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It has long been acknowledged that the development of sci-
entific applicationsisin need of better software engineering
practices. Here we contrast the difference between conven-
tional software development of CFD codes with a method
based on coordinate free mathematics. The former approach
leads to programs where different aspects, such as the dis-
cretisation technique and the coordinate systems, can get en-
tangled with the solver algorithm. The latter approach yields
programsthat segregate these concernsinto fully independent
software modules. Such considerations are important for the
construction of numerical codes for practical problems. The
two approaches are illustrated on the coating problem: the
simulation of coating a wire with a polymer.

1. Introduction

Numerical codes for solving numerous important
civil and industrial problems have existed for many
years. A great number of these exhibit the problem
which in the computer science community is referred
to as software rot — a deterioration of software quali-
ty as the programs have been modified over the years.
Currently, there is therefore, a considerable amount of
research being undertaken on the restructuring and re-
development of numerical software and a genuine in-
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terest in using modern software engineering practices
in the process, e.g. [1,2,6-8,33,34].

Most numerical codes have been developed within
applied mathematics communities, and the preferred
programming language has long been Fortran, in one
or other of its many versions. Fortran was traditionally
an imperative language with multidimensiona arrays
being the basic type constructor and was without type
abstraction facilities. A change of language, e.g., to
functional or object-oriented does not necessarily in-
volve a basic change in the approach to programming
numerical codes. However, there are genuine benefits
from changing to languages with more powerful soft-
ware structuring concepts. These may include an eas-
ier transition to parallel code, as for Fortran-90, High
Performance Fortran [26] or functional languages, or
amore user friendly interface to advanced data repre-
sentations, asdocumentedfor object-oriented program-
ming.

It is still the case that numerical software develop-
ment has stayed within the conventional, applied math-
ematical framework, the main phases of which can be
summarised as:

1. model the physical problem;

2. formulate an abstract solver algorithm;

3. discretise in space/time, to transform the contin-
uous problem to its discrete counterpart;

4. refine the solver, utilising properties of the prob-
lem (such as symmetries);

5. convert/translate to program code.

This tends to lead to specialised, monoalithic pro-
grams that are only usable within the realm for which
they were devel oped. They are monolithicin the sense
that the whole program was devel oped as one unit for
one purpose. It is often difficult to extract and reuse
parts of the software in programsfor solving different,
but related, problems.

Inthispaper wewill contrast such aconventional de-
velopment approach with onewhichis closer to theun-
derlying pure mathematical concepts. The coordinate
free development process consists of the steps:
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1. model the physical problem;

2. formulate an abstract solver algorithm;

3. refine the solver utilising properties of the prob-
lem (such as symmetries) at the tensor level;

4. translate to program code.

Here the discretisations etc. come in the form of li-
braries which are linked into the code. This technique
has been proposed in [24], and its software foundation
was explored and further developed in [14,17]. A case
study is presented in [16].

In this study a detailed worked exampleis presented
to highlight and contrast the two approaches. Thiswill
clarify the concepts and differences in reasoning that
are used in these two development techniques. Thus,
we utilise two pure-bred approaches, being fully aware
that conventional development now normally is com-
bined with and utilises more advanced software devel-
opment techniques. Few groups have employed the
abstraction oriented technique to such a full extent as
weexploreit here. However, the need for higher levels
of abstraction have been indicated in [1,2], where the
Compose project is described. Compose makes use of
the C++ class library Overture [6] to build a frame-
work for extendable PDE solverswhere PDE problems
are treated as objects. Also in [33] the MAPS system
has been proposed which uses sets and maps on which
to base more abstract types such as grids and meshes.
These can be seen as abstracting the continuous level.
The concepts of coordinate free mathematics, as advo-
cated here, provides abstractions at yet a higher level.
Hopefully, this presentation may inspire othersto try to
advancetheir software technology from a conventional
oneto higher levels.

The particular example we have chosen to develop
is a coating problem for Newtonian flows. Thisis out-
lined in Section 2, where the mathematical develop-
ment leads to a precise agorithmic formulation at a
naturally coordinate free level.

The conventional development process in Section 3
begins by describing briefly the finite element method
(FEM) where, for simplicity, a Cartesian coordinate
system is assumed. Technical details are then supple-
mented at the discrete level. Often different considera-
tions are presented in adigjoint fashion, and the reader
is expected to merge them in a consistent way. The
choice of coordinate system has amarked influence on
how the operators are defined, but thisis often glossed
over a this stage of the development process. This
approach tends to lead to one type of code, whether it
isexpressed in aclassical procedural language such as

Fortran-77, or expressed using object-oriented or even
functional languages.

Subseguently, in Section 4 we demonstrate, in more
detail, how the coordinate free approach, using tensor
mathematics, yields a quite different type of program.
The section introduces the concepts of coordinate free
mathematics, such as tensor fields, describes the So-
phus software library which supports these concepts,
and shows how the FEM would be realised within this
framework. These concepts are then used to develop
the solver for the coating problem at an abstract level,
but with the technical detail needed to devel op aproper
code. This programming style naturally requires the
target languageto have template classes, afeaturelack-
ing from even the more recent versions of Fortran, but
which are present in C++ [28]. This latter language
is now increasingly being used by practitionersin the
field of high performance computing.

In Section 5 the coating problem is modified by
changing from the Cartesian coordinate system to an
axi-symmetric system which is ideal for the simula-
tion. The implications of such are compared under
both programming approaches. For the conventional
devel opment technique, thismay imply extensive mod-
ification and recoding (if say analytical integration is
employed), as the change of coordinate system has a
marked influence on the way the operators are defined.
In contrast, for the coordinate free approach this only
entails a reconfiguration of the solver.

The final section discusses consequences of these
findings.

2. Outline of thefluid flow problem

The computational fluid dynamics problem used for
illustration is that based on a wire coating flow [18].
Here, it is sufficient to consider essentially a Stokesian
setting, that of incompressible flow. Thisisabasis up-
on which to develop the present methodol ogy, subse-
guently to be extended into the non-Newtonian regime.
The overal goal, in the solution of such problems, isto
predict an optimal process design by which a coating
(polymer) of suitable properties may be obtained, e.g.
smooth coating with minimal residual stressing. The
tooling design employed, istubetooling. Thisisshown
schematicaly in Fig. 1.

Theliquid polymer melt undergoesapressure-driven
annular flow within the tooling die, prior to being
dragged by the wirethrough the geometry, asindicated.
This design alows the polymer to find a free surface
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Fig. 1. Tube tooling.

between the die exit and the attachment point on the
wire, involving a drawn-down section.

We beginwith the basic partial differential equations
(Navier-Stokes) to specify the flow problem, and de-
velop aweak, agorithmic form, taking into account a
semi-implicit time stepping scheme. This solver will
then be further refined, in subsequent sections, to pro-
duce executable code using the finite element method
for both the conventional and coordinate free devel-
opment. lterative and direct algebraic solvers, such
as Jacobi iteration and Choleski decomposition, will
be used for different stages. The former is employed
for inverting Mass-matrix based systems, and the latter
for Pressure Poisson Stiffness matrices that are sparse,
symmetric and banded.

2.1. The problem description

The specific type of wire coating problem of rele-
vance is defined via input data sets. The governing
equations for viscous incompressible isothermal flow
may be described, in a coordinate independent form,
by the generalised Navier-Stokes equations

ou

po; T e Viu— V- (2u(sym(Vu)))
+Vp =1

with the associated incompressibility constraint
V-u=0. 2

The parameters and variables with type information
are specified as follows:

— pisthedensity, areal number,

— u(x,t) isthefluid's velocity, a vector field,

- %—‘f is the time derivative of the fluid's velocity, a
vector field,

— u is the viscosity, a scalar field and in general a

function of Vu,

— p(x, t) isthe pressure, ascalar field,

— sym(—) is the symmetrisation operation. For a
matrix 7, it canbedefinedby sym(r) = 1(r+77),
where _T isthe matrix transpose operator,

— f isan externa force acting on the fluid, a vector
field,

— V isthe spatial derivative, whichisused in severa
forms:

1. (v - V)u, the convective derivative of a vector
field, yields a scaled derivative of the vector
field u in the direction of the vector field v,

2. Vp, the gradient, yields a vector field when
applied to a scalar field p,

3. Vu (gradient) yieldsamatrix tensor field when
applied to avector field u,

4. V -u, thedivergence, yieldsascalar field when
“dotted” with avector field u,

5. V - 7 (divergence) yields a vector field when
“dotted” with amatrix tensor field 7.

2.2. Non-dimensional form

Rather than adopting the above dimensional Eq. (1)
directly, the solver will be based on normalised equa-
tions, using a non—dimensional group number, the
Reynold number Re = p““—f“. The scaling factors, al
real numbers, are: length scale ¢; velocity scale ug;
viscosity scale pp; and time scalety. We also simplify
the presentation, by assuming hereon that f = 0. This
yieldsthe formulation, for 0 < Re < 1,

Reaa—ltl// + Re(u' - V')u’ -

—V' - (24 (sym(V'W')))+ V'p' =0

Vi-u' =0 4
where

—u’ = u/uyg isthefluid's dimensionless vel ocity,
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— V' isthe spatial derivative after normalisation (us-
ing an adjusted metric from its dimensional coun-
terpart),

— 1 = u/ o isthe dimensionless viscosity, ascalar
field,

— p’ = p/py isthe dimensionless pressure scaled by
apressure factor, ascalar field.

In addition, the simplification also depends on the
following relationships between the parameters:

uoto = Lo;  po = pouo/lo-

Thisisensured viachoice of uq, £o and 1o. For clarity,
the prime notation is discarded subsequently. In the
steady coating problem considered, Reynold numbers
tend to be small, of typical value Re ~ 10~%. This
is due to the large levels of viscosity involved in these
polymer melt flows.

The particular test problem considered is annular in
configuration and hence two dimensional. The weak
formulation presented in Section 2.6, is valid for two
or three dimensions, and any geometry. The annular
coordinateconfigurationisdetailedin Section 5.1illus-
trating the complexity involved in changing coordinate
systems.

2.3. Time-discretisation and strong form of equations

We now derivetheinitia equationswhichlead to the
matrix Egs (26-28) in Section 3. A semi-discretisation
of Taylor-Galerkin/pressure correction form is applied
to Eq. (3) and solution vectorsu™ and p™ introduced at
discretetimet,, for constant time interval At.

A set of difference equations is now established
which can be used to solve for u™*! and p™*! interms
of u™ and p™. Wefirst take an approximation to %—‘f in
Eq. (3) by considering the half interval (t,,,t,,41/2):

2Re
N
wheres(u) = V - (2usym(Vu)) — Re(u- V)u.
Here, a Taylor-Gal erkin approach is adopted of two-
step form that addresses the convective aspects of the
problem. For afull explanation of thiswell-established
technique see [11,18,30,35].
In order to obtain the solution at time step ¢, 1, we
identify the target equation
Re
At
= s(u"/2) — (1 - 0)Vp" +6Vp"T)

(un+1/2 _ un) — S(U.n) _ vpn (5)

(un+1 o un)

(6)

where 0 < 0 < 1. Here, we have taken a 6 rule pres-
sure gradient approximation and evaluated s at u”*1/2
(we actually take § = 1/2, and so, this is a Crank-
Nicolson formulation). However, since (6) does not
separate u™ ! and p™+! we introduce an intermediate
free variable u*, as the solution of

Re

(' —u") = () - vpr. (7)
Note that with u* also satisfying

Re * n n

S —u) = 6(vp - vy, (@

it followsthat u™*! will satisfy Eq. (6) asrequired. Itis
implied that the velocity u™ at al timest,,, must satisfy
the incompressibility constraint expressed by Eq. (4).
By applying the divergence operator V- to Eq. (8), we
derivethe associated auxiliary equation

Re
At

This Poisson equation for the pressure difference
over a single time step compl etes the problem specifi-
cation. The four vector Egs (5), (7), (9) and (8), will
subsequently give rise to matrix equations once spatial
discretisation has been conducted. This we outline in
Section 3.

Rearranging the eguations yields the following
strong formulation consisting of three steps. The
first step splits into two mathematically similar sub-
steps, following a predictor-corrector pattern (two-step
Taylor-Galerkin). The substeps 1aand 1b calculate the
halfstep u™*+'/2 and the auxiliary u* approximations
to the velocities.

V-u* =0V V(" —p"). 9

— Step 1a
2he
At
=V - (2usym(Vu™)) (10)
—Re(u" - V)u" — Vp"
— Step 1b
Re, ,
E(u —u")
=V (2usym(Vu"+1/2)) (12)

7R€(un+1/2 . V)un+1/2 o vpn

(un+1/2 _ U_n)

— Step 2

OV - (V" —p") = (V-u') (12
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— Step 3
Re
At

These steps are iterated from an initial guessto pro-
duce a steady state solution.

(un+1 o u*) _ 79V(pn+1 7pn) (13)

2.4. Initial and boundary conditions

The system of equations of the previous section are
solved by imposing appropriate initial conditions on
the domain 2,

u(x,0) = up(x)
p(x,0) = po(x),

whereV-uy = 0, and appropriateboundary conditions
onI as
u=g(x,t)only 14
n-o=gs(x,t)onls.

HereI' = I'; U T'5 encloses the domain €2, n is the
unit outer normal on T, g1 (x, ) representsthe velocity
vector prescribedonT'y, go(x, t) designatesthetraction
vector prescribed on I'y, and o is the total Cauchy’s
stresstensor. For anincompressible Newtonianviscous
fluid we have in a Cartesian coordinate system
6ui Guj
8Ij + 8I1 )
where po is a Newtonian fluid viscosity and ¢,; the
unit tensor. The coating problem is a steady flow and
boundary conditions of type I'; only are assumed. In
the most general statement of the problem free surfaces
with steady traction boundary conditions would apply.

Since there is no restriction on the choice of bound-
ary conditions for u* (afree variable), we may equate
u* tou™*! on the complete boundary I'. Theimplica-
tionfrom such achoiceand step 3isthat V(p" ! —p")
should vanish on I'.  Also, the boundary conditions
at step 3 are clearly prescribed. For steady boundary
condition problems of immediate relevance, such as-
sumptions are exact. For transient instances, assuming
smoothness in time for pressure, would indicate accu-
racy to afirst order inthisvariableat least, and henceto
asecond order invelocity fromEq. (13). Thisargument
maintainsthe overall order of the scheme[31]. Weshall
see below, in the variational form of the problem, that
natural homogeneous Neumann boundary conditions
emerge from step 2 and these are a distinct advantage
to this scheme [18,19].

oij = —pdij + po(

2.5. Semi-implicit form of solver

With a Crank-Nicolson treatment of diffusion terms
we derive asemi-implicit time stepping scheme of sec-
ond order accuracy. This alows a wider window of
stability abovean explicit implementation and thus per-
mitsthe use of practical working time steps[18,19,31].
Such advantages continue through to more complex
non-Newtonian settings, where inertial influences via
Reynolds number are low, in contrast to elastic effects
(for further details see[22]). In step 1a, thetermu™ in
the viscous term of the explicit scheme is replaced by
theaverageat ¢, /o andt,,. After rearranging, so that
u"+1/2 gppearsin the differenceterm u”™t'/2 —u™ on
the left hand side only, we obtain for the modified step
1

21e
At
Y (psym(V (a2 - )
— 2V - (sym(V(u"))
—Re(u™ - V)u™ — Vp".

(un+1/2 _ U_n)

(15)

Step 1b istreated in asimilar manner, whereu™+1/2
in the viscous term is replaced by the average of u”
and u*, yielding step 1b’
Re

A —u") = Vo (psym(V(u” —u")

=2V (usym(V(u")) — Vp" (16)
7R€(un+1/2 . v)un+1/2.

The semi-implicit solver is then described by
Eqgs (15,16,12) and (13).

2.6. Weak formulation

The wesak variational formulation of the problem is
now derived. We use two sets of test functions: aclass
of quadratic vector shape functionsv € V and a class
of scalar shapefunctionsq € ). Both sidesof Eqs(13),
(15) and (16) are dotted with the vector shape functions
v and the scalar test functions ¢ are multiplied into the
algorithmic step 2, Eq. (12).

The results are integrated over the whole domain
Q and simplified, via integration by parts. This re-
duces second-order derivatives from the integrands to
first-order and pressure gradients to order zero in the
defining velocity equations. Further simplification is
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achieved using the divergencetheoremwhich givesrise
to the integrals over the boundary I
From Eq. (15) step 1a”’ becomes:

% Q<u”“/2 —u") - vdQ
+/ psym(V(u"/2 —u™)) . VvdQ
Q
B /(u sym(V(u" /2 +u™)) - v = p"v) - ndl
Iy
72/ w(symV(u")) - VvdQ
Q
—Re/ ((u™ - V)u™) - vdQ2
Q
+/ p™(V - v)d§2
Q
Inasimilar manner, starting from Eq. (16), weaobtain

step 1b':
Re

E/ﬂ(u —u") - vdQ2

+/Qusym(V(U* —u")) - VvdQ
= [Gusym(T(a +w)) v ) - nar
—/Q2usym(V(u")) - VvdQ
+/an'VdQ
0

7/ Re(u™1/2 . ¥)u"+1/2 . vdQ
Q
Step 27 becomes:
9/ V(p"tt —p") - VgdQ
Q

-6 (76 = ) mgar

—Re /
= V - u*)qd$2
Y Q( )
and step 3"
Re 11
— [ (u"T" —u") vdQ
A7 Q( )

=0 [ (p"T' —p™)VvdQ

Q
-0 [ =

Finally, all surfaceintegralsareequatedto zero. This
is in accordance with the details of the boundary con-
ditions as expressed in Section 2.4. The test functions
used will vanish on the boundary I" ;, where the veloci-
ties are prescribed, as indicated in Eq. (14) and for the
coating problem considered, it is assumed there are no
traction boundary contributions.

In step 2 of the agorithm, the surfaceintegral can be
removed since V(p"*! — p") is taken to vanish over
the whole of T, as discussed in Section 2.4. In ad-
dition, due to imposition of fixed Dirichelet boundary
conditionson u™*! — u*, we can ignore the associated
surface integrals over I'; for the pressure fields again
owing to the choice of test functions. Theweak formu-
lation can thus be expressed through the following set
of equations:

Step 1la

2Re

e v n+1/2 _ _.ny |
A7 /Q(u u”) - vdQ

+ [ woym(v @ - u) - Vao
Q
= —2/ psym(V(u™)) - VvdQ (17)
Q
—Re/((un -V)u") - vdQ2
Q

+/p"(V'v)dQ
Q
Step 1b:

Re

A Q(u* —u") - vdQ

+/ Msym(V(u* — u”)) - VvdS2

Q

— 2 [ psym(v(a")) - Vvde (18)
Q

fRe/(u”“/Q SV )u /2 vdQ
Q

+/ PV - vdQ)
Q
Step 2:

9/ V(p"tt —p") - VadQ
Q

—Re (19)

— - u*)qgdQ
A7 /Q(V u*)q
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Step 3:
% / (u" ! —u*) - vdQ
* (20)
= 9/ (p"tt —p™)V - vdQ.
Q

This completes the development of the variational
formulation of the problem. This will be used as the
starting point for the discretisation over space both for
the conventional development, in Section 3, and for the
coordinate free approach, in Section 4, both leading to
implementable simulations.

3. Conventional software development and
discretisation

This section describes the conventional approach for
numerically solving Egs (3) and (4). The domain over
which the solution is required is first triangulated into
a finite-element mesh with nodes at the vertices and
mid points of the edges. The weak formulation, as
presented in Section (2.6), is used to derive a set of
matrix eguations relating the values of the velocities
and pressure at the mesh nodes. This is presented
initially within a Cartesian coordinate framework.

3.1. Thefinite element method

We now obtain the fully discretised equations us-
ing the finite element method (FEM). The total num-
ber of nodes and vertex nodes in the mesh are de-
noted by m, and m, respectively. Two sets of spa-
tial shape functions, V' and @ are employed. V =
{pjli = 1,...,m,} is a set of piecewise quadrat-
ic functions (quadratic on each element) and @ =
{¥;lj =1,...,m,} isaset of linear functions (linear
on each element). A shape function is associated with
anode, it is continuous, takes on thevalue 1 at its node
and 0 at the other nodes of its compact support. It has
local support, in the sense that the shape function is
non-zero only on the elements bordering to its node. A
vector fieldisnow approximated by u™ ~ Z;.”;l U p;
and ascalar field by p™ ~ 327", P"y;, where the su-
perscript n denotes evaluation at time step n, as before.

The finite element interpolants are then substituted
in Egs (17-21) and appropriate test functions v and ¢
chosen to produce a set of matrix equations.

Taking thefirst Eq. (17) we have:

il 2R€ n+1/2 n
Z[E/Q%(Uj — U vdQ

j=1

+/ psym(V(UTY2 U p)) - deQ]
Q
==y {2 / psym(V;UT) - VvdQ  (21)
i=1 Q
+Re/((U” -V)e;U7)) -de}
Q

+kz_1(/Q Ve(V - v)dQPP).

It is convenient to represent all the vectors U, in
R3, j =1---m,, asone combined column vector U
of size 3m,,, thus

U= (Un,Ui2, -, Uim,,U21,Us2, - - -,
U2mua U315 U325 Tty U3’mv)T

where U;; isthe x;-componentof U forl =1,---,3.
We consider the various types of integrals which
appear in Eq. (21). Thefirst termis of the form:

Z/ﬂ ¢;U; - vdQ.
j=1

Expanding U; using the standard Euclidean basis
vectors {e1, es, e3} leadsto

3 M

ZZ/ gblejel -vdS).
=1 j=1"%

The Galerkin method is adopted by choosing the
test functions to be generated by the shape functions
V. Letting ¢’ = ¢;e; and taking as test functions
v=¢p"form=1,---,3andi =1,---,m, yields
the following 3m,, terms

3 My
ZZ/ <p§- St dQU;.
Q

=1 j=1

Taking the above as elements of a3m,, column vec-
tor, it clearly can be represented as the matrix—vector
product MU where M has the block structure

Mll M12 M13
M = M21 M22 M23
M31 M32 M33

where

My = [ b oran, 22)
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Evidently M!™ = 0 for I # m and MY are all
identical and given by

MY, = /Q PipidSQ.

Thismatrix M is the mass matrix.
To deal with the second term in Eq. (21), after ex-
panding U ; in terms of the basis vectors, we consider

3 My

ZZ/QHSYm(V(Ulj%)) - VvdSQ.

=1 j=1
Thisyieldsthe 3m.,, terms

3 My

Z Z /Q ”Sym(V(Uljsoé)) - Ve™dQ.

=1 j=1

As avector this latter term can be expressed as SU
and writing S in block form (S'™), each block is de-
termined by

sim — /Q psym(V(eh) - Va2, (23)

S isreferred to as the diffusion matrix. Notethat S is
symmetric and in particular (S™) = (S'™)T.
The next expression in Eq. (21) to consider is

3 My

>3 [ (U9 - vao

=1 j=1
(where U = >, ¢4 Uy) producing a 3m,, vector
which can be written N(U)U where

N(U)!m = /Q«fj on Uy - V)l - oldQ. (24)
k=1

N(U) is called the convection matrix.
Thefina termin Eq. (21) has the form

([ vn(v-vydarp),
k=1 7%

yielding the 3m,, terms
S ([ (V- erdnry).
k=1 7

Since V - 7" = g% form =1,---,3, the above
can be represented as L P, where

Ll
L3

and the entries of each block are defined as

;z:/wka‘pidmorm:L---,g. (25)
Q 8I'm

L7 is then the associated incompressibility matrix.
Using the above, the desired matrix equation for a
discretised version of step lais:
(2_‘R6M + S)(Un+1/2 _ Un)
=LP" — (2S + ReN(U"))U™.

Equations(18) and (20) canbediscretisedinasimilar
manner yielding the Eqgs (27) and (28) for steps 1b and
3.

Eemy sy - o)
= LP" — 28U™ — ReN(U™Y/2)yn+1/2,
Re

EM(U”“ —U*) = 0L(P™™ — P"). (28)

For discretising step 2, we have, substituting in
Eqg. (19)

mp

0> / Vb - VadQ(Pp — PP
k=1 S?} m
—Re - ! *

1=1 j=1

Here wetake (Q as the set of test functionsto obtain
the following set of m,, equations:

92/ Viby - Vi dQUPIT — PP
k=1 Q

3 My

_ —Re 0y .
== ZZ/Q a—xlwdeUlj.

=1 j=1

To express the left hand side, we introduce the pres-
sure stiffness matrix K

(Kyy) = ( /Q Vi, - Viprd) (29)

then, step 2 becomes

—Re
At

Equations (26,27,30) and (28) then constitute the
matrix representation of the problem. It isimportant to
realise that the integrands appearing in the definitions
of M, K, and L can al be evaluated analytically since
the functions ¢; and v, are of a simple form, and
so the matrix elements are known at the start of the
computation.

K (P! — pm) = L'U*. (30)
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3.2. Solving the equations

Equations (26)—(28) are solved using Jacobi itera-
tion. Although the mass matrix M is generally very
large, it isnot necessary to store such amatrix explicit-
ly, and in practice, only the element sub-block matrices
M. need be constructed. The iteration takes the form:

Mel

X0 =X — DY " LIMX

o=t 31
-wD™'B D
where D is a chosen diagonal form and w is a positive
relaxation factor [19,10].

The direct Choleski method is employed to solve
the pressure difference Eq. (30). The decomposition
must be performed only once at the outset of the time-
stepping procedure. This leads to an efficient imple-
mentation.

Termination for steady state is determined by using
an ¢2-norm on the difference between the vel ocity vec-
tors at consecutive time steps and halting when this is
less than some threshold tolerance.

3.3. Adiscussion of relevant coding techniques

The exposition above is a a very basic data level,
expressed in the form of vectors and matrices. The
form is imperative in style — do this, then do that,
update the variables and repeat until termination —
thisis suitable for implementation in any of a number
of languages. The preferred choice among scientific
programmers would be a dialect of Fortran, typically
Fortran-77, but Fortran-90 is becoming more popular,
seethesurvey [20]. The program developedin this sec-
tion has been implemented in Fortran-90 and amounts
to about 15, 000—20, 000 lines of code.

Severa authors have followed this style of software
development for Object-Oriented languages such as
C++ and more recently Java. Thistypically resultsin
classes representing vector and matrix operations with
BLAS like routines. The general impression is that
there is little gained over the use of Fortran from the
conceptua point of view, even though the increased
emphasis on software engineering principlesthat these
projects have, often is beneficia for the quality of the
code—especially when comparedto dusty deck Fortran.

A variation onthisisthe use of the Diffpack software
package [7]. It is a support environment for the de-
velopment of object-oriented numerical software, and
has embodied many good software engineering features

and practices. The tendency is for Diffpack codeto be
closer to the numerical algorithm allowing the software
developer to focus more clearly on the numerical as-
pects of thetask than that experienced by a Fortran pro-
grammer. However, Diffpack’s approach to numerical
software developmentis still basically the conventional
one outlined above, making the choice of discretisation
and coordinate systems explicit in the code.

More applicative implementations using functional
languages have also been tried [13]. Inthese casesalso
the focus is on basic data structures and operations on
them. Thebenefitsof using function callsandrecursion
rather than variable updates and iteration show more
in agreater readiness for automatic parallelisation (see
the papers and approachesin [29]) than in the way the
codeis structured in the large. However, as for object-
orientation, devel opersworking in this areatend to put
more emphasis on good software practices than does
the classically trained Fortran programmer.

4. Coordinate free methodology

Inthe coordinate free methodol ogy we write the pro-
gram code based directly on the concepts present in the
abstract algorithm as devel oped in Section 2.6. For this
we need an understanding of these abstract mathemat-
ical concepts, together with their software realisation
and support. Then implementing the numerical solver
becomes straightforward.

In this section we first briefly present the notions of
tensors and coordinate freeness, introducing the nec-
essary notations and terminology. An outline is then
given of the Sophus library and it is indicated how the
finite element method (FEM) may be implemented in
Sophus. Finally, we show how the solver for the coating
problem can be implemented using Sophus.

4.1. Coordinate free mathematics

The conceptsfrom algebraand coordinatefree math-
ematics sketched here are given thorough treatment in
the books[21,27].

Plain numerical types, such as the real numbers, are
often abstracted as fields or rings. Givenaring R, we
may define, for any integer n > 0, n-positional numer-
ical types over R, commonly known as n-dimensional
vectorsv € R™. For any n, the set of n-dimensional
vectors v form a vector space V. (Strictly speaking,
this is a module, and only a vector space when R is
afield. However, to avoid confusion with the usage
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of module in computing we shall use the term vector
space below).

Givenabasis B = {b;,...,b,}, avectorv € V
can be identified by its coordinates v = (a1, ..., an),
i.e, ring dlements ay,...,a, € R, such that v =
aibi + ...+ a’b,. Note that there is a distinction
between a vector v € V' as an n-positional numerical
type, and its coordinates v with respect to abasis B C
V', even though the latter also may be considered an
n-positional humerical type. It is only when using the
normalised Cartesian coordinate system that the data
valuesv = ©. The normal representation for vectorsis
relative to some coordinate system, but then care hasto
be taken to interpret coordinates v only relative to that
coordinate system.

The collection M of linear mappings from vector
spaces V' to W form avector space. If V = R™ and
W = R"™, form,n > 0, we know that the linear map-
pingsfromV to W can berepresented asn by m matri-
ces, which we also may regard as (nm)-positional nu-
merical types, or, in other words, as (nm)-dimensional
vectors. Using the tensor product @ we may combine
a basis B for an m-dimensional vector space V' with
a basis B’ for an n-dimensional vector space W to
form abasis B ® B’ for the (nm)-dimensional vector
space M of linear mappingsfrom V to W. Thismeans
that any linear mapping ¢ € M is expressible using
alinear combination of the basis vectorsb; ® b;-, for
b, € BC V and b} € B’ C W (this does not im-
ply that every vector ¢ can be expressed by v @ w for
v eVandw € W). If V = R then thetensor product
reduces to the ring-vector product.

Covectors v € V* are (nl)-dimensional vectors
which take n-dimensiona vectors v/ € V to 1-
dimensiona vectors (ring elementsv(v’) € R). There
isan operation _* : V' — V*, dualisation, which takes
avector and returns a covector. The inner product, or
the dot product v - v’ of vectors v, v/ € V is defined
by v.-v' =v*(v').

Normally we have to do computations on a vector
v € V onits coordinate representation v relative to a
coordinatesystem B C V. Itisimportant that changing
the basis of the vector space V' should not change the
effect of operations on the vector v € V. This can
be achieved by making the operations, such as the dot
product and dualisation _*, aware of which basis is
being used. Then appropriate corrective action may be
taken in the computations, and we may use operations
on vectors independently of coordinate system, thus
achieving coordinate free mathematics.

Our tool for doing thisisthe notion of tensors. Given
aring R, an integer b > 1, a b-dimensional vector

space V' with basis vectors B C V, then tensor spaces
T](f}g are the n-dimensional vector spaces where n =
bk, for some k > 0. It is easy to see that the ring
itself is the tensor space Tz(z% for any b. The tensor
product of a (b*1)-dimensional tensor 7, € Tgf}g) and
(b*2)-dimensional tensor 7, € Tgfg) is a (bkithe)-
dimensional tensor (71 ® ) € Tjy 5 ™). The dot
product of two tensors 7y, 72 € Tl({fj)g isatensor (77 -
7'2) € TI(%?)B

We need to distinguish between the tensor spaces
and also on how they are formed with vector and cov-
ector components. This gives us many distinct tensor
spaces for any b* dimensions, k > 0, providing a dis-
tinct dlice for every combination of covectors and vec-
torsin the formation of Tl({fj)g. In conventional notation
these dlices are distinguished using upper and lower
indices. Making certain that the covector and vector

components match up, we may apply one tensor as a
linear mapping to another tensor. Specifically this no-

tion carries down to b-dimensional tensors Tl(;’g (ap-
plying covectorsto vectors) and 1-dimensional tensors

TI(%% (multiplication of ring elements).
4.2. Scalar, vector and tensor fields

For aringor field R, such asthe set of real numbers,
givenaset X, theset Fix_ p of functionsf : X — R
formsaringwith, forany f, g € Fx_ g, multiplication
defined by (f - g)(x) = f(z) - g(z) fordl z € X,
additionby (f + g)(z) = f(z) + g(z) foral z € X,
and so forth. Thering F'x . is caled a scalar field.
We may consider every ring element « € R asascalar
fielda € Fx_ g bydefininga(z) = aforeveryz € X.
Scalar fields F'x . p may beused in the constructions of
vector spaces and tensor spaces, yielding the notions of
vector fields Vx _, g, withbasis E C Vx_, g, and tensor
fieldsTS" . forevery k > 0. A scalar field assigns
a different value to every point in X. A vector field
likewise may change throughout X, such that every
point of X isassigned avector with different direction
and magnitude. Thebasisvectorsfor avector field may
thus define any kind of curvilinear coordinate system,
including Cartesian and cylindrical.

For X a vector space over thering R, then X will
beincludedin Vx_, r inthe sameway as R isincluded
in Fx_ r. And, as before, there are inclusions from
Fx_.pto T}S{LR pandfromVx_ .y to T}?HR_E.

If the set X satisfies the properties of being a man-
ifold, i.e., it has the notions of direction and proximi-
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ty, we may define non-trivial derivation operations on
the scalar field. Typically X will be a b-dimensional
vector space with basis vectors B C X, such as the 3-
dimensional space in which most physics takes place.
We may then define partial derivatives 9% of the scalar
fields f € F'x_.r dongany vector x € X. The partia
derivative will also be a scalar field since it changes
throughout X', so §—£ € Fx_.r. Knowing the partial
derivatives along the basis vectors B is sufficient to
compute the derivatives along any vector in X. If X
is a b-dimensional vector space this forces the vector
field Vx_ r to have b dimensions, and the basis E for
the vector field will then have b linearly independent
b-dimensional vectors. At the level of tensor fields
T}?HR‘ r We may now define many derivation opera-
tions, all of which may be computed from the partial
derivativeson the scalar field F'x . g.

For a scalar field f € F'x_, g, anintegration a =
j’Q fdX of fforasubdomain) C X withbasisvectors
B C X yields aring element « € R. Scalar field
integration gives rise to tensor field integration o =
JoodX foro e T}(QHRE yielding values o € R.

Derivation and integration operations on tensor
fields, like the dot product, depend on the choice of
basis E for Vx_ g.

We may now treat all symbols in the equations of
Section 2.6 as tensors and coordinate free operations
on tensors. Some of the descriptionsin Section 2.1 are
now explained in the more general tensor setting. Let
us summarise the operations we need, after the sim-
plification of the solver, and assuming the appropriate
tensor dlices:

— sym(o) isthe tensor symmetrisation operator tak-
ing atensor o € T(k) _.p toatensor inthe sym-

metrical subspace of T},'j()ﬂ
— +, — are the tensor field addltlon and subtrac-
tion operations taking a pair of tensor fields from
Tg;) n.E toatensorﬂeldlnT(’;) P B
— a*7 isthe scalar-tensor field multiplication taking

a € T}X) apandT € T}?HR’E to atensor field

in T}f{)ﬂR’E. Notethat a « 7 = a ® 7. Normally

wewrite at for a*r.
— o - 7 isthe tensor field dot product taking tensor

fieldso, 7 € T}’;)HR’E and returning ascalar field
. 0
in Tﬁ’x)% I

-V isthesﬁ)ar[ial derivative, whichisused in several
forms:

1. (v - V)o, the convective derivative, yields a
tensor field in T}?HR g for the derivation of

the tensor field o € T4, in the direction
()

of thevector fieldv € T/ &,
2. Vo, the gradient, yields a tensor field in

T 5! . when applied to a tensor field o &

T(k) g thusit takes ascalar field to a vector
fleld and avector field to amatrix field,

3. V - o, the divergence, yields a tensor field in
T(k) .z When applied to a tensor field o €

T(k“) g thusit takesamatrix field to avector
f|e|d and avector field to ascalar field.

— Jo 0dX integrationof atensor fieldo € T}S{LR_E
over asubdomain Q2 C X yieldsaring element in
R.

There is an important distinction between tensor
fields T 5z based on the tensor construction using
scalar flelds as the ring, and tensor fields 7' : X —
T(kg which directly assign a tensor to every point
x € X. Theformer alow us to build advanced tensor
operations, such as derivation operations, from scalar
field operations, such as the partial derivatives. The
latter require us to implement the advanced tensor op-
erations directly in terms of the (discretised) represen-
tation of X, seethe discussionin [14, Section 4.2]. As
is evident, the former, which we have chosen, give a
clear separation between discretisation methodsfor the
scalar field and the spatial derivation operations at the
tensor level. The latter force atensor field implemen-
tation for each discretisation.

4.3. Aframework for atensor based library

The Sophuslibrary framework describesalibrary ar-
chitecturefor providing the abstract mathematical con-
cepts from PDE theory as programming entities. This
meansthat any piece of aprogram, or even any module
in the library, may be coded using any of the abstrac-
tions defined. At compile time, implementations for
each of the abstractionswill be chosen, such that no cir-
cular dependencieson theimplementationsoccur. This
means that, e.g., a mesh implementation may build on
another mesh implementation, but that the latter mesh
cannot bebuilt onthe former mesh. The Sophusframe-
work is based on the notions of manifold, scalar field
and tensor field, while the implementations are based
on the conventional numerical algorithms and discreti-
sations. The Sophus framework is structured around
the following concepts:
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— Basic n-dimensional mesh structures with a ring

R as template argument. These are like rank n
arrays (i.e., with n independent indices) with ele-
ment type R, but with general map operations, i.e.,
performing an argument function for every ele-
ment. It also has specific operationslike +, — and
* mapped over al elements (much like Fortran-
90 array operators) as well as the ability to add,
subtract or multiply all elements of the mesh by
ascalar in a single operation. There are aso op-
erations for shifting meshes in one or more di-
mensions. Operations like multidimensional ma-
trix multiplication @ and linear equation solvers
such as Choleski decomposition and Jacobi itera-
tion may easily be implemented for the meshes.
Not all mesh implementationswill provideall op-
erations. Someimplementationsmay be morespe-
cialised, e.g., assuming a sparse mesh or a mesh
with certain symmetries. Other implementations
may provide fully general parallel and sequential
implementationsthat can be used interchangeably,
allowing easy porting between computer architec-
tures of any program built on top of the mesh ab-
straction.

Manifolds X. These are sets with a notion of
proximity and direction. They represent the phys-
ical space 2 C X where the problem to be solved
takes place.

Scalar fields F'x_.z. They describe the mea
surable quantities of the physical problem to be
solved. As the basic layer of “continuous math-
ematics’ in the library, they provide the partial
derivation and integration operations. Also, two
scalar fields on the same manifold may be point-
wise added, subtracted and multiplied.

The different discretisation methods, such as the
finite difference and finite element methods, pro-
vide different designs for the implementation of
scalar fields. Scalar fields are typicaly imple-
mented using the mesh structures with reals for
the ring to store the data. Not al mesh opera
tions are relevant in this context, so it is possible
to choose mesh implementations that, e.g., do not
support equation solvers or matrix multiplication,
when configuring implementations for a program.
Tensors T}ZLR’ g+ These provide coordinate free
mathematics based on the knowledge of the co-
ordinate system £, whether it is Cartesian, axi-
symmetric or general curvilinear. Thetensor class
provides the general differentiation and integra-
tion operations, based on the partial derivatives

and integral s of the scalar fields. Tensorsalso pro-
vide operations such as componentwise addition,
subtraction and multiplication, as well as tensor
product, composition and application.

The implementation is based on the basic mesh
structures, with scalar fields as the ring parame-
ter. Thus tensor operations are formed from ex-
pressions on scalar fields performed by the mesh
classes. Again, many operations of the mesh are
not needed, allowing more specialised mesh im-
plementations to be used. For instance, equation
solversarenot needed, while matrix multiplication
algorithms are important.

— Equation administrators. These are abstractions

containing collections of scalar and tensor fields
with the purpose of building the matrices and
vectors used to describe sets of linear equations,
such as those needed for implicit time stepping
schemes. These matrices and vectors do not rep-
resent coordinate free properties of aphysical sys-
tem, but abstract the important propertiesof linear
equations.
Equation administrators are also implemented us-
ing mesh structureswith tensor fieldsor realsasthe
ring, as appropriate. Here operations like matrix
multiplication and matrix equation solversareim-
portant, and relevant mesh implementations must
provide these. Also, additional properties like
symmetries and block diagonal structures may be
exploited by appropriate mesh implementations.

In general a partia differential equation provides a
rel ationship between spatial derivatives of tensor fields
representing physical quantities and their time deriva-
tives. Given constraintsin the form of the values of the
tensor fields at a specific instance in time together with
boundary conditions, theaim of aPDE solver isto show
how the physical system will evolve over time, or what
state it will convergeto if left by itself. Using Sophus,
the solvers are formulated on top of the coordinate-free
layer, forming an abstract, high level program for the
solution of the problem.

4.4. Thefinite element method in Sophus

The finite element method presented in Section 3.1,
is now redeveloped in a more abstract manner suitable
for implementation in the Sophus approach. In this
more general setting, the method is based on the ob-
servation that given a manifold X with basis B C X
and aring R, ascaar field p € Fx_.r, may be ap-
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proximated by asump ~ deG P, - g for scelar fields
g € G C Fx_ g, termed shape functions, and scaars
P, € R. Thelarger the set G, the better the approxi-
mation, but this will increase computation times since
larger data sets will have to be computed. For numer-
ical reasons, different scalar fields should be approx-
imated by different shape function sets, but if these
different discretisations are to be used in the same ex-
pressions, the different sets of shape functions must be
coordinated.

Thiscoordinationisachieved by splitting thedomain
X into aset £ of digoint elements e € &, such that
Uece e = X and for each element designate a fixed set
of integration points. A scalar field's value at an inte-
gration point representsits averagevaluein asubregion
of the element. In a 2-dimensional case the domain
may typically be split into triangles, the choice adopt-
ed in Section 3.1. For the FEM, the shape functions
are continuouswithin elementsand have small support,
i.e., are non-zero only for afew elements. Thisis nor-
mally restricted further, so that the functions g € G
take their maximumvalue 1 € R at exactly one point —
the nodal point — in the domain X, and are non-zero
only on those elements adjacent to that point (referred
to asthe domain of local compact support for g). Also,
a shape function is 0 at the nodal points of al other
shape functions within its collection. These are the
same constraints as used in the conventional approach
presented in Section 3.1.

The shape functions ¢ € G are normally cho-
sen so that the partial derivatives 3—3‘7{ € Fx_p for
x € B C X andtheintegral | gdX € R onan el-
ement e € X may be computed analytically. In Sec-
tion 3.1, for example, these were chosen to be either
linear or quadratic functions. Since the differentiation
and integration operations are linear with respect to R,
we have that

fres =5 (5 o)

Inthe variational form, all expressionsinvolving the
scalar fields areintegrated in each PDE equation. This
meanswe do not need to approximatethe scalar field or
tensor field expressions as such, but rather their effect
on the integrals. The values at the integration points
provide such an approximation, so these are the only
values we really need to use when computing scalar

field expressions. This also implies that elements and
integration points are the only coordination needed be-
tween scalar fields. Each scalar field may be based on
different sets of shape functionsfor that matter.

4.5. Developing a solver for the coating problem

Recall, that for the coating problem we are working
withasubdomain 2 C X of thephysical 3-dimensional
world X. The tensor fields are T}?HR’E, where R is
the set of reals, F = {e1,eq,e5} C Vx_p arethe
standard basis vectors, and & = 0 (scalar fields), &k = 1
(vector fields) or & = 2 (matrix fields). Inthevariation-
al form of the equations for the solver in Section 2.6

. . 0
we are using scalar fieldsq € Q C T 5 and vec-

Fx_r,
tor fieldsv € V' C T&LR,E as test functions for the
integrals.

The coordinate free, variational form, of the solver
equation steps Eqgs (17)—(21) for the coating problem
need some refinement to serve as an algorithm for an
actual computation. Looking at the left hand sides
of the equations we see there are three problems to
address:

— The integrals compound the value of scalar fields
into a scalar, so we need to restore the unknown
scalar fieldsontheleft hand sidefromthese scalars
(steps 1, 2 and 3).

— The vector fields representing the velocity are
“dotted” with a vector field, so only information
about the magnitude of the left hand side vectors
is known, with no information about the direction
(steps 1 and 3).

— The symmetrisations of Vu are “dotted” with Vv
terms, thusintermixinginformation concerning all
components of the vector u, so that not even the
magnitude of the unknown vectors are explicitly
available (step 1).

Theaboveisamoreabstract view than that indicated
in Section 2.6. But, as in the conventiona case, the
solution to these problems is to generate more equa-
tions at each step, by choosing appropriate sets of test
functions, so that we get enough scalars to compute
the unknown scalar and vector fields. How to achieve
this becomesincreasingly involved. Werelatethetech-
niquesto the individual steps of the algorithm, starting
with the simplest cases.

— Step 2: a scalar field integrated to a real value.
If we approximate the scalar-field (pm ! — pn) €
Tﬁ’OLR,E by asum 3 o (Pptt — P - g for

b'e g g
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scdlars (P;t! — Pr) € R and shape functions

G C T}?() .5 Wemay movethescalarsout of the
derivation and integration expressions. We may
then reformulate step 2 to

VgeQ |0 (Pytt — Py (/ Vg - quX)

geG

Z_ARte/Q(V-u*)qul.

This gives us a system of equationswith |Q| right
hand sides®

—Re
By = ——— -u)gdX
AL /Q(V u’)q

foreachq € Q. Ithas|G| unknowns (P! — Pr')
for g € G. The |Q| x |G| mtegrals on the
left hand side are independent of the variables of
the problem, so we may define a mesh matrix
Kug = [oVg-VqdX forg € G,q € Q (this
isa matrix with data elements from R, and is not
atensor structure but just a mesh-of- R structure).
This corresponds to the pressure stiffness matrix
K from Eq. (29). Ensuring that |Q| = |G|, the
unknowns are uniquely determined, and we may
solvethesystem § K@Q(P"+! — P") = Businga
suitable matrix solver.

Assuming that P;" isknownitiseasy tofind Py
once the system is solved and the (P! — P7),
for ¢ € G, have been found. Calculating the
scalar field p"+! € T\, will besimplified if
G is taken to be the shape functions used in the
discretisation of the scalar fieldsp € Fx_.r as
describedin Section 4.4. Thisalso ensuresthat we
will not lose any accuracy by the approximations
of p»*+! in the system of equations.

Step 3: avector field compounded to scalar field
and then integrated to areal value. We may repre-
sent the unknown vector (u" ! —u*) € T}QHR_E
asthe linear combination u*e; + ujes + usz * e3

of basis vectors eq, es,e3 € E C Tféf o, and

scaler fields w1, uz,u3 € TS . . Then the
equation becomes

Re
EZ(/{}m*m-vdX)

i=1

YwweV

3For aset X the notation | X | means the cardinality of X

= 19/(1)"+1 —
Q

Now we can restore the scalar fields using the
technigue of shape functions ¢ € G’ as above,
giving the following system of equationsfor each
veV

PV - v)dX] .

&3 (o8- i)

geG/
([ oo vdx))
=0 [ (" = p")(V-v)dX

Q

We choose G’ as the shape functions for the
discretisation of the scalar field components for

ue€ T}?HRE. Then we ensure that |V| = 3|G’|
so that we have the same number of equations
|V'| as unknowns, which is |G’| times the number
of dimensions. This time the matrix on the left
hand side becomes M+ (,.;) = [, gei - vdX, for
ge G ie{l,2,3}andv € V. Weneedto treat
(g,1) asonelndex in order to have M beanormal
matrix. This corresponds to the mass matrix M
from Eq. (22).

Steps 1laand 1b: symmetrisation with vector field
compoundedto scalar field and thenintegratedto a
real value. Using the sametechnique as above, we
may easily separate the unknowns from the first
(explicit) part of the left hand side terms. This
al so separatesthe unknownsfrom the symmetrised
term since symmetrisationislinear with respect to
scalar multiplication. Then we may reformulate
step lato, Vv € V

3
> (3 m-us0)

geG’ \i=1
/ (Qi%t ge; - v+ psym(V(ge;)) - Vv) dX)
= —2/ psym(Vu") - (Vv)dX

Q

fRe/Q((u” -V)u") - vdX

+/ p"(V - v)dX
Q

with equation matrix M = 2B )/ + S, and step
Ibto, Vv e V:
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% (505

i=1

/Q (%gei v+ usym(V(ge;)) - Vv) dX)
- _2/ﬂﬂsym(Vu") -(Vv)dX

—Re / ("2 V)unt/?) . vdx
Q

+/p"(V-v)dX
Q

with equation matrix M"” = Zenf + S, where
Sv.(g.) = Jorsym(V(ge;)) - VvdX. Here S
is the diffusion matrix S from Eq. (23). This
provides us with augmented matrices compared
with step 3, but otherwise with the same number
of equations and the same number of unknownsas
in step 3 above.

Note that we do not need to build counterpartsto the
incompressibility matrix L in Eq. (25) nor the convec-
tion matrix N in Eq. (24). Thisis possible since those
represent right hand sides, and thus are implied by the
tensor expressionsin this approach.

We will use the Galerkin simplification on the re-
sulting systems of equations by choosing scalar field

test functions @ = G C T}S{LR_E and vector field test

functionsV = {gxe|lg € G',e € E} C T};LP”E

Normally, we will not choose G = G’, as there are
different numerical constraints on the pressure p and
the velocity u.

Combining this information, we arrive at the final
coordinate free algorithm for the coating problem. The
collections of shape and test functions may be kept in
amesh data structure. We may then use the mesh map
operationsto generatetheright hand sidesand | eft hand
side matrices. This eliminates the need for explicit
loopsfor the generation of the equations. Then we em-
ploy the matrix solvers written for the mesh classes to
find the unknowns. The algorithm repeats the follow-
ing steps until time-stepping convergence criteria are
met, giveninitial valuesfor U™ and P":

Calculate U™ from U";

Calculate p" from P7";

Step la: solve for U™Y/2—U" in

M/@(Un+1/2 _ Un)

= (/ﬂ —2pusym(Vu™) - (Vv)

— Re((u™ -V)u™) -v+p™(V- v)dX>
vev
Calculate u"tY/2 from U"+tY/2 _pyn, yn
and G';

Step 1lb: solve for U*—-U" in

]\/ //@(U* _ Un)
- (/Q —2usym(Vu™) - (Vv)
—Re((u"t/2 . wyurt1/2) .y

+p"(V'V)dX)
vev

Calculate uUu* from U*-U", U™ and
G ;

Step 2: solve for P*! —P" in

gKQ(pPtt — pm)

—Re
= — (V- U")qdX
(/ﬂ At ( )q )qGQ

Ccalculate p*t! from P"*! - pn, pn»
and G;

Step 3: solve for U™ —U* in
R
—eM@(U”+1 U*)
(/9 L ™) (V- v)dX>
veV

Set U™ as U™ —U* plus U* and
ensuring boundary condition;

Set P" as P"f! — P" plus P" and
ensuring boundary condition;

Recall that the velocity values at the boundaries are
prescribed, hence we must ensure that these values re-
main unchanged at every step. The matrix K will be
banded and sparse and the equationsin step 2 can be
solved using Choleski decomposition. The matrices
M, M'" and M" are very large. With a careful choice
of elements and using orthogonal basis vectors, i.e.,
i # jimpliese; - e; = 0, matrix M can be reduced to
a banded form. Jacobi iteration will be a useful tech-
nigue for solving the equations in steps 1 and 3. The
element-by-element construct and solve procedure and
matrix conditioning provide such a choice.

For this problem appropriate choices for test and
shape functions are
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— for @ = G: functionswhich reside at the vertices
of theelements, and arelinear within each element,
and

— for V = G’: functionswhich reside at the vertices
and mid-points of the edges of the elements, and
are quadratic within each element.

Notethat the mesh classes are used for many distinct
purposesin the solver:

— in the implementation of the scalar field,
— in the implementation of the tensors,

— for storing the set of test functions, and

— for datamatrices K and M, M’ and M".

Inaconfiguration of the solver program differentim-
plementations of the Mesh classmay bechosenfor each
of these different purposes in order to reduce storage
requirements, improve run-time efficiency and provide
parallel execution.

Testing for convergence is performed using the L 2
norm for velocities and pressure.

Coding this agorithm as acomputer programis now
straightforward if alibrary with the concepts of the So-
phus framework is available. We have not fully imple-
mented this application in Sophus yet, but based on ex-
perience with this framework [16] the following seems
reasonable: The PDE solver would be written as a pro-
cedure, and based on the detailed exposition abovethis
should only be about 100-200 lines of code, including
test for termination. Additional procedures to input
data sets, set up the data and output the results will in-
crease the solver module code size to about 1,000 lines
of code. The code needed for a simple user interface,
1/O file handling and configuration of the PDE solver
typically lies around 1000 lines of code aswell. Thus
a complete solver and configuration may be written in
less than 2000 lines of code.

4.6. Adiscussion of relevant coding techniques

The coding technique we advocate is based on no-
tions of data abstraction and encapsulation. These may
take the form of the class construct in object-oriented
languages like C++ [28], Eiffel [23], GJ [5] and Ja-
va [12], type abstraction and functors in applicative
functional languages like standard ML and Haskell, or
packagesinimperativelanguageslike Adaand Fortran-
90. Thereuse of modules such as Mesh in both theim-
plementation of scalar fields and the implementation of
tensors requires template classes or generic packages,
as present in Ada, C++, Eiffel, standard ML, Haskell
and GJ.

The structuring mechanism does not force any spe-
cific coding practice for implementing the algorithms.
Thus both applicative styles, as supported by function-
al languages, and more conventional styles that mod-
ify variables for reuse of storage may be used. The
latter encompassesimperative styles, which are typical
of Fortran, Ada and C++, and object-oriented styles,
which are supported by C++, Eiffel, GJ and Java
Within each group one may favour languages which
allow operators and overloading. This supportsamore
algebraic notation by makingit possibleto definescalar
field and tensor operationswith infix syntax and names
like 4, x, —, / etc. Support for this can be foundin di-
verselanguagesas C++, standard ML and Fortran-90.
Only standard ML allows user defined infix operator
names, the other languages only support a limited set
of names which is quickly exhausted by the plentitude
of tensor level unary and binary operators.

We have devel oped Sophus using C++ in an imper-
ative, object-oriented manner. This meansthat the pro-
grammer may have full control over creation of tem-
porary variables and reuse of storage by modifying the
values of variables. This style tends to favour machine
efficiency. The development of the coordinate free al-
gorithm above has an imperative flavour in its sequenc-
ing of operations and iteration over the main equations
for the PDE solver. Sophusalso allows algebraic style
expressions by utilising the operator overloading per-
mitted by languages like C++ and Fortran-90. This
seems to have a negative effect on execution time ef-
ficiency, but provides a greater ease of programming
which may improve software development efficiency.
Sophus can easily be reimplemented in other languages
which support the necessary abstraction mechanism. If
the emerging Fortran-2000 supportstemplatesit would
seem asuitable languagefor thisstyle of programming.

The tensor oriented package RHALE-++ [8,34] is
also implemented in C++ using an object-oriented,
imperative style. This package differs from Sophus by
implementing vector and tensor fields directly on the
manifold, instead of lifting the scalar field. The pack-
age Overture [6] does not provide tensor abstractions
but provides the scalar field abstractions (the continu-
ous level). Compose [1,2] adds equation handlers on
top of these, but the tensor level is still lacking.

5. Modifying the problem

The quality of a software development methodol ogy
and programming style can best be eval uated by check-
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ing how easy it is to modify and upgrade programs.
For the coating problem one such modification is the
change of coordinate system, motivated by the annular
nature of the problem. Using cylindrical coordinates
the data sets may be reduced to two-dimensional scalar
fields. Cylindrical coordinateshave z-axisat the centre
of the wire, r-axis as radia distance from the z-axis,
and #-axis as azimuthal rotation angle of an rz-plane.
The data fields will vary only along the r- and z-axis,
being constant along the #-axis. Thusall partial deriva-
tives with respect to 6 vanish, and there is no need to
storeinformation for this axis.

5.1. Conventional case

We now describe the formulation using cylindrical
coordinates, where we take an axi-symmetric geom-
etry which would be a typical situation for the coat-
ing problem. A concentricity assumption is adopted
for the particular coating problem being considered,
o u = (ur,0,u;). The integration over the domain
becomes specific for any particular geometry, so

f(x)g(x)d
Q

= 27r/ flr,2)g(r, 2)rdzdr,

and similarly for the vector and tensor inner products.
Incylindrical coordinates, using v for avector and s for
ascalar, and the particul ar assumptions of the problem,

10 ov,
V-v= - —(rv,) + 5
0s 0s

VS_JYE +62&7

where 6, and §, are unit vectorsin the r and z direc-
tions, respectively, and
0 10 0

V=g 8o+ 8, (32)

With the above definitions, the operatorsin the vari-
ational formulation of the problem Eq. (17)—(20) can
be replaced to yield a formulation in cylindrical coor-
dinates. For example the dyad Vu can be evaluated,
using Eq. (32) and properties of unit vectorséd ., d¢ and
4,, to be:

0 40
Ou,- 0 ou,

Oz 0z

Vu =

Ou,- ou,
T 0 BF
) (33)

By expanding the U ; in terms of the base vectorsé .,
dp and ¢, and using as test functions ] = ¢;4, and
@7 = p;0, we arrive at the following expression for
the S matrix:

S"”” STZ
S = |:(STZ)T Szz:|

SZ" = / usyngoJVgoJ ds) (34
andl,m € {r,z}. Using (33) we have

symVe" = |0 =20
and

symVp® =

Substituting in Eq. (34) we can express the compo-
nents of S asfollows:

S77 = 2r //{ 3<pg+2%<§g
rJz or r
89@13%
0z
877 =27 //[8%8%] rdrdz,

ie dpi Op; &pz g,
S;;=2m /T/Z[ % - 5‘ a rdzdr.

In a similar way, the remaining system matrices,
defined in axi—symmetric cylindrical coordinates are
given by;

M;; = 271'// i rdzdr, (35

NV
W= -
2#//9@ ZU: <pr€ @lvf% rdzdr
) z 62’ ?
Ky = 27T//V’l/1k - Vapyrdzdr, (37)
v =2r [ [wrdsar,
rJz T (38)

Op;
L2 =2r / wla—irdzdr.

Here V.* and V! are the nodal velocity components
inradial (r) and axial (z) directions respectively.
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5.2. Coordinate free case

The solver for the coating problem was presented in
a coordinate free notation in Section 4.5. This means
that the solver isindependent of coordinate system, and
need not be changed when moving to cylindrical coor-
dinates. However, the configuration must be altered to
provide the tensor class with the definition of the ap-
propriate coordinate system and the scalar fields must
be reduced to 2-dimensional form. These changes will
only affect afew linesin the configuration module, as-
suming that the necessary modules are present in the
Sophuslibrary.

The changes in configuration sketched above may
not be sufficient to gain optimal speed for the axi-
symmetric problem. Thereason isthat, unless the ten-
sor class has been optimised for axi-symmetry, it will
gtill activate all the computations of a 3-dimensional
problem. This can be reduced if a specific axi-
symmetric version of the tensor class is implemented.
Such an implementation may take 10004000 lines of
code, but need not be written from scratch.

6. Discussion

In this paper, we have presented two different ap-
proaches to developing numerical software. The first,
the conventional methodology, is that followed by the
majority of the numerical programming and applied
mathematical community. The other approach, advo-
cated here, is an abstraction method using coordinate
free mathematics.

We can view the two methods asindicated in Fig. 2.
Both methods start with the mathematical formulation
on the left. The conventional method then drops down
to the machine level (left downward arrow and bottom
horizontal arrow). In the coordinate free method, all
development takes place at the abstract level, and the
library modules link down to the machine level (top
horizontal arrow and dotted right vertical arrow).

We abserve here one symptom of a cultura divide
between the field of programming theory and numer-
ical analysis. This divide does not ssmply depend on
the individual problems each community normally ad-
dresses, but goes deeper, and depends on the way we
reason about problem solving and programming. This
can be seen in the different methodol ogical approaches
to solving a complex problem like the coating problem
and its implementation using the finite element method
(FEM), asillustrated in this paper. This indicates that

for the abstraction method to be accepted by the numer-
ical community would requirenew training and instruc-
tion. Thus only a gradual transition to coordinate free
numericsand other abstraction oriented methodol ogies
isto be expected.

From a programming theory viewpoint, there is a
definite need to present the coating problem at the ab-
stract level asfar as possible. Only after all the techni-
cal details have been exposed at that level, should the
di screti sation techni que be introduced as an orthogonal
issue. Here the FEM should be exposed algorithmical -
ly, not solely on its mathematical merits as an approxi-
mation technique. If thisisdone properly, the change of
coordinate systems, such as switching from Cartesian
to axi-symmetricwill be orthogonal to both the detailed
exposition of the abstract mathematical algorithm and
the discretisation technique.

Thetwo methodol ogical approachesto the presenta-
tion of the problem as discussed in this paper, are ex-
posed in the manner the software development is han-
died.

Conventional software development in the field of
computational modelling typically commences with
some partial differential equation (PDE). This is then
refined into an abstract algorithm, and then experience
and insight is used to transform to a discretised version
of the algorithm. Further refinement takes place at the
discrete level, and the language being used allows for
the elementary data types of arrays and matrices. We
then arrive at asequential program, that may be further
refined into aparallel program.

The software devel opment methodol ogy we propose
would also start with the step of convertingfromaPDE
to an abstract algorithm. The departure then liesin the
further developments that would stay at a mathemati-
cal level, yielding an abstract program. This may then
be linked together with a software library such as So-
phus, yielding either a sequential or a parallel program
without any further significant modification.

Thetwo different devel opment strategies give vastly
different software characteristics. First, consider the
relative sizes of code produced by the two approach-
es. The conventional Fortran code for our case study
totals approximately 18,000-19,000 lines of code. In
contrast, the exposition of the coating program and its
detailed pseudocodeis well below 1,000 lines of code,
with an estimate of the size of the final coded applica-
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PDE Abstract Abstract
> Algorithm > Program
Scalar fields, tensors
discretisation i library
oy v
Discretised Discretised
Algorithm > Program

Arrays, Matrices

Fig. 2. Coordinate free versus conventional methodology.

tion program being approximately 2,000 lines.* Tak-
ing lines of code as a measurement of the development
costs, which is the basis for cost estimating models
like COCOMO [4], we find an overwhelming reduc-
tion in code development costs for the coordinate free
methodol ogy compared to the traditional methodol ogy.
Second, consider the modifiability and adaptivity of
the resulting software. The conventional devel opment
produces one application, and reuse of components
from this software will be incidental. The Sophus Li-
brary framework is designed for reuse and to beincre-
mentally implemented. Basically the solver for a new
problem relies on the concepts defined by the Sophus
library interface. When configuring the program, rele-
vant modules from the library are reused, but if the li-
brary lacks an implementation with certain characteris-
tics, such a code may be developed and integrated into
the library. The cost of implementing a discretisation
from scratch, i.e., defining the manifold with associat-
ed point set and scalar field, we estimate as requiring
approximately 4,000 lines of code[16]. Adding a new
discretisation technique for an existing manifold corre-
sponds to developing only 1,000-2,000 lines of code.
It should also be recaled that all implementation of
the same abstraction, such as that of scalar fields, have
the same interface. So that given two different scalar
field discretisations, we may interchange them within
the same application program with little adaptation.
The above observations and statistics indicate that
the abstraction oriented methodology promoted in this

4This comparison may seem quite unfair since we are comparing
unstructured Fortran code without the use of libraries with estimates
of highly structured C++ code using library modules. The compari-
sonisgtill relevant, aswe are comparing the outcome of two different
development methodologies. We are not discussing whether code
can be structured in one language or not in another, nor the gener-
a availability of libraries and how these may be used in different
languages.

paper may well improve computational modelling pro-
ductivity dramatically. An added bonusis that such an
approach supports easy transition between sequential
and parallel versions of the code [15].

Traditionally, applied mathematiciansand numerical
analysts have been sceptical in adopting programming
languages other than Fortran. Thisis mainly dueto a
fear of efficiency loss in their codes. This no longer
seemsthe case, as alanguage such as C++ and the use
of abstractions in many cases, has been shown to be
comparablein efficiency to Fortran, see[3,25,32]. This
isdeemed highly encouraging for emerging abstraction
oriented implementations of numerica solvers. Un-
fortunately, the resulting efficiency seems sensitive to
memory layout and other factors which are difficult to
control. However, a source-level transformation tool,
such as CodeBoost [9], can be invaluable in this re-
spect. It makes it possible to systemise experiments
with various data layouts and other transformations of
the code. It is clear that several pilot implementations,
with execution speed comparable to conventional For-
tran code, of different problemsis needed to convince
alarger proportion of the numerical community of the
benefits of abstraction oriented methodol ogies.

A further open question, clearly relevant to the prac-
titioner, is to what extent this manner of writing pro-
grams affects numerical error propagation. Thereisno
reason to expect it to be worse than for conventionally
developed programs, but the ease with which one may
change discretisation technique may lead to situations
whereaninappropriate discretisation techniqueisbeing
used. One possihility to prevent this from happening,
isto providethe scalar fields with some “ certificate” of
their numerical properties at the abstract level.
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