163

The semi-automatic parallelisation of
scientific application codes using a computer
aided parallelisation toolkit

C.S. lerotheou?, S.P. Johnson?, PF. Leggett?,
M. Cross?, EW. Evans?, H. Jin®, M. Frumkin®
and J. YanP

2Parallel Processing Research Group, University of
Greenwich, London SE109LS, UK

E-mail: {c.ierotheou, sjohnson, p.leggett, m.cross,
e.w.evans}@gre.ac.uk

PNAS Systems Division, NASA Ames Research Center,
Moffett Field, CA, USA

E-mail: {hjin, frumkin} @nas.nasa.gov, jyan@arc.
nasa.gov

The shared-memory programming model can be an effective
way to achieve parallelism on shared memory parallel com-
puters. Historically however, thelack of aprogramming stan-
dard using directives and the limited scalability have affected
its take-up. Recent advances in hardware and software tech-
nologies have resulted in improvements to both the perfor-
mance of parallel programs with compiler directives and the
issue of portability with the introduction of OpenMP. In this
study, the Computer Aided Parallelisation Toolkit has been
extended to automatically generate OpenMP-based parallel
programs with nominal user assistance. We categorize the
different loop types and show how efficient directives can be
placed using the toolkit's in-depth interprocedural analysis.
Examples are taken from the NAS parallel benchmarks and a
number of real-world application codes. This demonstrates
the great potential of using the toolkit to quickly parallelise
seria programs as well as the good performance achievable
on up to 300 processors for hybrid message passing-directive
paralelisations.

Keywords: Parallel programming, shared memory, OpenMP,
distributed memory, message passing, CAPTools, semi-
automatic parallelisation tools

1. Introduction

The porting of applicationsto high performance par-
allel computers still remains a very expensive effort.

Scientific Programming 9 (2001) 163-173
ISSN 1058-9244 / $8.00 [1 2001, 10S Press. All rights reserved

The shared memory and distributed memory program-
ming paradigms are two of the most popular models
used to transform existing serial application codesto a
parallel form. For adistributed memory parallelisation
it is necessary to consider the whole program when us-
ing aSingle Program Multiple Data (SPMD) paradigm.
Thewhole parallelisation process can bevery time con-
suming and error-prone. For example, data placement
isan essential consideration to efficiently use the avail-
able distributed memory, while the placement of ex-
plicit communication calls requires a great deal of ex-
pertise. The paraldisation on a shared memory sys-
temis only relatively easier. The data placement may
appear to be less crucial than for a distributed mem-
ory parallelisation, but the parallelisation process is
till error-prone, time-consuming and still requires a
detailed level of expertise.

Despite the costly effort involved, the message
passing-based parallelisation process for distributed
memory architectures has tended to be favoured. This
is largely due to the higher degree of scalability (of-
ten a characteristic of the architecture) and portability
(provided by standardising the message passing library
used e.g. MPI [6]). However, the porting of real ap-
plication codes from machines that use a single seria
processor to one with multiple processorsis far from a
trivial processirrespective of the paradigm or architec-
ture being used. The relentless user desire for higher
performance and scalability together with the contin-
uing evolution of parallel architectures has made the
parallelisation and subsequent maintenance of acode a
major programming effort [7,10].

The re-emergence of the shared memory paralléel
machinestypified by the cache-coherent Non-Uniform
Memory Access (cc-NUMA) architecture of the SGI
Origin 2000 [20] has done much to promote the use of
shared memory directives to describe parallelismin an
application. In contrast to using message passing, the
useof directivesisrelatively simple. For an SPMD par-

164 C.S. lerotheou et al. / The semi-automatic parallelisation of scientific application codes

allelisation using message passing, consideration must
be givento dataplacement (asthe memory isphysically
distributed), masking of statements to ensure parallel
execution and the introduction of communication calls
to ensure comparable execution to the origina serial
code[12]. For aparallelisation based on loop distribu-
tion and using directives, considerationis only givento
the loops and the visibility of variables. Another bene-
fit to using directivesis that they can easily be ignored
since they are treated as comments if the compiler di-
rectiveflag isnot used. Therefore, the use of directives
is generaly less intrusive with fewer code modifica-
tionsthan that needed for amessage passing-based par-
alelisation. Programming with directives is aso rel-
atively simple compared to writing message passing-
based codes although it does not necessarily provide a
performance benefit. In the worst case, the code will
executeto give erroneousresultsif directivesareincor-
rectly used and this can be time consuming and tedious
to debug, for example the errors may be symptomatic
of run-time race conditions.

Ideally, one would like to be able to automatically
insert directives (or message passing calls) into the
original serial code with very little effort. In reality,
thisis not the case and the performance achievable for
real-world industrial application codes using an auto-
matic approach is largely dependent on the quality of
the dependence analysis. Many assumptions may be
required during the analysis due to the lack of knowl-
edge (often available only from the user) and this can
significantly affect the quality of the generated code
and hence the performance. Despite this limitation,
many parallelising compilers have been devel oped over
the years. Some of the more notable research and
commercially available compilers have included Su-
perb [22], Paraphrase [16], Polaris [3], Suif [21] and
KAl'stoolkit [15].

The focus of this paper is to look at the semi-
automatic parallelisation of codes using an industry
standard defining shared memory directives (OpenMP)
as ameans to describe the parallelism present in real-
world scientific application codes.

2. OpenMP — An industry standard defining
shared memory directives

The introduction of the shared memory directive
standard, OpenMP [19], addresses the issue of porta-
bility across a range of platforms. The main aim
of OpenMP is to achieve portability without signifi-

cantly sacrificing the performance of the parallel exe-
cution. OpenMP includes a set of compiler directives
and callablerun-timelibrary routinesto support shared
memory parallelism for the C, C++ and Fortran pro-
gramming languages. To some extent, OpenMP will
allow the programmer to incrementally develop a par-
alel implementation and this makes it more attractive
asit is easier to program.

OpenM P follows the fork-and-join execution model
so that each timeaparallel region isdefined the process
isused. A brief description of the fork-and-join pro-
cessis included here for completeness. At the start of
the process a single “master” thread exists. The mas-
ter thread executes sequentialy until the first parallel
construct (called OVP PARALLEL) isencountered. At
this point the master thread creates anumber of threads
to assist the master thread in concurrently executing the
statements in the parallel region. If a parallel loop is
encountered (defined by OVP DO) then the iterations
of the loop are distributed amongst al the threads. An
implied synchronisation is performed at the end of the
loop unless a NOWAI T directive option is specified.
The SHARED and PRI VATE clauses at the start of the
parallel or work-sharing constructs defineif the datais
visibleglobally or locally to asinglethread. Reduction
operations such as summations are handled in parallel
by using the REDUCTI ON clause. At the end of the
parallel region all the threads in the team synchronise
and only the master threads continueswith the program
execution.

Optimisation of the directives and their placement is
essential to generate parallel codethat will execute effi-
ciently. Thereisan overhead associated with every use
of OMP PARALLEL so reducing the number of paral-
lel regions (by fusing them together whenever legally
possible) isadesirableoptimisation. Itisalsothe expe-
rience of the authorsthat the use of the NOWAI T clause
(whenever this is legal) can significantly improve the
parallel performance.

3. Semi-automatic parallelisation tools

The main goal for developing tools that can assist
in the parallelisation of serial application codes is to
allow as much of the tedious, manual and sometimes
error-prone work to be performed by the tools and in
a small fraction of the time that would otherwise be
needed for atotally manual parallelisation. Withthisin
mind, the Computer Aided Parallelisation Toolkit has
been developed over a number of years to enable the

C.S. lerotheou et d. / The semi-automatic parall€elisation of scientific application codes 165

generation of generic, portable, parallel source code
from the original serial code [4,5,7]. The toolkit gen-
erates SPMD based parallel code for distributed mem-
ory systems or loop distributed directive-based parall el
code for shared memory systems.

For distributed memory systems, thetoolkit has been
used to successfully parallelise a number of applica-
tion codes [7,13] based on the solution of a system of
partial differential equations over a defined geometry
using a mesh. The mesh over which these equations
are solvedisused asthe basis for the partitioning of the
data on to the distributed memory. The solution can
be computed for asingle block structured, unstructured
or multi-zone structured meshes. The qudlity of the
parallel source code generated benefits from many of
the features provided by the toolkit. For example, the
dependenceanalysisisfully interprocedural and value-
based (i.e. detects the flow of data rather than just the
memory location accesses) [11] and alows the user
to assist with essential knowledge about program vari-
ables[18]. The placement and generation of communi-
cation calls also makes extensive use of theinterproce-
dural capability of thetoolkit aswell as the merging of
similar communications [12]. Finaly, the generation
of readable parallel source codethat can be maintained
was seen as a mgjor benefit. The use of the toolkit to
generate parallel code for distributed memory systems
will not be described in detail here since it has been
documented elsewhere [4,8,11,12,18].

Thetoolkit can aso be used to generate parallel code
with OpenMP directives from the original serial code.
This approach also makes use of the very accurate in-
terprocedural analysis and also benefits from a direc-
tive browser to allow the user to interrogate and refine
the directives automatically placed within the code.

4. Automatic generation and placement of
OpenMP directives in the serial code

The process the toolkit uses to automatically exploit
loop level parallelism can be defined by three distinct
stages (see[9] for more details of these stages and their
implementation):

i. ldentification of parallel regions and parallel
loops — this includes a comprehensive break-
down of the different loop types (these are de-
scribed in more detail below). Due to the cur-
rent lack of support for nested parallel regionsin
OpenMP compilers, only the outermost parallel

loops are considered for exploitation so long as
they provide sufficient granularity. Sincethe de-
pendence analysis is interprocedural, the paral-
lel regions can be defined as high up in the call
tree as possible, in doing so, providing a more
efficient placement of the directives.

ii. Optimisation of parallel regions and parallel
loops — the fork-and-join overhead (associated
with starting a parallel region) and the cost of
synchronisingis greatly lowered by reducing the
number of paralel regions required. This is
achieved by merging together parallel regions
where there is no violation of data usage. In ad-
dition, the synchronisation between successive
parallel loopsis possibleif it can be proved that
the loops can correctly execute asynchronously
(using the NOWAI T clause).

iii. Code transformation and insertion of OpenMP
directives — this includes the analysis for possi-
ble THREADPRI VATE common blocks due to
the usage of the common block variables. There
is also special treatment for private variablesin
non-threadprivate common blocks. If thereisa
usage conflict then a routine is copied and the
common block variable is added to the argu-
ment list of the copied routine. Finaly, the call
graph is traversed to place OpenMP directives
within the code, this includes the identification
of SHARED, PRI VATE and THREADPRI VATE
variable types.

5. Aninteractive browser to provide detailed
information on loops

Although the dependenceanalysiscarried out isvery
detailed, it can often contain dependencies that had to
be assumed to exist. Inthese cases, assistance from the
user can improvethe quality of the generated OpenMP
code. Thisis done by classifying the different types
of loops that generaly exist in application codes and
using a browser (Fig. 1) to inspect and interrogate al
the loops in turn. For example, the user can enforce
the classification of a selected loop by re-defining the
loop type. The user can aso define the granularity
threshold for aloop so that any loop below thislevel is
not considered for distribution. In our study we have
identified the following different types of loops:

i. Totally serial loops— Theseloopscontain aloop-
carried true data dependence that causes the se-

166

Scope:
M B U e

LT
#ll
Trs ERcurficn
W or Ewin
e Fgraigl
Lkt Dt d

Loiw Filler:
Tesnlly Garky
Coenred Serial
Falrely Sariy
Leg [Laci i
Fipsi vl

L heriin

Kol Chexign

C.S. lerotheou et al. / The semi-automatic parallelisation of scientific application codes

AT Bpuilars: IS Torered werial loags (e insidfe ar conialaieg parsliel hopsk

EOTE 116048 : B 130 L-LBCE NN . LBOE [ER) - 1
BTSMEA 11002: B §0 T2 DNRX-1.1
= eremd-EETA: po 10 DeoEE-1 1. =1

BIR, ETEEAF: 14057 36 40 =0, IEAE-1. 1

1 BTEmAP WS/ 14 30 T CeEmRX-1. L -1

3 e AR pd Bl Led Lmex-. 1
AT J s F0LT ba D R) a1

a O ERA) DO 300 Pe2, JakE-1
AT O TS OY 300 -2, LEkE-1
JNTRE S FID OO 00 Pe2, THEN-1
I BT DO 0 Led. LEN-1

[

Shorw Farnllel Ve | Ves ko W by

Cwrrend Eauline; CINT

T ail wfsfame niy: Caniminy paralisl loepx:

RERTFM: 4071 [LB

1| TLICFY: 4971 [0 13
- -

FLIGEY: 5952 6 23

FLIERd: M55%: o &l

FLIZESS 4471 o 1

FLEGCHS B/ 0 39

FLIEEES 7305 [40

Updafe Cursscbem

:‘! 13, Toms Rl: S Lagps s 4RS] DA 0D Lo RERX-10 | RpddaEl TR dape e cofrtalel i paral bl ed
j' ::=: -E:E:Hr- Ty Corirail Sarial M Ty Trur—fep. variablex Antl-dep wariahlss Duipat-dep. varinbles
. — ; i vt B —— = = L
r ore ors
- - -
----- = Ommksars 8 perellel laaps ory
= 2 varcaables wikk loeop-cacrcisd
tron depmdercaes (Lewnledd
1 wacanbles muth Loop-cacpaed
ma gt ikmpeeders 1es (Lewelel)
i
= P P RERF] | EFW. OIS
i Cizrmips Help

1s1. JMAX-1. 1 -
T=1_ JMAX. 1

Il JHAE=1. 1

el MARs1 1

EEVRE T]

dumll. jonm-4. 0

Laltbre-

Iaxide permllel leops:

-

Fig. 1. Browsers used to inspect al loop types in the application code and detailed information about the selected loop.

rialisation of the loop i.e. data assigned in an
iteration of the loop is used in a later iteration.
(Other possible reasons for a loop to be defined
as serial include the presence of 1/0 or loop ex-
iting statements within the loop body). The di-
rective browser shows alist of the variables and
a textual explanation of why the loop is serial.
However, the data dependence may have been
assumed to exist and the user may be ableto sup-
plement the dependenceanal yser with additional
information to prove that the data dependence
does not exist. Alternatively, the user may wish
to enforce the removal of a seriaising data de-
pendence using the dependence browser (Fig. 2)
In addition, this loop type does not contain any
nested paralel loops and is aso not contained
within a parallel loop.

ii. Coveredserial loops—Thesearealsoserial loops
containing a loop-carried true data dependence,

so they can betreated in asimilar way to totally
serial loops. However, this type of serial loop is
either nested within a parallel loop or contains
paralel loops within it. In the latter case, if
the serial loop can be made parallel (see totally
serial loops) then the parallelism can be defined
at a higher level and may therefore enhance the
performance of the execution.

Falsely serial loops— These loops are not seria
due to a loop-carried true dependence. Instead,
they will need to execute in serial due to the
existence of pseudo dependencies that represent
memory re-use, thisneedsto be considered when
working within a global memory address space.
The directive and dependence browsers can be
used together with any additional information
the user may wish to offer to re-examine if the
variable(s) concerned can be privatised. In the
process, dependenciesinto or out of the loop are

C.S. lerotheou et d. / The semi-automatic parallelisation of scientific application codes

.

CaFloels: Dnpsndnmss

167

i'l_:||_|:."-||--r||- "} (Wi raat) Pramsrtma_) | ook v)

|:|l|rl- Craph: Iluhlr\-"u. i1 epo s chipamd

IE] LT TTET T e e o O T L |

2\

[

L Bowtiee- SOETE

e B = il —
W BN ELRF =i LT
.;'i- FRs-REor TF
n E THIS [¥ THE ENIN LOSF. CT CONTRALS SUNONE OF SPECF
M
L omar §
Az LU
41 I||
I IF EEE FEDNF SIADONY FRINT FUT BEFELTY AMD ONET
o
. IF (ISeEF LI S TR {
T ETAET T NNEXF
] [-=] [T pely; Depcram b Slnke e Flite: e
2 == !
H i g Oaky ihaw bmema s That dre
E 1] u-lr!n 0 |l.':vlll-r:|!!!bl:l|-1!-uuh| | Iﬁwl.l-!lull — I |I |:'1_:

- -
B e) [tae | [rstine Gutpas | -
;ll ::;:"-I.-Fll-l:- |[CYET) |
-]
N CTHICT COETT i Rt s m L
E I: bt T L“'lﬂ— - -
[LT | (s | | Sapbyn sl B e |
ﬁ . C 18 Ted. TE-L.1 FoRET Lang B
A LIVEDF |2} =THU¥ | ST AIE rrp—
- padiiel 1w | B
P pne i N e e —
B L= (R L1 =E 1 #
ﬁ l-:liw':l.nl:.'i :‘..\'" . | 18 BerisbPars el Lesps i
™ B = - [I o T |
i | SOMT THET Ee] i b PEE- RTINS A
ji oy T o B B, DN
i P . i |wnkar | T80 B erm-d R -L
L., - T | waliin L 4l ixwtiea
i FEBLL) <Tor (BEE pea— E e iy |
T FEE L =813 Fme). 1 J=Z.38-1.1
o 1 WEIERF = 1 WRERF = 1 s -
W E
E r IF PCELPSA, FIFT WL ot AR
]

M IF(NESCTREER 15 R
: _m“r: PRI [iw.} LT (n.ml]]

| — S

: ol

" mi 1

Fig. 2. Dependence browser displaying the code and the equivalent dependence graph.

examined to test if the variable could be made
PRIVATE, or to re-examine if the loop-carried
pseudo dependencies are needed, in an attempt
to allow the loop to execute in parallel.

. Reduction loops — The analysisis used to deter-

mine if the loop body computations represent a
global reduction operation such asa MAX or sum-
mation. These loops provide a partial update of
the results by each thread followed by a global
update to give the final reduction value.

Pipeline loops — This is a specia class of se-
rial loops with loop-carried true dependencies.
Directive-based software pipelines can be used
to good effect in parallel. Figure 3 shows an
example where OpenMP function calls are used
to define the pipeline start-up before the J-loop
and the pipeline shutdown after the loop. The
exampleistaken from aversion of the NAS par-
alel LU benchmark. Thisis a similar strategy
to that adopted for a software pipelineused in a
distributed memory parallelisation with message
passing. Figure 3 shows a software pipelineim-
plementation that might be generated by CAP-

vi.

Vil.

Tools. The code generated by the toolkit will
execute calls that use a high-level message pass-
ing library called the Computer Aided Paralleli-
sation Library (CAPLib) [17]. CAPLibisathin
layer that covers a choice of message passing
libraries such as PVM, MPI, Cray Shmem etc.

Chosen paralléel loops — These are the parallel
loops at which the OVP DOdirective is defined.
These loops may contain serial or parallel loops
within their nesting and are not generally sur-
rounded by other parallel loops.

Not chosen parallel loops— Also parallel loops,
but these have not been selected for applica
tion to the OMP DO directive. This is be-
cause these loops are surrounded by other par-
allel loops at a higher nesting level. In gen-
eral, the OpenM P compiler suppliers do not cur-
rently support nested parallelism, therefore, even
though parallelism exists at these lower levels, it
is not currently exploited.

The accurate dependence analysis alows the algo-
rithm to automatically generate efficient OpenM P code
in many cases. In the experience of the authors, this

168

C.S. lerotheou et al. / The semi-automatic parallelisation of scientific application codes

(a) Using OpenMP function calls to implement a software pipeline for routine BLTS
I1oop = jend-jst
if (Iloop .gt. mthnun) Iloop = nmthnum
iam = onp_get _t hread_nun()
if (fam.gt. 0 .and. iam.le. |loop) then
neigh = iam- 1
do while (isync(neigh) .eq. 0)
I $OMP FLUSH(i sync)
end do
i sync(neigh) =0
' $OMP FLUSH(i sync)
endi f
1 $OVMP DO SCHEDULE(STATI C)
do j=jst,jend, 1
do i=ist,iend, 1

enddo
1'$OVWP END DO nowai t
if (iam.It. Iloop) then
do while (isync(iam .eq. 1)
' $OMP FLUSH(i sync)
end do
isync(iam) =1
' $OWP FLUSH(i sync)
endi f

(b) Using CAPLib message passingroutine calls to implement a software pipeine
for routine BLTS
CALL CAP_RECEI VE(V(1,2, LOW 1, k), nx0*5- 10, 3, CAP_LEFT)
do j=MAX(jst,jst+LOW2), MN(jend,jst+HI GH+2),1
do i=ist,iend, 1

CALL CAP_SEND(V(1, 2, HI GH, k), nx0*5- 10, 3, CAP_RI GHT)

Fig. 3. Implementation of a software pipeline using (8) OpenM P (b) message passing.

typically leaves asmall proportion of casesthat require
user interaction. For example, the use of workspace
arrays is very common in application codes, but the
value-based nature of the dependence analysis will of-
ten prove that no datais passed between iterations of a
loop. The memory re-use (pseudo) dependencies must
however be set. This correctly does not classify such
loops as serial, however, the legal privatisation of these
arraysto allow parallel execution requires that no data
is passed into or out of these arrays from, or to outside
the loop. The value-based analysis again greatly aids
in proving that no such dependenciesinto or out of the
loop exist.

6. Test cases

6.1. Parall€elisation of the NAS Parallel Benchmark
codes

The NAS Parallel Benchmarks were designed to
compare the performance of parallel computers and

have been widely used in this capacity. The details
of the benchmarks and their message passing imple-
mentations can be found in [1,2], respectively. The
dependence analysis was supplemented with very sim-
ple user information for some of the benchmark codes.
More details on the parallelisation of these bench-
marks using the toolkit can be found in [9] so only
a brief report will be made here. Figure 4 shows
the performance achieved for six of the NAS paral-
lel benchmark codes on an SGI Origin 2000 (R10000
CPU running @195 MHZz) for the class A size of
problems. The comparisons show the performance
for the hand tuned message passing (MPI-hand) and
OpenMP (OMP-hand); the Computer Aided Paralleli-
sation Toolkit using OpenMP (CAPO); and the SGI
Power Fortran Analyser (SGI-PFA). The parallel code
generated using the toolkit is not tuned for the Origin
2000 architecture, so that for example, there are no
explicit ‘optimisations' for cache usage/re-usage. A
summary of the findings indicate that:

C.S. lerotheou et d. / The semi-automatic parall€elisation of scientific application codes 169
| T T T IIIII| T T | T T T IIIII| T T | T T T IIIII| T T
IENN 18 ts :
100 N\, S0 3 \\o e ‘::‘“\ E
F \ \ ¥ : —0—©0 ¥ e 3
51 e, O—g T Nn T AN .
3t N + + g
e N, o] N\ ! N -
]
§ 10% | \ < -+ AN -+ \U =
ek e T e+ _Re
s e NE
[F———— —t HHH——— F—
c 3L 14 14
2 3t 1 1 —m®&— MPI-hand ||
3 ° —A— OMP-hand
o 2 | @ i £ -
IR N =0 = CAPO 3
§ s f Nox E X NN T on [0 sGPrA |3
3 F 9. O -+ =+ . B
N SN, N -
10 = E3 ‘ =X 3
5 f X I \‘E‘ | \,\\ |
b LT i ~: 1 lco e, 1
| ! Lol ! ! | ! Lol ! ! | ! ool Lo
1 2 345 10 2030 1 2 345 10 2030 1 2 345 10 2030

Number of Processors

|Class A, Origin2000

Fig. 4. Various parallelisations of the NAS Parallel benchmark codes.

— It was possible to generate parallel code using the
toolkit in afew minutes while the manually tuned
parallelisationswere created over aperiod of afew
weeks.

— Code generated using the toolkit was within 5%-
10% of hand tuned parallel performance.

— Code generated by the SGI-PFA is not as efficient
as that provided by the toolkit.

6.2. Parallelisation of FDL3DI code (Air Force
Research Laboratory)

The FDL3DI code was developed by M. Visba at
the Air Force Research Labs to study aeroelastic ef-
fects. The code solves the Navier-Stokes equations
using a one-dimensional structural solver component.
The parallelisation of this 10,000 line source code took
approximately two hours (including user assistance)
for the message passing-based parallelisation using a
2-dimensional decomposition and half an hour for the
OpenMP-based parallelisation. The results shown in
Figs5and 6 arefor aregular 100 x 100 x 100 nodetest
case and indicate that very respectable performances
were achieved with both message passing and direc-
tive based approaches. It is also important to recognise
that the results are for the parallel code versions gen-
erated by the toolkit and that no manual optimisation
has been performed. Table 1 shows a summary of the

key communication requirements while Table 2 shows
asummary of the key directives generated.

6.3. Parallelisation of the R-Jet code (Ohio
Aerospace I nstitute)

The R-Jet code was developed by M. White and is
a hybrid, high-order compact finite difference spectral
method. It is used to simulate vortex dynamics and
breakdown in turbulent jets. Although the code is ex-
plicit in time, the compact finite difference scheme re-
quiresthe inversion of tri-diagonal matrix systems.

As part of the identification for directive placement,
the algorithm automatically applied routine duplication
toroutineswhereit was necessary to beableto fully ex-
ploit the parallelism present. The codefragment shown
in Fig. 7 shows a part of routine rhs with the two calls
tor 2r and a part of the routiner 2r. The J loop in
routine rhs and the K loop in r 2r are both identified
as being parallel and can therefore benefit from be-
ing encapsulated by the OVP DO directive construct.
However, nested parallel regionsare not currently fully
supported by the vendors so one solution to exploiting
the parallelism at both levels for different instances is
shown in Fig. 7. The complete list of routines dupli-
cated can be seen in the call graph for the R-Jet code
(Fig. 8).

Table 3 contains a summary of the statistics for
the OpenMP directives automatically generated by the

170 C.S. lerotheou et al. / The semi-automatic parallelisation of scientific application codes

251 ELinux cluster +
204 OSGI O2K (SGI)
W IBM SP (ANL)
% 15471 B CRAY T3 *
©
3
o 101
)
)y 11D
o T 1 5 1 T L
2 4 8 16 32
Processors

* results shown for asmall problem size + PC-based cluster using MYRINET

Fig. 5. Performance of the message passing-based parallel FDL3DI code that was generated using the Computer Aided Parallelisation Toolkit.

300+]

2504

200+ —

150

Time (secs)

100+’

NiENENENE g}

1 2 4 8 16 32
Processors

Fig. 6. Performance on an SGI Origin 2000 of the OpenMP di-
rective-based parallel FDL3DI code that was generated using the
Computer Aided Parallelisation Toolkit.

Table 1
Summary of communication types generated for the FDL3DI code as
part of the message passing-based parallelisation using the Computer
Aided parallelisation toolkit

Communication type Total
Exchange: 194
Send/Reveive: 72
Broadcast: 22
Reduction: 20
Pipeline: 24

toolkit. Figure 9 illustrates the execution performance
of the automatically generated OpenMP directive-
based parallel code for a 500 x 500 node test case. It
demonstratesthat a performanceimprovement of up to
32 processors of an SGI Origin 2000 was possible even
for such asmall test case.

6.4. Parallelisation of the INS3D code (NASA Ames)

There is a trend towards hybrid hardware systems
that comprise clusters of nodes connected to each other

Table 2
Summary of directive types generated for the FDL3DI code as part
of the OpenMP directive-based paralelisation using the Computer
Aided paralelisation toolkit

Directive type Total
Parallel Regions: 46
PARALLEL + DO Regions: 43
Parallel DO Loops: 194
Atomic/Critical Sections: 1
Regions with Firstprivate: 3
Regions with Lastprivate: 1

through a communication interconnect. Within each
node there is a number of processors and a common
shared memory. One obvious scenario could be to ex-
ploit parallelism within a cluster using OpenMP direc-
tiveswhile using message passing to communicatedata
between clusters. This multi-level exploitation of par-
allelism may have the potential to enable amore effec-
tive and scalable use of larger numbers of processorsto
solve a common problem. The Computer Aided Paral-
Ielisation Toolkit developed thusfar hasall theindivid-
ual components to potentially exploit the hybrid sys-
tems. Thestrategy for combining thesetwo approaches
seems a hatural extension. Indeed, a prototype has al-
ready been designed and implemented. However, care
is needed to identify the applications where such a hy-
brid model can be used to good effect instead of using
either pure message passing or pure OpenMP direc-
tives.

The parallelisation of the INS3D code using a mixed
model of message passing and shared memory direc-
tives is shown as an example where such a model can
be used effectively. A detailed account of this paralleli-
sation was carried out by C. Kiriset al. [14] but only a
summary isincluded here. The INS3D code solvesthe

C.S. lerotheou et d. / The semi-automatic parall€elisation of scientific application codes 171

Oaiginal serial code
subroutine rhs

call r2r(1)
do j=2,jmax

call r2r(j)
enddo

Automatical ly generated parallel QpenMP code
subroutine rhs

call r2r(1)
I $OVP PARALLEL DO DEFAULT(SHARED), PRI VATE(j)
do j=2,jmax
call cap_r2r(j)

enddo
1 $OVP END PARALLEL

subroutine r2r(j)

subroutine r2r(j)

do k=1, kmax | $OVP PARALLEL DO DEFAULT(SHARED), PRI VATE(k)
... do k=1, kmax
enddo C
enddo

' $OVP END PARALLEL

subroutine cap_r2r(j)
do k=1, kmax

enddo

Fig. 7. Automatic routine duplication to exploit parallelism at a number of levels.

main
[T

——

e

[restwr] flt | [badek][heintf | [otaww hs | [restin | [iniles | [dirblk | [inicon
nozzel | | piston ‘ ‘ f1ltl | | hcz | | her ‘ ‘ bccorn | | Z | frli 2 M1tMD ‘ ‘ ciftl | |disslp_filt| | gtrbr
| —]
cinulnd | | M ‘ ‘ flthlk | CFFTI1

[Eses]

TRIDIC

Tanp

Fig. 8. Call graph for the R-Jet code. Duplicated routines are shown highlighted.

3D, incompressible Navier-Stokes equations and uses
a structural, overset grid system. Thisis analogousto
a multi-zone type application code. The manual MPI
parallelisation was carried out at NASA Ames by T.
Faulkner and J. Mariani and was used as the base code
that was inputted to the toolkit. The toolkit was then
able to complement the parallelism defined at the zone
level by providing OpenMP directives for the paral-
lelism defined within a zone (Table 4). The test case
is the Space Shuttle Main Engine high pressure turbo-
pump impeller. The geometry was made up of 60 zones
and 19.2 million grid points (the sizes of the zones
ranged from 75,000 to over 1 million grid points). The
results for the test case are shown in Figure 10 and
demonstratetheimpressive performanceachievablefor
thishybrid parallelisation. The processorsare arranged

by MPI groups so that with 300 processors and 30
groups performing MPI/zone-level parallel execution,
within each group thereisatotal of ten threads used to
perform the OpenM P/intra-zone parallel execution.

7. Conclusions

The work presented here demonstrates a number of
significant differences between the toolkit discussed
hereand other tools or compilers. It highlightsthe need
for a very accurate dependence analysis including the
detection of dependenciesinterprocedurally, and thisis
supplemented with the need for user interaction to aid
in the parallelisation process. Thereis aso a need to
carefully insert directivesin an efficient manner to ex-

172 C.S. lerotheou et al. / The semi-automatic parallelisation of scientific application codes

4001 /=
350 ('
300 ('
250 (' —
200 ('
1501 | —
1001/ —

inNENENENE N

1 2 4 8 16 32
Processors

Time (secs)

Fig. 9. Performance on an SGI Origin 2000 of the OpenMP direc-
tive-based parallel R-Jet code that was generated using the Computer
Aided Perallelisation Toolkit.

1000 ~
-8-30 MPI groups
—4—20 MPI groups
S -#- 12 MPI groups
g ——6 MPI groups
g
—~100
[$)
3
Q
£
'_

10 -

1 10 100 1000
Processors

Fig. 10. Performance of hybrid paralel code that includes MPI
(performed manually at the zone level) and OpenMP (done using the
toolkit and exploiting parallelism within azone).

ploit the systems as far as possible using generic tech-
niques. Finaly, thiswork has demonstrated the perfor-
mance achievable when using the toolkit to parallelise
real large scientific application codes.

Currently, the toolkit only handles Fortran 77 code.
It is expected that the functionality to parallelise For-
tran 90/95 codes will be added in the very near fu-
ture, indeed much of the development work for this has
already been completed. In addition, the developers
are continuously addressing the issues that will enable
the toolkit to handle even larger real world application
codes.

Acknowledgements

Theauthorswish to acknowledgethe assistancefrom
C. Kiris (NASA Ames), P. Saddayapan (OSU) and R.
Luczak (ASC) for their involvement in generating re-
sults for some of the test cases reported. The authors

Table 3
Summary of directive types generated for the R-Jet code as part
of the OpenMP directive-based parallelisation using the Computer
Aided paralelisation toolkit

Directive type Total

Parallel Regions: 9

Parallel + DO Regions: 41

Parallel DO Loops: 32

Reduction loops: 4

Regions with Firstprivate: 1
Table 4

Summary of directive types generated for the INS3D code as part
of the OpenMP directive-based parallelisation using the Computer
Aided parall€elisation toolkit. (The code read into the toolkit was an
MPI parallel version of the code)

Directive type Total
Parallel Regions: 95
Parallel + DO Regions: 297
Parallel DO Loops: 251
Reduction loops: 79
Atomic/Critical Sections: 6
Regions with Firstprivate: 2

also wish to thank the many people at both the Univer-
sity of Greenwich and NASA Ames who have helped
in both the CAPTools and the CAPO devel opments.
Thiswork is supported by NASA Contract No. NAS2-
14303 with MRJ Technology Solutions, No. NASA2-
37056 with Computer Sciences Corporation.

References

[1] D.Bailey, J. Barton, T. Lasinski and H. Simon, eds, The NAS
Parallel Benchmarks, NAS Technical Report RNR-91-002,
NASA Ames Research Center, Moffett Field, CA, 1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A.
Woo and M. Yarrow, The NAS Parallel Benchmarks 2.0,
RNR-95-020, NASA Ames Research Center, 1995, NPB2.3,
http://www.nas.nasa.gov/Software/NPB/.

[3] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Lee, T.
Lawrence, J. Hoeflinger, D. Padua, Y. Paek, P. Petersen, B.
Pottenger, L. Rauchwerger, P. Tu and S. Weatherford, Re-
structuring Programs for High-Speed Computers with Polaris,
1996 |CPP Workshop on Challenges for Parallel Processing,
August 1996, pp. 149-162.

[4] EW. Evans, S.P. Johnson, PF. Leggett and M. Cross, Au-
tomatic and Effective Multi-Dimensional Parallelisation of
Structured Mesh Based Codes, Parallel Computing 26 (2000),
677—703.

[5] E.W. Evans, S.P. Johnson, PF. Leggett and M. Cross, The
automatic code generation of asynchronous communications
embedded within aparallelisation tool, Parallel Computing 23
(1997), 1493-1523.

[6] W. Gropp, E. Lusk and A. Skjellum, Using MPI, (2nd ed.),
MIT Press, 1992.

[71 C.S. lerotheou, S.P. Johnson, M. Cross and PF. Leggett,
Computer aided parallelisation tools (CAPTools) — conceptual

(8l

[

[10]

(11

[12]

[13]

[14]

[19]

C.S. lerotheou et d. / The semi-automatic parall€elisation of scientific application codes 173

overview and performance on the parallelisation of structured
mesh codes, Parallel Computing 22 (1996), 197-226.

C.S. lerotheou, C. Forsey and U. Block, Perallelisation of
novel 3D hybrid structured-unstructured grid CFD production
code. HPCN95, Springer-Verlag, 1995.

H. Jin, M. Frumkin and J. Yan, Automatic generation of
OpenM P directives and its application to Computational Fluid
Dynamics codes. Proceedings of International Symposium on
High Performance Computing, Tokyo, Japan, Oct. 16-19,
2000, pp. 440.

S.P. Johnson and M. Cross, Mapping Structured Grid Three-
Dimensional CFD Codes Onto Parallel Architectures, Applied
Mathematical Modelling 15 (1991).

S.P. Johnson, M. Cross and M. Everett, Exploitation of Sym-
bolic Information In Interprocedura Dependence Analysis,
Parallel Computing 22 (1996), 197-226.

S.P. Johnson, C.S. lerotheou and M. Cross, Automatic Parallel
Code Generation For M essage Passing on Distributed Memory
Systems, Parallel Computing 22 (1996), 227-258.

S.P. Johnson, C.S. lerotheou and M. Cross, Computer Aided
Parallelisation Of Unstructured Mesh Codes, in: Proceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications, (Vol. 1), H.R. Arab-
niaet a., eds, CSREA, 1997, pp. 344-353.

C. Kiris, D. Kwak and W. Chan, Parallel Unsteady Turbop-
ump Simulations For Liquid Rocket Engines. Proceedings of
Supercomputing 2000, Dallas, Texas, 2000.

D. Kuck and Associates, Inc., Paralel Performance of

[16]

[17]

(18]

[19]

[20]
[21]

[22]

Standard Codes on the Compaq Professional Workstation
8000: Experienceswith Visual KAP and the KAP/Pro Tool set
under Windows NT, Champaign, IL, Assure/Guide Reference
Manual, 1997.

D. Kuck et al., The Structure of an Advanced Retargetable
Vectorizer, in: Supercomputers: design and Applications Tu-
torial, K. Hwang, ed., |EEE Society Press, Silver Spring, MD,
1984.

PF. Leggett, S.P. Johnson and M. Cross, CAPLib — A ‘Thin
Layer’ Message Passing Library to support computational me-
chanics codes on distributed memory paralel systems, Ad-
vances in Engineering Software 32 (2001), 61-83.

PF. Leggett, A.T.J. Marsh, S.P. Johnson and M. Cross, Inte-
grating user knowledge with information from parallelisation
tools to facilitate the automatic generation of efficient parallel
Fortran code, Parallel Computing 22 (1996), 259-288.
OpenMP Fortran/C Application Program Interface,
http://www.openmp.org/.

SGI Origin 2000 User guide, SGI, Mountain View, USA.
R.P.Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, JM.
Anderson, SW.K. Tjiang, S. Liao, C. Tseng, M.W. Hall, M.
Lam and J. Hennessy, SUIF: An Infrastructure for Research
on Parallelizing and Optimizing Compilers Computer Systems
Laboratory, Stanford University, Stanford, CA.

H.P. Zima, H.-J. Bast and H.M. Gerndt, SUPERB-A Tool for
Semi-Automatic MIMD/SIMD Parall€lisation, Parallel Com-
puting 6 (1988).

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

