
a set of directives to specify data mapping and loop
scheduling to give application-specific knowledge to
the compiler. Using these extended directives, the pro-
grammer can exploit data locality by reducing the cost
of consistency management.

Our contribution of this paper is to propose a tech-
nique to translate an OpenMP program for our “shmem
memory model” of SCASH. We report performance
and turning of OpenMP programs by our extended di-
rectives on our PC clusters. In the next section, we
present an overview of the Omni OpenMP compiler
system and SCASH, as background. Section 3 de-
scribes how to translate the OpenMP programs for the
“shmem memory model”, and Section 4 reports the

Scientific Programming 9 (2001) 123–130
ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

124 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

C- Front

Exc Java toolkit

a.out

Omni OpenMP compiler

C + OpenMP

C + runtime lib. call

F77 Frontend

F77 + OpenMP

Intermediate representation
(Xobject)

Exc Toolkit

compiled by native cc
linkOmni OpenMP

runtime lib

Fig. 1. An overview of the Omni OpenMP compiler.

performance obtained on our PC clusters with some
benchmarks, including the NAS parallel benchmark
suite. Section 5 presents our concluding remarks.

2. Background

2.1. The Omni OpenMP compiler system

The Omni compiler is a translator which takes
OpenMP programs as input to generate a multi-
threaded C program with runtime library calls. The
compiler system consists of the Omni Exc toolkit and
various language front-ends, as shown in Fig. 1. C-
front and F-front are front-end programs that parse C
and Fortran source code into intermediate code, called
Xobject code. Exc Java Toolkit is a Java class library
that provides classes and methods to analyze and mod-
ify a program easily, with high level representation, and
to unparse Xobject code into a C program. The repre-
sentation of Xobject code is a kind of AST (Abstract
Syntax Tree) with data type information, on which each
node is a Java object that represents a syntactical ele-
ment of the source code, and that can easily be trans-
formed.

The Omni OpenMP compiler is implemented using
the Omni Exc toolkit. The translation pass from an
OpenMP program to the target multi-threaded code is
written in Java using the Exc Java Toolkit. The gener-
ated program is compiled by the native back-end com-
piler linked with the runtime library. The OpenMP
compiler is available for several SMP platforms, in-
cluding Linux, Sun Solaris and SGI IRIX.

2.2. The software distributed shared memory system,
SCASH

SCASH is a page-based software distributed shared
memory system using the PM low-latency and high
bandwidth communication library [8]1 for a Myrinet gi-
gabit network and various memory management func-
tions, such as memory protection, supported by an op-
erating system kernel. The consistency of shared mem-
ory is maintained on a per-page basis. SCASH sup-
ports two page consistency protocols,invalidate and
update. Thehome node of a page is a node that keeps
the latest data of the page. In the invalidate protocol,
the home node sends an invalidation message to nodes
which share the page so that the page is invalidated on
these nodes. The invalidate protocol is used as default.

SCASH is based on the Release Consistency (RC)
memory model with the multiple writers protocol. The
consistency of a shared memory area is maintained at a
synchronization point called the “memory barrier syn-
chronization” point. At this point, only modified parts
are transferred to update pages. Explicit consistency
management primitives are also supported for the lock
operations.

3. The translation of OpenMP programs to
SCASH

3.1. Transformation for the “shmem memory model”

In SCASH, variables declared in the global scope are
private in the processor. The shared address space must
be allocated explicitly by the shared memory allocation
primitive at run time. We call this memory model the
“shmem memory model”.

In the OpenMP programming model, global vari-
ables are shared as the default. To compile an OpenMP
program into the “shmem memory model” of SCASH,
the compiler transforms code to allocate a global vari-
able in shared address space at run time. The com-
piler transforms an OpenMP program by means of the
following steps:

1. All declarations of global variables are converted
into pointers which contain the address of the data
in the shared address space.

1Currently, the PM communication library supports Gigabit and
Fast Ethernet.

M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler 125

2. The compiler rewrites all references to the global
variables to the indirect references through the
corresponding pointers.

3. The compiler generates the global data initial-
ization function for each compilation unit. This
function allocates the objects in shared address
space and stores these addresses in the corre-
sponding indirect pointers.

For example, the following code:

double x; /* global variable
declaration */
double a[100]; /* global array
declaration */
. . .
a[10] = x;

is transformed into:

double * G x; /* indirect pointer
to ‘‘x’’ */
double * G a; /* indirect pointer
to ‘‘a’’ */
. . .
(G a)[10] = (* G x); /* reference
through the pointers */

The following initialization function G DATA
INIT is generated for the above code:

static int G DATA INIT() {
shm data init(& G x,sizeof(double));
shm data init(& G a,sizeof(double)
*100);

}
The run-time library function shm data init

specifies the size and the indirect pointer address for
the shared object. The initialization function also con-
tains the data mapping information if specified in the
program. Figure 2 illustrates the code after this trans-
formation.

The global data initialization function entry point is
placed in the ‘.ctors’ section2 in order to be linked
and called at the beginning of execution, before execut-
ing the “main” program. Actually, each initialization
function only makes the table for the shared objects
in each node. In the runtime initialization phase, the

2The “.ctors” section means a “constructor” section which is
originally used to place the “constructor” of C++ programming
language. Each object file that defines an initialization function puts
a word in the constructor section to point to that function. The linker
accumulates all these words into one contiguous ‘.ctor’ section.

_G_x
_G_a

code

shared
memory
area in
SCASH

data
(private)

node1 node2 node3

code code

data
(private)

data
(private)

double x

double a[100]

Fig. 2. Transformation for the “shmem memory model”.

records of the shared objects in the table are summa-
rized, and objects are allocated in the shared address
space on the master processor (node 0). Then, the
addresses of the allocated objects are broadcasted to
initialize the indirect pointers in each node.

Note that if the shared memory was supported by
hardware or/and operating systems as in SGI Origin
2000 the transformation described above would not be
necessary. Our method is for a user-level distributed
shared memory system, and does not need any mod-
ification of the operating system and the standard li-
braries. It just rewrites the references to the shared
data objects and does not need complicated program
analysis.

3.2. OpenMP directive translation and the runtime
library

The OpenMP directives are transformed into a set
of runtime functions which use SCASH primitives to
synchronize and communicate between processors.

To translate a sequential program annotated with par-
allel directives into a fork-join parallel program, the
compiler encapsulates each parallel region into a sepa-
rate function. The master node calls the runtime func-
tion to invoke the slave threads which execute this func-
tion in parallel. All threads in each node are created at
the beginning of execution, and wait for the fork opera-
tion on slave nodes. At the fork, pointers to shared vari-

126 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

ables with auto storage class are copied into a shared
memory heap and passed to slaves.

No nested parallelism is supported.
In SCASH, the consistency of all shared memory ar-

eas is maintained at a barrier operation. This matches
the OpenMP memory model. The lock and synchro-
nization operations in OpenMP use the explicit consis-
tency management primitives of SCASH on a specific
object.

3.3. The OpenMP extension for data mapping and
loop scheduling

In SDSMs, the home node allocation of pages affects
the performance because the cost of consistency man-
agement is large compared to that of hardware NUMA
systems. In SCASH, a reference to a page in a remote
home node causes page transfer through the network.
When the home node of a page is different from the
current node, the modified memory must be computed
and transfered at barrier points to update the page in
remote nodes. SCASH can deliver high performance
for an OpenMP program if the placement of data and
computation is such that the data needed by each thread
is local to the processor on which that thread is running.
In OpenMP, a programmer can specify thread-parallel
computation, but its memory model assumes a single
uniform memory and provides no facilities for laying
out data onto specific distinct memory space. And,
no loop scheduling method is provided to schedule in
a way that recognizes the data access made by that
iteration.

We have extended the OpenMP with a set of direc-
tives to allow the programmer to specify the placement
of data and computation on the shared address space.
The data mapping directive specifies a mapping pattern
of array objects in the address space. It is borrowed
from High Performance Fortran(HPF). For example,
the following directive specifies block mapping with
the second dimension of a two-dimensional arrayA:

In Fortran:

dimension A(100,200)
!$omn mapping(A(*,block))

In C:

double A[200][100];
#pragma omni mapping(A[block][*])

The asterisk (*) for the first dimension means that
the elements in any given column should be mapped in
the same node. Theblock keyword for the second

dimension means that for any given row, the array ele-
ments are mapped on each node in large blocks of ap-
proximately equal size. As a result, the array is divided
into contiguous groups of columns, with home nodes
for each group assigned to the same node. The keyword
cyclic (n) can be used to specify cyclic mapping.
The alignment mapping directive is also provided to
align data mapping of array to other arrays.

Since the consistency is maintained on a page-basis
in SCASH, only page-granularity consistency is sup-
ported. If mapping granularity is finer than the size
of the page, the mapping specification may not be ef-
fective. In contrast to HPF, each processor may have
the entire copy of the array in the same shared address
space. In this sense, this directive specifies “mapping”
in the memory space, not “distribution” in HPF.

In addition to the data mapping directive, we have
added a new loop scheduling clause, “affinity”, to
schedule the iterations of a loop onto threads associ-
ated with the data mapping. For example, the iterations
are assigned to the processor having the array element
a[i][*] in the following code:

#pragma omp for schedule(affinity,
a[i][*])
for(i = 1; i < 99; i++)
for(j = 0; j < 200; j++)
a[i][j] = . . .;

Note that, in the current implementation, mapping
and loop scheduling for only one of the dimensions
can be specified because our current OpenMP compiler
supports single level parallelism.

In C programs, a data is often allocated by the stan-
dard memory allocation functionmalloc. In SCASH,
in order to allocate the data in a shared memory
space, the SCASH-specific memory allocation function
ompsm galloc must be used in stead ofmalloc.
This function takes the arguments which specify the
data mapping of the allocated address space. The pro-
grammer may allocate the data mapped into a particular
processor, or the data with block mapping.

3.4. Compatibility with SMP programs

From the viewpoint of the programmer, our imple-
mentation for the SDSM is almost compatible with one
for the hardware SMP with the following few excep-
tions:

– In a cluster environment, I/O operations are per-
formed independently in each node. The file de-
scriptor allocated in a node cannot be used in dif-
ferent nodes.

M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler 127

Table 1
Execution time (in seconds) and Speedup inpcc2 (Pentium Pro 200MHz, 256MB memory, Myrinet
network, Linux)

No. of nodes seq 2 4 8 16 32

lap/BLK 17.74 (1) 14.30 (1.24) 7.84 (2.26) 4.69 (3.78) 2.88 (6.16) 1.79 (9.91)
lap/RR 17.74 (1) 49.39 (–) 33.88 (–) 20.15 (–) 12.87 (1.38) 10.15 (1.75)
cg/BLK 83.79 (1) 48.90 (1.73) 29.49 (2.84) 20.86 (4.02) 18.08 (4.63) 19.65 (4.26)
cg/RR 83.79 (1) 55.20 (1.52) 33.88 (2.47) 23.33 (3.59) 18.83 (4.44) 19.73 (4.24)

– In C OpenMP programs, the variables declared
in external libraries must be declared asthread-
private. Global variables withoutthreadprivate
are re-allocated in a shared address space by the
compiler.

– A dynamically allocated heap by using standard
malloc is not shared. Use theompsm galloc
instead, as described in the previous section.

– The number of threads is given by the command
line of the SCASH system run commandscrun,
not by the OpenMP environment variable.

4. Performance evaluation

4.1. Data mapping and scalability

We take two kinds of benchmarks to examine the
effect of data mapping and scalability. The bench-
mark “lap” is a simple Laplace equation solver with
a 5-point stencil operation (1024*1024 and 50 itera-
tions). The benchmark “cg” is the NAS parallel bench-
mark CG (version 1) of class A. Both programs are
written in C OpenMP. Table 1 shows the preliminary
performance on the RWC PC Cluster II, (pcc2: Pen-
tium Pro 200 MHz, 256 MB memory, Myrinet network,
Linux). In SCASH, the home nodes are assigned to the
pages in a round-robin manner in the order of address
as the default. The execution time using this default
home node allocation is indicated with RR. The execu-
tion time with BLK shows the performance when array
objects are mapped by block mapping on the largest
dimension. As a result, the large shared objects are
equally divided into successive blocks for nodes. No
scheduling clause is specified for any loops in either
program. The column “seq” indicates the execution
time of the sequential program compiled without any
OpenMP directives.

In “lap” benchmark, we found that the home node
mapping gives great impact on the performance. In
each iteration, all elements in the large array are up-
dated. At the barrier operation at the end of each it-
eration, modified elements are transfered to update the

home pages, resulting in a large amount of traffic in
“RR”. In BLK, the default loop scheduling matches
the block mapping of the arrays. Most elements are
referenced by the processor that is the home node for
the pages containing the elements. The performance
scales up to 16 nodes in this case. If a different loop
scheduling such as cyclic scheduling was specified to
the loop, the result would be greatly different.

In “cg”, we found that the data mapping has less of
an effect than in “lap”, and its performance does not
scale on more than 8 nodes. The major computation
in “cg” is a sparse matrix vector multiplication. The
large matrix is a read-only object so that the copy of
the object is re-used in each iteration. The vectors are
referenced and updated according to the data of the
matrix. Since the elements in the vector are randomly
referenced in this benchmark, all-to-all communication
is required at the end of the parallel loops. This limits
the scalability in SCASH.

For OpenMP programs for SCASH, the compiler
maps the array objects using block mapping when no
particular mapping is specified. This is sometime use-
ful because the block mapping may match default loop
scheduling in our compiler, as seen in the results of
“lap”.

It should be noted that the overheadcaused by rewrit-
ing global variable references by indirect pointers is
very small in these benchmarks.

4.2. Performance tuning using the data mapping
directives

We have parallelized some benchmarks in the NAS
parallel benchmark suite, based on serial version 2.3,
using OpenMP. For parallelization, we simply added
OpenMP directives, and did not modify the original
code. To examine the scalability of these programs on
hardware-supported shared memory multiprocessors,
Fig. 3 shows the performance of our OpenMP version
of BT and SP on a COMPAQ ProLiant 6500 (Pentium II
Xeon 450 MHz, 1 GB memory, 4 CPU SMP, Linux) and
a Sun E450 (Ultra SPARC 300 MHz, 1 GB memory,
4 CPU SMP, Solaris 2.6) by using the SMP version of
our compiler.

128 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

0

500

1000

1500

2000

2500

3000

3500

COMPAQ ProLiant
6500

SUN E450

SP
BT

ex
ec

ut
io

n
tim

e
(s

ec
)

S 2 4

COMPAQ ProLiant
6500 SUN E450

S 2 4 S 2 4 S 2 4

BTSP

number of
processors

Fig. 3. Performance of hardware-supported shared memory multiprocessors.

Table 2
Execution time (in seconds) and Speedup of NAS parallel benchmarks in
OpenMP oncompas (Pentium II Xeon 450MHz, 1GB memory, Myrinet
network, Linux)

No. of nodes seq 2 4 8

SP 2.3omp 1807.7 1319.6 (1.37) 821.3 (2.20) 708.2 (2.55)
SP 2.3opt – 1235.8 (1.46) 753.0 (2.40) 462.7 (3.91)
SP PBN-3.0b 1512.9 1441.7 (1.05) 923.6 (1.64) 610.8 (2.48)
BT 2.3omp 2302.1 1413.0 (1.63) 777.3 (2.96) 491.0 (4.69)
BT 2.3opt – 1360.5 (1.69) 754.8 (3.05) 413.8 (5.56)
BT PBN-3.0b 1456.2 1048.4 (1.39) 621.6 (2.34) 373.3 (3.90)

Table 2 shows the performance of the NPB OpenMP
benchmarks on our COMPaS Cluster (compass: Pen-
tium II Xeon 450MHz,1GB memory, Myrinet network,
Linux). The size of all benchmarks is class A. The col-
umn “seq” indicates the execution time of the sequen-
tial program compiled without any OpenMP directives
respectively.

We eliminated unnecessary barrier operations by
adding “nowait” clauses at the end of some parallel
loops to reduce unnecessary consistency traffic. If a
variable can be referenced within its own processor lo-
cally, we made the variable “threadprivate” to reduce
the amount of shared data. The rows indicated by
“omp” indicate the performance using only the
OpenMP standard directives.

PBN-3.0b (Programming Baseline for NPB) [6] is a
new OpenMP benchmark suite of NAS parallel bench-
marks released by the NASA Ames Lab. The programs
in this suite are optimized from those of NPB 2.3. The
rows indicated by “PBN-3.0b” show the performance
of this benchmark on the SCASH.

We have tuned the performanceof our OpenMP NPB
benchmarks using data mapping directives and affin-
ity loop scheduling. The rows indicated with “opt”
show the optimized performance by our extended di-

rectives. Both benchmarks, BT and SP, solve multiple
independent systems in three dimensional space which
are stored in multi-dimensional arrays. For example,
we specified block mapping with the second largest
dimension for the four-dimensional arrayrhs in the
benchmark SP as follows:

dimension rhs(0:IMAX/2*2,
0:JMAX/2*2, 0:KMAX/2*2, 5)
!$omn mapping(rhs(*,*,block,*))

One loop in the SP was scheduled as follows:

do m = 1, 5
!$omp do schedule(affinity,
rhs(*,*,k,*))
do k = 1, grid points(3)-2
do j = 1, grid points(2)-2
do i = 1, grid points(1)-2
u(i,j,k,m) = u(i,j,k,m)
+ rhs(i,j,k,m)

end do
end do
end do

!$omp end do nowait
end do

M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler 129

In this loop, the iterations fork are assigned to the
processor which has the elementsrhs(*,*,k,*).

The benchmark BT scales better than the bench-
mark SP because BT contains more computations than
SP. Each sub-dimension of the array is accessed in
three phases ofx solve, y solve, andz solve
for each axis in the three-dimensional space. To par-
allelize these programs, the arrays are mapped with
block mapping on the dimension corresponding to z.
Although this mapping makes two routines,x solve
andy solve, faster, thez solve routine never scales
because the data mapping does not match the access
pattern of this routine. For example, most loops in
x solve ware parallelized at the most outer loop as
shown in the above example. On the other hand, the
loops inz solve ware parallelized as follows:

do k = 0, grid points(3)-3
!$omp do
do j = 1, grid points(2)-2
do i = 1, grid points(1)-2
k1 = k + 1
. . ..
rhs(i,j,k1,m) = lhs(i,j,k,m)
+ . . .

. . .
end do
end do

!$omp do end
end do

The most outer loop cannot be parallelized because
the loop has the dependency between the iterations.
The loops ware parallelized at the inner loop, resulting
in mismatch between data mapping and iterations. To
improve the performance of all routines, either remap-
ping or re-ordering of data would be required to make
the access pattern of each routine match the data map-
ping.

5. Related works

H. Lu et.al. [4] presents an OpenMP implementa-
tion for the TreadMarks [1] software DSM. Their com-
piler only supports a subset of OpenMP. Instead, they
propose some modifications of the OpenMP standard
to make OpenMP programs run easier and more ef-
ficiently. This approach may lose the portability of
OpenMP programs. Our compiler supports a full set of
OpenMP so that OpenMP compliant programs run on
SDSMs without any modifications.

Hu [5] also presents an OpenMP for SMP clusters.
They discuss performance on the modified TreadMarks
software distributed shared memory system which uses
POSIX threads with an SMP nodes.

The SGI OpenMP compiler also supports similar
extensions to specify data mapping and affinity loop
scheduling for their hardware-supported DSM system.

Bricak et al. [3] proposes similar extensions to
OpenMP for NUMA machines in the COMPAQ
OpenMP compiler. While we support only one-
dimensional mapping with page granularity, they sup-
port multi-dimensional mapping and element-wise
granularity by exchanging dimensions. The element-
wise granularity would be a novel technique to exploit
locality for our system.

6. Concluding remarks

We have presented an OpenMP compiler for a full
set of OpenMP API on the software distributed shared
memory system, SCASH, and examined its perfor-
mance on our clusters. The compiler transforms
OpenMP programs so that shared global variables are
allocated at run time by SCASH primitives. Our im-
plementation enables OpenMP programs to run trans-
parently on the cluster environments with reasonable
speedup, as shown in results of our experiment.

The page home mapping is the key to achieving good
performance on the SDSM. We have added a set of
directives to specify data mapping in a flexible way,
which gives application-specificknowledge to the com-
piler. The loop scheduling used to exploit locality for
data mapping can be used to tune the performance by
reducing the cost of consistency management.

When the data access pattern does not match the
data mapping, the performance degrades in the SDSM
more seriously than in the hardware NUMA system.
To improve the performance in programs which have
different access patterns, remapping and re-ordering of
data would be required.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, W. Yu and W. Zwaenepoel, Treadmarks: Shared memory
computing on networks of workstation,IEEE Computer 29(2)
(Feb. 1996), 18–28.

[2] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto and
T. Takahashi, Dynamic Home Node Reallocation on Software
Distributed Shared Memory, In Proc. of HPC Asia 2000, Bei-
jing, China, May 2000, pp. 158–163.

130 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

[3] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C.A.
Nelson and C.D. Offner. Extending OpenMP For NUMA Ma-
chines, In Proc. of Supercomputing 2000 (CD-ROM), Nov.
2000.

[4] H. Lu, Y.C. Hu and W. Zwaenepoel, OpenMP on Network
of Workstations, In Proc. of Supercomputing ‘98 (CD-ROM),
Nov. 1998.

[5] H. C. Hu and H. Lu, A.L. Cox and W. Zwaenepoel, OpenMP
for Networks of SMPs,Journal of Parallel and Distributed
Computing 60(12) (Dec. 2000), 1512–1530.

[6] H. Jin, M. Frumkin and J. Yan, The OpenMP Implementa-

tion of NAS Parallel Benchmarks and Its Performance, NAS
Technical Report NAS-99-011, Oct. 1999.

[7] M. Sato, S. Satoh, K. Kusano and Y. Tanaka, Design of OpenMP
Compiler for an SMP Cluster, In Proc. of 1st European Work-
shop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999,
pp. 32–39.

[8] H. Tezuka, A. Hori, Y. Ishikawa and M. Sato, PM: An Operat-
ing System Coordinated High Performance Communication Li-
brary, Lecture Notes in Computer Science, High-Performance
Computing and Networking, 1997, pp. 708–717.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

