143

Parallel programming environment for

OpenM P

Insung Park, Michael J. Voss,

Seon Wook Kim and Rudolf Eigenmann

1285 EE Bldg., School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN
47907-1285, USA?

E-mail: {ipark,mjvoss,seon,eigenman} @ecn.purdue.
edu

We present our effort to provide a comprehensive parallel
programming environment for the OpenMP parallel directive
language. Thisenvironment includes aparallel programming
methodology for the OpenM P programming model and a set
of tools (UrsaMinor and InterPol) that support this method-
ology. Our toolset provides automated and interactive assis-
tanceto parallel programmersin time-consuming tasks of the
proposed methodology. The features provided by our tools
include performance and program structure visualization, in-
teractive optimization, support for performance modeling,
and performance advising for finding and correcting perfor-
mance problems. The presented eval uation demonstrates that
our environment offers significant support in general paral-
lel tuning efforts and that the toolset facilitates many com-
mon tasks in OpenMP parallel programming in an efficient
manner.

1. Introduction

Today, new affordable multiprocessor workstations
and high performance PCs are attracting alarge number
of users. Many new programmers are inexperienced
and demand an easy programming model to harness
the power of parallel computing. The recent parallel
language standard for shared memory multiprocessor
machines, OpenMP [7], promises a simple interface

1Thiswork was supported in part by NSF grants #9703180-CCR,
#9872516-EIA, and #9975275-EIA. This work is not necessarily
representative of the positions or policies of the US Government.

2Current affiliations of authors: |. Park is with Microsoft Corp.,
M. Voss is with the University of Toronto, SW. Kim is with Intel
Corp.

Scientific Programming 9 (2001) 143-161
ISSN 1058-9244 / $8.00 [1 2001, 10S Press. All rights reserved

for those programmerswho wish to exploit parallelism
explicitly. The OpenMP standard resolves a signifi-
cant portability problem that has been associated with
shared memory parallel programming. It is expected
to attract an increasing number of programmers and
computer vendors in the high performance computing
area.

However, there are open issuesto be addressed. Per-
haps the most serious of all is the lack of a good pro-
gramming methodology. A programmer who is to de-
velop aparallel program faces anumber of challenging
questions: What are the known techniques for paral-
lelizing this program? What information is available
for the program at hand? How much speedup can be
expected from this program? What are the limitations
for the parallelization of this program? It usually takes
substantial experienceto answer such questions. Many
programmers do not have the time and resources to
acquire this experience.

A useful methodology must provide structured
guidelines that encompass the whole process of pro-
gram development, while providing useful tips with
which users can navigate through difficult steps. The
motivation to develop such a methodology came from
our prior research effortsin parallelizing programs for
different target architectures [9]. After a great deal of
trial and error as novice programmers, we have devel-
oped a structured way to a successful optimization of
programs. Asthe number of the programsthat we dealt
with increased, our general methodol ogy went through
severa iterations of adjustment and improvement. Fi-
nally, we decided to document it so that a wider range
of programmers can benefit.

A programming methodology is not useful if it can-
not be supported by tools. That is, it is not of much
help to programmersto list the programming tasks that
need to be performed, if all those tasks must be ac-
complished manually with only basic utilities. Among
these tasks are performance data analysis and manage-
ment, incremental application of parallelization and op-
timization techniques, performance measurement and
monitoring, and problem identification and devising

144 I. Park et al. / Parallel programming environment for OpenMP

remedies. Each of them puts a significant burden onto
programmers and can be very time-consuming if not
facilitated by tools.

There are many tools designed for the purpose of
helping programmers accomplish these tasks. How-
ever, they usualy focus on specific aspects or envi-
ronments in the program devel opment process and are
not based on a common underlying methodology. The
goal of our work is to resolve these shortcomings and
provide a comprehensive and actively guiding tool set.

We have devel oped a methodol ogy that has worked
well under various environments and a set of tools that
address difficult tasks in the OpenMP programming
model. Combining our methodology and supporting
tools, programmers can now follow a structured ap-
proach toward optimizing the performance of parallel
programs.

The remainder of the paper is organized as follows.
Section 2 presents our proposed programming method-
ology. Supporting tools are described in Section 3.
Section 4 discusses and evaluates the tools. Related
work ispresentedin Section 5. Section 6 concludesthe

paper.

2. Parallel programming methodology

Figure 1 shows the parallelization and optimization
steps envisioned by our proposed methodology. The
methodol ogy envisions the following tasks when port-
ing an application program to a parallel machine and
tuning its performance. We start by profiling the pro-
gram execution time, usually on a loop-by-loop ba-
sis. We do this by instrumenting the program with
callsto timer functions or by using hardware counters.
The timing profile not only allows us to identify the
most important code sections, but aso to monitor the
program’s performance improvements as we convert it
from a serial to aparallel program.

Thefirst step of performanceoptimizationisto apply
a parallelizing compiler. Ideally, a parallelizing com-
piler would be able to generate a highly-tuned appli-
cation that exploits all available parallelism. However
in practice [8], thisis not always possible. Users may
be required to assist in the parallelization process due
to both compiler limitations and intrinsic dependences
in the target application. If acompiler limitation leads
to missed parallelism, a user may simply force paral-
Ielization. If parallelism is limited due to an intrinsic
dependence, the user may be able to substitute a paral-
lel agorithm. While it may seem that any interaction

that a “novice” user can perform should be automat-
able, being aware of theintent of an application allows
users to perform transformations that are still beyond
the capabilities of the best research compilers.

While our methodology begins with the application
of aparallelizing compiler, if no such tool is available,
we can apply program transformations by hand. Af-
ter the initial parallelization step, whether automatic
or manual, we identify time-consuming code sections
of the program and optimize their performance using
severa recipes. More detailed steps and suggestions
provided by this methodology can be found in [20].

There are two feedback loopsinthe Fig. 1. Thefirst
one reduces excessive overhead introduced by program
instrumentation. This overhead not only affects the
program’s performance. It can also skew the execution
profile, so that programmers focus their efforts on the
wrong program sections. To measure the overhead one
runs the program with and without instrumentation. 1f
necessary, instrumentation can be removed frominner-
most code sections, or from sections that contribute
little to the overall execution time.

The second loop is the actual optimization process,
where one appliestuning techniquesand eval uatestheir
performance. Tuning steps may need to be modified
or even undone if their result is not satisfactory. After
each step one identifies the new most time-consuming
program section on which to target the next tuning step.

The methodology described above has been empir-
ically devised. It tells programmers “what should be
done” in program tuning. The specific tasks in each
step are described in detail in [20]. We support this
methodology with a set of tools, which answers the
guestion of “how” the tasks can be performed. These
tools are described in the next section.

3. Tool support

Parallel programmerswithout accessto parallel pro-
gramming tools usually rely on text editors, shells, and
compilers. Programmerswrite codes using text editors
and generate an executablewith resident compilers. All
other tasks such as managing files, examining perfor-
mance figures, searching for problems and incorporate
solutions, is usually achieved without special-purpose
tools. However, considerable effort and good intuition
are needed in file organization and performance diag-
nosis. Even with the help of parallelizing compilers,
these tasks still remain for the users to deal with. In
fact, most users end up writing small helper scripts for

|. Park et al. / Parallel programming environment for OpenMP 145

Steps in Our Programming Methodology Supporting Tools

> iy iy . es— Polaris Instrumentor
9 Frog Hardware Counter

\ 4

Getting Serial Execution Time

reduce
instrumentation
overhead v
Running Parallelizing Compiler . :::10t|:rrll=>sol
\
Manually Optimizing Program - . InterPol

\

Getting Optimized Execution Time

l

satisfactory Ursa Minor
Speedup Evaluation . -Views
- Expression
Evaluator
l unsatisfactory
Ursa Minor
-] -Views
Finding and Resolving Performance Problmes . - Merlin
- Expression
\/ Evaluator

done

Fig. 1. Overview of the proposed performance optimization methodology and supporting tools. Bold-faced tools are described in this paper.

many tedious programming tasks. Our new tools step the performance behavior of aprogramin aflexi-

in where these traditional tools have limits. We have ble way.

set the following design goals. Active guidance system: Tuning programs requires
dealing with numerous different instances of code
segments. Categorizing these variants and find-
ing the right remedies for performance problems
requires experience. We believe that it is possi-
ble to address this issue systematically through
automated analysis utilities.

Program characteristic visualization and perfor-
mance evaluation: The task of improving pro-
gram performance starts with examining perfor-
mance and program analysis data and finding
potential improvements. The ability to browse
through this information and visualize it is criti-

Consistent support for methodology: This is the
main goal of our research. We examine the
stepsin the methodol ogy and find time-consuming
programming chores that call for additional aid.
Some tasks are tedious and may be automated.
Somerequirecomplex analysis, thusassi sting util -
ities are needed. The integration of the method-
ology and the tool support significantly increase
programmers’ efficiency and productivity.

Support for performance modeling: In addition to

providing raw performanceinformation, advanced
tools must help filter and abstract a potentially
large amount of data. The ability to flexibly ma-
nipulate data and to combine them into high-level
performance models, allows usersto reason about

cal. Tables, graphs, and charts are common ways
of expressing a large set of datafor easy compre-
hension.

I ntegration of program analysiswith performance

evaluation: Mosttoolsfocuson either static pro-

146 I. Park et al. / Parallel programming environment for OpenMP

gramanalysisdataor performancedata. However,
good performance only comes from considering
both aspects. It is important to identify the rela-
tionship between the data from both sides. With-
out the consideration of performance data, static
program optimization can even degrade the per-
formance. Likewise, without the static analysis
data, optimization based only on performancedata
may be marginal.

I nteractive and modular compilation: The usua
bl ack-box-oriented use of compiler toolshavelim-
itsinefficiently incorporatingusers’ knowledge of
program algorithms and dynamic behavior. Man-
ual code modification in addition to automatic
parallelization is often necessary to achieve good
performance, and tool s should support convenient
mechanisms for the incorporation of manual tun-
ing. Another drawback of conventional compil-
ers is their limited support for incremental tun-
ing. The localized effect of parallel directivesin
the OpenMP programming model allows usersto
focus on small portions of code for possible im-
provement in an incremental manner. Hence, the
compiler support for incremental tuning is also an
important goal in our tool design.

Data Management: In the process of compiling a
parallel program and measuring its performance,
users experiment with a number of program vari-
ants under many different environments. Asare-
sult, a considerable amount of informationis pro-
duced. Managing this information for easy later
retrieval and comprehensionisachallenge. Thisis
even more for work donein ateam, where proper
labeling of data and recording of the experimental
environmentis critical. Therefore, support for ex-
periment data management is an important design
goal.

Accessibility: Although the importance of advanced
tools for all software development is evident,
many availabletoolsremain unused. A major rea-
son is that the process of searching for tools with
needed capabilities, downloading and installing
them on locally available platforms and resources
is very time-consuming. In order to evaluate and
find an appropriate tool, this process may need to
be repeated many times. Using today’s network
computing technology, tool accessibility can be
greatly enhanced.

Configurability: In order to satisfy a wide commu-
nity of users, tools must allow individuals to set
preferences. By having configurability as one of

our design goals, many users preferences can be
incorporated into the tool usage without writing
special-purpose utilities.

Flexibility: Flexibility is an important characteristic
of general tools. We have seen many situations
where users wished to incorporate new types of
performance datainto their tools. Advancedtools
must be open to the type of data that can be in-
cluded and presented.

Scalability: Tools must work not only for small
demonstrations, but also for the large, redistic
field use. Scalability can bewith respect to several
parameters. Our primary concern is that tools be
ableto handlelarge science and engineering appli-
cations of 100,000 lines of code. In our OpenMP
environment we will envision target machines of
typically not morethan 32 processors. Hence, tool
scalability to massively parallel systems is not a
primary concern.

In thefollowing sections, we introduce two tools de-
veloped based on these goals. UrsaMinor is a perfor-
mance evaluation tool designed to assist users in par-
allel performance evaluation. InterPol is an interac-
tivetool for automatic and manual programtransforma-
tions. While these tools do not directly interface with
each other, they provide complementing functionality.

Ursa Minor and InterPol are closely related to the
Polaris compiler [4], a source-to-source restructurer,
developed at the University of Illinois and Purdue Uni-
versity. Polaris automatically finds parallelism and in-
serts appropriate parallel directives into the input pro-
grams. Itincludesadvanced capabilitiesfor array priva-
tization, symbolic and nonlinear data dependence test-
ing, idiom recognition, interprocedura anaysis, and
symbolic program analysis. In addition, the current
Polaris tool is able to generate OpenMP paralld di-
rectives [7] and apply locality optimization techniques
such asloop interchange and tiling. Polaris also serves
as an instrumentation tool.

We haveintegrated thesetool sinto a\Web-executable
programming environment, referred to as the Parallel
Programming Hub. It provides “anytime, anywhere”
accessto our tools viaa network computing infrastruc-
ture developed in a related project [11]. The Paral-
lel Programming Hub is available at http://punch.ecn.
purdue.edu/Netcare/parHub.html.

3.1. UrsaMinor: Performance evaluation tool

The UrsaMinor tool assists parallel programmersin
the performance evaluation and tuning process [21]. It

|. Park et al. / Parallel programming environment for OpenMP 147

presents users with information available from various
sources in a comprehensive way. These sources in-
cludetoolssuch ascompilers, profilers, hardwarecoun-
ters, and simulators. It interacts with users through a
graphical interface, which can provide selective views
and combinations of the data. Ursa Minor combines
the performance and static analysis data in integrated
views. It provides facilities for performance model-
ing of the gathered data, and it includes a performance
advisor that automates the process of finding perfor-
mance problems and remedies. Ursa Minor supports
the OpenMP parallel programming model.

3.1.1. Tool functionality

3.1.1.1. Performancedataand programstructure visu-
alization The UrsaMinor tool presents information
to the user through two main display windows. The
Table View and the Structure View. The Table View
shows performance data as text entries for subroutines,
functions, loops, blocks, or other, user-defined program
sections. The Structure View visualizes the program’s
subroutine call and loop nest structure.

Figure 2 showsthe Table View of UrsaMinorin use.
TheTable View displaysdatasuch as average execution
time, the number of invocations of code sections, cache
misses and text indicating if loopsare serial or parallel.
Users can manipul ate the data through various features
this view provides. The Table View is a tabbed folder
that contains one or more tabs with labels. Each tab
corresponds to a “program unit group”, which means
a group of data of a similar type. For instance, the
folder labeled“LOOPS’ containsal the dataregarding
loops in a given program. When reading predefined
datainputssuch astiming files, Polarislisting files, and
simulation resultsfrom MAX/P[12], UrsaMinor gen-
erates predefined program unit groups, (e.g., LOOPS,
PROGRAM, etc.). Users can create additional groups
with their own input files using a proper format.

A user can rearrange columns, delete columns, sort
the entries alphabetically or based on execution time.
The bar graph on the right side shows an instant nor-
malized graph of a numeric column. After each pro-
gram run, the user can include the newly collected in-
formation as additional columnsin the Table View. In
thisway, performancedifferences can be inspected im-
mediately for each individual loop as well as for the
overall program. Effects of program modifications on
other program sections become obvious as well. The
modification may changethe relativeimportance of the
loops, so that sorting them by their newest execution

time yields anew most-time-consuming loop on which
the programmer has to focus next.

In addition, users can set a display threshold for
each column so that an item that is less than a certain
quantity is displayed in a different color. For example,
thisfeatureallows usersto easily identify code sections
with poor speedup. One or more rows and columnscan
be selected so that they can be manipulated as awhole.
Data that would not fit into a table cell, such as the
compiler’'s explanation for why a loop is not paralld,
can be displayed in a separate window on demand.
Finaly, UrsaMinor is capable of generating pie charts
and bar graphs on a selected column or row for instant
visualization of numeric data within the tool.

Another view of UrsaMinor displaysthe program’s
calling structure, which includes subroutine, function,
and loop nest information, as shown in Fig. 3. Each
rectangle represents either a subroutine, function, or
loop. The rectangles are color-coded to display addi-
tiona attributes. Users can activate the source viewer
for each rectangle by amouse click. We have added a
flexible zoom utility and the support for OpenMP di-
rectives in the source viewers. This display helps one
understand the program structure for tasks such as in-
terchanging loops or finding outer and inner candidate
parallel loops.

The UrsaMinor user interfaceisconfigurable. Users
can change the look of the various displays and many
other parameters. Most tool functionscan bemappedto
keyboard shortcuts. Furthermore, an “on-line tutorial”
allows users to explore important features of the tool
with sample input data.

3.1.1.2. Expressionevaluator Theability to compute
derivative values of raw performancedatais critical in
analyzing the gathered information. For instance, the
average timing value of different runs, speedup, paral-
lel efficiency, and the percentage of the execution time
of a code section with respect to the overall execution
time of the program are common metrics used by many
programmers. Instead of adding individual utilities to
compute these values, we have added the Expression
Evaluator for user-entered expressions. We have pro-
vided a set of built-in mathematical functions for nu-
meric, relational, and logical operations. Nested oper-
ators are allowed, and any reasonable combination of
these functions are supported. The Expression Evalua-
tor has a pattern matching capability as well, so the se-
lection of a data set for evaluation becomes simplified.

The Expression Evaluator also provides users with
query functions that apprehend the static analysis data

148

|. Park et a. / Parallel programming environment for OpenMP

Tim Bl Ve Usis Waioe

LOOFS | pROORAE | BUBPCLUTIHES. | FUMCTIONS
il Faoaacerin il ks b AT HADTa | S Jsas ek
Lol ¥l ferrmbes i gnekbe s chiber T Hgpa S _Jwrs N
Lol 21 feorroben piperida s rhperiP U BL - Higea 1 Amare TN
57 e S Ayt e & e T P S e e LA
il 07 e it b 8 e M PO A d s WH
Tl 01 demisgerm @ dpae b o chapsr T Hicoa 1 &y 4 W00
Gl T4 P perbbs s ohiber P T HACse r_Be S aurs P
ol I8 b e e e LA by B
Cod M EPDUIIGS, CR_GUF

| FOUTCE ooy

CALLSTRLTTLURE

i
i W] mgwy_WOI

e e LTI]
EOHApasr] gam_ U
L P]

DD Mg sam TOT

FlrH o _Ln wa_ia,

ET Hioes: 4 ou il

B Mgt 1 .:-.-_.1.-.
ElHAs dn i sars WD

DO Wippw i_58_ T surs_TO
Elr i _ & e A,
|| ED Az & s Wl

S Caul 21 jo ! :.:.:::':-’_I..'“:_:”
T EETLmE
8411478 1 BHiET =
e pusws |
3 e vTauanin | i
R T |
1 oTTdE 0T |
a i1sm nanen |
1 Q10T i lsaakis |
a a3l 1 ek |
L] :J_I!q: |. : I &% .‘::_' b

Famw FropesTi Lvis
P T A P

Fam ik bon Ubammer

§ inmibe e A G

T i oy 0 S V] D i 0 0] i e]

e it m e by

Cal 18 IBOT| wal 15 e
[acm I R EEETET
| ASTHGR 425933 1L IR TR
| BETRl 4ot 1 E BLALT O BEZTHA
=1 s pa st pas e e e P R A pmar it Anere TOT | £ eyqae
ui TR BB E S e SR e s A e TOT oo
R AL L]
BCTPOA _dol4D (425 0. 117
[X LT
N EFL
T)
RCTPOR ol 4 1 0o EFTY
[ROTFI AN
AT O i
e
- s L = Bri FRJETE
e (F] i — b b
Lt Ciois

Fig. 2. Table View of the Ursa Minor tool. The user has gathered information on program BDNA. After sorting the loops based on execution
time, the user inspects the percentage of three major loops (ACTFOR do240, ACTFOR do500, RESTAR do560) using a pie chart generator.
Computing the speedup (column 26) with the Expression Evaluator reveal s that the speedup for RESTAR do560 ispoor, so the user is examining

more detailed information on the loop.

from a parallelizing compiler. These functions can
be combined with the mathematical functions, allow-
ing queries such as “loops that are parallel and whose
speedups are less than 17 or “loops that have 10 and
whose execution timeis larger than 15% of the overall
execution”. The Expression Evaluator is a powerful
utility that allows manipulating and restructuring the
input data to serve as the basis for the users perfor-
mance modeling through a common spreadsheet-like
interface.

3.1.1.3. Themerlin performanceadvisor Identifying
performancebottlenecks and finding the right remedies
usually take experience and intuition, which novice
programmers lack. Acquiring this expertise requires
many trials and studies. Even for those programmers

who have experienced peers, the transfer of knowledge
takes time and effort. We have used a combination
of the above Expression Evaluator and a knowledge-
based database to create aframework for easy “transfer
of experience”. Merlin is an automatic performance
data analyzer that allows experienced programmers to
tell novice programmers how to handl e specific perfor-
mance symptoms.

Merlin navigates through a knowledge-based data-
base (“map”) that contains the information on diagno-
sis and solutions for various performance symptoms.
Advanced programmers write maps based on their ex-
perience, and novice programmers can make use of
this experience by activating Merlin. A Merlin map
enables multiple cause-effect analyses of performance
and static data efficiently. Merlin also assist users

|. Park et a. / Parallel programming environment for OpenMP 149

EE i fimerery Jlune pemnngd ipe kS ienfi el B8 B i

E W pin Fragrnm

B Fabrashre
r' W Farctien

B Farullwl Laap

W Sar ke el
nilsmifed toop |

Pt Uik
E AETEFOR
potioE |
id:m-
_ | - .-
I | $OHP Dan dE
| SOHP + SCHEDULE { ETATIC. 1)
| $0HP - BERIHICT DO = © areem |
EMNNG LOOFLABEL * ACTROR_aa240°
po i v ¥, capmeoiflj, I
a Ewoe = 0. E=R
fyn = [_ml Ok Carce|
fan = 0. B0
i I = 008
Iyl = O.E8
(20 = D.i=p
fx2 = O_ES
] = 0, =g
I:E = 0 E
Fup = 0.
= 0.l
Exp = O.Es0
[I CHIDE LOOULADEL * ACTROR #2357
BF j = 1, (-kf=d; 1
ind0f]) = @
md = ED{Apr [-xDih}
- EAk+[-yDi] 0]
u gl = EE-HI- I-EM}H
w0 (1] = xd+|-7. 00} “DALE{THT [&lszgmxd]] “alangt
A0] = gl | -2 0D DBLE | DHT |2] eamgmifil] | "alangt
2l]{)] = zds]-2.D0) IMLE{IHT [zd])
e = Eui i+ [-noitasCl] | sasitan (110 bemdbDd s
dya = wylir(-nedtes(i)) meibau|l) 4 popdiobgq)
imr = Empil+[-neitaall]] smzitan {151 h+xdEnidq b
ﬁ ﬁ e = dewsf-gu{ls{-n@ilbasf{ il rnaltam(i)~{2)
aK i CRFD Directives @ Coonmenia

Fig. 3. Structure View of the UrsaMinor tool. The user islooking at the subroutine and loop call graph generated for program BDNA. Using the
“Find” utility, the user set the view to subroutine ACTFOR, and opened up the source view for the parallelized loop ACTFOR do240.

in “learning by examples’. Merlin is able to work cility that allows users to perform various operations

with any map as long as the map is in the correct for-
mat, which widens its applicability. A more detailed
descriptionof Merlinisavailablein[13]. We present a
case study emphasizingtheuse of Merlinin Section4.3.

3.1.2. Internal organization of the Ursa Minor tool
Figure 4 illustrates the interactions between Ursa
Minor modulesand thevarious datafiles. The Database
Manager handlesinteraction between the database and
other modules. Upon users' requests, it fetches the
required data items or creates and modifies database
entities. The GUI manager coordinates various win-
dows and views and handles user actions. It also takes
care of data consistency between the database and the
display windows. The Expression Evaluator is the fa-

on the current database. This module parses the user-
entered commands, appliesthe operations, and updates
the views accordingly. Finally, Merlin is the guid-
ance system capable of automatically conducting per-
formance analysis and presenting suggestions. The
Ursa Minor tool iswritten in 20,000 lines of Java.

3.2. InterPol: Interactive tuning tool

3.2.1. Overview

InterPol is an interactive utility that allows users to
apply selected optimization techniques on program or
program sections [15]. Users can select target code
sections from an entire program source, then either run
a custom-built optimizer or make manual changes. It

|. Park et a. / Parallel programming environment for OpenMP

numbers
runtime Other tools
resuits Spreadsheet
structure

analysis

Expression
Evaluator Database Manager

Database

. GUI Manager
Merlin

Performance
Advisor

Table View Structure View

User

Fig. 4. Internal organization of the UrsaMinor Tool.

Call to
Polaris
Infrastructure

Input Program

Compiler
Builder

Compilation Program
Engine Builder

Output Program

Graphical User Interface

Fig. 5. Internal organization of InterPol. Three main modules interact with users through a Graphical User Interface. The Program Builder
handles file 10 and keeps track of the current program variant. The compiler Builder allows users to arrange optimization modules in Polaris.

The Compilation Engine combines the user selections from the other two modules and calls Polaris modules.

allows users to build their own compiler from numer- optimization, InterPol keepstrack of the program sec-
ous optimization modules available from the Polaris tionsbeing modified, relieving programmersof file and
parallelizing compiler infrastructure. During program version management tasks. In this way, programmers

|. Park et al. / Parallel programming environment for OpenMP 151

Fig. 6. The main window of InterPol.

are free to apply selected techniques on specific re-
gions, change code manually, and generate a working
version of the entire program without exiting the tool.
During the optimization process, the tool can display
static analysisinformation generated by the underlying
compiler, which can help users in further optimizing
the program. For those who are not familiar with the
techniques available from parallelizing compilers, the
tool provides greater insights into the effect of code
transformations.

Figure 5 illustrates the major components of In-
terPol. Users select code regions using the Pro-
gram Builder and orchestrate optimization techniques
through the Compiler Builder. The Compilation En-
gine takes inputs from these builders, executes the se-
lected compiler modules, and displays the output pro-

gram. If the user wants to keep the newly modified
code segments, the output will go into the Program
Builder, replacing the old segments. Instead of run-
ning the Compilation Engine, users may choose to add
changes to the code manually. All of these actions are
facilitated by agraphical user interface. Usersare able
to store the current program variant at any point in this
scenario.

3.2.2. Tool functionality

Figure 6 shows the graphical user interface of In-
terPol. Target code segments and the corresponding
transformed versions are displayed in separate areas.
The static analysisinformation is given in another area
whenever a user activates the compiler. Finaly, the

152 |. Park et a. / Parallel programming environment for OpenMP

Inline Detaction
Inling Insertion
Interprecadural Constant Prapagation

Induction Warlable Substitution
Pararneter Substitution
Constant Propagaticn
Walue Substituticn

Privatization

Dead ﬁrrﬁ Eliminakian

Data Dependecos Test
Mull Filter
Varspaoe Fllitar
Input Dependence Filter
Loop Mest Filter
SR Array Filter
EeadOnly Filter
GC0D Fllter
Simple Sub Eilter

COmega Tast Filter 2 Data Dependecce Test
Range Test Filter I m TR
Self Equal Filter L SRS
Self Dutput Filter Printing

EEEEOREEES] R] EHE DS A REE £ DR

Inline Detectlon

Inling Irs@rticn

Interprocedural Constant Propagation

Gake Remoyal

Equivalence Mormalization
Inducticn Variable Substituticn

Parametar Substitution

Constant Propagation
Value Substitution

Deadoada Eliminatien

Privatization

Dead Array Elimination
Aeduction Recogniticn

Fig. 7. The Compiler Builder interface of InterPol.

Program Builder interface provides an instant view of
the current version of the target program.

InterPol is written in Java. The underlying paral-
Ielization and optimization tool is the Polaris compiler
infrastructure[4]. Various Polaris modulesform build-
ing blocks for a custom-designed parallelizing com-
piler. InterPol is capable of combining these modules
in any order. Overall, more than 25 modules are avail-
able for this purpose. For example, Polaris includes
severa different data dependence test modules, which
can bearranged by InterPol, allowing the user to com-
pare and evaluate these tests. Executing this custom-
built compiler is as simple as clicking a menu and the
result is displayed directly on the graphical user inter-
face. Figure 7 shows the Compiler Builder interface
in InterPol. More detailed configuration is also possi-
ble through InterPol’s Polaris switch interface, which
controls the behavior of the individual passes.

The Program Builder keeps and displays the up-to-
date version of the whole program. Users select pro-
gram segments from this module, apply automatic op-
timization set up by the Compiler Builder and/or add
manual changes. The Compiler Builder is accessible
at any point, so users can apply entirely different sets
of techniques to different regions. The current version

of the programis always shown in the Program Builder
text area. In this way, InterPol alows for a highly
interactive and incremental process of modifying and
tuning a parallel program.

During the optimization process, InterPol can dis-
play program analysisresults generated by running Po-
laris modules. This includes data dependency test re-
sults, induction and reduction variables and array ac-
cess patterns. InterPol provides the environment
for combining this information with the programmer’s
knowledgeof the underlying algorithms, the program’s
dynamic behavior, and the input data.

Figure 8(a) demonstrates the functionality of In-
terPol through a small example program. Figure 8(b)
shows the code after being simply run through the de-
fault Polaris configuration with the inlining switch set
to inline subroutines of 10 statements or less. Two im-
portant results can be seen: (1) subroutine one is not
inlined dueto theinlining pass executing prior to dead-
code elimination, and (2) the loops in subroutine two
arenot foundto be parallel because of subscripted array
subscripts, which the Polaris compiler cannot analyze.

Figure 9(a) showsthe resulting program after adding
a deadcode pass prior to the inlining pass in the Com-
piler Builder, and running the main program and sub-

|. Park et al. / Parallel programming environment for OpenMP 153

PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)

INTEGER |

DO | = 1, 100

CALL ONE(A,B,I)

cly =1

ENDDO

CALL TWO(A,B,C)

WRITE (6,%) A

WRITE (6,*) B

END

SUBROUTINE ONE(A,B,|)
REAL A(100,100),B(100,100)
INTEGER DEADCODE
DEADCODE = 1
DEADCODE = 2
DEADCODE = 3
DEADCODE = 4
DEADCODE = 5

DO J = 1,100
A@l) =0
B =0

ENDDO

END

SUBROUTINE TWO(A,B,C)
REAL A(100,100), B(100,100)
REAL C(100)
DO | = 1, 100
DO J = 1, 100
AC().C) = 1+J
B(C(J),C(l)) = I
ENDDO
ENDDO
END

@

PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)
INTEGER |

DO | = 1, 100

CALL ONE(A,B,I)
cly =1

ENDDO

CALL TWO(A,B,C)
WRITE (6,%) A
WRITE (6,%) B

END

SUBROUTINE ONE(A,B, 1)
REAL A(100,100),B(100,100)
ISOMP PARALLEL DO

DO J = 1,100

AQl) =0

BU) =0

ENDDO

ISOMP END PARALLEL DO
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100), B(100,100)
REAL C(100)
DO | = 1, 100
DO J = 1, 100
ACQ),C(N)) = 1+
B(C(J),C(l)) = 1*J
ENDDO
ENDDO
END

(b)

Fig. 8. Contents of the Program Builder during an example usage of the InterPol tool: (a) the input program, (b) the output from the default

Polaris compiler configuration.

routine one from Fig. 8(a) through this “new” com-
piler. Findly, in Fig. 9(b), subroutine two has been
parallelized by hand, and included into the Program
Builder. Through simple interactions with InterPol,
a code for which Polaris was only able to parallelize
a single innermost loop, has both its outermost loops
parallelized.

3.3. Tool support in each step

Our tools have been designed and modified based on
the parallel programming methodology introduced in
Section 2. Figure 1 gives the overview of how these
tools can be of use in each step of the methodol ogy.
The functionality of Ursa Minor and InterPol, com-
bined with the Polaris instrumentation module, cover
all the aspects of the proposed methodology. Getting

execution time by running instrumented applications
only requiressimple UNIX commands, thusno special-
purpose tools are needed. Ursa Minor mainly con-
tributesto the performance evaluation stages. InterPol
and Polaris offer aid in the parallelization and manual
tuning stages.

4, Evaluation

We evaluate our environment as follows. In Sec-
tion 4.1, we measure the time consumed by a number
of parallel programming tasks accomplished with and
without our tools. In Sections 4.2 and 4.3, we present
case studies that demonstrate the use of our methodol-
ogy and toolset. These studies provide details of many

154 I. Park et al. / Parallel programming environment for OpenMP

PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)
INTEGER |
ISOMP PARALLEL DO
DO | = 1, 100
DO J = 1,100
A@Ql) =0
B =0
ENDDO
cly =1
ENDDO
ISOMP END PARALLEL DO
CALL TWO(A,B,C)
WRITE (6,%) A
WRITE (6,*) B
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100), B(100,100)
REAL C(100)
DO | = 1, 100
DO J = 1, 100
ACQ),C()) = 1+J
B(C(3),C(1)) = I
ENDDO
ENDDO
END

@

PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)
INTEGER |
ISOMP PARALLEL DO
DO | = 1, 100
DO J = 1,100
AQl =0
BN =0
ENDDO
cly =1
ENDDO
ISOMP END PARALLEL DO
CALL TWO(AB.C)
WRITE (6,%) A
WRITE (6,*) B
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100), B(100,100)
REAL C(100)
ISOMP PARALLEL DO
DO I = 1, 100
DO J = 1, 100
ACQ),C() = 1+J
B(C(3),C())) = I
ENDDO
ENDDO
ISOMP END PARALLEL DO
END

(b)

Fig. 9. Contents of the Program Builder after user interaction with the InterPol tool: (a) the output after placing and additional deadcode
elimination pass prior to inlining and (b) the program after manually parallelizing subroutine two.

parallelization and tuning steps and the tool function-
ality.

4.1. Efficiency of tools for common tasksin parallel
programming

The main objectives of this experiment isto produce
guantitative measures for the efficiency of Ursa Mi-
nor. To this end, we have selected 10 tasks that are
commonly performed by parallel programmers using
parallel directive languages. These tasks are listed in
Table 1.

Task 1isasimple calculation; usersmay use either a
calculator or the Expression Evaluator from Ursa Mi-
nor with comparable efficiency. Task 2 evaluates the
table manipulation utilities (sorting and rearranging)
for the performance data. Tasks 3 and 4 measure the
efficiency of the Structure View and the utilities that it
provides. The Expression Evaluator is the main target
for evaluation in Tasks 5 and 6. Task 7 tests the abil-
ity to rearrange the tabular data and export it to other
spreadsheet applications. Tasks 8, 9, and 10 evaluate
the combined usage of multiple utilities (sorting, the

Expression Evaluator, query functions, the static infor-
mation viewer, and the display option control) provided
by UrsaMinor.

4.1.1. Experiment

We have asked four usersto participatein this exper-
iment. They were asked to perform the tasks shown in
Table 1 one by one. We chose two different sets of per-
formance data for the experiment. These datasets con-
tain timing profiles of FLO52Q from the Perfect bench-
marks [3] under two different environments. Thus, the
number of dataitems are the samein both datasets, but
thetiming numbersare different. First, the participants
were asked to perform the tasks without our new tools.
They were allowed to use any existing tools and scripts.
Then, they performed the tasks using our new tools
with the other dataset.

Thetimeto invoke the tools and load input files was
counted separately as loading time. Time to convert
data files for different tools are also included in the
loading time. The loading time reflects the level of
integration of tools.

|. Park et al. / Parallel programming environment for OpenMP

Table 1

Common tasks in parallel programming, used to measure our tool performance

Compute the speedup of the given program on 4 processors in terms of the serial
Find the most time-consuming loop based on the serial execution time.
Find the caller(s) of the subroutine containing the most time-consuming loop.

Compute the parallelization and spreading overhead of that |oop on 4 processors.
Compute the parallel efficiency of the second most time-consuming loop on 4

(on varying number of processors) containing 5 of the most time-consuming

155

task01
execution time.
task02
task03 Find the inner and outer loops of that loop.
task04
task05
task06
processors.
task07 Export profiles to a spreadsheet to create total execution time chart
loops.
task08 Count the loops the speedups of which are below 1.
task09 Count the loopsthat are parallel and whose speedups are below 1.
task10

Law.

Compute the paralel coverage and the expected speedup based on Amdahl’s

Thefour usersrepresent different classes of program-
mers. Userl is an expert performance analyst who has
written many special-purpose scripts to perform vari-
ous jobs, such as tabularizing and sorting. Userl does
use our tools but relies more on these scripts. User2
has also been working on performance evaluation for
awhile and is considered an expert as well. He uses
only basic UNIX commands, rather than scripts. How-
ever, hisskillswith the basic UNIX commandsarevery
good, so he can perform a complex task without tak-
ing much time. User2 started using our tools only re-
cently. User3 is also an expert performance analyst,
but his main target programs are not shared memory
programs. He has been using our toolsfor along time,
but with distributed memory programs. Finally, user4
is anovice paralel programmer. His experience with
parallel programs are limited compared to the others.
He had to read our methodology and tried to use our
toolsin benchmarking research.

Table 2 showsthetimefor these usersto performthe
assigned tasks. User2, 3, and 4 decided that tasks 9
and 10 cannot be performed within reasonable time,
so they gave estimated times instead. All of the users
used acommercia spreadsheet |ater in the session, but
user4, the novice programmer started doing the tasks
after he set up the spreadsheet and imported the input
files. Userl used his scripts for many of the tasks.

In the second part of the experiment, al users were
allowed to use our toolsto perform the sametasks. The
resultsare shownin Table 3. Userl used acombination
of aspreadsheet and UrsaMinor to performtasks 8, 9,
and 10. The others used a spreadsheet for task 7 only.
User4 was not sure that he can finish task 10 even with
our tool support, so he gave an estimated time.

Thesetables show that our tool support improvesthe
time to perform common parallel programming tasks

considerably. Figure 10 shows the overal times to
finish al the tasks. They indicate that our tool support
not only saves time, but also makes the process easier
for novice programmers, resulting in similar times for
all usersto performthetaskswhen using our tools. The
work speedups for the four users are 1.75, 2.05, 2.79,
and 3.11, respectively.

The strength of the presented approach lies not only
inthefact that the tool s offer efficient ways of perform-
ing individual tasks, but also in the integration of these
features in a common environment. This is demon-
strated by the savings in the loding time in our exper-
iment. Users do not have to deal with several tools
and commands. Thereis no need to open the samefile
into many different tools. For instance, users can open
the Structure View to inspect the program layout and
examine and restructure the performance datafrom the
same database.

4.2. Casestudy: Manual tuning of ARC2D

In this section, we present a case study illustrating
the manual tuning process of program ARC2D from
the Perfect benchmark suite [3]. In this study, a pro-
grammer has tried to improve the performance of the
program beyond that achieved by the Polaris parall€liz-
ing compiler. The target machine is a HyperSPARC
workstation with 4 processors.

Polaris was able to paraldize amost al loops
in ARC2D. However, the speedup of the resulting
executable was only 1.38 on 4 processors. Using
Ursa Minor’s Structure View and sorting utility, the
programmer was able to find three loops to which
loop interchange can be applied: FI LERX.d019,
XPENTA do3, and XPENT2_do3. After loop nests
wereinterchanged in these loops, the total program ex-

156 I. Park et al. / Parallel programming environment for OpenMP

lime o finksh all 10 tasks

P without cur teols

sEcamds

| wath owr Boals

userh Userd

Pt u]
ol I I |
[V} II - - I 1 =

USErS

userd

Fig. 10. Overall timesto finish al 10 parallel programming tasks.

EEO
L
s -]

Tirme (erconds|
- =
g 23
i i i

& 3

4
1

1§1181111
@

25

EEEEREEERE
(b)

Fig. 11. The(a) execution timeand (b) speedup of the various version of ARC2D (Mod1: loop interchange, Mod2: STEPFY do420 modification,
Mod3: STEPFX_.do300 modification, Mod4: FI LERX.do15 modification, Mod5: YPENTA.dol modification, Mod6: modification on

XPENTA, YPENT2, and XPENT2).

ecution time decreased by 22 seconds, increasing the
speedup from 1.39 to 1.65.

Astheresult of this modification, dominant program
sections have changed. The programmer re-eval uated
the most time-consuming loops using the Expression
Evaluator to compute new speedups and the percentage
of loop execution time over the total time. The most
time-consuming loop was now the STEPFY _do420
nest, which consumed 27% of the new parallel execu-
tion time. The programmer examined the nest with the
source viewer and noticed two things: (1) there were
many adjacent parallel regionsand (2) the parallel |oops

were not always distributing the same dimension of the
work array. The programmer merged al of the adja
cent parallel regions in the nest into a single paralel
region. The new parallel region consisted of four con-
secutive parallel loops. The first two loops distributed
the work array across its innermost (stride-1) dimen-
sion. The second two nests were doubly nested and
distributed the work array across its second innermost
dimension. The effect of these changes were two-fold.
First, the merging of regions should eliminate parallel
loop fork/join overhead. Second, the normalization of
the distributions within the subroutine should improve

|. Park et a. / Parallel programming environment for OpenMP 157

W Fusion

£
=
b= ® Interchange

3 A
E. it . B Seriakzation

5 |0 OpenlMP

'I i E— —

0

ARCZD HYDRO2ZD MD3S SWIM'SS SWWIM'DO
- -
Benchmark

Fig. 12. Performance improvements achieved by applying the performance map. The speedup iswith respect to the serial code on aSun Enterprise
4000 system. Each graph shows the cumulative speedup when applying techniques.

Table 2 Table 4
Time (in seconds) taken to perform the tasks without our tools Optimization techniques and application criteria
userl user2 user3 userd average Techniques Criteria
task01 21 41 73 61 49 Seridization speedup < 1
task02 14 9 3 43 17.25 Loop Interchange # of stride-1 accesses < #
task03 22 29 97 77 56.25 of non stride-1 accesses
task04 28 6 46 48 3R Loop Fusion speedup < 2.5
task05 75 44 217 132 117
task06 25 43 27 44 3475
task07 o4 400 197 o75 2415 The programmer was able to apply the same tech-
task08 67 208 211 594 270 niques (fusion and normalization) to the next 3 most
task09 258 280 420 600 3895 time-consuming loops(STEPFX do300, FI LERX do
fgilgg 2(258 438 ?21(8) ggg ggg 75 15, and YPENTA_do1l). These modifications result in
total 884 1539 1,959 3,338 1’99;0 aspeedup gal nfrom 1.50to 2.02. Final |y, the program-
mer applied the same techniquesto the next most time-
Table 3 consuming sections XPENTA, YPENT2, and XPENT2
Time (in seconds) taken to perform the tasks with our tools according tothe newly computed profilesand speedups.
userl user2 user3 used average This modification improved th_e speedup to 2.12.
taskO1 7 18 23 19 16.75 In summary, applying loop interchange, parallel re-
task02 3 2 16 14 875 gion merging and distribution normalization, yielded
:ﬁgﬁ 2 g 12 g ?57"5 an increase from the out-of-the-box speedup of 1.38 to
task05 5 61 85 . 74 gspeedup of 2_.12. This correspondsto a.35% decrease
task06 14 9 18 19 15 in execution time. Figure 11 shows the improvements
task07 47 104 202 100 11325 inthetotal program performanceas each program opti-
task0B 81 . 4 [mization was applied. UrsaMinor allowed the user to
task09 72 33 46 49 50 ; . .
tak10 163 400 138 600 32505 quickly identify the loop structure of the program and
loading 57 73 99 9 79.75 sort theloopsto identify the most time-consuming code
total 506 749 702 1073 7575 sections. After each modification, the user was able
to add the new timing data from the modified program
locality. After this change, the speedup of the loop runs, re-calculate the speedup and see if an improve-

improved from 1.19 to 1.50. ment was worthwhile. In this case study, the user has

158 I. Park et al. / Parallel programming environment for OpenMP

followed the methodol ogy to improve the performance
significantly. The tool features that proved most im-
portant were data arrangement, the Structure View, the
source viewer, and the Expression Evaluator.

4.3. Case study: Using the performance advisor

In this section, we present a ssimple performance
map for the Merlin performance advisor, based solely
on execution timings and static compiler information.
Such data can easily be obtained by a novice user from
acompiler listing and timing profiles. Themap usedin
this experiment is designed to advise programmersin
improving the performance of programs optimized by
aparallelizing compiler such asPolaris[4]. Inthiscase
study, we assumethat aparallelizing compiler wasused
as the first step in optimizing the performance of the
target program and that the compiler’ sprogram analysis
informationisavailable. The performancemap aims at
increasing thisinitial performance.

Based on our experiences with paralel programs,
we have chosen three techniques that are easy to apply
and may yield considerable performance gain. These
techniquesare serialization, loop interchange, and loop
fusion. All of these techniques are present in modern
compilers. However, compilers may not have enough
knowledge to apply them most profitably [14], and
some code sections may need small modifications be-
fore the techniques become applicable automaticaly.

4.3.1. Performance map description

The performance map used in this experiment in-
cludes criteria for the application of the techniques
shown in Table 4. If the speedup of a parallel loop is
less than 1, we assume that the loop is too small for
parallelization or that it required extensive modifica-
tion. Serializing it prevents performance degradation.
L oop interchange may be used to improve locality by
increasing the number of stride-1 accesses in a loop
nest. Loop interchange is commonly applied by op-
timizers; however, our case study shows many oppor-
tunities missed by the backend compiler. Loop fusion
can likewise be used to increase both granularity and
locality. Thecriteriashownin Table 4 represent simple
heuristics and do not attempt to be an exact analysis of
the benefits of each technique. We simply assumed the
threshold of the speedup as 2.5 to apply loop fusion.
Inall casesthe user will have to measure the benefit of
the suggested optimization.

4.3.2. Experiment

We have applied these techniques based on the crite-
riain Table4. We haveused a Sun Enterprise 4000 with
six 248 MHz UltraSPARC processors. The OpenMP
codeisgenerated by the PolarisOpenM P backend. The
results on five programs are shown in Fig. 12. They
are SW Mand HYDRO2 Dfrom the SPEC95 benchmark
suite, SW Mfrom the SPEC2000 suite, and ARC2Dand
VDG from the Perfect Benchmarks. We have incre-
mentally applied these techniques starting with serial-
ization. Figure 12 shows the resulting improvement.
The decrease in execution time ranges from —1.8%
for fusion in ARC2D to 38.7% for loop interchange
in SWM 00. For HYDRO2D, the application of the
Merlin suggestions did not noticeably improve perfor-
mance.

Among the codes with large improvements, SW M
from SPEC2000 benefits most from loop interchange.
It was applied under the suggestion of Merlin to the
most time-consuming loop, SHALOW DO3500. Like-
wise, the main technique that improved the perfor-
mance in ARC2D was loop interchange. MDG consists
of two large loops and numerous small loops. Seri-
aizing these small loops was the sole reason for the
performance gain. Table 5 shows a detailed bresk-
down of how often techniques were applied and their
corresponding benefit.

Using this map, considerable speedups are achieved
with a relatively small effort. Novice programmers
can simply run Merlin to see the suggestions made
by the map. Experienced programmers can flexibly
update the map without modifying Merlin. Thusif new
techniques show potential or the criterianeed revision,
the performance map can easily and incrementally be
enhanced.

5. Related work

Numerous tools exist to help programmers develop
well-performing parallel programs. Theimportant role
of toolsto aid the process of parallel program devel op-
ment and performance tuning is widely acknowledged.
Among the supporting tools are those that perform au-
tomatic parallelization, performance visualization, in-
strumentation, and debugging. Many of the current
tools are summarized in [5,6].

Several tools have attempted to integrate differ-
ent parallel programming tasks. Pablo and the For-
tran D editor [1] combine program optimization and
performance visualization. The SUIF Explorer [17]

|. Park et al. / Parallel programming environment for OpenMP 159
Table 5
A detailed breakdown of the performance improvement due to each technique
suggested by the Merlin performance advisor
Benchmark Technique Number of modifications % Improvement
ARC2D Serialization 3 —1.55
Interchange 14 9.77
Fusion 10 —-1.79
HYDRO2D Seridlization 18 —0.65
Interchange 0 0.00
Fusion 2 0.97
MDG Serialization 11 22.97
Interchange 0 0.00
Fusion 0 0.00
SW M 95 Serialization 1 0.92
Interchange 0 0.00
Fusion 3 2.03
SW M 00 Serialization 0 0.00
Interchange 1 38.69
Fusion 1 0.03
Table 6
Feature comparison of parallel programming environments
Performance Program Display Automatic Interactive Support Automatic Debugging
data structure compiler paralelization compilation performance analysis/
visualization visudization analysis modeling guidance
Pablo/Fortran D Editor v v v Vv
SUIF Explorer Va v Va Vv Va
FORGExplorer Vv Vv V4
KAP/Pro Tool set v Va Va
Annai Project Vv v
DEEP/MPI v Vv v
Faust v Vi v v Vi
Ursa Minor/InterPol 4 Vv 4 4 vV v v

and FORGExplorer [2] have a similar goa. The
KAP/Pro Toolset [16] consists of tools for automatic
parallelization, performance visualization, and debug-
ging. The focus of the Annai Tool Project [23] is
on the aspects of parallelization, debugging, and per-
formance monitoring. Faust [10] attempted to cre-
ate the most comprehensive environment, encompass-
ing code optimization and performance evaluation.
DEEP/MPI [19] augments a performance evaluation
utility with a procedure-level performance advisor.
Both WPP/Aivi [22] and CAPO [18] provide a paral-
lelizing compiler and agraphical tool to visualize static
program analysis information.

Table 6 showsthe availability of featuresin these en-
vironments. The parall€elization utility available from
the Pablo/Fortran D Editor is actually semi-automatic.
Theguidance system (Parallelization Guru) of the SUIF
Explorer points to dominant and possibly problematic
code sections. DEEP/MPI’s advisor is limited to fixed,
procedure-level analysis. The table shows that, ex-
cept for debugging, our environment providesthe most

comprehensive support. Ursa Minor’s support for
performance modeling is afeature not provided by any
other tool. It includes capabilities for querying, filter-
ing and abstracting performance and program analysis
data. Thisallowsusersto reason about the performance
of a program in a flexible manner. The configurable,
loop-level performance guidance provided by Merlin
is a unique feature of our environment as well. In-
terPol alows users to “build” their own parallelizing
compiler, a feature also not available in other tools.
Overall, the Ursa Minor/ InterPol toolset offers the
most versatile and flexible features. Furthermore, in
contrast to most other environments, our tools exists
in Web-accessible forms. Any user with a standard
Web browser can make use of this system, including
complete on-line documentation and tutorials.

6. Conclusion

Our effort to create aparallel programming environ-
ment has resulted in a parallel program development

160 I. Park et al. / Parallel programming environment for OpenMP

and tuning methodology and a set of supporting tools.
We have devel oped the tools with the goal to provide
an integrated, flexible, accessible, portable and con-
figurable tool environment that supports the underly-
ing methodology. Our tool set integrates static program
analysis with performance evaluation, while support-
ing data visualization and interactive compilation. Per-
formance data management is also simplified with our
tools.

We have evaluated our environment both quantita-
tively and qualitatively through case studies and an ex-
periment to measure tool efficiency, We have found
that it provides effective support for developing well-
performing parallel programs.

Theclear focuson providingtool sthat support anun-
derlying programming methodol ogy is one of the most
distinguishing aspects of the presented work. In doing
so we have addressed one of the grand challenges in
software engineering in general, and parallel program
optimization in particular. The challenge is that pro-
gramming is not a systematic discipline. There are no
textbooks that teach a programmer the concrete steps
that must be taken to create a well-performing piece
of software. Because of this, software design in diffi-
cult, time-consuming, expensive, and requires experi-
enced programmers. We feel that there will probably
always be parts of software design that take intuitive
skills and are thus hard to learn systematically. How-
ever, there are also many steps that are repetitive and
can befollowed in a methodol ogical manner. Defining
these steps clearly and providing supporting tools will
not only help the less experienced programmers, it will
aso put the programming discipline on a more solid
scientific basis. The presented paper is a contribution
to this end.

References

[1] V.S. Adve, J. Méellor-Crummey, M. Anderson, K. Kennedy,
J.C. Wang and D.A. Reed, An integrated compilation and
performance analysis environment for data parallel programs,
in Proc. of Super computing Conference, 1995, pp. 1370—
1404.

[2] Applied Pardlel Research Inc., Forge Explorer, 2000,
http://www.apri.com.

[3] M.Berry, D.Chen, P.Koss, D.Kuck, S.Lo, Y. Pang, L. Pointer,
R. Rolo, A. Sameh, E. Clementi, S. Chin, D. Schneider, G.
Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K.
Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum and J. Mar-
tin, The PERFECT Club Benchmarks: Effective performance
evaluation of supercomputers, International Journal of Super
omputer Applications 3(3) (Fall 1989), 9-40.

(4

(9]

6]

(8l

(9

(1]

(11

[12]

(13]

(14

[19]

[16]

[17]

(18]

[19]

[20]

[21]

W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L.
Rauchwerger and P. Tu, Parallel programming with Polaris,
|EEE Computer 29(12) (December 1996), 78-82.

J. Brown, A. Geist, C. Pancake and D. Rover, Software tools
for developing parallel applications. 1. code development and
debugging, in Proc. of Eighth SAM Conference on Parallel
Pro essing for Scientific Computing, March 1997.

J. Brown, A. Geist, C. Pancake and D. Rover, Software tools
for developing parallel applications. 2. interactive control and
performance tuning, in Proc. of Eighth SSAM Conference on
Parallel Processing for Scientific Computing, March 1997.

L. Dagum and R. Menon, OpenMP: an industry standard API
for shared-memory programming, Computing in Science and
Engineering 5(1) (January 1999), 23-30.

R. Eigenmann, J. Hoeflinger and D. Padua, On the Automatic
Parallelization of the Perfect Benchmarks, |EEE Transactions
of Parallel and Distributed Systems (January 1998), 5-23.

R. Eigenmann, |. Park and M .J. Voss, Areparallel workstations
the right target for parallelizing compilers? in Lecture Notes
in Computer Science, No. 1239: Languages and Compilers
for Parallel Computing, March 1997, pp. 300-314.

V. Jr. Guarng, D. Gannon, D. Jablonowski, A. Maony and Y.
Gaur, Faust: An integrated environment for the development
of parallel programs, |EEE Software 6(4) (July 1989), 20-27.
N.H. Kapadia and J.A.B. Fortes, On the design of a demand-
based network-computing system: The Purdue university
network computing hubs, in Proc. of IEEE Symposium on
High Performance Distributed Computing, Chicago, IL, 1998,
pp. 71-80.

S.-W.KimandR. Eigenmann, Max/P: Detecting the Maximum
Parallelismin a Fortran Program, Purdue University, School
of Electrical and Computer, Engineering, High-Performance
Computing Laboratory, Manual ECE-HPCLabh-97201, 1997.
S.W. Kim, |. Park and R. Eigenmann, A performance advisor
tool for novice programmersin parallel programming, in Proc.
of the 13th annual Workshop on Languages and Compilers for
Parallel Computing, August 2000.

S.W. Kim, M.J. Voss and R. Eigenmann, Performance anal-
ysis of parallel compiler backends on shared-memory multi-
processors, in Proc. of the Tenth Workshop on Compilers for
Parallel Computers, January 2000, pp. 305-320.

S. Kortmann, |. Park, M. Voss and R. Eigenmann, Interactive
and modular optimization with interpol, in Proc. of the 2000
International Conference on Parallel and Distributed Process-
ing Techniques and Applications, June 2000, pp. 1963-1967.
Kuck and Associates|nc., KAP/Pro Tool set, 2000, http://mwww.
kai.com.

W.Liao, A. Diwan, R.P. Jr. Bosch, A. Ghuloum and M.S. Lam,
SUIFexplorer: Aninteractiveandinterprocedural parallelizer,
in Proc. of the 7th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, August 1999, pp. 37—
48.

NAS Systems Division, CAPO (CAPTools-based Automati
Parallelizer using OpenMP), 2001, http://www.nas.nasa.gov/
Groups/Tools/CAPOY.

Pecific-Sierra Research, DEEP/MPI: Development Environ-
ment for MPI Programs Parallel Program Analysis and De-
bugging, 2000, http://www.psrv.com/deep mpi top.html.
Paramount Research Group, Purdue University, Program Par-
allelization and Tuning Methodology, 2000, http://peak.ecn.
purdue.edu/ParaM ount/UMinor/meth. index.html.

I. Park, M.J. Voss, B. Armstrong and R. Eigenmann, Support-
ing users' reasoning in performance evaluation and tuning of

[22]

|. Park et a. / Parallel programming environment for OpenMP 161

parallel applications, in Proc. of the Twelth IASTED Interna-
tional Conference on Parallel and Distributed Computing and
Systemns, November 2000.

M. Satoh, Y. Aoki, K. Wada, T. litsuka and S. Kikuchi, In-
terprocedural parallelizing compiler WPP and analysis infor-
mation visualization tool Aivi, in Proc. of EMOMP ’2000:

(23]

European Workshop on OpenMP, Edin urgh, Scotland, UK,
September 2000.

B.JN. Wylie and A. Endo, Annai/PMA multi-level hierar-
chical parallel program performance engineering, in Proc. of
International Workshop on High-Level Programming Models
and Supportive Environments, 1996, pp. 58-67.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

