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Machine and collection abstractions for
user-implemented data-parallel programming1

Magne Haveraaen
Department of Informatics, University of Bergen,
P.O. Box 7800, N-5020 BERGEN, Norway

Data parallelism has appeared as a fruitful approach to the
parallelisation of compute-intensive programs. Data paral-
lelism has the advantage of mimicking the sequential (and
deterministic) structure of programs as opposed to task par-
allelism, where the explicit interaction of processes has to be
programmed.

In data parallelism data structures, typically collection
classes in the form of large arrays, are distributed on the
processors of the target parallel machine. Trying to extract
distribution aspects from conventional code often runs in-
to problems with a lack of uniformity in the use of the da-
ta structures and in the expression of data dependency pat-
terns within the code. Here we propose a framework with
two conceptual classes, Machine and Collection. The
Machine class abstracts hardware communication and dis-
tribution properties. This gives a programmer high-level ac-
cess to the important parts of the low-level architecture. The
Machine class may readily be used in the implementation
of a Collection class, giving the programmer full control
of the parallel distribution of data, as well as allowing nor-
mal sequential implementation of this class. Any program
using such a collection class will be parallelisable, without
requiring any modification, by choosing between sequential
and parallel versions at link time. Experiments with a com-
mercial application, built using the Sophus library which uses
this approach to parallelisation, show good parallel speed-
ups, without any adaptation of the application program being
needed.

1. Introduction

Programming of parallel high performance comput-
ers is considered a difficult task, and to do so effi-

1This investigation has been carried out with the support of the
European Union, ESPRIT project 21871 SAGA (Scientific comput-
ing and algebraic abstractions) and a grant of computing resources
from the Norwegian Supercomputer Committee.

ciently may require extensive rewriting of a sequen-
tial program. One of the simpler approaches to par-
allel programming is the data parallel model, see [6]
for a general introduction. Data parallel programming
represents a generalisation of SIMD (Single Instruc-
tion Multiple Data) parallel programming. Early data
parallel languages include Actus [35], *Lisp and CM-
Fortran for Thinking Machine’s Connection Machine
series with up to 65 536 processors (see [22] for experi-
ence with the CM-1), MPL [28] for the MasPar series of
machines, and Fortran-90 [1], which was mostly devel-
oped during the 1980s. Much of the work on data par-
allelism has been influenced by research on systolic ar-
rays [30]. The popularity of data parallel programming
took off with the massively parallel machines available
in the late 1980s.

Task parallelism, also known as control parallelism
or functional parallelism, is the notion of indepen-
dent tasks communicating with each other [23]. It is
intrinsically non-deterministic in nature. Task paral-
lelism requires a much more involved semantical ap-
proach, checking that tasks rendezvous appropriately
in addition to checking the sequential correctness of
each task and any of the possible compositions of the
tasks [33]. In contrast, data parallelism is much sim-
pler to work with, see [21]. Data parallelism allows us
to use sequential reasoning techniques when writing,
reading and understanding code [16]. The programs
will behave consistently on synchronous (SIMD) or
asynchronous (MIMD – Multiple Instruction, Multiple
Data) platforms [17].

Here we extend the use of data abstraction orient-
ed programming to provide a framework to encom-
pass data parallel programming. The importance of
data abstraction and encapsulation has been recognised
for a long time [34]. It is now supported by most
programming languages, often under the terminology
object-orientation and class abstraction.2 Our idea is

2Based on concepts already clearly defined in the programming
language Simula [12].
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to develop a normal, sequential program using data ab-
stractions. Then one or more of the abstractions are
replaced by semantically equivalent, but data parallel
versions [44]. The new configuration will create a data
parallel version of the whole program without requiring
any reprogramming or extensive compile-time analysis.
The basic module for parallelisation is a parameterised
data abstraction (also called template class or generic
class), Collection, with user oriented methods for
permutations and data updates. The Collection is
then implemented as normal sequential code or by using
a Machine template class. Machine provides con-
cepts corresponding to the machine hardware: proces-
sors with local memory and communication channels.
This may reflect a distributed memory parallel com-
puter, but may also represent a shared memory parallel
machine with hierarchical memory (local cache, local
memory, off-processor shared memory,secondary store
for paging, etc.). The embedding of a Collection
onto the parallel machine is then expressed by using
Machine in the data structure for the collection. This
gives the programmer full control over the distribu-
tion and partitioning strategies. We envisage a library
of Machine and Collection classes representing
both sequential and parallel embeddings. Then a pro-
grammer may easily experiment with different paral-
lelisation strategies of a program by choosing between
different implementations in the library.

The programming strategy to utilise the collection
classes is close to using array/collection expressions in
languages like APL [24], Actus or Fortran-90. This
is in contrast to a data parallel programming language
like High Performance Fortran (HPF) [26,38], which is
focused around loops (with explicit parallelism) over
individual elements of the collections. But by making
the choice of collection class implementation available
to the programmer, the control over distribution of data
is closer to that of HPF where this can be controlled by
directives. The choice between collection class imple-
mentations does not require adaptation of the program
code, and can be postponed to link time. We will refer
to this as configuration time, which is when the compo-
nents to make up a program are chosen, irrespectively
of when this happens in the compile-link-run phases of
software development. Configuration does not interact
with the actual code of programs and algorithms, but is
the act of choosing between (library) implementations.

Being a data parallel framework, our suggestion
differs dramatically from parallel programming using
message passing, e.g., the MPI library [40,41]. Mes-
sage passing is associated with task parallelism pro-

gramming, even though it often is used in a more re-
stricted context when programming parallel machines.
Message passing is normally added to some standard
programming language, and the nature of this language
will guide what kind of abstractions and programming
style the programmer has to work with. However, the
kind of data that can be sent across the network using
message passing (typically only primitive types or con-
tiguous array segments) will influence which abstrac-
tions are natural to work with.

This paper is organised as follows. In the next sec-
tion we discuss some parallelisation strategies for the
data parallel programming approach. In Section 3 we
present the classesCollection andMachineof our
data parallelisation framework together with a frame-
work, Sophus, which supports the use of such abstrac-
tions. Then we provide benchmarks for parallel speed-
up. Finally we compare our approach with similar ap-
proaches. C++ [42] and Fortran-90 is used for code
examples and benchmarks.

2. Data parallelism

The idea behind data parallel programming is that
a sequential program may be parallelised by running
identical copies of it synchronously as separate tasks.
The data is distributed between these tasks, and a ref-
erence to non-local data causes a communication be-
tween processes. This approach can be proved to be
safe in general [2]. Thus no additional reasoning, be-
yond that of showing it is a correct sequential program,
is required to ensure the correctness of any data parallel
program.

A data parallel compiler tries to extract the paral-
lelism present in a sequential program and target it for a
parallel machine. Normally the elements of array data
structures, or other collection oriented data structures,
are the candidates for being distributed. Distribution
can be looked upon as the task of mapping the index set,
the index domain, of the array onto the physical pro-
cessors. If the mapping is a surjective function all pro-
cessors will receive some work. Normally the mapping
cannot be injective, as there will be more elements in
the index set than there are processors on the target ma-
chine. So the index domain may have to be partitioned
such that each partition is mapped to a distinct proces-
sor. According to [13], there are two philosophies to
partitioning:

1. machine based: starting from the hardware, in-
troducing virtual processors for the elements of
the index domain, and
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2. program based: grouping of the index domain of
the data structure.

Partitioning is always subject to (1) the constraint of
balancing computational load as evenly as possible be-
tween the processors and (2) minimising interproces-
sor data access, i.e., to minimise communication be-
tween processors, and keep communication as close as
possible to the communication topology of the target
machine.

Meeting these requirements requires extensive anal-
ysis of data access patterns within a program. The
analysis must be performed for all data structures that
are candidates for distribution, and the result must be a
coherent distribution strategy for all the data of a pro-
gram. It is important that data structures that interact
are aligned, i.e., that their index domains are partitioned
using the same strategy. Additionally, the optimal dis-
tribution of data may change throughout the program,
requiring redistribution of the data as the computation
proceeds. Partitioning should also take into account
memory hierarchy and communication speed charac-
teristics. Chatterjee et al. [8,9] have studied this prob-
lem and use techniques from optimisation theory to find
optimal data distributions.

Though data parallelisation of a sequential program
always will be correct, in the sense that the parallel
versions will compute the same results as the sequen-
tial versions, there is no guarantee that the parallel ver-
sions will be efficient. While some parallel speed-up
can be expected, the optimal speed-up can never be
expected, as the general partitioning problem is NP-
complete [27]. Thus the user normally needs to supply
more information in order to achieve optimal speed-
up. In HPF this is given as directives. The informa-
tion may otherwise take the form of language exten-
sions, or be interactive instructions to the compiler or
run-time system, see [11] for an overview. The form
of this information will appear differently depending
on whether the partitioning strategy is virtual machine
based or program based. Program based partitioning
is the more common strategy at present. HPF and its
compilers are based on this strategy [10].

A parallelising compiler for a language like HPF of-
ten treats the directives only as hints on the distribution
of data. The compiler is free to distribute data in other
ways it may find beneficial. This often has to do with
alignment of data, where directives that conflict with
the use of the data can be discovered. In such a case
the compiler may rely more on the intended use of the
data than on the hints it has been supplied with.

3. An abstraction based framework for data
parallelism

Instead of defining a data parallel language or having
the compiler look for implicit parallelism in sequential
programs, we will identify abstractions, within a se-
quential language framework, that allow us to capture
parallelism explicitly. Our data parallel framework will
thus appear as sequential programming, yet provide
the programmer with explicit control over the parallel
distribution of the program. Reflecting the machine
and program based approaches to data partitioning, we
identify two collection-oriented abstractions:

1. a class Machine that reflects the set P of physi-
cal processors of the target machine and its com-
munication topology, and

2. a class Collection, reflecting the arrays and
other collection data structures declared in a pro-
gram, with user-chosen index domain I and user-
defined permutation patterns.

Both of these classes must be parameterised by a tem-
plate class T. This ensures that we can place any da-
ta structure T on the processors of the target ma-
chine. The intention is that parallelisation of a pro-
gram will be achieved by embedding the user-level
abstraction Collection into the machine abstrac-
tion Machine. This will allow full programmer con-
trol over the embedding, and different embeddings for
the same Collection will provide different paral-
lelisation schemes for any program that can use the
Collection abstraction.

The basic methods in the interface of the Machine
<T> class are derived directly from hardware charac-
teristics.

– Methods map to perform an argument procedure
f on the local data of type T in parallel for each
processor p ∈ P of the machine, where the be-
haviour of f may depend on the processor index
p, but f is only allowed to access data local to its
processor p.

– (Several) methods that capture the structured data
permutations between processors consistent with
the communication network topology of the hard-
ware.

– (Several) methods that capture unstructured da-
ta permutations which are supported by the hard-
ware.

– Broadcast, reduction/prefix operations as support-
ed by the hardware.
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– Methods to update and read individual data values
at specific processors.

The topology of a machine may take into account
issues as relative access costs of hierarchical memory,
not just the physical wiring between processors which
traditionally is seen as the connectivity of a machine.
Many of the operations above should be familiar as ar-
ray operations. For example, mapping the plus oper-
ation over a pair of collections gives the elementwise
array addition operator of Fortran-90. Parallelism is
achieved by the map operations (forall style paral-
lelism), which execute f at every processor in parallel,
and the permutation operations, which communicate in
parallel over the network. Access to a location at a spe-
cific processor will force sequentialisation and should
be avoided.

For the Connection Machine series a CM Machine
abstraction will reflect the machine’s hypercube ar-
chitecture. The class CM Machine will have the
processor numbers as index domain, such as the set
{0, 1, . . . , 65 535}. The permutations will permute da-
ta between neighbouring processors for every link of
the hypercube, i.e., for i ∈ {1, 2, . . . , 16} the pairs of
processors that differ in bit i will swap data.

For the MasPar machine series the MP Machine
abstraction will reflect the machine’s 2-dimensional
toroidal architecture. So for a 64 by 128 proces-
sor MasPar MP-2, MP Machine will have the pairs
{0, 1, . . . , 63}×{0, 1, . . . , 127} as index domain. The
permutations will shift data between processors for ev-
ery link of the collection, i.e., circularly in directions
North/South or East/West, or circularly in the diagonal
connections NE/SW or NW/SE. The MasPar also has a
general router between arbitrary processors, but it does
not perform well for massive data exchanges, and may
be consciously omitted from the permutation methods
of MP Machine.

For modern machines like a 128 processor SGI Cray
Origin 2000 or networks of (multiprocessor) worksta-
tions, like 32 SUN Ultra-10, the network topology be-
comes more vague. Both these configurations have
specific links, but neither offers any direct means of
controlling which connection is to be accessed. Thus
we may think of one as a 128 node fully connected ma-
chine, the other as a 32 node fully connected machine.
In both cases the index domain for FC Machine will
be a range of integers, and any communication pattern
repeated on all processors is a legal data permutation.
In these examples we have not worried about the effect
of hierarchical memory.

The user level abstraction Collection is quite
similar to Machine. In addition to the template class
T, we formally include the index domain I as template,
giving the abstraction Collection<I,T>. Each
variable (or object) belonging to this class has a shape
I ′ ⊆ I and only contains data belonging to the subdo-
main I ′ of the index domain I . In C++ a rank n index3

set I may be realised by the class Index<n> which
represents all n independent integer indices i1, . . . , in.
For n = 3 we may define the extent I ′ of the indices to
be i1 ∈ {0, 1, 2, 3, 4}, i2 ∈ {0, 1, 2}, i3 ∈ {0, 1, 2, 3}
when we declare a variable ind.

int ilim[3];
ilim[0]=5; ilim[1]=3; ilim[2]=4;
Index<3> ind(ilim);

Constructs for defining arbitrary index sets, akin to
set in Pascal [25], makes it possible to define non-
contiguous subsets I ′′ of I ′. We may now declare a
Collection<I,T> variable A to have double as
elements and 3 indices in the range of i1, i2, i3 from
above by

Collection<Index<3>,double> A(ind);
ilim[0]=2; ilim[1]=2; ilim[2]=2;
set(ind,ilim);
update(A,ind,5.2);

The last three statements set the index ind to
(2, 2, 2) and then updates the element at that position
in A to 5.2.

The methods for a Collection class are basically
the same as for the Machine classes.

– methods map to perform an argument procedure
f on the local data of type T in parallel for each
data element i ∈ I ′ of the index domain, where
the behaviour of f may depend on the index i, but
f is only allowed to access data local to its index
i,

– (several) methods for structured and unstructured
permutations of data, as needed by the user,

– methods for broadcast, reduce (with an arbitrary
associative operation ⊕), prefix etc., as needed by
the user,

– methods to update and read individual data values
at specific indices i ∈ I ′, and

– methods for extracting and replacing all elements
corresponding to a subset I ′′ of I ′.

3A rank n index set I is such that the elements of I can be identified
by n independent indices (i1, . . . , in) ∈ I .
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The majority of the operations are only defined as
needed by the user. This is because different appli-
cations have different requirements, and by tuning the
interface of Collection to the needs of the user we
lessen the demands on its implementation, making it
easier to provide versions tuned for different parallel
machines.

The important aspect of the Collection abstrac-
tion is that it promotes access to the entire structure at
once, separating permutation operations from compu-
tations and element update operations. This promotes
a programming style which discourages arbitrary ac-
cess patterns to data elements, but any useful access
pattern may of course be defined in an appropriate per-
mutation operation. It also obliterates a construct like
HPF’s “independent do” directive which only has a
meaning for explicitly indexed elements in loops. In-
stead this will be built into the requirements of rele-
vant (unstructured) permutation operations or be han-
dled by map operations. For example, if computa-
tions f and g are to be applied to elements indexed
by disjoint subsets J, K ⊆ I ′, respectively, then map-
ping an operation p(i,x) for index i and data element
xwith bodyif i in J then f(x) else if i
in K then g(x) over the elements of the collection
will do the trick.

The user oriented permutation operations should be
restricted as much as reasonable. The more limitations
that can be placed on these permutations, the better, as
this will give a larger freedom of choice for the parallel
embeddings.

The rest of this section will first present an approach
to programming numerical software well suited for us-
ing the Collection abstraction. Then we will dis-
cuss implementing sequential and parallel versions of
Collection and how to define the Machine class.

3.1. The Sophus library

As noted, the use of the proposed data parallel frame-
work requires a more holistic view of programming
than the elementwise manipulations commonly found.
But using this is feasible. We have used it with success
in the area of partial differential equations (PDEs) [19].

Historically, the mathematics of PDEs has been ap-
proached in two different ways. The applied, solution-
oriented approach uses concrete representations of vec-
tors and matrices, discretisation techniques, and nu-
merical algorithms. The abstract, pure mathematical,
approach develops the theory in terms of manifolds,
vector and tensor fields, and the like, focusing more on

the structure of the underlying concepts than on how to
calculate with them (see [39] for an introduction).

The former approach is the basis for most of the PDE
software in existence today. The latter has very promis-
ing potential for the structuring of complicated PDE
software when combined with object-oriented and tem-
plate class based programming languages. Some cur-
rent languages that support these concepts are Ada [3],
C++ [42], Eiffel [29] and GJ [7]. Languages that
do not support templates, such as Fortran-90 [1] and
Java [15], may also be used, but at a greater coding
cost.

The Sophus library framework [18,20] provides the
abstract mathematical concepts from PDE theory as
programming entities. Its components are based on the
notions of manifold, scalar field and tensor field, while
the implementations are based on conventional numer-
ical algorithms and discretisations. Sophus is being in-
vestigated by implementing it in C++. The framework
is structured around the following concepts:

– Variations of the basic collection classes as
sketched above. The map operations for numer-
ical operations like +, * have been explicitly de-
fined.

– Manifolds. These are sets with a notion of prox-
imity and direction. They represent the physical
space where the problem to be solved takes place.

– Scalar fields. These may be treated as arrays
indexed by the points of the manifold with re-
als as data elements. Scalar fields describe the
measurable quantities of the physical problem to
be solved, and are the basic layer of “continuous
mathematics” in the library. The different dis-
cretisation methods provide different designs for
the implementation of scalar fields. A typical im-
plementation would use an appropriate collection
as underlying discrete data structure. In a finite
difference implementation partial derivatives are
implemented using simple shift permutations and
arithmetic operations on the collection.

– Tensors. These are generalisations of vectors and
matrices and have scalar fields as components.
Tensors are implemented using collections with
scalar fields as template arguments.

– Equation administrators. These handle the test
functions for finite element methods, volumes for
finite volume methods, etc., in order to build (and
solve) systems of linear equations. Again, these
classes are implemented using appropriate collec-
tions.



236 M. Haveraaen / Machine and collection abstractions for user-implemented data-parallel programming

Each of the collections classes used in the abstrac-
tions above may have a different implementation.

A partial differential equation uses tensors to repre-
sent physical quantities in a system, and it provides a
relationship between spatial derivatives of tensor fields
and their time derivatives. Given constraints in the form
of the values of the tensor fields at a specific instance
in time and relevant boundary conditions, the aim of
a PDE solver is to show how the physical system will
evolve over time, or what state it will converge to if left
by itself. Using Sophus, the solvers are formulated at
the tensor layer, giving an abstract, high level program
for the solution of the problem.

3.2. Implementing the abstractions

3.2.1. The Collection classes
Any given Collection variant may be imple-

mented in many ways. Different sequential and dis-
tributed implementations provide different data layout,
data traversal and parallelisation strategies. A config-
uration for a program will define which of these im-
plementations, and hence strategies, to use. Since the
collection classes are data abstractions, a new version
may be implemented by the user, e.g., if a new hard-
ware topology should require it. This also gives an op-
portunity for experimenting with optimisation and par-
allelisation strategies under full programmer control.

A sequentialCollection is a normal data abstrac-
tion, implemented using sequential code, e.g., using the
standard array structures of a programming language.
The data layout in memory will be significant if issues
like cache misses etc. are important for the target ma-
chine. Configuring a program from sequential collec-
tions will give a sequential program.4 Sequential col-

4Ideally such a program should have the same run-time efficien-
cy as a conventionally written program, where the data permutation
patterns are intermixed with expressions. This will often not be the
case, see the discussion in [14], due to current compiler optimisation
technology. This technology is geared towards certain programming
styles, giving large efficiency improvements to programs expressed
using certain idioms, with little or no improvements on programs
written using other styles. But optimisation technology is not static,
and history has shown that it will adapt to new usage idioms, sup-
porting styles which people believe are important. A discussion of
recent optimisation technology improvements for C++ can be found
in [36]. User controlled optimisation techniques based on abstraction
oriented programming approaches are also being developed, see for
example [43,14]. Thus one’s fear that the intense use of abstractions
may slow down a program may be confirmed by current benchmarks,
but this is a situation that should change quickly when the usefulness
of abstraction oriented techniques has been established.

lections may be nested freely in the same way as any
other data type constructor.

A parallel version of the collection classes may be
achieved using aMachine abstraction as data structure
for Collection. We assume that we may distribute
a collection data type in isolation from the rest of the
program, that it then can be nested with other data type
constructors, and that the set of distributed variables
in a program will give a coherent distribution of that
program. These assumptions are normally satisfied.

All collection classes which satisfy the same inter-
face and functionality are interchangeable, irrespec-
tively of whether the implementations are sequential
or parallel. Thus a program that uses Collection
classes may be run on sequential and parallel machines
without altering the program code. The key is the con-
figuration where whichCollection implementation
to use is defined.

Consider the simple example of a matrix data struc-
ture BlockCollection<P,J,T>. We want to dis-
tribute it among the processors of a parallel machine
as a blocked matrix implementation, where the index
domain P for the blocks coincide with the index set for
the processors of the target machine, and each block
has index domain J . Distributing the blocks directly
on the processors would correspond to the data struc-
ture Machine<Collection<J,T>>, where the in-
ner class Collection<J,T> is sequential, i.e., is in
local memory at each of the processors. This can be
expressed by the C++ template class declaration

template
<class P, class J, class T>
BlockCollection
{ Machine<Collection<J,T>> B;

. . .
public:
void blockperm();
void columnperm( int j );
. . .

}
whereblockperm andcolumnperm are two of pos-
sibly many permutation operations for this collection
class. Assume that blockperm is an operation that
will permute the blocks in a pattern required by the us-
er, for instance for a block matrix multiplication. If this
permutation pattern coincides with the topology of the
machine,blockpermmy be implemented using a call
directly to one of Machine’s permutation operations
perm.

template



M. Haveraaen / Machine and collection abstractions for user-implemented data-parallel programming 237

<class P, class J, class T>
void BlockCollection<P,J,T>::

blockperm()
{ B.perm(); }

The permutation operation columnperm(int j)
which permutes column j of each block between the
blocks in the pattern of the topology,can be code by first
extracting the column at all processors, then permuting
them, and finally replacing the permuted column on all
processors.

template
<class P, class J, class T>
void BlockCollection<P,J,T>::

columnperm(int j)
{ Machine<Collection<J,T>> C;
map( B, extract, j, C );
C.perm();
map( B, replace, j, C );

}
Here extract(Collection<J,T> M, int

j, Collection<J,T>& c) is a Collection
operation that extracts column j of the matrix M
and stores it in the column variable c. The op-
eration replace(Collection<J,T>& M, int
j, Collection<J,T> c) will do the opposite,
i.e., replace column j in M by c. These operations
are performed on all processors by the map operations,
and will, for each block at each processor, in parallel,
extract and then replace the appropriate portion of the
distributed variable C. The distributed data in C is per-
muted according to the topology of Machine between
the mapped extract and replace operations.

The permutation patterns needed by the user will
not always match exactly the communication topolo-
gy of the target machine. Then the implementation
of the permutation operations for the collection will
require more complex expressions of communication
operations. Most of these communication expressions
will in any case be straight forward, since the machine
topologies are adapted to the permutations likely to be
needed by users. This typically includes the regular
permutations needed for matrix multiplication, many
linear equation solvers, fast Fourier transforms, finite
difference methods, etc. At the general level, it has
been shown [31] that any regular permutation pattern
may be built in a small number of steps from a few ba-
sic communication operations, namely those of meshes
and hypercubes. The cost of finding the optimal se-
quence may be fairly high, but once found, it may be

coded in the implementation of a Collection class
and freely reused.

Irregular permutation patterns may also be defined as
a permutation operation on the collection class [37], ir-
respectively of whether such communication is directly
supported by hardware. In fact, it may be beneficial
to implement unstructured permutations by a sequence
of structured permutations, even if there is hardware
support for irregular permutations [4].

If we look closer at the problem of distributing a
data type Collection<I,T> by the data structure
Machine<Collection<J,T>>, for a machine
with processors indexed by P , we see that we can de-
fine an injective location mapping � : I → P ×J . This
forces a lower bound on the size of J given I and P .
Then �(i) = (p, j) will indicate which processor p ∈ P
and which index j ∈ J at that processor the element i
of the collection Collection<I,T> is mapped to.
This is true both when the number of data elements is
larger than the number of processors (the most common
case), but also when there are more processors than
elements in the index domain I . In that case J may
be taken to be a one-element set, which is equivalent
to declaring the data structure Machine<T> rather
than Machine<Collection<J,T>>. The sequen-
tial case is when the set P contains one element. Then
the data structure reduces to Collection<J,T> and
� defines a reindexing of the data elements, e.g., how
to map a rank n index set I into a rank 1 index set J .

The location mapping � can be defined from two
functions, the distribution mapping d : I → P and
the local memory location mapping e : I → J , by
�(i) = (d(i), e(i)). The functions d and e define
the distribution among processors and memory lay-
out within a processor of the data, respectively. Such
functions may be used explicitly in the implementa-
tion of the collection, or may be given implicitly by
the way data of Collection<I,T> is addressed on
Machine<Collection<J,T>>. It is always use-
ful to state these functions explicitly, as this is a good
documentation of the data layout. Normally one would
require d to be surjective so that all processors receive
data. Also, making e surjective would ensure a good
utilisation of memory at each of the processors. Com-
mon strategies for d and e include address splitting,
where some bits of an index i ∈ I are chosen as proces-
sor number and some bits are chosen as location index
within each processor. This gives a uniform distribu-
tion of the data elements, but may not give a uniform
distribution of work load between processors. If there
is some subset I ′ ⊆ I that we expect to be heavily
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compute intensive, we would prefer that the distribu-
tion mapping d maps the elements of I ′ as uniformly
as possible across the processors, and how the rest of
the data is mapped is less crucial.

Equally important is taking into account the com-
munication topology of the target machine in case
of a distributed memory machine. Permutations of
Collection<I,T> will have to be expressed as
communications of Machine, and the more directly
we may exploit the hardware topology, the more effi-
cient our program will become.

Sequential and shared memory machines apparently
have no network communication topology in the tradi-
tional sense. But these typically exhibit complex no-
tions of memory hierarchies: various caches, non-local
memory, disk storage for paging, etc. Constraints may
then be put on the local memory location mapping e
to utilise hierarchical memory efficiently. In practice
this seems to be more difficult to control than the utili-
sation of processors, as the strategies used by memory
management systems rarely are available to application
developers. For high performance applications, cache
and memory misses may be more costly than poor par-
allel load balancing. Currently we are forced to exper-
iment in the dark with different memory localisation
strategies, and rely on the quality of compilers to avoid
unnecessary high execution costs in this area.

When building complex programs using collection
classes one will often find that collection classes are
nested within collection classes. This is the case for
the Sophus framework, where the tensor fields are col-
lections of scalar fields, which themselves are imple-
mented using collections of reals. Sequential imple-
mentations of collection classes may be nested freely
with sequential and parallel classes. A collection class
based on a Machine class can be nested within an-
other parallel collection class only if we have a nested
parallel machine structure, e.g., a networked cluster of
multiprocessor machines. Some approaches to nested
parallelism exist at the programming language level,
see [5], and may be exploited to allow such nesting,
but this requires advanced handling by the compiler.
Otherwise machine classes should not be nested in a
program configuration, neither directly nor indirectly,
hence we may only have one parallel collection class in
the construction of a nested data structure. If the par-
allel collection class is deeply nested, we typically get
fine-grained parallelism (large data structure with par-
allel replication of the small parts). If the parallel col-
lection is one of the outer classes we tend to get coarse
grain parallelism (a few parallel instances of large data
structures).

3.2.2. The Machine classes
The Machine class is where the data distribution

and parallelism is implemented directly in low-level,
hardware oriented concepts. This is in a setting where
we only have to worry about the hardware characteris-
tics and not about data partitioning, virtualisation, user
defined permutations, etc. The main implementation
techniques available are

– a sequential language together with message pass-
ing akin to MPI, typical for programming MIMD
machines, but many message passing libraries
have also been adapted for SIMD machines, and

– a language with specific parallel constructs for the
target hardware, such as the data parallel C dialect
MPL for the MasPar computer series, typical for
programming SIMD machines.

Although general, platform independent, parallel
languages exist, these will seldom be suitable for im-
plementing a Machine class, since they provide an
extra layer of abstraction which destroys the close re-
lationship with hardware that we want to achieve. The
closer we are to the hardware, the better it is in the case
of implementing the Machine classes.

Building a Machine class using message passing
in principle opens up for all the problems of showing
correctness that are associated with task parallelism.
But the SPMD (Single Program, Multiple Data) restric-
tion of the MIMD model provides assumptions which
greatly simplify correctness arguments in our frame-
work. An SPMD execution of a program makes iden-
tical copies of the same program code and runs them
concurrently, one on each processor. The only place
where communication takes place in our framework is
within the permutation, broadcast/reduce, update and
read operations of Machine. If certain simple guide-
lines on writing program code is obeyed, these will be
executed synchronously in the SPMD model. So we
just have to ensure that the communications are cor-
rect within each of these communication operations.
Thus the reasoning for correctness is simplified from
showing correctness for all executions of a collection
of tasks [33], to showing correctness for all executions
of each of the permutation procedures. This can be
shown once for each implementation of a machine ab-
straction – and need not be repeated for each program
being developed as for general task parallelism. The
reason is that operations on Machine<T> are collec-
tive operations performed by all SPMD processes on
the same arguments, see [2] for details. In contrast,
message passing calls in the MIMD style, even if ex-
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ecuted as SPMD processes, are generated unrestricted
on each processor, requiring extensive proofs to guar-
antee correct matching of communication at all stages
of the program.

The SPMD implementation of Machine for MIMD
execution on P processors may be obtained by the
following.

– Use T as data structure for Machine<T>.
– map executes the argument procedure on the data

structure.
– Permutations are implemented by appropriate

message passing send/receives or permutations.
– Broadcast and reduce/prefix operations are imple-

mented as supported by the message passing sys-
tem. If not supported, they will not be provided
by the machine abstraction.

– Individual requests for updates and reads are di-
rected to the appropriate processor using broadcast
or send/receive operations.

With this strategy all data is declared on all proces-
sors, which gives a P -indexed set of data, and all opera-
tions are automatically run in parallel on all processors.
The reason is that the SPMD execution style implicitly
distributes all variables by replicating the whole pro-
gram. This allows the compiler to be ignorant about the
parallel structure of the program. Only the Machine
implementation is aware of this fact, so only the ab-
stract variables defined via the machine class will be
truly distributed, the others will be replicated. This also
goes for the computations, which will be replicated for
all sequential variables, and only the distributed vari-
ables will benefit from the parallel execution. Since
the most compute-intensive variables normally are de-
clared using Machine, the repeated computation, in
parallel, of the replicated variables should represent a
small fraction of the total time. This then gives a good
speed-up, see the benchmarks in Fig. 8 for the applica-
tion SeisMod.

The communication operations for Machine must
be provided for any type T, not only the predefined
types. This may add some technical difficulties in the
implementation of Machine, as any composite, non-
primitive type, may have to be broken down into prim-
itive components, transmitted, and then be rebuilt by
the receiver.

The technique of overlapping communication oper-
ations with computation to reduce waiting time is dif-
ficult to achieve in the proposed framework. It would
require splitting the Machine communication oper-
ations into: communication initiate and communica-

tion close suboperations. The splitting would have to
be propagated up to the collection abstractions, which
would violate the uniformity of the interface for dif-
ferent collection class implementations, especially be-
tween sequential and parallel versions. The splitting
would also make program development much more dif-
ficult. A way to handle this is through a tool like Code-
Boost [14] which could utilise the algebraic properties
of the communication suboperations to restructure the
program when such overlap is required.

ProgrammingMachine classes does not run into the
problem of communication between tasks if an SIMD
language is used, where all operations are synchronous.
SIMD language attributes will typically identify data
as distributed (indexed by the processors) or sequential
(replicated on the processors or stored on a frontend
processor). Permutations, broadcasts, reduce/prefix
operations will be supported in the SIMD language if
available on the machine. Likewise with access to in-
dividual elements. So an SIMD language will have di-
rect constructs supporting all operations of a Machine
class. These operations should also be at a sufficient-
ly low level to achieve efficiency at the hardware lev-
el. A drawback may be that many machines, hence
their SIMD languages, have restrictions on which data
types may be moved between processors in atomic op-
erations, or which associative operations are supported
by reduction/scan operations. The general forms must
then be implemented for the machine classes. More
seriously, some SIMD languages have restrictions on
how to declare distributed data. The problems this en-
tails and how to handle this is outside the scope of this
paper, see [17] for some indications.

3.2.3. The Sophus collection classes
The abstraction oriented approach to parallelisation

has been used in Sophus. There the index domain
I for the Collection is an n-dimensional discrete
Cartesian index space, so the Collection can be
considered a rank n array, i.e., an array with n indices.

A Collection class with shift operations, for an
arbitrary distance along any of the n dimensions, as
the permutations, has been defined. It has been imple-
mented in both a sequential version and a parallel ver-
sion for the fully connected machine. The MPI mes-
sage passing library provides the operations needed for
FC Machine, as well as more user level operations,
and was used directly for the collection code. Since
MPI is fairly portable, this gave easy access to parallel
implementations on both SGI Cray Origin 2000 and
a network of 32 SUN Ultra-10 connected by ethernet.
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Ideally we should have used language and communica-
tion operations as low-level and close to the hardware
as possible. For pragmatic reasons we did not do this
in our pilot implementation. The implementations of
the collection data structure and methods have been de-
signed with the specific requirements from the Sophus
application programs SeisMod in mind [19].

The sequential implementation ofCollection us-
es a rank 1 array with index domain J as main data
structure. Then the map operations just traverse these
arrays linearly, providing a very simple but fairly effi-
cient implementation, since we get uninterrupted loops
over the data. The mapped numerical operators were
explicitly defined. The shift operations rearrange da-
ta in the array, and the choice of local memory loca-
tion mapping e : I → J is essential for the speed of
these operations. The layout is such that shifts in the
lower dimensions move large consecutive blocks of da-
ta, while the blocks become smaller and more frag-
mented as the dimension number increases. Shifts are
performed with equal frequency in all dimensions, but
since the number of dimensions normally is low this
generally gives good behaviour.

The parallel implementation of Collection also
uses a rank 1 array as main data structure for the effi-
cient implementation of map. Since a fully connected
architecture does not put any constraints on data move-
ment, the choice of distribution mapping d : I → P
is independent of such topological constraints. The
data sets to be stored in Collection were typical-
ly rectangular, so splitting the data sets into equally
large blocks by cutting the rectangle in pieces along
the longer side gave a simple implementation with a
balanced distribution of data and reasonably low com-
munication costs. The local memory location mapping
e : I → J uses the same principle as in the sequen-
tial case, taking care that contiguous blocks of data are
used for interprocessor permutations. Other usage pat-
terns would benefit from other distributions of data. In
general, communication costs will be lowest if the data
blocks distributed are as square as possible.

4. Benchmarks

Test runs of the pilot implementation of this frame-
work approach to parallelisation were made on a net-
work of 32 SUN Ultra-10 (UltraSPARC-IIi processor
with 300 MHz clock and 99.9 MHz bus and 128 MByte
internal memory) connected by a 10MHz ethernet net-
work and on an SGI Cray Origin 2000 with 128

processors. On both computing resources the speed
of both the sequential and parallel implementations
were measured, and a comparison with similar com-
putations in sequential Fortran-90 has been includ-
ed. To show certain effects of hierarchical memory,
the tests were run using rank 3 array data sets with
8∗8∗8 = 512, 16∗16∗16 = 4096,32∗32∗32 = 32 768,
64∗64∗64 = 262 144 and 128∗128∗128 = 2 097 152
data elements each. These cube shapes do not reflect
the actual usage patterns of the applications the pilot
implementation was tuned for. The tests are for single
precision floating point numbers (4 bytes), thus yield-
ing collection variables with data sizes of 2 kB, 16 kB,
131 kB, 1.0 MB and 8.4 MB each, respectively. Five
measurements were taken for each tabular entry, and
the median value (at processor zero) has been used. The
machines are multi-user machines, and the tests were
run during normal operation, but at a time with reason-
ably low load. On the SUN network the test runs would
typically be the only compute-intensive jobs running,
while the Cray had idle processors and a load between
50 and 80 during most of the tests.

The test programs were compiled using commands
equivalent to those in Fig. 1, where g, which ranges
through 8, 16, 32, 64 and 128, designates the number
of data elements in each direction, and p, which ranges
through 1, 2, 4, 8, 16, 32, 64 (as relevant), is the number
of processors the code is intended for. The flag Par
controls when the configuration uses the parallel imple-
mentation of Collection. No code in the program,
or other classes used, is dependent on this flag.5

The first set of tests is on the speed of the shift
operation.

– Direction 1: data movement internal for each pro-
cessor, large contiguous segment moved at each
processor.

– Direction 2: data movement internal for each pro-
cessor, many small segments moved at each pro-
cessor.

– Direction 3: in the parallel case, contiguous seg-
ments communicated between processors. In the
sequential case, the data segments moved are more
fragmented than those for direction 2.

5This is not fully true in our test programs, as we have included
(in the main program) some code that prints out the configuration,
number of processors being used and the execution speed of the tests.
This code is sensitive to the configuration flags. The rest of the code
is written without regards to these falgs.
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sun4-seq> CC -I. -fast AbstractMatrix-tes-c++.C -DGRIDSIZE=g
sun4-par> CC -I. -fast AbstractMatrix-tes-c++.C -DGRIDSIZE=g -D Par -DNOPROCESSORS=p
sun4-f90> f90 -fast -fixed AbstractMatrix-tes-f90.F -DGRIDSIZE=g -DITERATIONS=1
cray-seq> CC -I. -Ofast AbstractMatrix-tes-c++.C -DGRIDSIZE=g
cray-par> CC -I. -Ofast AbstractMatrix-tes-c++.C -DGRIDSIZE=g -D Par -DNOPROCESSORS=p
cray-f90> f90 -cpp -Ofast AbstractMatrix-tes-f90.F -DGRIDSIZE=g -DITERATIONS=1

Fig. 1. Compilation commands for the benchmarks.

SUN4 Mflshps, Mflshps, Mflshps,
processors direction 1 direction 2 direction 3

83 elts. Total Per proc. Total Per proc. Total Per proc.
1 74 74 55 55 21 21
2 41 20 88 44 0.49 0.25
4 71 18 136 34 0.37 0.09

seq 76 56 21

163 elts. Total Per proc. Total Per proc. Total Per proc.
1 98 98 70 70 28 28
2 61 30 178 89 2.4 1.2
4 143 36 350 88 1.6 0.41
8 271 34 622 78 0.87 0.11

seq 63 60 29

323 elts. Total Per proc. Total Per proc. Total Per proc.
1 51 51 52 52 36 36
2 66 33 96 48 5.3 2.6
4 92 23 206 52 6.3 1.6
8 338 42 624 78 3.4 0.43
16 695 44 1187 74 2.9 0.18
seq 53 53 38

643 elts. Total Per proc. Total Per proc. Total Per proc.
1 32 32 32 32 25 25
2 67 33 91 45 11 5.4
4 159 39 209 52 13 3.2
8 281 35 384 48 6.9 0.86
16 646 40 816 51 6.3 0.39
32 1208 38 1587 50 5.0 0.16
seq 32 31 25

1283 elts. Total Per proc. Total Per proc. Total Per proc.
1 29 29 32 32 29 29
2 53 27 67 33 21 10
4 102 26 131 33 23 5.7
8 203 55 263 33 16 2.0
16 509 32 745 47 15 0.92
32 964 30 1584 50 8.4 0.3
seq 29 32 29

Fig. 2. Test runs showing speed of shift operation on a network of SUN Ultra-10 workstations

The results are given in Figs 2 and 3. The speed is
given in million of floating point numbers shifted per
second, Mflshps.

If shifting of data in all directions is an important as-
pect of an algorithm,we find that small problems should
definitely be run in single processor mode. Larger

problems may have an optimal number of processor
to run on, see the effects on direction 3 (“total” col-
umn). For 643 elements the optimum seems to be be-
tween 8 and 16 processors on the Cray. Adding more
processors probably will decrease the total throughput
of the program due to the relative dominance of the
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Cray Mflshps, Mflshps, Mflshps,
processors direction 1 direction 2 direction 3

83 elts. Total Per proc. Total Per proc. Total Per proc.
1 59 59 53 53 34 34
2 60 30 88 44 8.2 4.1
4 100 25 140 35 7.6 1.9

seq 60 55 35

163 elts. Total Per proc. Total Per proc. Total Per proc.
1 76 76 73 73 52 52
2 104 52 142 71 24 12
4 200 50 270 68 23 5.8
8 367 46 495 62 20 2.5

seq 76 73 52

323 elts. Total Per proc. Total Per proc. Total Per proc.
1 28 28 67 67 47 47
2 93 47 135 68 23 12
4 235 59 322 81 31 7.7
8 502 63 657 82 34 4.3
16 899 56 1264 79 37 2.3
seq 28 66 44

643 elts. Total Per proc. Total Per proc. Total Per proc.
1 27 27 68 68 55 55
2 110 55 146 75 29 14
4 220 55 294 73 44 11
8 441 55 585 73 55 6.9
16 799 50 1170 73 66 4.1
32 1313 41 2769 87 47 1.5
seq 27 67 54

1283 elts. Total Per proc. Total Per proc. Total Per proc.
1 17 17 28 28 18 18
2 36 18 82 41 24 12
4 146 37 289 72 43 11
8 360 45 597 75 59 7.3
16 483 30 1194 75 79 4.9
32 508 16 2529 79 74 2.3
64 374 5.8 5002 78 7.8 0.12
seq 20 36 27

Fig. 3. Test runs showing speed of shift operation on a SGI Cray Origin 2000 multiprocessor

slow interprocessor communication as the number of
processors increase. The same effect is visible for the
SUNs. Due to the much higher communication costs
over an ethernet network, the ideal number of proces-
sors is lower than for the Cray. With 643 elements,
around 4 processors seems best.

For the mapped arithmetic operations the story seems
different. These have no communication and scale
nicely when parallelised. See Figs 4 and 5 for the ad-
dition of two matrices and Figs 6 and 7 for a scalar
multiplied with a matrix. Computation speed is mea-
sured in million of floating point operations per sec-
ond, MFLOPS. For the Fortran-90 tests we used 3-
dimensional arrays and the built-in array operations.
What is startling is the relationship between C++ and

Fortran-90 execution speeds. The C++ implementa-
tion is ahead on small arrays. On the SUN, Fortran-90
speeds only approach C++ speeds for larger data sets,
while on the Cray, Fortran-90 manages to surpass C++
speeds for the larger data sets. This may imply that
the Fortran compiler on the Cray does a better job of
aligning data with memory blocks.

Also noticeable on both platforms are irregular
changes in execution speed per processor as the data
size increases. Matrix-scalar multiplication, which in-
volves only one large collection, seems to outperform
addition, which involves two large collections. These
changes signals two things. The first is the problem
of hierarchical memory, and the interplay between data
size and cache/memory misses. This will give lower
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SUN4 83 elts. 163 elts. 323 elts. 643 elts. 1283 elts.
Add Total Per proc. Total Per proc. Total Per proc. Total Per proc. Total Per proc.

1 49 49 27 27 27 27 17 17 17 17
2 97 49 54 27 53 26 34 17 34 17
4 190 48 193 48 108 28 81 20 68 17
8 — 393 49 215 27 211 26 134 17

16 — — 658 41 423 26 269 17
32 — — — 857 27 740 23

seq 49 27 26 17 17
f90 6.8 10 11 8.7 8.5

Fig. 4. Test runs showing speed of 3-dimensional matrix addition on a network of SUN Ultra-10 workstations

Cray 83 elts. 163 elts. 323 elts. 643 elts. 1283 elts.
Add Total Per proc. Total Per proc. Total Per proc. Total Per proc. Total Per proc.

1 36 36 36 36 28 28 25 25 11 11
2 71 35 72 36 55 27 51 26 10 10
4 138 34 144 36 110 27 101 25 60 15
8 — 288 36 288 36 207 26 129 16

16 — — 579 36 435 27 430 27
32 — — — 882 28 880 28
64 — — — — 1096 17

seq 40 40 26 22 13
f90 19 35 47 26 31

Fig. 5. Test runs showing speed of 3-dimensional matrix addition on a SGI Cray Origin 2000 multiprocessor

speeds as data size increases. The other effect is that of
longer arrays allowing more efficient use of vectorisa-
tion and loop optimisation technology. This should give
higher execution speeds as data size increases. This
effect also takes place on each processor in the parallel
case, where often the per processor speed increases as
the number of processors increase. Thus it seems very
important to be able to control data alignment. Current-
ly no explicit language or library construct for this is
available. Only indirect techniques, such as reversing
the ordering of declarations or changing the initialisa-
tion ordering for the data arrays, can be used to achieve
this kind of alignment of data.

Random load distributions on multi-user machines
may have a marked influence on the speed of programs
using large data sets. This was observed for the tests.
Normally the speeds of a series of test runs would vary
by no more than 10–15%, but on the Cray the individual
measurements for the test case of 1283 elements would
vary far more than this. In extreme cases a factor of
more than 2 was observed between the slowest and
fastest test runs.

To confirm the efficiency on a real program, the par-
allelisation strategy was tested on the application Seis-

Mod, a collection of programs for seismic simulations6

written using the Sophus library. The tests were run
on the isotropic and transverse isotropic versions of the
program. The isotropic case means that the rock the
seismic wave traverses has identical physical properties
in all directions. In the transverse isotropic case the
rock will have different properties in the vertical and
the horizontal directions. The latter case has a more
complex mathematical formulation than the former, re-
quiring more computations per timestep. The program
was run for 1000 time-steps, and distributed on varying
numbers of processors. Speed-up is measured as se-
quential simulation time divided by parallel simulation
time. Two parallelisation strategies were chosen. The
first, shown in Fig. 8, parallelises the scalar field, the
inner collection class of Sophus, which gives a fine-
grained parallelisation. Here we see that the execution
time of the main simulation decreases with the number
of processors, but with a noticeable efficiency drop-off
starting at 8 processors. This is probably due to the loss
of efficiency in shifting data between processors when

6SeisMod is marketed by UniGEO a.s., Thormøhlensgt. 55, N-
5008 Bergen, Norway.
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SUN4 83 elts. 163 elts. 323 elts. 643 elts. 1283 elts.
Mult Total Per proc. Total Per proc. Total Per proc. Total Per proc. Total Per proc.

1 49 49 49 49 34 34 27 27 27 27
2 98 49 100 50 68 34 66 33 54 27
4 192 48 198 50 139 35 137 34 108 27
8 — 378 47 386 48 277 35 217 27

16 — — 779 49 553 35 513 32
32 — — — 111 35 1084 34

seq 49 49 35 27 27
f90 15 30 32 27 27

Fig. 6. Test runs showing speed of 3-dimensional matrix–scalar multiplication on a network of SUN Ultra-10 workstations

Cray 83 elts. 163 elts. 323 elts. 643 elts. 1283 elts.
Mult Total Per proc. Total Per proc. Total Per proc. Total Per proc. Total Per proc.

1 43 43 43 43 38 38 38 38 19 19
2 85 42 86 43 77 39 77 38 55 27
4 167 42 172 43 181 45 154 39 141 35
8 — 343 43 345 43 308 39 299 37

16 — — 690 43 619 39 299 37
32 — — — 1435 45 1230 38
64 — — — — 2451 38

seq 51 52 39 39 26
f90 28 71 71 61 50

Fig. 7. Test runs showing speed of 3-dimensional matrix–scalar multiplication on a SGI Cray Origin 2000 multiprocessor

SeisMod, fine Isotropic Transverse isotropic
Cray proc. Init. Simulate Speed-up Init. Simulate Speed-up

1 7s 1899s 0.9 11s 2687s 1.1
2 17s 1031s 1.6 27s 1538s 1.9
4 28s 543s 3.0 44s 894s 3.3
8 40s 331s 5.0 56s 504s 5.8

16 56s 257s 6.4 68s 347s 8.5

seq 5s 1641s 1 9s 2948s 1

Fig. 8. Execution times for application SeisMod with parallelisation of scalar fields (fine grain).

SeisMod, coarse Isotropic Transverse isotropic
Cray proc. Init. Simulate Speed-up Init. Simulate Speed-up

1 6s 1957s 0.8 10s 3067s 1.0
2 14s 2527s 0.7 19s 3737s 0.8

seq 5s 1648s 1 9s 3061s 1

Fig. 9. Execution times for application SeisMod with parallelisation of tensor fields (coarse grain).

the number of processors increase. The initialisation
times increase dramatically with the number of proces-
sors, but will amount to a minor part of total execution
times for normal simulations. The second case, Fig. 9,
shows parallelisation of the tensors fields, the outer col-

lection class in Sophus, giving a much coarser grain.
The tensor fields have between 2 and 6 components,
and provides a less balanced distribution of the compu-
tational effort. We see this in an increase in execution
time when the number of processors increase.
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5. Conclusions

Data parallel programming coupled with data ab-
straction provides a powerful framework for the de-
velopment of application programs that easily port be-
tween sequential and parallel machines. Porting does
not require any reprogramming, just a selection of the
appropriate parallelisation module from a library. It
also allows the programmer to develop new parallel
modules, either for moving onto a new architecture,
or for application specific parallel optimisations. This
requires that the parallel module may be nested at any
level of the application program. This is automatically
satisfied for a normal compiler and SPMD execution as
supported by, e.g., MPI [40].

To fully utilise this framework for data parallel pro-
gramming it must be coupled with programming styles
such as that of Sophus [18–20] for coordinate free nu-
merics. This is a style that provides a natural focus
on permutations and operations mapped for all data,
rather than on individual data accesses and loops. A
collection abstraction suited for parallelisation may be
used at many levels in an application, providing ample
opportunities for different parallelisation strategies.

Experiments show that this approach scales nicely
with the number of processors and provides a good
speed-up compared to the sequential case if the classes
selected for parallelisation contain many data items to
be distributed. In Sophus this would typically be the
scalar field classes, which implement the discretisation
techniques for the numerical solvers. Similar speed-
up results are shown by Ohta [32]. He proposes to
use the scalar field class as the unit of parallelisation
directly, rather than using a parallelisable collection
to implement it. Programming a parallel version of a
scalar field class directly gives more technical details to
take into account at one time than our proposal does. It
also disregards the possibility for other sources of data
parallelism within an application.

A data parallel collection class proved to be fairly
easy to implement, and yet obtain a speed that is not too
far from equivalent Fortran-90 speed. For a compar-
ison of efficiency differences between C++ and For-
tran see [36]. We still expect a certain loss of effi-
ciency due to the extra layer of code introduced by
classes Collection and Machine. But at the same
time these classes have clearer algebraic properties than
evident in traditional code. These properties may be
utilised by high-level optimisation tools such as Code-
Boost [14], perhaps regaining more speed than that be-
ing lost.

Machines such as the SGI Cray Origin 2000 and soft-
ware packages such as MPI camouflage the underlying
connectivity of the hardware. Though a useful simpli-
fication for many purposes, the framework we propose
here would allow programmers to take advantage of the
low-level communication topology without sacrificing
program structure. Thus a means of directly accessing
the hardware topology for the purpose of implementing
Machine classes would be useful for further research
on our approach. A similar problem appears in the use
of hierarchical memory structure of high performance
machines, whether this be swapping between memory
and disk or multilevel caches on a processor. This is
presently beyond programmer control, but has a great
influence on program efficiency. We would like to in-
vestigate closer how to control and utilise such memory
structure from a high level perspective.
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