
223

An iterative solver benchmark1

Jack Dongarra, Victor Eijkhout and
Henk van der Vorst

Revised 31 August 2001

We present a benchmark of iterative solvers for sparse ma-
trices. The benchmark contains several common methods
and data structures, chosen to be representative of the perfor-
mance of a large class of methods in current use. We give
results on some high performance processors that show that
performance is largely determined by memory bandwidth.

1. Introduction

In scientific computing, several benchmarks exist
that give a user some idea of the to-be-expected per-
formance given a code and a specific computer. One
widely accepted performance measurement is the Lin-
pack benchmark [4], which evaluates the efficiency
with which a machine can solve a dense system of
equations. Since this operation allows for considerable
reuse of data, it is possible to show performance fig-
ures that are a sizeable percentage of peak performance,
even for machines with a severe imbalance between
memory and processor speed.

However, sparse linear systems are at least as impor-
tant in scientific computing, and for these the question
of data reuse is more complicated. Sparse systems can
be solved by direct or iterative methods, and especially
for iterative methods one can say that there is little or
no reuse of data. Thus, such operations will have a
performance bound by the slower of the processor and
the memory, in practice: the memory.

We aim to measure the performance of a represen-
tative sample of iterative techniques on any given ma-
chine; we are not interested in comparing, say, one pre-
conditioner on one machine against another precondi-
tioner on another machine. In fact, the range of possi-
ble preconditioners is so large, and their performance
so much dependent on the specific problem, that we do

1This research is sponsored in part by Subcontract #R71700J-
29200099 with William Marsh Rice University and Subcontract
#B503962 with The Regents of the University of California.

not even compare one preconditioner to another on the
same machine. Instead, we identify kernels that will
have a representative performance, and test those; the
performance of a whole code is then a composite of the
performances of the various sparse kernels.

An earlier report on the performance of supercom-
puters on sparse equation solvers can be found in [5].

2. Motivation

Iterative methods are hard to benchmark. The ulti-
mate measure one is interested in is ‘time expended to
reach a certain accuracy’. This number is a function of
at least the following variables:

1. The iterative method: for each type of linear sys-
tem (symmetric / hermitian / general, definite /
almost definite / indefinite, et cetera) there are
several candidate methods with differing math-
ematical and computational characteristics. For
instance, GMRES [9] has an advantage over
BiCGstab [10] in that it minimizes residuals, and
is able to use Level 3 BLAS; it has as disadvan-
tage that work per iteration is higher and memory
demands larger.

2. The preconditioner: some systems are well-
conditioned enough that a simple Jacobi precon-
ditioner (or equivalently, diagonal scaling before
the iteration process) will be good enough, others
require complicated preconditioners to tame the
spectrum.

3. Data structures used: the same matrix can be
stored in a number of formats, some of which may
have computational advantages. For instance,
problems with several physical variables per node
can be expressed in such a way that dense matrix
operations can be used.

4. The implementation of computational kernels:
different implementations of the same operation
can have different performance characteristics.

5. Architectural details of the machine used, in par-
ticular the processor speed and the memory band-
width. Depending on the operation, the one or
the other may be of more or less importance.

Scientific Programming 9 (2001) 223–231
ISSN 1058-9244 / $8.00  2001, IOS Press. All rights reserved

224 J. Dongarra et al. / An iterative solver benchmark

6. Computer Arithmetic: some problems may be
solvable to a desired accuracy in single precision,
others may require double precision. Even at a
given precision, two different implementations of
arithmetic may give different results, so that the
same program on two different machines will not
behave the same.

7. The problem to be solved. The behaviour of all
of the above points is a function of the problem
to be solved. The number of iterations (that is,
behaviour of the iterative method and precondi-
tioner) is a function of the spectrum of the matrix.
The flop rate per iteration (determined by imple-
mentation of kernels, and processor characteris-
tics) is a function of the sparsity structure of the
matrix.

8. Problem size. Even ignoring such obvious fac-
tors as performance degradation because of page
swapping, the size of a problem’s data set can
influence performance strongly. On vector ma-
chines, increasing the problem size will most
likely increase the vector length and hence perfor-
mance. Cache-based machines will reach opti-
mum performance for a problem that fits in cache.
Some architectures (notably the Alpha chip) have
a large enough cache that realistic problems can
actually be solved in-cache. In general, however,
increasing the problem size will always overflow
the cache, and iterative methods have in gen-
eral little opportunity for cache reuse. Hence we
expect decreasing performance to some ‘asymp-
totic’ limit determined more by bandwidth than
by processor speed.

Given this plethora of variables, it should be clear that
the desired metric is unfortunately not a benchmarkable
one.

In order to provide a comprehensive iterative bench-
mark, a package would have to cover the range of
choices of items 1–3. Taking into account possible crit-
icism of the quality of implementation used (item 4),we
see that a comprehensive benchmark is almost equiv-
alent to a library of all high-quality implementations
of all existing methods. Clearly, this is not a practical
proposition.

Limiting ourselves to a small collection of repre-
sentative methods would not enable us to benchmark
the ‘time to solution’ metric either. The problem here
is that – in total contrast to the dense solvers of the
Linpack benchmark – given a machine, algorithm, and
data structure, the time to solution is dependent on the
numerical values of entries of the system.

In the case of dense solvers, in essence the only
problem parameter determining performance is the size
of the system. If certain properties of the system are
known, such as definiteness or symmetry, optimised
implementations can take advantage of this. However,
between two systems that have the same values of these
properties, the size is the only discriminating factor.
In the iterative case, two systems could have the same
size and sparsity structure, and be solvable with the
same iterative method and preconditioner, but show
completely different numbers of iterations.

We could then decide to provide a set of standard
problems, but this may very well overlook a particular
kind of problem the user is interested in, and which has
its own set of performance characteristics.

Instead of even attempting the above-sketched per-
fect benchmark, we have opted for providing a small
set of iterative methods, preconditioners and storage
schemes, on the criterion that they have a performance
representative of larger classes. We then envision the
following scenario for the use of our benchmark: users
solve a few representative test problem with their pre-
ferred solver, thus gaining a notion of convergence
speed in terms of numbers of iterations. They can then
consult our benchmark to gauge the per-iteration per-
formance of their solver, which combined with their
prototype run on the test problem gives an accurate
impression of the expected running time.

We want to stress from the outset that we did not
aim to present the most sophisticated methods. Rather,
by considering combinations of the representative el-
ements used in the benchmark a user should be able
to get a good notion of the expected performance of
methods not included. In effect, our benchmark only
indicates performance per occurrence of a computa-
tional kernel. Users can then estimate their codes’ per-
formance by combining these numbers, applied to their
specific implementation, with the numbers of iterations
needed for their problem.

Consistent with this philosophy of measuring only
performance per occurrence, we terminate each bench-
mark run after a fixed number of iterations. The num-
ber of iterations to the desired accuracy is mostly a
function of the problem, and only to a minor extent
of the computer architecture. It is almost indepen-
dent of the implementation of the computational ker-
nels that are the subject of this benchmark, since these
can only influence the convergence through different
round-off behaviour. For the most part we will assume
that different implementations of the same kernel have
roughly the same round-off characteristics, so that our

J. Dongarra et al. / An iterative solver benchmark 225

per-iteration measurement is a sufficient predictor of
the overall efficiency.

To account for the effects of caching in our bench-
mark, we run a series of problems of increasing size
for each choice of method, preconditioner, and stor-
age scheme. In this sequence we measure both the
maximum attained performance, often a clear function
of cache size, and we estimate an ‘asymptotic’ perfor-
mance as the problem scales up beyond the cache size
limit; see Sections 3.2 and 7.

We conclude this section by giving a brief description
of the sparse kernels. More detailed discussion will
follow in Section 4.

As storage schemes we offer diagonal storage, and
compressed row storage. Both of these formats repre-
sent typical matrices for three-dimensional finite ele-
ment or finite difference methods. The diagonal stor-
age, using seven diagonals, is the natural mode for prob-
lems on a regular (‘brick’) domain; the compressed row
storage is the natural storage scheme for irregular do-
mains. Thus these choices are representative for most
single-variable physical problems.

The iterative methods provided are CG and GM-
RES. The plain Conjugate Gradients method is rep-
resentative of all fixed-storage methods, including so-
phisticated methods for nonsymmetric problems such
as BiCGstab; the GMRES method represents the class
of methods that have a storage demand that grows with
the number of iterations.

Each iterative method can be run unpreconditioned
– which is computationally equivalent to using a Jacobi
preconditioner – or with an ILU preconditioner. For
the diagonal storage scheme a block Jacobi method is
also provided; this gives a good indication of domain
decomposition methods. If such methods are used with
inexact subdomain solves, the ILU preconditioner gives
the expected performance for these.

3. Structure of the benchmark

We have implemented a benchmark that constructs a
test matrix and preconditioner, and solves a linear sys-
tem with them. Separate flop counters and timers are
kept for the work expended in vector operations, ma-
trix vector products, preconditioner solves, and other
operations involved in the iterative method. The flop
counts and flops rates in each of these categories, as
well as the overall flops rates, are reported at the end of
each run.

The benchmark comprises several storage formats,
iterative methods, and preconditioners. Together these
form a representative sample of the techniques in typ-
ical sparse matrix applications. We describe these ele-
ments in more detail in Section 4.

We offer a reference code, which is meant to repre-
sent a portable implementation of the various methods,
without any machine-specific optimisations. The refer-
ence code is written in Fortran, using double precision
arithmetic throughout; implementers are not allowed
to increase speed by switching to single precision. In
addition to the reference code we supply a number of
variants that should perform better on certain machines,
and most likely worse on some others; see Section 6.

3.1. Conformance of the benchmark

Since we leave open the possibility that a local imple-
menter make fargoing changes to the benchmark code
(see Section 3.2), we need to ascertain that the opti-
mised code still conforms to the original, that is, that
the implementer has only optimised the implementation
of the algorithms for a specific machine, and has not
replaced one algorithm by another. Unfortunately, by
the nature of iterative methods, this is a hard problem.

Iterative methods such as Conjugate Gradients are
forwardly unstable; they do not have a self-correction
mechanism the way stationary iterative methods have.
This means that comparing the computed quantities of
one method against another,or, if it were possible, com-
paring it against an exact arithmetic method, would be
essentially meaningless. Likewise, any bounds from
using interval arithmetic would be so large as to be use-
less. The reason that conjugacy-based iterative meth-
ods are usefull despite this unstable behaviour, is that a
more careful analysis shows that accumulated roundoff
does not cause divergence, but will only delay conver-
gence by a modest number of iterations (see [6,7]).

Thus we are in the predicament of having to enforce
the numerical conformance of a method that is intrin-
sically unstable in the naive sense of the term. Our
practical test, therefore, checks how much an optimised
code differs from the original after computing one it-
eration, that is, before any large divergence from exact
arithmetic starts to show up.

There are several ways this test can be implemented
specifically, and none of them are completely satisfy-
ing. Absent an implementation in exact arithmetic, we
basically have the choice of comparing optimised code
against a reference code on the same machine, and code
on some reference machine. For the first option, we

226 J. Dongarra et al. / An iterative solver benchmark

would in essence trust that arithmetic is implemented
in a reasonable manner on machines available today, so
that the reference code, without any optimisations that
alter the straightforward execution of instructions, is
indeed a reasonable reference point. The second option
raises the question what machine would be trustworthy
enough to function as a supplier of reference results.
We can evade that question by observing that, under the
above assumption that all machines on the market to-
day have a ‘reasonable’ implementation of arithmetic,
the difference between two concrete implementations
of the benchmark is bounded by the sum of the dif-
ferences between either and an exact arithmetic imple-
mentation. Our measurement of difference against a
result on file – generated by us, the producers of the
benchmark – would then give a small overestimate of
the true error.

This latter strategy, comparison against results on
file, is the one we have chosen. (We are in good
company with this decision: the NAS parallel bench-
marks [1] use the same verification scheme, and in fact
with a far stricter test than ours.) In practice, we test
whether the deviation remains under 100 times the ma-
chine precision. The number ‘100’ itself is somewhat
arbitrary; it reflects the limited number of nonzeros in
each matrix row, but it does not reflect the worst-case
error bound of O(N) that comes in through the inner
product calculations in the iterative method. A test after
one iteration could conceivably be performed against
an interval arithmetic implementation, but we have not
done so.

We emphasize that this is a static test, designed to
allow only changes to the reference code that are not
numerically significant. In particular, it precludes an
implementer from replacing the preconditioner by a
different one. We justify this from our standpoint that
the benchmark is not a test of the best possible precon-
ditioner or iterative method, but rather of methods rep-
resentative for a wider class with respect to computer
performance.

Since the benchmark includes ILU preconditioners,
this static conformance test would a priori seem to be
biased against parallel implementations of the bench-
mark. This point is further elaborated in Section 5.

3.2. Benchmark reporting

An implementer of the benchmark can report perfor-
mance results on various levels, each next level encom-
passing all of the earlier options.

1. Using only compiler flags in the compilation of
the reference code.

2. Using compiler directives in the source of the
reference code.

3. Rewriting the reference code in such a way that
any differences are solely in a different order of
scheduling the operations.

4. Rewriting the reference code by replacing some
algorithm by a mathematically equivalent formu-
lation of the algorithm (that is: in exact arithmetic
the (intermediate) results should be the same).

The last two levels may or will in general influence
the numerical results, so results from codes thus rewrit-
ten should be accompanied by proof that the specific
realisation of the benchmark reproduces the reference
results within a certain tolerance.

Each run of the benchmark code ends with a report
on how many floating point operations were performed
in the various operations. Implementers should use
these numbers to do reporting (rather than using hard-
ware flop counters, for instance), but they are free to
substitute their own timers.

The benchmark comes with shell scripts that run
a number of tests, and report both best performance
and asymptotic performance for the whole code and
elements of it. Asymptotic performance is determined
by making a least-squares fit y = a+ bx−1 through the
data points, where y is the observed megaflop rate and
x is the dataset size. The asymptotic performance is
then the value of a.

This assumption on the performance behaviour ac-
comodates both cache-processors, for which we expect
b > 0 as the dataset size overflows the cache, and vector
processors, for which we expect b < 0 as performance
goes up with increasing vector length. For cache-based
processors we may expect a plateau behaviour if the
cache is large; we discard the front of this plateau when
calculating the asymptotic performance.

Asymptotic performance may be determined with
some manual intervention from the benchmark user:
our test scripts run problems up till a certain size, but
future machines may have a cache size exceeding that.
In that case the benchmarker will have to run larger
problems until the ‘bottoming-out’ effect becomes vis-
ible as the problem data overflows the cache.

4. Elements of the benchmark code

The user of the benchmark has the following choices
in determining the problem to run.

J. Dongarra et al. / An iterative solver benchmark 227

4.1. Storage formats

The matrix can be in the following formats:

– Diagonal storage for a seven-diagonal matrix cor-
responding to finite differences in three dimen-
sions;

– Compressed row storage of a matrix where the
sparsity structure is randomly generated; each row
has between 2 and 20 nonzeros, each themselves
randomly generated, and the bandwidth is � n2/3

which again corresponds to a problem in three
space dimensions.

For both formats a symmetric variant is given, where
only half the matrix is stored.

The diagonal storage is very regular, giving code that
has a structure of loop nests of depth three. Vector
computers should perform very efficiently on this stor-
age scheme. In general, all index calculation of offsets
can be done statically.

Matrix-vector operations on compressed row storage
may have a different performance in the transpose case
from the regular case. Such an operation in the regular
case is based on inner products; in the transpose case
it uses vector updates (axpy operations). Since these
two operations have different load/store characteristics,
they may yield different flops rates. In the symmetric
case, where we store only half the matrix, such op-
erations use in fact the regular algorithm for half the
matrix, and the transpose algorithm for the other half.
Thus, the performance of, for instance, the matrix-
vector product, will be different in GMRES from in the
Conjugate Gradient method.

The CRS format gives algorithms that consist of an
outer loop over the matrix rows, with an inner loop
that involves indirect addressing. Thus, we expect a
lower performance, especially on machines where the
indirect addressing involves an access to memory.

4.2. Iterative methods

The following iterative methods have been imple-
mented (for more details on the methods mentioned,
see the Templates book [2]):

– Conjugate Gradients method; this is the archetyp-
ical Krylov space method for symmetric systems.
We have included this, rather than MINRES or
SYMLQ, for its ease of coding, and for the fact
that its performance behaviour is representative of
the more complicated methods. The results for CG
are also more-or-less representative for transpose-

Fig. 1. Conjugate gradient algorithm.

Fig. 2. One restart cycle of the generalized minimum residual
method.

free methods for nonsymmetric systems, such as
BiCGstab, which also have a storage demand con-
stant in the number of iterations.

– BiConjugate Gradients. In many ways this method
has the same performance characteristics as CG,
but it differs in that it additionally uses a product
with the transpose matrix At. In many cases form-
ing this product is impractical, and for this reason
BiCG and such methods as QMR are less used
than transpose-free methods such as BiCGstab.
We have included it nevertheless, since the perfor-
mance of this kernel can not be derived from oth-
ers. For diagonal matrix storage there is actually
no difference between the regular and transpose
matrix-vector product; for compressed storage it is
the difference between a dot product and a vector
update, both indirectly addressed.

– Generalized Minimum Residual method, GM-
RES. This popular method has been included be-
cause its performance behaviour is very different
from CG: storage and computational complexity
are an increasing function of the iteration count.
For that reason GMRES is most often used in cy-
cles of m steps. For low values of m, the com-
putational performance for GMRES will not be
much different than for CG. For larger values, say
m > 5, the j inner products in the j-th iteration
may influence the performance. We have included
GMRES(20) in our benchmark.

The Conjugate and BiConjugate gradient methods
(see Fig. 1) involve, outside the matrix-vector prod-

228 J. Dongarra et al. / An iterative solver benchmark

uct and preconditioner application, only simple vector
operations. Thus, their performance can be charac-
terised as similar to that of Level 1 BLAS. The GMRES
method (see Fig. 2), on the other hand, uses orthogo-
nalisation of each new generated Krylov vector against
all previous, so a certain amount of cache reuse should
be possible. See also Section 6 for a rewritten version
that uses Level 3 BLAS kernels.

4.3. Preconditioners

The following preconditioners are available:1

– No preconditioner;
– Point ILU; for the diagonal storage a true ILU-D

is implemented, in the CRS case we use SSOR,
which has the same algorithmic structure as ILU;

– Line ILU for the diagonal storage scheme only;
this makes a factorisation of the line blocks.

– Block Jacobi for the diagonal storage scheme only;
this is parallel on the level of the plane blocks. The
block Jacobi preconditioner gives a performance
representative of domain decomposition methods,
including Schwarz methods.

The point ILU method is typical of commonly used
preconditioners. It has largely the structure of the
matrix-vector product, but on parallel machines its se-
quential nature inhibits efficient execution.

The line ILU method uses a Level 2 BLAS kernel,
namely the solution of a banded system. It is also
a candidate for algorithm replacement, substituting a
Neumann expansion for the system solution with the
line blocks.

5. Parallel realisation

Large parts of the benchmark code are conceptually
parallel. Thus we encourage the submission of results
on parallel machines. However, the actual implemen-
tation of the methods in the reference code is sequen-
tial. In particular, the benchmark includes ILU precon-
ditioners using the natural ordering of the variables.

It has long been realised that ILU factorisations can
only be implemented efficiently on a parallel architec-
ture if the variables are renumbered from the natural

1We have not included the commonly used Jacobi preconditioner,
since this is mathematically equivalent to scaling the matrix to unit
diagonal, a strategy that has the exact same performance as using no
preconditioner.

ordering to, for instance, a multi-colour or nested dis-
section ordering.

Because of our strict conformance test (see Sec-
tion 3.1), the implementer is not immediately at liberty
to replace the preconditioner by an ILU based on a dif-
ferent ordering. Instead, we facilitate the parallel exe-
cution of the benchmark by providing several orderings
of the test matrices, namely:

– Reverse Cuthill-McKee ordering.
– Multi-colour ordering; here we do not supply the

numbering with the minimal number of colours,
but rather a colouring based on [8].

– Nested dissection ordering; this is an ordering
based on edge-cutting, rather than finding a sepa-
rator set of nodes.

The implementer then has the freedom to improve
parallel efficiency by optimising the implementation
for a particular ordering.

Again, the implementer should heed the distinction
of Section 3.2 between execution by using only com-
piler flags or directives in the code, and explicit rewrites
of the code to force the parallel distribution.

6. Code variants

We supply a few variants of the reference code that
incorporate transformations that are unlikely or impos-
sible to be done by a compiler. These transforma-
tions target specific architecture types, possibly giving
a higher performance than the reference code, while
still conforming to it; see Section 3.1.

Naive coding of regular ILU Putting the tests for bound-
ary conditions in the inner loop is bad coding prac-
tice, except for dataflow machines, where it ex-
poses the structure of the loop.

Wavefront ordering of regular ILU We supply a vari-
ant of the code where the triple loop nest has been
rearrangedexplicitly to a sequential outer loop and
two fully parallel inner loops. This may benefit
dataflow and vector machines.

Long vectors At the cost of a few superfluous opera-
tions on zeros, the vector length in the diagonal-
storage matrix-vector product can be increased
from O(n) to O(n3). This should benefit vector
computers.

Different GMRES orthogonalisation algorithms There
are at least two reformulations of the orthogonal-
isation part of the GMRES method. They can en-

J. Dongarra et al. / An iterative solver benchmark 229

Table 1
List of machines used

Processor Manufacturer / type Clock rate (MHz) peak Mflops rate Compiler / options

Alpha EV67 Compaq 500 1000 f77-O5
Athlon AMD 1200 2400 g77-O3 -malign-double -funroll-loops
P4 Dell 1500 1500 g77-O3 -malign-double -funroll-loops
Power3 IBM 200 800 xlf-O4

Table 2
Highest attained performance

Machine Mflop/s

alpha ev67 967
P4 754
Athlon 461
power3 358

able use of Level 3 BLAS operations and, in par-
allel context, combine inner product operations.
However, these code transformations no longer
preserve the semantics under computer – rather
than exact – arithmetic.

7. Results

The following tables contain preliminary results for
the machines listed in Table 1. We report two types of
results:

– In Table 2 we report the top speed reported re-
gardless the iterative method, preconditioner, and
problem size. This speed is typically reported on a
fairly small problem, where presumably the whole
data set fits in cache.

– All further tables report the ‘asymptotic speed’
of the processor, derived by a least-squares fit as
described in Section 3.2.

Note that the the former number, the top speed, is of
limited value. On superscalar machines like the ones
tested here – and unlike on vector machines to which
we had no ready access – it is of necessity reached for
a small, hence unrealistic problem. In particular on
machines with a relatively small cache the number re-
ported is further unreliable since small problems easily
drop under the timer resolution. On some processors
this is alleviated by the fact that we offer PAPI [3] sup-
port and adaptively raising the maximum number of
iterations2 to match the timer resolution.

2Note however, that this will only increase the reliability of the
performance of the whole problem: the times for the individual
components will be almost vanishingly small.

Table 3
Asymptotic performance of diagonal storage matrix-vector product

Machine Mflop/s

P4 198
power3 152
alpha ev67 150
Athlon 84

Table 4
Asymptotic performance of CRS matrix-vector product

Machine Mflop/s

P4 259
power3 168
alpha ev67 107
Athlon 75

Table 5
Asymptotic performance of symmetrically stored CRS matrix-vector
product

Machine Mflop/s

P4 173
power3 165
alpha ev67 105
Athlon 59

The more useful and more realistic number is the
asymptotic speed, reported in all tables but the first. For
the determination of this, we ran a series of problems of
such size that the cache is guaranteed to be insufficient
to store them. The current test scripts are set up to
handle the currently tested chips (the maximum cache
being 4 M on the Alpha chip), but for future develop-
ments the user may have to supply larger test sizes than
the current defaults.

We report asymptotic speed results for the following
components:

– The matrix vector product. We report this in reg-
ular storage, and in compressed row storage sepa-
rately for the symmetric case (cg) and the nonsym-
metric case since these may have different perfor-
mance characteristics; see Section 4.1.

– The ILU solve. We also report this likewise in
three variants.

– Vector operations. These are the parts of the al-
gorithm that are independent of storage formats.
We report the efficiency of vector operations for

230 J. Dongarra et al. / An iterative solver benchmark

Table 6
Asymptotic performance of transpose CRS matrix-vector product

Machine Mflop/s

P4 210
power3 150
alpha ev67 111
Athlon 68

Table 7
Asymptotic performance of diagonal storage ILU solve

Machine Mflop/s

P4 119
alpha ev67 108
power3 105
Athlon 70

Table 8
Asymptotic performance of CRS ILU solve

Machine Mflop/s

power3 142
alpha ev67 92
P4 81
Athlon 67

the CG method; in case of GMRES a higher effi-
ciency can be attained by using Level 2 BLAS and
Level 3 BLAS routines. We have not tested this.

The results published here are only preliminary; a
fuller database – both with more machines and of more
aspects of the methods tested, as well as code variants –
will be maintained on netlib.

All results are double precision, that is, 64-bit arith-
metic.

However, performance is hard to analyse in detail,
a fact that is already familiar from dense benchmark
suites, since it is determined by many interacting fac-
tors such as the compiler, the chip architecture, and
the memory system. For instance, on most machines,
the regular CRS matrix-vector product predictably per-
forms slighly better than the transpose product, which
involves more memory references. However, the prod-
uct with a symmetrically stored matrix, which in imple-
mentation is a regular product with the upper triangle
and a transpose product with the lower triangle, has a
lower performance than either. The CRS ILU solve, in
turn, which has a very similar structure to the matrix-
vector product, has these rankings exactly reverse for a
few machines. A full analysis of such results would go
far beyond the scope of this paper.

As an illustration of the way the benchmark is used,
we consider a conjugate gradient method with ILU
preconditioning on diagonal data storage on an IBM
Power3 processor. The asymptotic rates of the matrix-

Table 9
Asymptotic performance of symmetrically stored CRS ILU solve

Machine Mflop/s

P4 176
power3 154
alpha ev67 98
Athlon 49

Table 10
Asymptotic performance of transpose CRS ILU solve

Machine Mflop/s

P4 174
power3 125
alpha ev67 82
Athlon 64

Table 11
Asymptotic performance of vector operations in CG

Machine Mflop/s

alpha ev67 300
P4 241
power3 206
Athlon 143

vector, ilu, and vector kernels are 150, 105, and 206
Mflops respectively. Weighing this by the relative num-
bers of operations (13N , 14N , 10N) gives an expected
performance of 147 Mflops, which is in good accor-
dance with the observed asymptotic performance of 149
Mflops.

8. Obtaining and running the benchmark

The benchmark code can be obtained from http://
www.netlib.org/benchmark/sparsebench. The package
contains Fortran code, and shell scripts for installation
and post-processing. Results can be reported automat-
ically to sparsebench@cs.utk.edu, which address can
also be used for questions and comments.

References

[1] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L.
Carter, L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A.
Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakrishnan and
S.K. Weeratunga. The NAS parallel benchmarks, Intl. Journal
of Supercomputer Applications 5 (1991), 63–73.

[2] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der
Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994,
http://www.netlib.org/templates/templates.ps.

J. Dongarra et al. / An iterative solver benchmark 231

[3] S. Browne, J. Dongarra, N. Garner, G. Ho and P. Mucci, A
portable programming interface for performance evaluation
on modern processors, International Journal of High Perfor-
mance Computing Applications 14 (Fall 2000), 189–204.

[4] J. Dongarra, Performance of various computers using standard
linear equations software, http://www.netlib.org/benchmark/
performance.ps.

[5] J. Dongarra and H. van der Vorst, Performance of various
computers using sparse linear equations software in a fortran
environment, Supercomputer (1992).

[6] A. Greenbaum, Iterative Methods for Solving Linear Systems,
SIAM, Philadelphia, 1997.

[7] A. Greenbaum and Z. Strakos, Predicting the behavior of fi-
nite precision Lanczos and Conjugate Gradient computations,
SIAM J. Matrix Anal. (1992), 121–137.

[8] M.T. Jones and P.E. Plassmann, A parallel graph coloring
heuristic, SIAM J. Sci. Stat. Comput. 14 (1993).

[9] Y. Saad and M.H. Schultz, GMRes: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Stat. Comput. 7 (1986), 856–869.

[10] H. van der Vorst, Bi-CGSTAB: a fast and smoothly converg-
ing variant of Bi-CG for the solution of nonsymmetric linear
systems, SIAM J. Sci. Stat. Comput. 13 (1992), 631–644.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

