
247

An algebraic programming style for
numerical software and its optimization1

T.B. Dinesha,2, Magne Haveraaenb,3 and
Jan Heeringc

aAcademic Systems Corporation, 444 Castro Street,
Mountain View, CA 94041, USA
E-mail: T Dinesh@academic.com
bDepartment of Informatics, University of Bergen,
Høyteknologisenteret, N-5020 Bergen, Norway
E-mail: Magne.Haveraaen@ii.uib.no
cDepartment of Software Engineering, CWI,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: Jan.Heering@cwi.nl

The abstract mathematical theory of partial differential equa-
tions (PDEs) is formulated in terms of manifolds, scalar fields,
tensors, and the like, but these algebraic structures are hardly
recognizable in actual PDE solvers. The general aim of the
Sophus programming style is to bridge the gap between the-
ory and practice in the domain of PDE solvers. Its main in-
gredients are a library of abstract datatypes corresponding to
the algebraic structures used in the mathematical theory and
an algebraic expression style similar to the expression style
used in the mathematical theory. Because of its emphasis on
abstract datatypes, Sophus is most naturally combined with
object-oriented languages or other languages supporting ab-
stract datatypes. The resulting source code patterns are be-
yond the scope of current compiler optimizations, but are suf-
ficiently specific for a dedicated source-to-source optimizer.
The limited, domain-specific, character of Sophus is the key
to success here. This kind of optimization has been tested on
computationally intensive Sophus style code with promising
results. The general approach may be useful for other styles
and in other application domains as well.

1This research was supported in part by the European Union under
ESPRIT Project 21871 (SAGA – Scientific Computing and Alge-
braic Abstractions), the Netherlands Organisation for Scientific Re-
search (NWO) under the Generic Tools for Program Analysis and
Optimization project, the Netherlands Telematica Instituut under the
Domain-Specific Languages project, and by a computing resources
grant from the Norwegian Supercomputer Committee.

2The work reported here was done while the author was at CWI,
Amsterdam, The Netherlands.

3Much of the work reported here was done during the author’s

1. Introduction

The purpose of the Sophus approach to writing par-
tial differential equation (PDE) solvers originally pro-
posed in [13] is to close the gap between the underlying
coordinate-freemathematical theory and the way actual
solvers are written. The main ingredients of Sophus
are:

1. A library of abstract datatypes corresponding to
manifolds, scalar fields, tensors, and the like, fig-
uring in the abstract mathematical theory.

2. Expressions involving these datatypes written in
a side-effect free algebraic style similar to the ex-
pressions in the underlying mathematical theory.

Because of the emphasis on abstract datatypes,
Sophus is most naturally combined with object-
oriented languages or other languages supporting ab-
stract datatypes. Hence, we will be discussing high-
performance computing (HPC) optimization issues
within an object-oriented or abstract datatype context,
using abstractions that are suitable for PDEs.

Sophus is not simply object-oriented scientific pro-
gramming, but a much more structured approach dic-
tated by the underlying mathematics. The object-
oriented numerics paradigm proposed in [8,23] is re-
lated to Sophus in that it uses abstractions correspond-
ing to familiar mathematical constructs such as tensors
and vectors, but these do not include continuous struc-
tures such as manifolds and scalar fields. The Sophus
approach is more properly called coordinate-free nu-
merics [14]. A fully worked example of conventional
vs. coordinate-free programming of a computational
fluid dynamics problem (wire coating for Newtonian
and non-Newtonian flows) is given in [12].

Programs in a domain-specific programming style
like Sophus may need additional optimization in view
of their increased use of expensive constructs. On the

sabbatical stay at the University of Wales, Swansea, with financial
support from the Norwegian Science Foundation (NFR).

Scientific Programming 8 (2000) 247–259
ISSN 1058-9244 / $8.00  2000, IOS Press. All rights reserved

248 T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization

other hand the restrictions imposed by the style may
lead to new high-level optimization opportunities that
can be exploited by dedicated tools (cf. [9]). Auto-
matic selection of high-level HPC transformations (es-
pecially loop transformations) has been incorporated in
the IBM XL Fortran compiler, yielding a performance
improvement for entire programs of typically less than
2× [15, p. 239]. We hope Sophus style programming
will allow high-level transformations to become more
effective than this.

In the context of Sophus and object-oriented pro-
gramming this article focuses on the following exam-
ple. Object-oriented languages encourage the use of
self-mutating (self-updating, mutative) objects rather
than a side-effect free algebraic expression style as
advocated by Sophus. The benefits of the algebraic
style are considerable. We obtained a reduction in
source code size using algebraic notation vs. an object-
oriented style of up to 30% in selected procedures
of a seismic simulation code, with a correspondingly
large increase in programmer productivity and main-
tainability of the code as measured by the Cocomo
technique [4], for instance. On the negative side, the
algebraic style requires lots of temporary data space for
(often very large) intermediate results to be allocated
and subsequently recovered. Using self-mutating ob-
jects, on the other hand, places some of the burden of
variable management on the programmer and makes
the source code much more difficult to write, read, and
maintain. It may yield much better efficiency, however.
Now, by including certain restrictions as part of the
style, a precise relationship between self-mutating no-
tation and algebraic notation may be achieved. Going
one step further, we see that the natural way of building
a program from high-level abstractions may be in direct
conflict with the way current compilers optimize pro-
gram code. We propose a source-to-source optimiza-
tion tool, called CodeBoost, as a solution to many of
these problems. Some further promising optimization
opportunities we have experimented with but not yet
included in CodeBoost are also mentioned. The gen-
eral approach may be useful for other styles and other
application domains as well.

This paper is organized as follows. After a brief
overview of tensor based abstractions for numerical
programming and their realization as a software library
(Section 2), we discuss the relationship between alge-
braic and self-mutating expression notation, and how
the former may be transformed into the latter (Sec-
tion 3). We then discuss the implementation of the
CodeBoost source-to-source optimization tool (Sec-

tion 4), and give some further examples of how soft-
ware construction using class abstractions may conflict
with efficiency issues as well as lead to new opportu-
nities for optimization (Section 5). Finally, we present
conclusions and future work (Section 6).

2. A tensor based library for solving PDEs

Historically, the mathematics of PDEs has been ap-
proached in two different ways. The solution-oriented
approach uses concrete representations of vectors and
matrices, discretisation techniques, and numerical al-
gorithms, while the abstract approach develops the the-
ory in terms of manifolds, scalar fields, tensors, and the
like, focusing more on the structure of the underlying
concepts than on how to calculate with them (see [16]
for a good introduction).

The former approach is the basis for most of the PDE
software in existence today. The latter has very promis-
ing potential for the structuring of complicated PDE
software when combined with template class based pro-
gramming languages or other languages supporting ab-
stract datatypes. As far as notation is concerned, the
abstract mathematics makes heavy use of overloaded
infix operators. Hence, user-definable operators and
operator overloading are further desirable language fea-
tures in this application domain. C++ [18] comes
closest to meeting these desiderata, but, with modules
and user-definable operators, Fortran 90/95 [1,2] can
also be used. In its current form Java [11] is less suit-
able. It has neither templates nor user-definable op-
erators. Also, Java’s automatic memory management
is not necessarily an advantage in an HPC setting [17,
Section 4]. Some of these problems may be alleviated
in Generic Java [6]. The examples in this article use
C++.

2.1. The Sophus library

The Sophus library provides the abstract mathemati-
cal concepts from PDE theory as programming entities.
Its components are based on the notions of manifold,
scalar field and tensor field, while the implementations
are based on the conventional numerical algorithms and
discretisations. Sophus is currently structured around
the following concepts:

– Basic n-dimensional mesh structures. These are
like rank n arrays (i.e., with n independent in-
dices), but with operations like +,− and ∗mapped
over all elements (much like Fortran 90/95 array

T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization 249

operators) as well as the ability to add, subtract
or multiply all elements of the mesh by a scalar
in a single operation. There are also operations
for shifting meshes in one or more dimensions.
Parallel and sequential implementations of mesh
structures can be used interchangeably, allowing
easy porting between architectures of any program
built on top of the mesh abstraction.

– Manifolds. These represent the physical space
where the problem to be solved takes place. Cur-
rently Sophus only implements subsets of Rn.

– Scalar fields. These may be treated formally as
functions from manifolds to reals, or as arrays
indexed by the points of the manifold with reals
as data elements. Scalar fields describe the mea-
surable quantities of the physical problem to be
solved. As the basic layer of “continuous math-
ematics” in the library, they provide the partial
derivation operations. Also, two scalar fields on
the same manifold may be pointwise added, sub-
tracted or multiplied. The different discretisation
methods provide different designs for the imple-
mentation of scalar fields. A typical implemen-
tation would use an appropriate mesh as underly-
ing discrete data structure, use interpolation tech-
niques to give a continuous interface, and map the
+, −, and ∗ operations directly to the correspond-
ing mesh operations. In a finite difference im-
plementation partial derivatives are implemented
using shifts and arithmetic operations on the mesh.

– Tensors. These are generalizations of vectors and
matrices and have scalar fields as components.
Tensors define the general differentiation opera-
tions based on the partial derivatives of the scalar
fields, and also provide operations such as compo-
nentwise addition, subtraction and multiplication,
as well as tensor composition and application (ma-
trix multiplication and matrix-vector multiplica-
tion). A special class are the metric tensors. These
satisfy certain mathematical properties, but their
greatest importance in this context is that they can
be used to define properties of coordinate systems,
whether Cartesian, axiosymmetric or curvilinear,
allowing partial differential equations to be for-
mulated in a coordinate-free way. The implemen-
tation of tensors relies heavily on the arithmetic
operations of the scalar field classes.

A partial differential equation in general provides a
relationship between spatial derivatives of tensor fields
representing physical quantities in a system and their
time derivatives. Given constraints in the form of the

values of the tensor fields at a specific instance in time
together with boundary conditions, the aim of a PDE
solver is to show how the physical system will evolve
over time, or what state it will converge to if left by
itself. Using Sophus, the solvers are formulated on top
of the coordinate-free layer, forming an abstract, high
level program for the solution of the problem.

2.2. Sophus style examples

The algebraic style for function declarations can be
seen in Fig. 1, which shows specifications of some op-
erations for multidimensional meshes, the lowest level
in the Sophus library. The mesh class is parameter-
ized by a class T, so all operations on meshes likewise
are parameterized by T. Typical parameters would be a
float or scalar field class. The operations declared are
defined to behave like pure functions, i.e., they do not
update any internal state or modify any of their argu-
ments. Such operations are generally nice to work with
and reason about, as their application will not cause
any hidden interactions with the environment.

Selected parts of the implementation of a continu-
ous scalar field class are shown in Fig. 2. This scalar
field represents a multi-dimensional torus, and is imple-
mented using a mesh class as the main data structure.
The operations of the class have been implemented as
self-mutating operations (Section 3), but are used in
an algebraic way for clarity. It is easy to see that the
partial derivation operation is implemented by shift-
ing the mesh longer and longer distances, and gradu-
ally scaling down the impact these shifts have on the
derivative, yielding what is known as a four-point, finite
difference, partial derivation algorithm. The addition
and multiplication operations are implemented using
the element-wise mapped operations of the mesh.

The meshes used in a scalar field tend to be very
large. A TorusScalarField may typically con-
tain between 0.2 and 2 MB of data, perhaps even more,
and a program may contain many such variables. The
standard translation technique for a C++ compiler is
to generate temporary variables containing intermedi-
ate results from subexpressions, adding a considerable
run-time overhead to the algebraic style of program-
ming. An implementation in terms of self-mutating
operators might yield noticeable efficiency gains. For
the addition, subtraction and multiplication algorithms
of Fig. 2 a self-mutating style is easily obtained. The
derivation algorithm will require extensive modifica-
tion, such as shown in Fig. 5, with a marked deteriora-
tion in readability and maintainability as a result.

250 T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization

/** returns the mesh circularly shifted {i} positions in dimension {d} */
template<class T> Mesh<T> shift(const Mesh<T> & M, int d, int i);

/** returns the elementwise sum of {lhs} and {rhs} */
template<class T> Mesh<T> operator+(const Mesh<T>& lhs, const Mesh<T>& rhs);

/** returns the elementwise difference of {lhs} and {rhs} */
template<class T> Mesh<T> operator-(const Mesh<T>& lhs, const Mesh<T>& rhs);

/** returns the elementwise product of the {lhs} and {r} */
template<class T> Mesh<T> operator*(const Mesh<T>& lhs, const real& r);

. . .

Fig. 1. Specification of algebraic style operators on a mesh template class.

3. Algebraic notation and self-mutating
implementation

3.1. Self-mutating operations

Let a, b and c be meshes with operators as defined
in Fig. 1. The assignment

c = a * 4.0 + b + a

is basically evaluated as

temp1 = a * 4.0;
temp2 = temp1 + b;
c = temp2 + a.

This involves the creation of the meshes temp1,
temp2, c, the first two of which are temporary. Ob-
viously, since all three meshes have the same size and
the operations in question are sufficiently simple, re-
peated use of a single mesh would have been possible
in this case. In fact, for predefined types like integers
and floats an optimizing C or C++ compiler would
translate the expression to a sequence of compound
assignments4

c = a; c *= 4.0; c += b; c += a,

which repeatedly uses variable c to store intermediate
results.

We would like to be able to do a similar optimization
of the mesh expression above as well as other expres-
sions involving n-ary operators or functions of a suit-
able nature for user-defined types as proposed in [10].
In an object-oriented language, it would be natural to
define self-mutating methods (i.e., methods mutating
this) for the mesh operations in the above expression.

4Not to be confused with the C notion of compound statement,
which is a sequence of statements enclosed by a pair of braces.

These would be closely similar to the compound as-
signments for predefined types in C and C++, which
return a pointer to the modified data structure. So-
phus demands a side-effect free expression style close
to the underlying mathematics, however, and forbids
direct use of self-mutating operations in expressions.
Note that with a self-mutating+= operator returning the
modified value of its first argument, the expression (a
+= b) += awould yield 2(a+b) rather than (2a)+b.

By allowing the user to define self-mutating opera-
tions and providing a way to use them in a purely func-
tional manner, their direct use can be avoided. There
are basically two ways to do this, namely, by means
of wrapper functions or by program transformation.
These will be discussed in the following sections.

3.2. Wrapper functions

Self-mutating implementations can be made avail-
able to the programmer in non-self-mutating form by
generating appropriate wrapper functions. We devel-
oped a C++ preprocessor SCC doing this. It scans
the source text for declarations of a standard form and
automatically creates wrapper functions for the self-
mutating ones. This allows the use of an algebraic
style in the program, and relieves the programmer of
the burden of having to code the wrappers manually.

A self-mutating operator op= is related to its alge-
braic analog op by the basic rule

x = y op z; ≡ x = copy(y); x op= z; (1)

or, if the second argument is the one being updated, 5

by the rule

5This does not apply to built-in compound assignments in C or
C++, but user-defined compound assignments in C++ may behave
in this way.

T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization 251

/** some operations on a scalar field implemented using the finite difference method
*/
class TorusScalarField {
private:
Mesh<real> msf(); // data values for each grid point of the mesh
real delta; // resolution, distance between grid points

:

public:

:

/** 4 point derivation algorithm, computes partial derivative in dimension d */
void uderiv (int d)
{ Mesh<real> ans = (shift(msf,d,1) - shift(msf,d,-1)) * 0.85315148548241;
ans = ans + (shift(msf,d,2) - shift(msf,d,-2)) * -0.25953977340489;
ans = ans + (shift(msf,d,3) - shift(msf,d,-3)) * 0.06942058732686;
ans = ans + (shift(msf,d,4) - shift(msf,d,-4)) * -0.01082798602277;
msf = ans * (1/delta);

}

/** adding scalar field {rhs} to this TorusScalarField */
void operator+=(const TorusScalarField& rhs);
{ msf = msf + rhs;
}

/** subtracting scalar field {rhs} from this TorusScalarField */
void operator-=(const TorusScalarField& rhs);
{ msf = msf - rhs;
}

/** multiplying scalar {r} to this TorusScalarField */
void operator*=(const real& r);
{ msf = msf * r;
}

:
}

Fig. 2. A class TorusScalarFieldwith self-mutating implementations of a partial derivation algorithm, a scalar field addition, and a scalar
multiplication algorithm. The code itself is using algebraic notation for the mesh operations.

x = y op z; ≡ x = copy(z); y op= x; (2)

where≡ denotes equivalence of the left- and right-hand
sides, x, y, z are C++ variables, and copy makes
a copy of the entire data structure. Now, the Sophus
style does not allow aliasing or sharing of objects, and
the (overloaded) assignment operatorx = y is always
given the semantics ofx = copy(y) as used in Eqs (1)
and (2). Hence, in the context of Sophus Eq. (1) can be
simplified to

x = y op z; ≡ x = y; x op= z; (3)

and similarly for Eq. (2). We note the special case

x = x op z; ≡ x op= z; (4)

and the obvious generalizations

x = x op e; ≡ x op= e; (5)

x = e1 op e2; ≡ x = e1; x op= e2; (6)

where e, e1, and e2 are expressions. SCC uses rules
such as Eq. (6) to obtain purely functional behavior
from the self-mutating definitions in a straightforward
way. Figure 4 shows the wrappers created by SCC for
the self-mutating mesh operations of Fig. 3. The case
of n-ary operators and functions is similar (n � 1). We
note that, unlike C and C++ compound assignments,
Sophus style self-mutating operators do not return a
reference to the variable being updated and cannot be
used in expressions. This simpler behavior facilitates
their definition in Fortran 90/95 and other languages of
interest to Sophus.

252 T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization

/** implements the basic mesh operations */
template<class T> class MeshCode1{

. . .
public:
/** circularly shifts {this} mesh {i} positions in dimension {d} */
void ushift(int d, int i){ . . . }

/** adds {rhs} elementwise to {this} mesh */
void operator+=(const MeshCode1<T> & rhs){ . . . }

/** subtracts {rhs} elementwise from {this} mesh */
void operator-=(const MeshCode1<T> & rhs){ . . . }

/** multiplies {this} mesh elementwise by {r} */
void operator*=(real r){ . . . }
. . .
}

Fig. 3. The use of self-mutating membership operations for a mesh class MeshCode1.

template<class T> MeshCode1<T> shift(const MeshCode1<T> & MD, int d, int i)
{ MeshCode1<T> C = MD; C.ushift(d,i); return C; }

template<class T> MeshCode1<T> operator+(const MeshCode1<T>& lhs, const
MeshCode1<T& rhs);

{ MeshCode1<T> C = lhs; C += rhs; return C; }
template<class T> MeshCode1<T> operator-(const MeshCode1<T>& lhs, const
MeshCode1<T>& rhs);

{ MeshCode1<T> C = lhs; C -= rhs; return C; }
template<class T> MeshCode1<T> operator*(const MeshCode1<T>& lhs, const real&
r);

{ MeshCode1<T> C = lhs; C *= r; return C; }
. . .

Fig. 4. Wrapper functions implementing the specification of a mesh using MeshCode1 operations generated by the SCC preprocessor.

The wrapper approach is superficial in that it does
not minimize the number of temporaries introduced
for expression evaluation as illustrated in Section 3.1.
We therefore turn to a more elaborate transformation
scheme.

3.3. Program transformation

Transformation of algebraic expressions to self-
mutating form with simultaneous minimization of tem-
poraries requires a parse of the program, the collection
of declarations of self-mutating operators and func-
tions, and matching them with the types of the operators
and functions actually used after any overloading has
been resolved. Also, declarations of temporaries have
to be added with the proper type. Such a preprocessor
would be in a good position to perform other source-
to-source optimizations as well. In fact, this second
approach is the one implemented in CodeBoost with
promising results.

Figure 5 shows an optimized version of the par-
tial derivation operator of classTorusScalarField
(Fig. 2) that might be obtained in this way. In addition
to the transformation to self-mutating form, an obvious
rule for ushift was used to incrementalize shifting
of the mesh.

Assuming the first argument is the one being updated,
some further rules for binary operators used in this stage
are

x op1= e1 op 2e2;≡
(7)

{T t = e1;t op2= e2;x op1= t; }

{T t1 = e1; s1; }{T t2 = e2; s2; } ≡
(8)

{T t = e1; s1;t = e2; s2; }.
Here x, t, t1, t2 are variables of type T; e1, e2 are

expressions; and self-mutating operators op=, op1=,
op2= correspond to operators op, op1, op2, respec-
tively. Recall that Sophus does not allow aliasing.
Eq. (7) introduces a temporary variable t in a local en-

T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization 253

/** some operations on a scalar field implemented using the finite difference
method
*/
public class ScalarField {
MeshCode1 msf(); // data values for each grid point of the mesh
real delta; // resolution, distance between grid points

:

/** 4 point derivation algorithm, computes partial derivative in dimension d */
public void uderiv (int d)
{ MeshCode1 msa = msf;
MeshCode1 msb = msf;
MeshCode1 scratch();

msa.ushift(d,1);
msb.ushift(d,-1);
scratch = msa; scratch.uminus(msb); scratch.umult(0.85315148548241);
msf = scratch;

msa.ushift(d,1);
msb.ushift(d,-1);
scratch = msa; scratch.uminus(msb); scratch.umult(-0.25953977340489);
msf.uplus(scratch);

msa.ushift(d,1);
msb.ushift(d,-1);
scratch = msa; scratch.uminus(msb); scratch.umult(0.06942058732686);
msf.uplus(scratch);

msa.ushift(d,1);
msb.ushift(d,-1);
scratch = msa; scratch.uminus(msb); scratch.umult(-0.01082798602277);
msf.uplus(scratch);

msf.umult(1/delta);
}
:

}

Fig. 5. Optimized partial derivation operator of class TorusScalarField (Figure 2).

template<class T> void F (T & x)
{ x = x*x + x*2.0; }

template<class T> void P (T & x)
{ T temp1 = x;
temp1 *= 2.0 ;
x *= x;
x += temp1;

}
Fig. 6. Kernels F and P.

vironment and Eq. (8) reduces the number of temporary
variables by merging two local environments declaring
a temporary into a single one.

3.4. Benchmarks

3.4.1. Two kernels

Consider C++ procedures F and P shown in Fig-
ure 6. F computes x2 + 2x using algebraic notation
while P computes the same expression in self-mutating
form using a single temporary variable temp1. Both
were run with meshes of different sizes. The corre-
sponding timing results are shown in Figs 7–9.

The mesh size is given in the leftmost column. Mesh
elements are single precision reals of 4B each. The
second column indicates the benchmark procedure (F
or P) or the ratio of the corresponding timings (F/P).
The columns NC, NS, OC, and OS give the time in
seconds of several iterations over each mesh so that a
total of 16 777 216 elements were updated in each case.
This corresponds to 32 768 iterations for mesh size 83,
64 iterations for mesh size 643, 1 iteration for mesh size
2563, and so forth. In columns C (conventional style)
the procedure calls are performed for each element of

254 T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization

SUN Ultra-2
Number of Type No options Option -fast Optim. speedup
elements NC NS NS/NC OC OS OS/OC NC/OC NS/OS

F 6.4s 28.4s 4.4 2.8s 4.7s 1.7 2.3 6.0
83 = 2kB P 7.8s 12.2s 1.6 2.8s 2.0s 0.7 1.8 6.1

F/P 0.8 2.3 1.0 2.4

F 6.8s 31.7s 4.7 3.2s 8.3s 2.6 2.1 3.8
643 = 1MB P 8.2s 13.4s 1.6 3.2s 3.4s 1.1 2.6 3.9

F/P 0.8 2.4 1.0 2.4

F 7.1s 238.5s 33.6 3.5s 199.3s 56.9 2.0 1.2
2563 = 67MB P 8.5s 15.6s 1.8 3.5s 18.5s 5.3 2.4 0.8

F/P 0.8 15.3 1.0 10.8

Fig. 7. Speed of conventional vs. Sophus style on SUN sparc Ultra-2 workstation. More specifically, a SunOS 5.6 Generic 105181-06 sun4u
sparc SUNW, Ultra-2 hardware platform with 512MB internal memory and the SunSoft C++ compiler CC: WorkShop Compilers 4.2 30 Oct
1996 C++ 4.2 were used.

Silicon Graphics/Cray Origin 2000
Number of Type No options Option -Ofast Optim. speedup
elements NC NS NS/NC OC OS OS/OC NC/OC NS/OS

F 3.3s 10.5s 3.2 1.0s 2.3s 2.3 3.3 4.6
83 = 2kB P 4.4s 6.3s 1.4 1.0s 1.3s 1.3 4.4 4.8

F/P 0.8 1.6 1.0 1.8

F 3.4s 12.3s 3.6 1.3s 4.1s 3.2 2.6 3.0
643 = 1MB P 4.5s 6.9s 1.5 1.2s 2.3s 1.9 3.8 3.0

F/P 0.8 1.8 1.1 1.8

F 4.0s 25.0s 6.3 1.8s 15.6s 8.7 2.2 1.6
2563 = 67MB P 5.2s 10.3s 2.0 1.7s 7.0s 4.1 3.1 1.5

F/P 0.8 2.4 1.1 2.2

Fig. 8. Speed of conventional vs. Sophus style on Silicon Graphics/Cray Origin 2000. More specifically, the Origin 2000 had hardware version
IRIX64 ask 6.5SE 03250013 IP27 with a total of 24GB memory distributed among 128 processors. The C++ compiler used was MIPSpro
Compilers: Version 7.2.1.1m.

the mesh, while in columns S (Sophus style) they are
performed as operations on the entire mesh variables.

Columns N give the time for unoptimized code (no
compiler options), while columns O give the time for
code optimized for speed (compiler option -fast for
the SUN CC compiler and -Ofast for the Silicon
Graphics/Cray CC compiler). The timings represent
the median of 5 test runs. These turned out to be
relatively stable measurements, except in columns NS
and OS, rows 2563 F and P of Fig. 7, where the time for
an experiment could vary by more than 100%. This is
probably due to paging activity on disk dominating the
actual CPU time. Also note that the transformations
done by the optimizer are counterproductive in the P
case, yielding an NS/OS ratio of 0.8.

When run on the SUN the tests where the only really
active processes, while the Cray was run in its normal
multi-user mode but at a relatively quiet time of the
day (Figure 10). As can be seen the load was moder-

ate (around 58) and although fully utilized, resources
where not overloaded.

In the current context, only columns NS and OS are
relevant, the other ones are explained in Section 5.1.
As expected, the self-mutative form P is a better per-
former than the algebraic formFwhen the Sophus style
is used. Disregarding the cases with disk paging men-
tioned above, we see that the self-mutating mesh opera-
tions are 1.8–2.4 times faster than their algebraic coun-
terparts, i.e., the CodeBoost transformation roughly
doubles the speed of these benchmarks.

3.4.2. Full application: SeisMod
We also obtained preliminary results on the Silicon

Graphics/Cray Origin 2000 for a full application, the
seismic simulation code SeisMod, which is written in
C++ using the Sophus style. It is a collection of appli-
cations using the finite difference method for seismic
simulation. Specific versions of SeisMod have been

T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization 255

SUN Ultra-2
Number of Type No options Option -fast Optim. speedup
elements NC NS NS/NC OC OS OS/OC NC/OC NS/OS

F 6.4s 28.4s 4.4 2.9s 4.7s 1.6 2.2 6.0
83 = 2kB P 7.8s 12.2s 1.6 2.8s 2.0s 0.7 2.8 6.1

F/P 0.8 2.3 1.0 2.4

F 6.5s 28.9s 4.4 3.2s 5.2s 1.6 2.0 5.6
163 = 16kB P 7.9s 12.6s 1.6 3.2s 2.5s 0.8 2.5 5.0

F/P 0.8 2.3 1.0 2.1

F 6.8s 29.5s 4.3 3.2s 6.2s 1.9 2.1 4.8
323 = 128kB P 8.1s 12.8s 1.6 3.1s 2.7s 0.9 2.6 4.7

F/P 0.8 2.3 1.0 2.3

F 6.8s 31.7s 4.7 3.2s 8.3s 2.6 2.1 3.8
643 = 1MB P 8.2s 13.4s 1.6 3.2s 3.4s 1.1 2.6 3.9

F/P 0.8 2.4 1.0 2.4

Fig. 9. Speed of conventional vs. Sophus style on SUN sparc Ultra-2 workstation for small meshes.

tailored to handle simulations with simple or very com-
plex geophysical properties.6 We compared a version
of SeisMod implemented using SCC generated wrap-
per functions and a self-mutating version produced by
the CodeBoost source-to-source optimizer:

– The algebraic expression style version turned out
to give a 10–30% reduction in source code size and
greatly enhanced readability for complicated parts
of the code. This implies a significant programmer
productivity gain as well as a significant reduction
in maintenance cost as measured by the Cocomo
technique [4], for instance

– A 30% speed increase was obtained after 10 se-
lected procedures out of 150 procedures with
speedup potential had been brought in self-
mutating form. This speedup turned out to be
independent of C++ compiler optimization flag
settings.

This shows that although a more user-friendly style
may give a performance penalty compared to a con-
ventional style, it is possible to regain much of the ef-
ficiency loss by using appropriate optimization tools.
Also, a more abstract style may yield more cost-
effective software, even without these optimizations, if
the resulting development and maintenance productiv-
ity improvement is taken into account.

4. Implementation of CodeBoost

CodeBoost is a dedicated C++ source-to-source
transformation tool for Sophus style programs. It has

6SeisMod is used and licensed by the geophysical modelling com-
pany UniGEO A.S. (Bergen, Norway).

IRIX64 ask 6.5SE IP27
load averages: 58.37 57.74 58.30 06:46:21
385 processes: 323 sleeping, 3 stopped,
1 ready, 58 running

128 CPUs: 0.0% idle, 0.0% usr, 0.0% ker,
0.0% wait, 0.0% xbrk, 0.0% intr

Memory: 24G max, 23G avail, 709M free,
25G swap, 17G free swap

Fig. 10. Random load information for test run on Silicon Graph-
ics/Cray Origin 2000.

been implemented using the ASF+SDF language pro-
totyping system [20]. ASF+SDF allows the required
transformations to be entered directly as conditional
rewrite rules whose right- and left-hand sides consist
of language (in our case C++) patterns with variables
and auxiliary transformation functions. The required
language specific parsing, rewriting, and prettyprinting
machinery is generated automatically by the system
from the high-level specification. Program transforma-
tion tools for Prolog and the functional language Clean
implemented in ASF+SDF are described in [7,19].

An alternative implementation tool would have been
the TAMPR program transformation system [5], which
has been used successfully in various HPC applications.
We preferred ASF+SDF mainly because of its strong
syntactic capabilities enabling us to generate a C++
environment fairly quickly given the complexity of the
language.

Another alternative would have been the use of
template metaprogramming and/or expression tem-
plates [21,22]. This approach is highly C++ specific,
however, and cannot be adapted to Fortran 90/95.

Basically, the ASF+SDF implementation of Code-
Boost involves the following two steps:

256 T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization

1. Specify the C++ syntax in SDF, the syntax defi-
nition formalism of the system.

2. Specify the required transformation rules as con-
ditional rewrite rules using the C++ syntax, vari-
ables, and auxiliary transformation functions.

As far as the first step is concerned, specification of
the large C++ syntax in SDF would involve a consider-
able effort, but fortunately a BNF-like version is avail-
able from the ANSI C++ standards committee. We
obtained a machine-readable preliminary version [3]
and translated it largely automatically into SDF format.
The ASF+SDF language prototyping system then gen-
erated a C++ parser from it. The fact that the system
accepts general context-free syntax rather then only
LALR or other restricted forms of syntax also saved a
lot of work in this phase even though the size of the
C++ syntax taxed its capabilities.

With the C++ parser in place, the required pro-
gram transformation rules were entered as conditional
rewrite rules. In general, a program transformer has to
traverse the syntax tree of the program to collect the
context-specific information used by the actual trans-
formations. In our case, the transformer needs to col-
lect the declaration information indicating which of the
operations have a self-mutating implementation. Also,
in Sophus the self-mutating implementation of an oper-
ator (if any) need not update this but can indicate which
of the arguments is updated using the upd flag. The
transformer therefore needs to collect not only which of
the operations have a self-mutating implementation but
also which argument is being mutated in each case. As
a consequence, CodeBoost has to traverse the program
twice: once to collect the declaration information and
a second time to perform the actual transformations.
Two other issues have to be taken into account:

– C++ programs cannot be parsed before their
macros are expanded. Some Sophus-specific lan-
guage elements are implemented as macros, but
are more easily recognized before expansion than
after. An example is the upd flag indicating which
argument of an operator or function is the one to
be updated.

– Compared to the total number of constructs in
C++, there are relatively few constructs of inter-
est. Since all constructs have to be traversed, this
leads to a plethora of trivial tree traversal rules.
As a result, the specification gets cluttered up by
traversal rules, making it a lot of work to write
as well as hard to understand. One would like
to minimize or automatically generate the part of

the specification concerned with straightforward
program traversal.

Our approach to the above problems is to give the
specification a two-phase structure as shown in Fig. 11.
Under the reasonable assumption that the declarations
are not spoiled by macros, the first phase processes the
declarations of interest prior to macro expansion using
a stripped version of the C++ grammar that captures
the declaration syntax only. We actually used a Perl
script for this, but it could have been done in ASF+SDF
as well. It yields an ASF+SDF specification that is
added to the specification of the second phase. The
effect of this is that the second phase is specialized for
the program at hand in the sense that the transformation
rules in the second phase can assume the availability of
the declaration information and thus can be specified
in a more algebraic, i.e., context independent manner.
As a consequence, they are easy to read, consisting
simply of the rules for the constructs that may need
transformationand using the ASF+SDF system’s built-
in innermost tree traversal mechanism. In this way, we
circumvented the last-mentioned problem.

As CodeBoost is developed further, it will have to
duplicate more and more functions already performed
by any C++ preprocessor/compiler. Not only will it
have to do parsing (which it is already doing now), but
also template expansion, overloading resolution, and
dependence analysis. It would be helpful if CodeBoost
could tap into an existing compiler at appropriate points
rather than redo everything itself.

5. Software structure vs. efficiency

As noted in Section 1, programs in a domain-specific
programming style like Sophus may need additional
optimization in view of their increased use of expensive
constructs. On the other hand, the restrictions imposed
by the style may lead to new high-level optimization
opportunities that can be exploited by a CodeBoost-like
optimization tool. We give some further examples of
both phenomena.

5.1. Inefficiencies caused by the use of an abstract
style

We consider an example. As explained in Sec-
tion 2.1, scalar field operations like + and ∗ are imple-
mented on top of mesh operations + and ∗. The lat-
ter will typically be implemented as iterations over all
array elements, performing the appropriate operations

T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization 257

Fig. 11. Two-phase specification of CodeBoost.

pairwise on the elements. For scalar fields, expressions
like

X1 = A1,1 ∗ V1 + A1,2 ∗ V2,

X2 = A2,1 ∗ V1 + A2,2 ∗ V2

will force 8 traversals over the mesh data structure. If
the underlying meshes are large, this may cause many
cache misses for each traversal. Now each of the scalar
fields Ai,j , Vj , and Xj are actually implemented using
a mesh, i.e., an array of n elements, and are represented
in the machine by A[i,j,k], V[j,k] and X[j,k]
for k = 1, . . . , K, where K is the number of mesh points
of the discretisation. In a conventional implementa-
tion this would be explicit in the code more or less as
follows:

for k := 1,K
for j := 1,2
X[j,k] := 0
for i := 1,2
X[j,k] += A[i,j,k]*V[j,k]

endfor
endfor

endfor

It would be easy for an optimizer to partition the
loops in such a way that the number of cache misses is
reduced by a factor of 8.

In the abstract case aggressive in-lining is necessary
to expose the actual loop nesting to the optimizer. Even
though most existing C++ compilers do in-lining of
abstractions, this would be non-trivial since many ab-
straction layers are involved from the programmer’s

notation on top of the library of abstractions down to
the actual traversals being performed.

Consider once again the timing results shown in
Figs 7–9. As was explained in Section 3.4, the proce-
dure calls in columns C (conventional style) are per-
formed for each element of the mesh, while they are
performed as operations on the entire mesh variables
in columns S (Sophus style). Columns OS/OC for
row P give the relevant figures for the performance loss
of optimized Sophus style code relative to optimized
conventional style code as a result of Sophus operating
at the mesh level rather than at the element level. The
benchmarks show a penalty of 1.1–5.3, except for data
structures of less than 128 kB on the SUN, where a
speedup of up to 1.4 (penalty of 0.7) can be seen in
Fig. 9. As is to be expected, for large data structures the
procedure calls in column OC are more efficient than
those in column OS, as the optimizer is geared towards
improving the conventional kind of code consisting of
large loops with procedure calls on small components
of data structures. Also, cache and memory misses be-
come very costly when large data structures have to be
traversed many times.

The figures for P in column OS of Fig. 9 are some-
what unexpected. In these cases OS is the fastest al-
ternative up to a mesh size somewhere between 323

and 643. This may be due to the smaller number of
procedure calls in the OS case than in the OC case. In
the latter case F and P are called once per element, i.e.,
16 777 216 times, while in the OS case they are called
only once and the self-mutating operations are called
only 4 times.

Another interesting phenomenon can be seen in col-
umn NC of Figs 7 and 8. Here the self-mutating ver-

258 T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization

sion takes longer than the algebraic version, probably
because the compiler automatically puts small tempo-
raries in registers for algebraic expressions, but cannot
do so for self-mutating forms. The OC column shows
that the optimizer eliminates the difference.

5.2. New opportunities for optimization

The same abstractions that were a source of worry
in the previous section at the same time provide the
specificity and typing making the use of high-level op-
timizations possible. Before they are removed by in-
lining, the information the abstractions provide can be
used to select and apply appropriate datatype specific
optimization rules. Sophus allows application of such
rules at very high levels of abstraction. Apart from
the expression transformation rules Eqs (1)–(8) (Sec-
tion 3), which are applicable to a wide range of oper-
ators and functions, further examples at various levels
of abstraction are:

– The laws of tensor algebra. In Sophus the tensors
contain the continuous scalar fields as elements
(Section 2.1), thus making the abstract tensor op-
erations explicit in appropriate modules.

– Specialization of general tensor code for specific
coordinate systems. A Cartesian coordinate sys-
tem gives excellent simplification and axiosym-
metric ones also give good simplification com-
pared to general curvilinear code.

– Optimization of operations on matrices with many
symmetries. Such symmetries offer opportuni-
ties for optimization in many cases, including the
seismic modelling application mentioned in Sec-
tion 3.4.2.

6. Conclusions and future work

– The Sophus class library in conjunction with the
CodeBoost expression transformation tool shows
the feasibility of a style of programming PDE
solvers that attempts to stay close to the abstract
mathematical theory in terms of both the datatypes
and the algebraic style of expressions used.

– Our preliminary findings for a full application, the
Sophus style seismic simulation code SeisMod,
indicate significant programmer productivity gains
as a result of adopting the Sophus style.

– There are numerous further opportunities for opti-
mization by CodeBoost in addition to replacement
of appropriate operators and functions by their
self-mutating versions. Sophus allows datatype
specific rules to be applied at very high levels of
abstraction.

Acknowledgments

Hans Munthe-Kaas, André Friis, Kristin Frøysa,
Steinar Søreide, and Helge Gunnarsli have contributed
to Sophus in various ways.

References

[1] J.C. Adams, W.S. Brainerd and J.T. Martin, Fortran 90 Hand-
book: Complete ANSI/ISO Reference, Intertext Publications,
1992.

[2] J.C. Adams, W.S. Brainerd, J.T. Martin and B.T. Smith,
Fortran 95 Handbook: Complete ISO/ANSI Reference, MIT
Press, 1997.

[3] AT&T Research, C++ Syntax – RFC Version, 1996.
[4] B.W. Boehm, Software Engineering Economics, Prentice-

Hall, 1981.
[5] J.M. Boyle, Abstract programming and program transfor-

mation – An approach to reusing programs, in: Software
Reusability, (Vol. 1), T.J. Biggerstaff and A.J. Perlis, edrs,
ACM Press, 1989, pp. 361–413.

[6] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, Making
the future safe for the past: Adding genericity to the Java
programming language, in: Proceedings of the Conference
on Object Oriented Programming Systems, Languages, and
Applications (OOPSLA ’98), 1998.

[7] J.J. Brunekreef, A transformation tool for pure Prolog pro-
grams, in: Logic Program Synthesis and Transformation
(LOPSTR ’96), volume 1207 of Lecture Notes in Computer
Science, J.P. Gallagher, ed., Springer-Verlag, 1996, pp. 130–
145.

[8] K.G. Budge, J.S. Peery and A.C. Robinson, High-performance
scientific computing using C++, in: USENIX C++ Technical
Conference Proceedings, USENIX Association, August 1992,
pp. 131–150.

[9] K. Davis and D. Quinlan, ROSE: An optimizing transforma-
tion system for C++ array-class libraries, in: Object-Oriented
Technology(ECOOP ’98 Workshop Reader), volume 1543 of
Lecture Notes in Computer Science, S. Demeijer and J. Bosch,
eds, Springer-Verlag, 1998, pp. 452–453.

[10] T.B. Dinesh, Extending compound assignments for C++,
OOPS Messenger 3(1) (1992), 45–49.

[11] J. Gosling, B. Joy and G. Steele, The Java Language Specifi-
cation, Addison-Wesley, 1996.

[12] P.W. Grant, M. Haveraaen and M.F. Webster, Coordinate-free
programming of computational fluid dynamics problems, Sci-
entific Programming 8(4) (2000), 211–230.

[13] M. Haveraaen, V. Madsen and H. Munthe-Kaas, Algebraic
programming technology for partial differential equations,
in: Proceedings Norsk Informatikk Konferanse (NIK ’92),
A. Maus et al., eds, 1992, pp. 55–68.

T.B. Dinesh et al. / An algebraic programming style for numerical software and its optimization 259

[14] H. Munthe-Kaas and M. Haveraaen, Coordinate free numer-
ics – closing the gap between ‘pure’ and ‘applied’ mathemat-
ics? ZAMM Z. angew. Math. Mech. 76(S1) (1996), 487–488,
(Proceedings ICIAM/GAMM ’95).

[15] V. Sarkar, Automatic selection of high-order transformations
in the IBM XL Fortran compiler, IBM J. Res. Develop. 41
(1997), 233–264.

[16] B. Schutz, Geometrical Methods of Mathematical Physics,
Cambridge University Press, 1980.

[17] S.K. Singhal et al, Building high-performance applications
and servers in Java: An experiential study, Technical report,
IBM, 1997, URL http://www.ibm.com/java/education/javahi-
pr.html.

[18] B. Stroustrup, The C++ Programming Language, (3d ed.),
Addison-Wesley, 1997.

[19] M.G.J. van den Brand, S.M. Eijkelkamp, D.K.A. Geluk, Mei-
jer, H.R. Osborne and M.J.F. Polling, Program transformations

using ASF+SDF, in: Proceedings of ASF+SDF ’95, Techni-
cal Report P9504, Programming Research Group, University
of Amsterdam, 1995, pp. 29–52.

[20] A. van Deursen, J. Heering and P. Klint, eds, Language Pro-
totyping, volume 5 of AMAST Series in Computing, World
Scientific, 1996.

[21] T.L. Veldhuizen, Using C++ template metaprograms, C++
Report 7(4) (May 1995), 36–43.

[22] T.L. Veldhuizen and M.E. Jernigan, Will C++ be faster than
Fortran? in: Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE ’97), volume 1343 of Lecture Notes
in Computer Science, Y. Ishikawa et al., eds, Springer-Verlag,
1997, pp. 49–56.

[23] M.K.W. Wong, K.G. Budge, J.S. Peery and A.C. Robinson,
Object-oriented numerics: A paradigm for numerical object-
oriented programming, Computers in Physics 7(5) (1993),
655–663.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

