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It has long been acknowledged that the development of sci-
entific applications is in need of better software engineering
practices. Here we contrast the difference between conven-
tional software development of CFD codes with a method
based on coordinate free mathematics. The former approach
leads to programs where different aspects, such as the dis-
cretisation technique and the coordinate systems, can get en-
tangled with the solver algorithm. The latter approach yields
programs that segregate these concerns into fully independent
software modules. Such considerations are important for the
construction of numerical codes for practical problems. The
two approaches are illustrated on the coating problem: the
simulation of coating a wire with a polymer.

1. Introduction

Numerical codes for solving numerous important
civil and industrial problems have existed for many
years. A great number of these exhibit the problem
which in the computer science community is referred
to as software rot – a deterioration of software quali-
ty as the programs have been modified over the years.
Currently, there is therefore, a considerable amount of
research being undertaken on the restructuring and re-
development of numerical software and a genuine in-

1This investigation has been carried out with support from the
European Union, ESPRIT-IV project 21871 SAGA (Scientific com-
puting and algebraic abstractions).

2This research was mostly carried out during the author’s sabbat-
ical at University of Wales Swansea, throughout the academic year
1997/98.

terest in using modern software engineering practices
in the process, e.g. [1,2,6–8,33,34].

Most numerical codes have been developed within
applied mathematics communities, and the preferred
programming language has long been Fortran, in one
or other of its many versions. Fortran was traditionally
an imperative language with multidimensional arrays
being the basic type constructor and was without type
abstraction facilities. A change of language, e.g., to
functional or object-oriented does not necessarily in-
volve a basic change in the approach to programming
numerical codes. However, there are genuine benefits
from changing to languages with more powerful soft-
ware structuring concepts. These may include an eas-
ier transition to parallel code, as for Fortran-90, High
Performance Fortran [26] or functional languages, or
a more user friendly interface to advanced data repre-
sentations, as documented for object-oriented program-
ming.

It is still the case that numerical software develop-
ment has stayed within the conventional, applied math-
ematical framework, the main phases of which can be
summarised as:

1. model the physical problem;
2. formulate an abstract solver algorithm;
3. discretise in space/time, to transform the contin-

uous problem to its discrete counterpart;
4. refine the solver, utilising properties of the prob-

lem (such as symmetries);
5. convert/translate to program code.

This tends to lead to specialised, monolithic pro-
grams that are only usable within the realm for which
they were developed. They are monolithic in the sense
that the whole program was developed as one unit for
one purpose. It is often difficult to extract and reuse
parts of the software in programs for solving different,
but related, problems.

In this paper we will contrast such a conventional de-
velopment approach with one which is closer to the un-
derlying pure mathematical concepts. The coordinate
free development process consists of the steps:
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1. model the physical problem;
2. formulate an abstract solver algorithm;
3. refine the solver utilising properties of the prob-

lem (such as symmetries) at the tensor level;
4. translate to program code.

Here the discretisations etc. come in the form of li-
braries which are linked into the code. This technique
has been proposed in [24], and its software foundation
was explored and further developed in [14,17]. A case
study is presented in [16].

In this study a detailed worked example is presented
to highlight and contrast the two approaches. This will
clarify the concepts and differences in reasoning that
are used in these two development techniques. Thus,
we utilise two pure-bred approaches, being fully aware
that conventional development now normally is com-
bined with and utilises more advanced software devel-
opment techniques. Few groups have employed the
abstraction oriented technique to such a full extent as
we explore it here. However, the need for higher levels
of abstraction have been indicated in [1,2], where the
Compose project is described. Compose makes use of
the C++ class library Overture [6] to build a frame-
work for extendable PDE solvers where PDE problems
are treated as objects. Also in [33] the MAPS system
has been proposed which uses sets and maps on which
to base more abstract types such as grids and meshes.
These can be seen as abstracting the continuous level.
The concepts of coordinate free mathematics, as advo-
cated here, provides abstractions at yet a higher level.
Hopefully, this presentation may inspire others to try to
advance their software technology from a conventional
one to higher levels.

The particular example we have chosen to develop
is a coating problem for Newtonian flows. This is out-
lined in Section 2, where the mathematical develop-
ment leads to a precise algorithmic formulation at a
naturally coordinate free level.

The conventional development process in Section 3
begins by describing briefly the finite element method
(FEM) where, for simplicity, a Cartesian coordinate
system is assumed. Technical details are then supple-
mented at the discrete level. Often different considera-
tions are presented in a disjoint fashion, and the reader
is expected to merge them in a consistent way. The
choice of coordinate system has a marked influence on
how the operators are defined, but this is often glossed
over at this stage of the development process. This
approach tends to lead to one type of code, whether it
is expressed in a classical procedural language such as

Fortran-77, or expressed using object-oriented or even
functional languages.

Subsequently, in Section 4 we demonstrate, in more
detail, how the coordinate free approach, using tensor
mathematics, yields a quite different type of program.
The section introduces the concepts of coordinate free
mathematics, such as tensor fields, describes the So-
phus software library which supports these concepts,
and shows how the FEM would be realised within this
framework. These concepts are then used to develop
the solver for the coating problem at an abstract level,
but with the technical detail needed to develop a proper
code. This programming style naturally requires the
target language to have template classes, a feature lack-
ing from even the more recent versions of Fortran, but
which are present in C++ [28]. This latter language
is now increasingly being used by practitioners in the
field of high performance computing.

In Section 5 the coating problem is modified by
changing from the Cartesian coordinate system to an
axi-symmetric system which is ideal for the simula-
tion. The implications of such are compared under
both programming approaches. For the conventional
development technique, this may imply extensive mod-
ification and recoding (if say analytical integration is
employed), as the change of coordinate system has a
marked influence on the way the operators are defined.
In contrast, for the coordinate free approach this only
entails a reconfiguration of the solver.

The final section discusses consequences of these
findings.

2. Outline of the fluid flow problem

The computational fluid dynamics problem used for
illustration is that based on a wire coating flow [18].
Here, it is sufficient to consider essentially a Stokesian
setting, that of incompressible flow. This is a basis up-
on which to develop the present methodology, subse-
quently to be extended into the non-Newtonian regime.
The overall goal, in the solution of such problems, is to
predict an optimal process design by which a coating
(polymer) of suitable properties may be obtained, e.g.
smooth coating with minimal residual stressing. The
tooling design employed, is tube tooling. This is shown
schematically in Fig. 1.

The liquid polymer melt undergoes a pressure-driven
annular flow within the tooling die, prior to being
dragged by the wire through the geometry, as indicated.
This design allows the polymer to find a free surface
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Fig. 1. Tube tooling.

between the die exit and the attachment point on the
wire, involving a drawn-down section.

We begin with the basic partial differential equations
(Navier-Stokes) to specify the flow problem, and de-
velop a weak, algorithmic form, taking into account a
semi-implicit time stepping scheme. This solver will
then be further refined, in subsequent sections, to pro-
duce executable code using the finite element method
for both the conventional and coordinate free devel-
opment. Iterative and direct algebraic solvers, such
as Jacobi iteration and Choleski decomposition, will
be used for different stages. The former is employed
for inverting Mass-matrix based systems, and the latter
for Pressure Poisson Stiffness matrices that are sparse,
symmetric and banded.

2.1. The problem description

The specific type of wire coating problem of rele-
vance is defined via input data sets. The governing
equations for viscous incompressible isothermal flow
may be described, in a coordinate independent form,
by the generalised Navier-Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u −∇ · (2µ(sym(∇u)))
(1)

+∇p = f

with the associated incompressibility constraint

∇ · u = 0. (2)

The parameters and variables with type information
are specified as follows:

– ρ is the density, a real number,
– u(x, t) is the fluid’s velocity, a vector field,
– ∂u

∂t is the time derivative of the fluid’s velocity, a
vector field,

– µ is the viscosity, a scalar field and in general a
function of ∇u,

– p(x, t) is the pressure, a scalar field,
– sym(−) is the symmetrisation operation. For a

matrix τ , it can be defined by sym(τ) = 1
2 (τ+τT ),

where T is the matrix transpose operator,
– f is an external force acting on the fluid, a vector

field,
– ∇ is the spatial derivative, which is used in several

forms:

1. (v · ∇)u, the convective derivative of a vector
field, yields a scaled derivative of the vector
field u in the direction of the vector field v,

2. ∇p, the gradient, yields a vector field when
applied to a scalar field p,

3. ∇u (gradient) yields a matrix tensor field when
applied to a vector field u,

4. ∇·u, the divergence, yields a scalar field when
“dotted” with a vector field u,

5. ∇ · τ (divergence) yields a vector field when
“dotted” with a matrix tensor field τ .

2.2. Non-dimensional form

Rather than adopting the above dimensional Eq. (1)
directly, the solver will be based on normalised equa-
tions, using a non–dimensional group number, the
Reynold number Re = ρ u0�0

µ0
. The scaling factors, all

real numbers, are: length scale �0; velocity scale u0;
viscosity scale µ0; and time scale t0. We also simplify
the presentation, by assuming hereon that f = 0. This
yields the formulation, for 0 < Re ≤ 1,

Re
∂u′

∂t′
+Re(u′ · ∇′)u′

(3)
−∇′ · (2µ′(sym(∇′u′))) + ∇′p′ = 0

∇′ · u′ = 0 (4)

where

– u′ = u/u0 is the fluid’s dimensionless velocity,
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– ∇′ is the spatial derivative after normalisation (us-
ing an adjusted metric from its dimensional coun-
terpart),

– µ′ = µ/µ0 is the dimensionless viscosity, a scalar
field,

– p′ = p/p0 is the dimensionless pressure scaled by
a pressure factor, a scalar field.

In addition, the simplification also depends on the
following relationships between the parameters:

u0t0 = �0; p0 = µ0u0/�0.

This is ensured via choice of u0, �0 and µ0. For clarity,
the prime notation is discarded subsequently. In the
steady coating problem considered, Reynold numbers
tend to be small, of typical value Re ≈ 10−4. This
is due to the large levels of viscosity involved in these
polymer melt flows.

The particular test problem considered is annular in
configuration and hence two dimensional. The weak
formulation presented in Section 2.6, is valid for two
or three dimensions, and any geometry. The annular
coordinate configuration is detailed in Section 5.1 illus-
trating the complexity involved in changing coordinate
systems.

2.3. Time-discretisation and strong form of equations

We now derive the initial equations which lead to the
matrix Eqs (26–28) in Section 3. A semi-discretisation
of Taylor-Galerkin/pressure correction form is applied
to Eq. (3) and solution vectors un and pn introduced at
discrete time tn for constant time interval ∆t.

A set of difference equations is now established
which can be used to solve for un+1 and pn+1 in terms
of un and pn. We first take an approximation to ∂u

∂t in
Eq. (3) by considering the half interval (tn, tn+1/2):

2Re
∆t

(un+1/2 − un) = s(un) −∇pn (5)

where s(u) = ∇ · (2µsym(∇u)) −Re(u · ∇)u.
Here, a Taylor-Galerkin approach is adopted of two-

step form that addresses the convective aspects of the
problem. For a full explanation of this well-established
technique see [11,18,30,35].

In order to obtain the solution at time step tn+1, we
identify the target equation

Re

∆t
(un+1 − un)

(6)
= s(un+1/2) − ((1 − θ)∇pn + θ∇pn+1)

where 0 � θ � 1. Here, we have taken a θ rule pres-
sure gradient approximation and evaluated s at un+1/2

(we actually take θ = 1/2, and so, this is a Crank-
Nicolson formulation). However, since (6) does not
separate un+1 and pn+1 we introduce an intermediate
free variable u∗, as the solution of

Re

∆t
(u∗ − un) = s(un+1/2) −∇pn. (7)

Note that with u∗ also satisfying

Re

∆t
(un+1 − u∗) = θ(∇pn −∇pn+1), (8)

it follows that un+1 will satisfy Eq. (6) as required. It is
implied that the velocity un at all times tn, must satisfy
the incompressibility constraint expressed by Eq. (4).
By applying the divergence operator ∇· to Eq. (8), we
derive the associated auxiliary equation

Re

∆t
∇ · u∗ = θ∇ · ∇(pn+1 − pn). (9)

This Poisson equation for the pressure difference
over a single time step completes the problem specifi-
cation. The four vector Eqs (5), (7), (9) and (8), will
subsequently give rise to matrix equations once spatial
discretisation has been conducted. This we outline in
Section 3.

Rearranging the equations yields the following
strong formulation consisting of three steps. The
first step splits into two mathematically similar sub-
steps, following a predictor-corrector pattern (two-step
Taylor-Galerkin). The substeps 1a and 1b calculate the
halfstep un+1/2 and the auxiliary u∗ approximations
to the velocities.

– Step 1a

2Re
∆t

(un+1/2 − un)

= ∇ · (2µ sym(∇un)) (10)

−Re(un · ∇)un −∇pn

– Step 1b

Re

∆t
(u∗ − un)

= ∇ · (2µ sym(∇un+1/2)) (11)

−Re(un+1/2 · ∇)un+1/2 −∇pn

– Step 2

θ∇ · (∇(pn+1 − pn)) =
Re

∆t
(∇ · u∗) (12)



P.W. Grant et al. / Coordinate free programming of computational fluid dynamics problems 215

– Step 3

Re

∆t
(un+1 − u∗) = −θ∇(pn+1 − pn) (13)

These steps are iterated from an initial guess to pro-
duce a steady state solution.

2.4. Initial and boundary conditions

The system of equations of the previous section are
solved by imposing appropriate initial conditions on
the domain Ω,

u(x, 0) = u0(x)

p(x, 0) = p0(x),

where∇·u0 = 0, and appropriate boundary conditions
on Γ as

u = g1(x, t) on Γ1
(14)

n · σ = g2(x, t) on Γ2.

Here Γ = Γ1 ∪ Γ2 encloses the domain Ω, n is the
unit outer normal on Γ, g1(x, t) represents the velocity
vector prescribed on Γ1, g2(x, t) designates the traction
vector prescribed on Γ2, and σ is the total Cauchy’s
stress tensor. For an incompressible Newtonian viscous
fluid we have in a Cartesian coordinate system

σij = −pδij + µ0(
∂ui
∂xj

+
∂uj
∂xi

)

where µ0 is a Newtonian fluid viscosity and δij the
unit tensor. The coating problem is a steady flow and
boundary conditions of type Γ1 only are assumed. In
the most general statement of the problem free surfaces
with steady traction boundary conditions would apply.

Since there is no restriction on the choice of bound-
ary conditions for u∗ (a free variable), we may equate
u∗ to un+1 on the complete boundary Γ. The implica-
tion from such a choice and step 3 is that ∇(pn+1−pn)
should vanish on Γ. Also, the boundary conditions
at step 3 are clearly prescribed. For steady boundary
condition problems of immediate relevance, such as-
sumptions are exact. For transient instances, assuming
smoothness in time for pressure, would indicate accu-
racy to a first order in this variable at least, and hence to
a second order in velocity from Eq. (13). This argument
maintains the overall order of the scheme [31]. We shall
see below, in the variational form of the problem, that
natural homogeneous Neumann boundary conditions
emerge from step 2 and these are a distinct advantage
to this scheme [18,19].

2.5. Semi-implicit form of solver

With a Crank-Nicolson treatment of diffusion terms
we derive a semi-implicit time stepping scheme of sec-
ond order accuracy. This allows a wider window of
stability above an explicit implementation and thus per-
mits the use of practical working time steps [18,19,31].
Such advantages continue through to more complex
non-Newtonian settings, where inertial influences via
Reynolds number are low, in contrast to elastic effects
(for further details see [22]). In step 1a, the term un in
the viscous term of the explicit scheme is replaced by
the average at tn+1/2 and tn. After rearranging, so that
un+1/2 appears in the difference term un+1/2 −un on
the left hand side only, we obtain for the modified step
1a′

2Re
∆t

(un+1/2 − un)

−∇ · (µ sym(∇(un+1/2 − un))
(15)

= 2∇ · (µ sym(∇(un))

−Re(un · ∇)un −∇pn.
Step 1b is treated in a similar manner, where un+1/2

in the viscous term is replaced by the average of un

and u∗, yielding step 1b′

Re

∆t
(u∗ − un) −∇ · (µ sym(∇(u∗ − un))

= 2∇ · (µ sym(∇(un)) −∇pn (16)

−Re(un+1/2 · ∇)un+1/2.

The semi-implicit solver is then described by
Eqs (15,16,12) and (13).

2.6. Weak formulation

The weak variational formulation of the problem is
now derived. We use two sets of test functions: a class
of quadratic vector shape functions v ∈ V and a class
of scalar shape functions q ∈ Q. Both sides of Eqs (13),
(15) and (16) are dotted with the vector shape functions
v and the scalar test functions q are multiplied into the
algorithmic step 2, Eq. (12).

The results are integrated over the whole domain
Ω and simplified, via integration by parts. This re-
duces second-order derivatives from the integrands to
first-order and pressure gradients to order zero in the
defining velocity equations. Further simplification is



216 P.W. Grant et al. / Coordinate free programming of computational fluid dynamics problems

achieved using the divergence theorem which gives rise
to the integrals over the boundary Γ.

From Eq. (15) step 1a′′ becomes:
2Re
∆t

∫
Ω

(un+1/2 − un) · vdΩ

+
∫

Ω

µ sym(∇(un+1/2 − un)) · ∇vdΩ

=
∫

Γ

(µ sym(∇(un+1/2 + un)) · v − pnv) · ndΓ

−2
∫

Ω

µ (sym∇(un)) · ∇vdΩ

−Re
∫

Ω

((un · ∇)un) · vdΩ

+
∫

Ω

pn(∇ · v)dΩ

In a similar manner, starting from Eq. (16), we obtain
step 1b′′:

Re

∆t

∫
Ω

(u∗ − un) · vdΩ

+
∫

Ω

µ sym(∇(u∗ − un)) · ∇vdΩ

=
∫

Γ

(µ sym(∇(u∗ + un)) · v − pnv) · ndΓ

−
∫

Ω

2µsym(∇(un)) · ∇vdΩ

+
∫

Ω

pn∇ · vdΩ

−
∫

Ω

Re(un+1/2 · ∇)un+1/2 · vdΩ
Step 2′′ becomes:

θ

∫
Ω

∇(pn+1 − pn) · ∇qdΩ

−θ
∫

Γ

(∇(pn+1 − pn) · n)qdΓ

=
−Re
∆t

∫
Ω

(∇ · u∗)qdΩ

and step 3′′:
Re

∆t

∫
Ω

(un+1 − u∗) · vdΩ

= θ

∫
Ω

(pn+1 − pn)∇vdΩ

−θ
∫

Γ

(pn+1 − pn)(v · n)dΓ

Finally, all surface integrals are equated to zero. This
is in accordance with the details of the boundary con-
ditions as expressed in Section 2.4. The test functions
used will vanish on the boundary Γ1, where the veloci-
ties are prescribed, as indicated in Eq. (14) and for the
coating problem considered, it is assumed there are no
traction boundary contributions.

In step 2 of the algorithm, the surface integral can be
removed since ∇(pn+1 − pn) is taken to vanish over
the whole of Γ, as discussed in Section 2.4. In ad-
dition, due to imposition of fixed Dirichelet boundary
conditions on un+1 −u∗, we can ignore the associated
surface integrals over Γ2 for the pressure fields again
owing to the choice of test functions. The weak formu-
lation can thus be expressed through the following set
of equations:

Step 1a:

2Re
∆t

∫
Ω

(un+1/2 − un) · vdΩ

+
∫

Ω

µ sym(∇(un+1/2 − un)) · ∇vdΩ

= −2
∫

Ω

µ sym(∇(un)) · ∇vdΩ (17)

−Re
∫

Ω

((un · ∇)un) · vdΩ

+
∫

Ω

pn(∇ · v)dΩ

Step 1b:

Re

∆t

∫
Ω

(u∗ − un) · vdΩ

+
∫

Ω

µ sym(∇(u∗ − un)) · ∇vdΩ

= −2
∫

Ω

µsym(∇(un)) · ∇vdΩ (18)

−Re
∫

Ω

(un+1/2 · ∇)un+1/2 · vdΩ

+
∫

Ω

pn∇ · vdΩ

Step 2:

θ

∫
Ω

∇(pn+1 − pn) · ∇qdΩ
(19)

=
−Re
∆t

∫
Ω

(∇ · u∗)qdΩ
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Step 3:

Re

∆t

∫
Ω

(un+1 − u∗) · vdΩ
(20)

= θ

∫
Ω

(pn+1 − pn)∇ · vdΩ.

This completes the development of the variational
formulation of the problem. This will be used as the
starting point for the discretisation over space both for
the conventional development, in Section 3, and for the
coordinate free approach, in Section 4, both leading to
implementable simulations.

3. Conventional software development and
discretisation

This section describes the conventional approach for
numerically solving Eqs (3) and (4). The domain over
which the solution is required is first triangulated into
a finite-element mesh with nodes at the vertices and
mid points of the edges. The weak formulation, as
presented in Section (2.6), is used to derive a set of
matrix equations relating the values of the velocities
and pressure at the mesh nodes. This is presented
initially within a Cartesian coordinate framework.

3.1. The finite element method

We now obtain the fully discretised equations us-
ing the finite element method (FEM). The total num-
ber of nodes and vertex nodes in the mesh are de-
noted by mv and mp respectively. Two sets of spa-
tial shape functions, V and Q are employed. V =
{ϕj |j = 1, . . . ,mv} is a set of piecewise quadrat-
ic functions (quadratic on each element) and Q =
{ψj|j = 1, . . . ,mp} is a set of linear functions (linear
on each element). A shape function is associated with
a node, it is continuous, takes on the value 1 at its node
and 0 at the other nodes of its compact support. It has
local support, in the sense that the shape function is
non-zero only on the elements bordering to its node. A
vector field is now approximated byun ≈∑mv

j=1 Un
j ϕj

and a scalar field by pn ≈∑mp

j=1 P
n
j ψj , where the su-

perscript n denotes evaluation at time step n, as before.
The finite element interpolants are then substituted

in Eqs (17–21) and appropriate test functions v and q
chosen to produce a set of matrix equations.

Taking the first Eq. (17) we have:

mv∑
j=1

[
2Re
∆t

∫
Ω

ϕj(U
n+1/2
j − Un

j ) · vdΩ

+
∫

Ω

µ sym(∇(Un+1/2
j − Un

j )ϕj) · ∇vdΩ
]

= −
mv∑
j=1

[
2
∫

Ω

µ sym(∇ϕjUn
j ) · ∇vdΩ (21)

+Re
∫
Ω

((Un · ∇)ϕjUn
j )) · vdΩ

]

+
mp∑
k=1

(
∫

Ω

ψk(∇ · v)dΩPn
k ).

It is convenient to represent all the vectors Uj , in
R3, j = 1 · · ·mv, as one combined column vector U
of size 3mv, thus

U = (U11, U12, · · · , U1mv , U21, U22, · · · ,
U2mv , U31, U32, · · · , U3mv)T

where Ulj is the xl-component of Uj for l = 1, · · · , 3.
We consider the various types of integrals which

appear in Eq. (21). The first term is of the form:
mv∑
j=1

∫
Ω

φjUj · vdΩ.

Expanding Uj using the standard Euclidean basis
vectors {e1, e2, e3} leads to

3∑
l=1

mv∑
j=1

∫
Ω

φjUljel · vdΩ.

The Galerkin method is adopted by choosing the
test functions to be generated by the shape functions
V . Letting ϕl

j = ϕjel and taking as test functions
v = ϕm

i for m = 1, · · · , 3 and i = 1, · · · ,mv yields
the following 3mv terms

3∑
l=1

mv∑
j=1

∫
Ω

ϕl
j · ϕm

i dΩUlj .

Taking the above as elements of a 3mv column vec-
tor, it clearly can be represented as the matrix–vector
product MU where M has the block structure

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33




where

Mlm
ij =

∫
Ω

ϕl
j · ϕm

i dΩ. (22)
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Evidently Mlm = 0 for l �= m and Mll are all
identical and given by

Mll
ij =

∫
Ω

ϕiϕjdΩ.

This matrix M is the mass matrix.
To deal with the second term in Eq. (21), after ex-

panding Uj in terms of the basis vectors, we consider

3∑
l=1

mv∑
j=1

∫
Ω

µ sym(∇(Uljϕ
l
j)) · ∇vdΩ.

This yields the 3mv terms

3∑
l=1

mv∑
j=1

∫
Ω

µ sym(∇(Uljϕ
l
j)) · ∇ϕm

i dΩ.

As a vector this latter term can be expressed as SU
and writing S in block form (Slm), each block is de-
termined by

Slm
ij =

∫
Ω

µ sym(∇(ϕl
j)) · ∇ϕm

i dΩ. (23)

S is referred to as the diffusion matrix. Note that S is
symmetric and in particular (Sml) = (Slm)T .

The next expression in Eq. (21) to consider is

3∑
l=1

mv∑
j=1

∫
Ω

((U · ∇)ϕl
jUlj) · vdΩ

(where U =
∑mv

k=1 ϕkUk) producing a 3mv vector
which can be written N(U)U where

N(U)lmij =
∫

Ω

((
mv∑
k=1

ϕkUk · ∇)ϕl
j) · ϕm

i dΩ. (24)

N(U) is called the convection matrix.
The final term in Eq. (21) has the form

mp∑
k=1

(
∫

Ω

ψk(∇ · v)dΩPn
k ),

yielding the 3mv terms
mp∑
k=1

(
∫

Ω

ψk(∇ · ϕm
i )dΩPn

k ).

Since ∇ · ϕm
j = ∂ϕj

∂xm
for m = 1, · · · , 3, the above

can be represented as LP , where

L =


L1

L2

L3




and the entries of each block are defined as

Lm
ik =

∫
Ω

ψk
∂ϕi

∂xm
dΩ for m = 1, · · · , 3. (25)

LT is then the associated incompressibility matrix.
Using the above, the desired matrix equation for a

discretised version of step 1a is:

(
2Re
∆t

M + S)(Un+1/2 − Un)
(26)

= LPn − (2S +ReN(Un))Un.

Equations (18) and (20) can be discretised in a similar
manner yielding the Eqs (27) and (28) for steps 1b and
3.

(
Re

∆t
M + S)(U∗ − Un)

(27)
= LPn − 2SUn −ReN(Un+1/2)Un+1/2.

Re

∆t
M(Un+1 − U∗) = θL(Pn+1 − Pn). (28)

For discretising step 2, we have, substituting in
Eq. (19)

θ

mp∑
k=1

∫
Ω

∇ψk · ∇qdΩ(Pn+1
k − Pn

k )

=
−Re
∆t

3∑
l=1

mv∑
j=1

∫
Ω

(∇ · ϕl
j)qdΩU

∗
lj .

Here we take Q as the set of test functions to obtain
the following set of mp equations:

θ

mp∑
k=1

∫
Ω

∇ψk · ∇ψidΩ(Pn+1
k − Pn

k )

=
−Re
∆t

3∑
l=1

mv∑
j=1

∫
Ω

∂ϕj

∂xl
ψidΩU∗

lj .

To express the left hand side, we introduce the pres-
sure stiffness matrix K

(Kij) = (
∫

Ω

∇ψj · ∇ψidΩ) (29)

then, step 2 becomes

θK(Pn+1 − Pn) =
−Re
∆t

LTU∗. (30)

Equations (26,27,30) and (28) then constitute the
matrix representation of the problem. It is important to
realise that the integrands appearing in the definitions
of M,K, and L can all be evaluated analytically since
the functions ϕi and ψk are of a simple form, and
so the matrix elements are known at the start of the
computation.
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3.2. Solving the equations

Equations (26)–(28) are solved using Jacobi itera-
tion. Although the mass matrix M is generally very
large, it is not necessary to store such a matrix explicit-
ly, and in practice, only the element sub-block matrices
Me need be constructed. The iteration takes the form:

X(r+1) = X(r) − ωD−1
mel∑
e=1

LT
e MeX(r)

e

(31)
−ωD−1B

where D is a chosen diagonal form and ω is a positive
relaxation factor [19,10].

The direct Choleski method is employed to solve
the pressure difference Eq. (30). The decomposition
must be performed only once at the outset of the time-
stepping procedure. This leads to an efficient imple-
mentation.

Termination for steady state is determined by using
an �2-norm on the difference between the velocity vec-
tors at consecutive time steps and halting when this is
less than some threshold tolerance.

3.3. A discussion of relevant coding techniques

The exposition above is at a very basic data level,
expressed in the form of vectors and matrices. The
form is imperative in style – do this, then do that,
update the variables and repeat until termination –
this is suitable for implementation in any of a number
of languages. The preferred choice among scientific
programmers would be a dialect of Fortran, typically
Fortran-77, but Fortran-90 is becoming more popular,
see the survey [20]. The program developed in this sec-
tion has been implemented in Fortran-90 and amounts
to about 15, 000–20, 000 lines of code.

Several authors have followed this style of software
development for Object-Oriented languages such as
C++ and more recently Java. This typically results in
classes representing vector and matrix operations with
BLAS like routines. The general impression is that
there is little gained over the use of Fortran from the
conceptual point of view, even though the increased
emphasis on software engineering principles that these
projects have, often is beneficial for the quality of the
code – especially when compared to dusty deck Fortran.

A variation on this is the use of the Diffpack software
package [7]. It is a support environment for the de-
velopment of object-oriented numerical software, and
has embodied many good software engineering features

and practices. The tendency is for Diffpack code to be
closer to the numerical algorithm allowing the software
developer to focus more clearly on the numerical as-
pects of the task than that experienced by a Fortran pro-
grammer. However, Diffpack’s approach to numerical
software development is still basically the conventional
one outlined above, making the choice of discretisation
and coordinate systems explicit in the code.

More applicative implementations using functional
languages have also been tried [13]. In these cases also
the focus is on basic data structures and operations on
them. The benefits of using function calls and recursion
rather than variable updates and iteration show more
in a greater readiness for automatic parallelisation (see
the papers and approaches in [29]) than in the way the
code is structured in the large. However, as for object-
orientation, developers working in this area tend to put
more emphasis on good software practices than does
the classically trained Fortran programmer.

4. Coordinate free methodology

In the coordinate free methodology we write the pro-
gram code based directly on the concepts present in the
abstract algorithm as developed in Section 2.6. For this
we need an understanding of these abstract mathemat-
ical concepts, together with their software realisation
and support. Then implementing the numerical solver
becomes straightforward.

In this section we first briefly present the notions of
tensors and coordinate freeness, introducing the nec-
essary notations and terminology. An outline is then
given of the Sophus library and it is indicated how the
finite element method (FEM) may be implemented in
Sophus. Finally, we show how the solver for the coating
problem can be implemented using Sophus.

4.1. Coordinate free mathematics

The concepts from algebra and coordinate free math-
ematics sketched here are given thorough treatment in
the books [21,27].

Plain numerical types, such as the real numbers, are
often abstracted as fields or rings. Given a ring R, we
may define, for any integer n � 0, n-positional numer-
ical types over R, commonly known as n-dimensional
vectors v ∈ Rn. For any n, the set of n-dimensional
vectors v form a vector space V . (Strictly speaking,
this is a module, and only a vector space when R is
a field. However, to avoid confusion with the usage
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of module in computing we shall use the term vector
space below).

Given a basis B = {b1, . . . ,bn}, a vector v ∈ V
can be identified by its coordinates v̄ = (a1, . . . , an),
i.e., ring elements a1, . . . , an ∈ R, such that v =
a∗1b1 + . . . + a∗nbn. Note that there is a distinction
between a vector v ∈ V as an n-positional numerical
type, and its coordinates v̄ with respect to a basis B ⊆
V , even though the latter also may be considered an
n-positional numerical type. It is only when using the
normalised Cartesian coordinate system that the data
values v = v̄. The normal representation for vectors is
relative to some coordinate system, but then care has to
be taken to interpret coordinates v̄ only relative to that
coordinate system.

The collection M of linear mappings from vector
spaces V to W form a vector space. If V = Rm and
W = Rn, for m,n � 0, we know that the linear map-
pings fromV toW can be represented as n bymmatri-
ces, which we also may regard as (nm)-positional nu-
merical types, or, in other words, as (nm)-dimensional
vectors. Using the tensor product ⊗ we may combine
a basis B for an m-dimensional vector space V with
a basis B′ for an n-dimensional vector space W to
form a basis B ⊗ B′ for the (nm)-dimensional vector
spaceM of linear mappings from V to W . This means
that any linear mapping � ∈ M is expressible using
a linear combination of the basis vectors bi ⊗ b′

j , for
bi ∈ B ⊆ V and b′

j ∈ B′ ⊆ W (this does not im-
ply that every vector � can be expressed by v ⊗ w for
v ∈ V and w ∈ W ). If V = R then the tensor product
reduces to the ring-vector product.

Covectors v ∈ V ∗ are (n1)-dimensional vectors
which take n-dimensional vectors v ′ ∈ V to 1-
dimensional vectors (ring elements v(v ′) ∈ R). There
is an operation ∗ : V → V ∗, dualisation, which takes
a vector and returns a covector. The inner product, or
the dot product v · v′ of vectors v,v′ ∈ V is defined
by v · v′ = v∗(v′).

Normally we have to do computations on a vector
v ∈ V on its coordinate representation v̄ relative to a
coordinate systemB ⊆ V . It is important that changing
the basis of the vector space V should not change the
effect of operations on the vector v ∈ V . This can
be achieved by making the operations, such as the dot
product and dualisation ∗, aware of which basis is
being used. Then appropriate corrective action may be
taken in the computations, and we may use operations
on vectors independently of coordinate system, thus
achieving coordinate free mathematics.

Our tool for doing this is the notion of tensors. Given
a ring R, an integer b � 1, a b-dimensional vector

space V with basis vectors B ⊆ V , then tensor spaces
T

(k)
R,B are the n-dimensional vector spaces where n =
bk, for some k � 0. It is easy to see that the ring
itself is the tensor space T (0)

R,B for any b. The tensor

product of a (bk1)-dimensional tensor τ1 ∈ T
(k1)
R,B and

(bk2)-dimensional tensor τ2 ∈ T
(k2)
R,B is a (bk1+k2)-

dimensional tensor (τ1 ⊗ τ2) ∈ T
(k1+k2)
R,B . The dot

product of two tensors τ1, τ2 ∈ T
(k)
R,B is a tensor (τ1 ·

τ2) ∈ T
(0)
R,B .

We need to distinguish between the tensor spaces
and also on how they are formed with vector and cov-
ector components. This gives us many distinct tensor
spaces for any bk dimensions, k > 0, providing a dis-
tinct slice for every combination of covectors and vec-
tors in the formation of T (k)

R,B. In conventional notation
these slices are distinguished using upper and lower
indices. Making certain that the covector and vector
components match up, we may apply one tensor as a
linear mapping to another tensor. Specifically this no-
tion carries down to b-dimensional tensors T (1)

R,B (ap-
plying covectors to vectors) and 1-dimensional tensors
T

(0)
R,B (multiplication of ring elements).

4.2. Scalar, vector and tensor fields

For a ring or field R, such as the set of real numbers,
given a set X , the set FX→R of functions f : X → R
forms a ring with, for any f, g ∈ FX→R, multiplication
defined by (f · g)(x) = f(x) · g(x) for all x ∈ X ,
addition by (f + g)(x) = f(x) + g(x) for all x ∈ X ,
and so forth. The ring FX→R is called a scalar field.
We may consider every ring element a ∈ R as a scalar
fielda ∈ FX→R by defininga(x) = a for everyx ∈ X .
Scalar fieldsFX→R may be used in the constructions of
vector spaces and tensor spaces, yielding the notions of
vector fields VX→R, with basisE ⊆ VX→R, and tensor
fields T (k)

FX→R,E , for every k � 0. A scalar field assigns
a different value to every point in X . A vector field
likewise may change throughout X , such that every
point of X is assigned a vector with different direction
and magnitude. The basis vectors for a vector field may
thus define any kind of curvilinear coordinate system,
including Cartesian and cylindrical.

For X a vector space over the ring R, then X will
be included in VX→R in the same way as R is included
in FX→R. And, as before, there are inclusions from
FX→R to T (0)

FX→R,E and from VX→R to T (1)
FX→R,E .

If the set X satisfies the properties of being a man-
ifold, i.e., it has the notions of direction and proximi-
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ty, we may define non-trivial derivation operations on
the scalar field. Typically X will be a b-dimensional
vector space with basis vectors B ⊆ X , such as the 3-
dimensional space in which most physics takes place.
We may then define partial derivatives ∂f

∂x of the scalar
fields f ∈ FX→R along any vector x ∈ X . The partial
derivative will also be a scalar field since it changes
throughout X , so ∂f

∂x ∈ FX→R. Knowing the partial
derivatives along the basis vectors B is sufficient to
compute the derivatives along any vector in X . If X
is a b-dimensional vector space this forces the vector
field VX→R to have b dimensions, and the basis E for
the vector field will then have b linearly independent
b-dimensional vectors. At the level of tensor fields
T

(k)
FX→R,E we may now define many derivation opera-

tions, all of which may be computed from the partial
derivatives on the scalar field FX→R.

For a scalar field f ∈ FX→R, an integration a =∫
Ω
fdX of f for a subdomain Ω ⊆ X with basis vectors

B ⊆ X yields a ring element a ∈ R. Scalar field
integration gives rise to tensor field integration α =∫
Ω
σdX for σ ∈ T

(0)
FX→R,E yielding values α ∈ R.

Derivation and integration operations on tensor
fields, like the dot product, depend on the choice of
basis E for VX→R.

We may now treat all symbols in the equations of
Section 2.6 as tensors and coordinate free operations
on tensors. Some of the descriptions in Section 2.1 are
now explained in the more general tensor setting. Let
us summarise the operations we need, after the sim-
plification of the solver, and assuming the appropriate
tensor slices:

– sym(σ) is the tensor symmetrisation operator tak-

ing a tensor σ ∈ T
(k)
FX→R,E to a tensor in the sym-

metrical subspace of T (k)
FX→R,E .

– +, − are the tensor field addition and subtrac-
tion operations taking a pair of tensor fields from
T

(k)
FX→R,E to a tensor field in T (k)

FX→R,E .
– a∗τ is the scalar-tensor field multiplication taking
a ∈ T

(0)
FX→R,E and τ ∈ T

(k)
FX→R,E to a tensor field

in T (k)
FX→R,E . Note that a ∗ τ = a⊗ τ . Normally

we write aτ for a∗τ .
– σ · τ is the tensor field dot product taking tensor

fields σ, τ ∈ T
(k)
FX→R,E and returning a scalar field

in T (0)
FX→R,E .

– ∇ is the spatial derivative, which is used in several
forms:

1. (v · ∇)σ, the convective derivative, yields a

tensor field in T
(k)
FX→R,E for the derivation of

the tensor field σ ∈ T
(k)
FX→R,E in the direction

of the vector field v ∈ T
(1)
FX→R,E ,

2. ∇σ, the gradient, yields a tensor field in
T

(k+1)
FX→R,E when applied to a tensor field σ ∈
T

(k)
FX→R,E , thus it takes a scalar field to a vector

field and a vector field to a matrix field,
3. ∇ · σ, the divergence, yields a tensor field in

T
(k)
FX→R,E when applied to a tensor field σ ∈
T

(k+1)
FX→R,E , thus it takes a matrix field to a vector

field and a vector field to a scalar field.

–
∫
Ω σdX integration of a tensor fieldσ ∈ T

(0)
FX→R,E

over a subdomain Ω ⊆ X yields a ring element in
R.

There is an important distinction between tensor
fields T (k)

FX→R,E based on the tensor construction using
scalar fields as the ring, and tensor fields T : X →
T

(k)
R,B which directly assign a tensor to every point
x ∈ X . The former allow us to build advanced tensor
operations, such as derivation operations, from scalar
field operations, such as the partial derivatives. The
latter require us to implement the advanced tensor op-
erations directly in terms of the (discretised) represen-
tation of X , see the discussion in [14, Section 4.2]. As
is evident, the former, which we have chosen, give a
clear separation between discretisation methods for the
scalar field and the spatial derivation operations at the
tensor level. The latter force a tensor field implemen-
tation for each discretisation.

4.3. A framework for a tensor based library

The Sophus library framework describes a library ar-
chitecture for providing the abstract mathematical con-
cepts from PDE theory as programming entities. This
means that any piece of a program, or even any module
in the library, may be coded using any of the abstrac-
tions defined. At compile time, implementations for
each of the abstractions will be chosen, such that no cir-
cular dependencies on the implementations occur. This
means that, e.g., a mesh implementation may build on
another mesh implementation, but that the latter mesh
cannot be built on the former mesh. The Sophus frame-
work is based on the notions of manifold, scalar field
and tensor field, while the implementations are based
on the conventional numerical algorithms and discreti-
sations. The Sophus framework is structured around
the following concepts:
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– Basic n-dimensional mesh structures with a ring
R as template argument. These are like rank n
arrays (i.e., with n independent indices) with ele-
ment typeR, but with general map operations, i.e.,
performing an argument function for every ele-
ment. It also has specific operations like +, − and
∗ mapped over all elements (much like Fortran-
90 array operators) as well as the ability to add,
subtract or multiply all elements of the mesh by
a scalar in a single operation. There are also op-
erations for shifting meshes in one or more di-
mensions. Operations like multidimensional ma-
trix multiplication @ and linear equation solvers
such as Choleski decomposition and Jacobi itera-
tion may easily be implemented for the meshes.
Not all mesh implementations will provide all op-
erations. Some implementations may be more spe-
cialised, e.g., assuming a sparse mesh or a mesh
with certain symmetries. Other implementations
may provide fully general parallel and sequential
implementations that can be used interchangeably,
allowing easy porting between computer architec-
tures of any program built on top of the mesh ab-
straction.

– Manifolds X . These are sets with a notion of
proximity and direction. They represent the phys-
ical space Ω ⊆ X where the problem to be solved
takes place.

– Scalar fields FX→R. They describe the mea-
surable quantities of the physical problem to be
solved. As the basic layer of “continuous math-
ematics” in the library, they provide the partial
derivation and integration operations. Also, two
scalar fields on the same manifold may be point-
wise added, subtracted and multiplied.
The different discretisation methods, such as the
finite difference and finite element methods, pro-
vide different designs for the implementation of
scalar fields. Scalar fields are typically imple-
mented using the mesh structures with reals for
the ring to store the data. Not all mesh opera-
tions are relevant in this context, so it is possible
to choose mesh implementations that, e.g., do not
support equation solvers or matrix multiplication,
when configuring implementations for a program.

– Tensors T (k)
FX→R,E . These provide coordinate free

mathematics based on the knowledge of the co-
ordinate system E, whether it is Cartesian, axi-
symmetric or general curvilinear. The tensor class
provides the general differentiation and integra-
tion operations, based on the partial derivatives

and integrals of the scalar fields. Tensors also pro-
vide operations such as componentwise addition,
subtraction and multiplication, as well as tensor
product, composition and application.
The implementation is based on the basic mesh
structures, with scalar fields as the ring parame-
ter. Thus tensor operations are formed from ex-
pressions on scalar fields performed by the mesh
classes. Again, many operations of the mesh are
not needed, allowing more specialised mesh im-
plementations to be used. For instance, equation
solvers are not needed, while matrix multiplication
algorithms are important.

– Equation administrators. These are abstractions
containing collections of scalar and tensor fields
with the purpose of building the matrices and
vectors used to describe sets of linear equations,
such as those needed for implicit time stepping
schemes. These matrices and vectors do not rep-
resent coordinate free properties of a physical sys-
tem, but abstract the important properties of linear
equations.
Equation administrators are also implemented us-
ing mesh structures with tensor fields or reals as the
ring, as appropriate. Here operations like matrix
multiplication and matrix equation solvers are im-
portant, and relevant mesh implementations must
provide these. Also, additional properties like
symmetries and block diagonal structures may be
exploited by appropriate mesh implementations.

In general a partial differential equation provides a
relationship between spatial derivatives of tensor fields
representing physical quantities and their time deriva-
tives. Given constraints in the form of the values of the
tensor fields at a specific instance in time together with
boundaryconditions, the aim of a PDE solver is to show
how the physical system will evolve over time, or what
state it will converge to if left by itself. Using Sophus,
the solvers are formulated on top of the coordinate-free
layer, forming an abstract, high level program for the
solution of the problem.

4.4. The finite element method in Sophus

The finite element method presented in Section 3.1,
is now redeveloped in a more abstract manner suitable
for implementation in the Sophus approach. In this
more general setting, the method is based on the ob-
servation that given a manifold X with basis B ⊆ X
and a ring R, a scalar field p ∈ FX→R, may be ap-
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proximated by a sum p ≈ ∑g∈G Pg · g for scalar fields
g ∈ G ⊆ FX→R, termed shape functions, and scalars
Pg ∈ R. The larger the set G, the better the approxi-
mation, but this will increase computation times since
larger data sets will have to be computed. For numer-
ical reasons, different scalar fields should be approx-
imated by different shape function sets, but if these
different discretisations are to be used in the same ex-
pressions, the different sets of shape functions must be
coordinated.

This coordination is achieved by splitting the domain
X into a set E of disjoint elements e ∈ E , such that
∪e∈E e = X and for each element designate a fixed set
of integration points. A scalar field’s value at an inte-
gration point represents its average value in a subregion
of the element. In a 2-dimensional case the domain
may typically be split into triangles, the choice adopt-
ed in Section 3.1. For the FEM, the shape functions
are continuous within elements and have small support,
i.e., are non-zero only for a few elements. This is nor-
mally restricted further, so that the functions g ∈ G
take their maximum value 1 ∈ R at exactly one point –
the nodal point – in the domain X , and are non-zero
only on those elements adjacent to that point (referred
to as the domain of local compact support for g). Also,
a shape function is 0 at the nodal points of all other
shape functions within its collection. These are the
same constraints as used in the conventional approach
presented in Section 3.1.

The shape functions g ∈ G are normally cho-
sen so that the partial derivatives ∂g

∂x ∈ FX→R for
x ∈ B ⊆ X and the integral

∫
e
gdX ∈ R on an el-

ement e ⊆ X may be computed analytically. In Sec-
tion 3.1, for example, these were chosen to be either
linear or quadratic functions. Since the differentiation
and integration operations are linear with respect to R,
we have that

∂p

∂x
≈
∑
g∈G

Pg · ∂g
∂x

∫
Ω

pdX ≈
∑
e∈E


∑

g∈G
(Pg ·

∫
e

gdX)




In the variational form, all expressions involving the
scalar fields are integrated in each PDE equation. This
means we do not need to approximate the scalar field or
tensor field expressions as such, but rather their effect
on the integrals. The values at the integration points
provide such an approximation, so these are the only
values we really need to use when computing scalar

field expressions. This also implies that elements and
integration points are the only coordination needed be-
tween scalar fields. Each scalar field may be based on
different sets of shape functions for that matter.

4.5. Developing a solver for the coating problem

Recall, that for the coating problem we are working
with a subdomain Ω ⊆ X of the physical 3-dimensional
world X . The tensor fields are T (k)

FX→R,E , where R is
the set of reals, E = {e1, e2, e3} ⊆ VX→R are the
standard basis vectors, and k = 0 (scalar fields), k = 1
(vector fields) or k = 2 (matrix fields). In the variation-
al form of the equations for the solver in Section 2.6
we are using scalar fields q ∈ Q ⊆ T

(0)
FX→R,E and vec-

tor fields v ∈ V ⊆ T
(1)
FX→R,E as test functions for the

integrals.
The coordinate free, variational form, of the solver

equation steps Eqs (17)–(21) for the coating problem
need some refinement to serve as an algorithm for an
actual computation. Looking at the left hand sides
of the equations we see there are three problems to
address:

– The integrals compound the value of scalar fields
into a scalar, so we need to restore the unknown
scalar fields on the left hand side from these scalars
(steps 1, 2 and 3).

– The vector fields representing the velocity are
“dotted” with a vector field, so only information
about the magnitude of the left hand side vectors
is known, with no information about the direction
(steps 1 and 3).

– The symmetrisations of ∇u are “dotted” with ∇v
terms, thus intermixing information concerning all
components of the vector u, so that not even the
magnitude of the unknown vectors are explicitly
available (step 1).

The above is a more abstract view than that indicated
in Section 2.6. But, as in the conventional case, the
solution to these problems is to generate more equa-
tions at each step, by choosing appropriate sets of test
functions, so that we get enough scalars to compute
the unknown scalar and vector fields. How to achieve
this becomes increasingly involved. We relate the tech-
niques to the individual steps of the algorithm, starting
with the simplest cases.

– Step 2: a scalar field integrated to a real value.
If we approximate the scalar-field (pn+1 − pn) ∈
T

(0)
FX→R,E by a sum

∑
g∈G(Pn+1

g − Pn
g ) · g for
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scalars (Pn+1
g − Pn

g ) ∈ R and shape functions

G ⊆ T
(0)
FX→R,E , we may move the scalars out of the

derivation and integration expressions. We may
then reformulate step 2 to

∀q ∈ Q


θ∑

g∈G
(Pn+1

g − Pn
g )
(∫

Ω

∇g · ∇qdX
)

=
−Re
∆t

∫
Ω

(∇ · u∗)qdX

]
.

This gives us a system of equations with |Q| right
hand sides3

Bq =
−Re
∆t

∫
Ω

(∇ · u∗)qdX

for each q ∈ Q. It has |G| unknowns (P n+1
g −Pn

g )
for g ∈ G. The |Q| × |G| integrals on the
left hand side are independent of the variables of
the problem, so we may define a mesh matrix
Kq,g =

∫
Ω ∇g · ∇qdX for g ∈ G, q ∈ Q (this

is a matrix with data elements from R, and is not
a tensor structure but just a mesh-of-R structure).
This corresponds to the pressure stiffness matrix
K from Eq. (29). Ensuring that |Q| = |G|, the
unknowns are uniquely determined, and we may
solve the system θK@(P n+1 − Pn) = B using a
suitable matrix solver.
Assuming thatP n

g is known it is easy to findP n+1
g

once the system is solved and the (P n+1
g − Pn

g ),
for g ∈ G, have been found. Calculating the
scalar field pn+1 ∈ T

(0)
FX→R,E will be simplified if

G is taken to be the shape functions used in the
discretisation of the scalar fields p ∈ FX→R as
described in Section 4.4. This also ensures that we
will not lose any accuracy by the approximations
of pn+1 in the system of equations.

– Step 3: a vector field compounded to scalar field
and then integrated to a real value. We may repre-
sent the unknown vector (un+1−u∗) ∈ T

(1)
FX→R,E

as the linear combination u∗
1e1 + u∗2e2 + u3 ∗ e3

of basis vectors e1, e2, e3 ∈ E ⊆ T
(1)
FX→R,E and

scalar fields u1, u2, u3 ∈ T
(0)
FX→R,E . Then the

equation becomes

∀v ∈ V

[
Re

∆t

3∑
i=1

(∫
Ω

ui ∗ ei · vdX
)

3For a set X the notation |X| means the cardinality of X.

= θ

∫
Ω

(pn+1 − pn)(∇ · v)dX
]
.

Now we can restore the scalar fields using the
technique of shape functions g ∈ G ′ as above,
giving the following system of equations for each
v ∈ V

Re

∆t

∑
g∈G′

(
3∑

i=1

(
Un+1

(g,i) − U∗
(g,i)

)
(∫

Ω

gei · vdX
))

= θ

∫
Ω

(pn+1 − pn)(∇ · v)dX.

We choose G′ as the shape functions for the
discretisation of the scalar field components for
u ∈ T

(2)
FX→R,E . Then we ensure that |V | = 3|G′|

so that we have the same number of equations
|V | as unknowns, which is |G′| times the number
of dimensions. This time the matrix on the left
hand side becomes Mv,(g,i) =

∫
Ω gei · vdX , for

g ∈ G′, i ∈ {1, 2, 3} and v ∈ V . We need to treat
(g, i) as one index in order to haveM be a normal
matrix. This corresponds to the mass matrix M
from Eq. (22).

– Steps 1a and 1b: symmetrisation with vector field
compounded to scalar field and then integrated to a
real value. Using the same technique as above, we
may easily separate the unknowns from the first
(explicit) part of the left hand side terms. This
also separates the unknowns from the symmetrised
term since symmetrisation is linear with respect to
scalar multiplication. Then we may reformulate
step 1a to, ∀v ∈ V

∑
g∈G′

(
3∑

i=1

(
U

n+1/2
(g,i) − Un

(g,i)

)
∫

Ω

(
2Re
∆t

gei · v + µ sym(∇(gei)) · ∇v
)
dX

)

= −2
∫

Ω

µ sym(∇un) · (∇v)dX

−Re
∫

Ω

((un · ∇)un) · vdX

+
∫

Ω

pn(∇ · v)dX

with equation matrix M ′ = 2Re
∆t M + S, and step

1b to, ∀v ∈ V :
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∑
g∈G′

(
3∑

i=1

(
U∗

(g,i) − Un
(g,i)

)
∫

Ω

(
Re

∆t
gei · v + µ sym(∇(gei)) · ∇v

)
dX

)

= −2
∫

Ω

µ sym(∇un) · (∇v)dX

−Re
∫

Ω

((un+1/2 · ∇)un+1/2) · vdX

+
∫

Ω

pn(∇ · v)dX

with equation matrix M ′′ = Re
∆tM + S, where

Sv,(g,i) =
∫
Ω µ sym(∇(gei)) · ∇vdX . Here S

is the diffusion matrix S from Eq. (23). This
provides us with augmented matrices compared
with step 3, but otherwise with the same number
of equations and the same number of unknowns as
in step 3 above.

Note that we do not need to build counterparts to the
incompressibility matrix L in Eq. (25) nor the convec-
tion matrix N in Eq. (24). This is possible since those
represent right hand sides, and thus are implied by the
tensor expressions in this approach.

We will use the Galerkin simplification on the re-
sulting systems of equations by choosing scalar field
test functions Q = G ⊆ T

(0)
FX→R,E and vector field test

functions V = {g ∗ e|g ∈ G′, e ∈ E} ⊆ T
(1)
FX→R,E .

Normally, we will not choose G = G′, as there are
different numerical constraints on the pressure p and
the velocity u.

Combining this information, we arrive at the final
coordinate free algorithm for the coating problem. The
collections of shape and test functions may be kept in
a mesh data structure. We may then use the mesh map
operations to generate the right hand sides and left hand
side matrices. This eliminates the need for explicit
loops for the generation of the equations. Then we em-
ploy the matrix solvers written for the mesh classes to
find the unknowns. The algorithm repeats the follow-
ing steps until time-stepping convergence criteria are
met, given initial values for U n and P n:
Calculate un from Un;
Calculate pn from Pn;
Step 1a: solve for Un+1/2 − Un in

M ′@(Un+1/2 − Un)

=
(∫

Ω

−2µ sym(∇un) · (∇v)

−Re((un · ∇)un) · v + pn(∇ · v)dX
)

v∈V
Calculate un+1/2 from Un+1/2 − Un, Un

and G′;
Step 1b: solve for U∗ − Un in

M ′′@(U∗ − Un)

=
(∫

Ω

−2µ sym(∇un) · (∇v)

−Re((un+1/2 · ∇)un+1/2) · v

+ pn(∇ · v)dX
)

v∈V

Calculate u∗ from U∗ − Un, Un and
G′;
Step 2: solve for Pn+1 − Pn in

θK@(Pn+1 − Pn)

=
(∫

Ω

−Re
∆t

(∇ · u∗)qdX
)
q∈Q

Calculate pn+1 from Pn+1 − Pn, Pn

and G;
Step 3: solve for Un+1 − U∗ in

Re

∆t
M@(Un+1 − U∗)

=
(∫

Ω

θ(pn+1 − pn)(∇ · v)dX
)

v∈V

Set Un as Un+1 − U∗ plus U∗ and
ensuring boundary condition;
Set Pn as Pn+1 − Pn plus Pn and

ensuring boundary condition;
Recall that the velocity values at the boundaries are

prescribed, hence we must ensure that these values re-
main unchanged at every step. The matrix K will be
banded and sparse and the equations in step 2 can be
solved using Choleski decomposition. The matrices
M , M ′ and M ′′ are very large. With a careful choice
of elements and using orthogonal basis vectors, i.e.,
i �= j implies ei · ej = 0, matrix M can be reduced to
a banded form. Jacobi iteration will be a useful tech-
nique for solving the equations in steps 1 and 3. The
element-by-element construct and solve procedure and
matrix conditioning provide such a choice.

For this problem appropriate choices for test and
shape functions are
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– for Q = G: functions which reside at the vertices
of the elements, and are linear within each element,
and

– for V = G′: functions which reside at the vertices
and mid-points of the edges of the elements, and
are quadratic within each element.

Note that the mesh classes are used for many distinct
purposes in the solver:

– in the implementation of the scalar field,
– in the implementation of the tensors,
– for storing the set of test functions, and
– for data matrices K and M , M ′ and M ′′.

In a configuration of the solver program different im-
plementations of the Mesh class may be chosen for each
of these different purposes in order to reduce storage
requirements, improve run-time efficiency and provide
parallel execution.

Testing for convergence is performed using the L 2

norm for velocities and pressure.
Coding this algorithm as a computer program is now

straightforward if a library with the concepts of the So-
phus framework is available. We have not fully imple-
mented this application in Sophus yet, but based on ex-
perience with this framework [16] the following seems
reasonable: The PDE solver would be written as a pro-
cedure, and based on the detailed exposition above this
should only be about 100–200 lines of code, including
test for termination. Additional procedures to input
data sets, set up the data and output the results will in-
crease the solver module code size to about 1,000 lines
of code. The code needed for a simple user interface,
I/O file handling and configuration of the PDE solver
typically lies around 1000 lines of code as well. Thus
a complete solver and configuration may be written in
less than 2000 lines of code.

4.6. A discussion of relevant coding techniques

The coding technique we advocate is based on no-
tions of data abstraction and encapsulation. These may
take the form of the class construct in object-oriented
languages like C++ [28], Eiffel [23], GJ [5] and Ja-
va [12], type abstraction and functors in applicative
functional languages like standard ML and Haskell, or
packages in imperative languages like Ada and Fortran-
90. The reuse of modules such as Mesh in both the im-
plementation of scalar fields and the implementation of
tensors requires template classes or generic packages,
as present in Ada, C++, Eiffel, standard ML, Haskell
and GJ.

The structuring mechanism does not force any spe-
cific coding practice for implementing the algorithms.
Thus both applicative styles, as supported by function-
al languages, and more conventional styles that mod-
ify variables for reuse of storage may be used. The
latter encompasses imperative styles, which are typical
of Fortran, Ada and C++, and object-oriented styles,
which are supported by C++, Eiffel, GJ and Java.
Within each group one may favour languages which
allow operators and overloading. This supports a more
algebraic notation by making it possible to define scalar
field and tensor operations with infix syntax and names
like +, ∗, −, / etc. Support for this can be found in di-
verse languages as C++, standard ML and Fortran-90.
Only standard ML allows user defined infix operator
names, the other languages only support a limited set
of names which is quickly exhausted by the plentitude
of tensor level unary and binary operators.

We have developed Sophus using C++ in an imper-
ative, object-oriented manner. This means that the pro-
grammer may have full control over creation of tem-
porary variables and reuse of storage by modifying the
values of variables. This style tends to favour machine
efficiency. The development of the coordinate free al-
gorithm above has an imperative flavour in its sequenc-
ing of operations and iteration over the main equations
for the PDE solver. Sophus also allows algebraic style
expressions by utilising the operator overloading per-
mitted by languages like C++ and Fortran-90. This
seems to have a negative effect on execution time ef-
ficiency, but provides a greater ease of programming
which may improve software development efficiency.
Sophus can easily be reimplemented in other languages
which support the necessary abstraction mechanism. If
the emerging Fortran-2000 supports templates it would
seem a suitable language for this style of programming.

The tensor oriented package RHALE++ [8,34] is
also implemented in C++ using an object-oriented,
imperative style. This package differs from Sophus by
implementing vector and tensor fields directly on the
manifold, instead of lifting the scalar field. The pack-
age Overture [6] does not provide tensor abstractions
but provides the scalar field abstractions (the continu-
ous level). Compose [1,2] adds equation handlers on
top of these, but the tensor level is still lacking.

5. Modifying the problem

The quality of a software development methodology
and programming style can best be evaluated by check-



P.W. Grant et al. / Coordinate free programming of computational fluid dynamics problems 227

ing how easy it is to modify and upgrade programs.
For the coating problem one such modification is the
change of coordinate system, motivated by the annular
nature of the problem. Using cylindrical coordinates
the data sets may be reduced to two-dimensional scalar
fields. Cylindrical coordinates have z-axis at the centre
of the wire, r-axis as radial distance from the z-axis,
and θ-axis as azimuthal rotation angle of an rz-plane.
The data fields will vary only along the r- and z-axis,
being constant along the θ-axis. Thus all partial deriva-
tives with respect to θ vanish, and there is no need to
store information for this axis.

5.1. Conventional case

We now describe the formulation using cylindrical
coordinates, where we take an axi-symmetric geom-
etry which would be a typical situation for the coat-
ing problem. A concentricity assumption is adopted
for the particular coating problem being considered,
so u = (ur, 0, uz). The integration over the domain
becomes specific for any particular geometry, so∫

Ω

f(x)g(x)dΩ

≡ 2π
∫
r

∫
z

f(r, z)g(r, z)rdzdr,

and similarly for the vector and tensor inner products.
In cylindrical coordinates, using v for a vector and s for
a scalar, and the particular assumptions of the problem,

∇ · v =
1
r

∂

∂r
(rvr) +

∂vz
∂z

,

∇s = δr
∂s

∂r
+ δz

∂s

∂z
,

where δr and δz are unit vectors in the r and z direc-
tions, respectively, and

∇ = δr
∂

∂r
+ δθ

1
r

∂

∂θ
+ δz

∂

∂z
. (32)

With the above definitions, the operators in the vari-
ational formulation of the problem Eq. (17)–(20) can
be replaced to yield a formulation in cylindrical coor-
dinates. For example the dyad ∇u can be evaluated,
using Eq. (32) and properties of unit vectors δ r, δθ and
δz, to be:

∇u =


 ∂ur

∂r 0 ∂uz

∂r
0 ur

r 0
∂ur

∂z 0 ∂uz

∂z


 . (33)

By expanding the Uj in terms of the base vectors δr,
δθ and δz and using as test functions ϕr

i = ϕiδr and
ϕz
i = ϕiδz we arrive at the following expression for

the S matrix:

S =
[

Srr Srz

(Srz)T Szz

]
where

Slm
ij =

∫
Ω

µsym∇ϕl
j∇ϕm

j dΩ (34)

and l,m ∈ {r, z}. Using (33) we have

sym∇ϕr =


 2∂ϕ

∂r 0 ∂ϕ
∂z

0 2ϕ
r 0

∂ϕ
∂z 0 0




and

sym∇ϕz =


0 0 ∂ϕ

∂r
0 0 0
∂ϕ
∂r 0 2∂ϕ

∂z


 .

Substituting in Eq. (34) we can express the compo-
nents of S as follows:

Srr
ij = 2π

∫
r

∫
z

[
2
∂ϕi

∂r

∂ϕj

∂r
+ 2

ϕiϕj

r2
+

∂ϕi

∂z

∂ϕj

∂z

]
rdzdr,

Srz
ij = 2π

∫
r

∫
z

[
∂ϕi

∂r

∂ϕj

∂z

]
rdrdz,

Szz
ij = 2π

∫
r

∫
z

[
2
∂ϕi

∂z

∂ϕj

∂z
+
∂ϕi

∂r

∂ϕj

∂r

]
rdzdr.

In a similar way, the remaining system matrices,
defined in axi–symmetric cylindrical coordinates are
given by;

Mij = 2π
∫
r

∫
z

[ϕiϕj [ rdzdr, (35)

N(V )ij =
(36)

2π
∫
r

∫
z

ϕi

mv∑
�=1

[
ϕlV

�
r

∂ϕj

∂r
+ ϕlV

�
z

∂ϕj

∂z

]
rdzdr,

Kkl = 2π
∫
r

∫
z

∇ψk · ∇ψlrdzdr, (37)

L1
li = 2π

∫
r

∫
z

ψl
∂φi
∂r

rdzdr,

(38)
L2
li = 2π

∫
r

∫
z

ψl
∂ϕi

∂z
rdzdr.

Here V �
r and V �

z are the nodal velocity components
in radial (r) and axial (z) directions respectively.
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5.2. Coordinate free case

The solver for the coating problem was presented in
a coordinate free notation in Section 4.5. This means
that the solver is independent of coordinate system, and
need not be changed when moving to cylindrical coor-
dinates. However, the configuration must be altered to
provide the tensor class with the definition of the ap-
propriate coordinate system and the scalar fields must
be reduced to 2-dimensional form. These changes will
only affect a few lines in the configuration module, as-
suming that the necessary modules are present in the
Sophus library.

The changes in configuration sketched above may
not be sufficient to gain optimal speed for the axi-
symmetric problem. The reason is that, unless the ten-
sor class has been optimised for axi-symmetry, it will
still activate all the computations of a 3-dimensional
problem. This can be reduced if a specific axi-
symmetric version of the tensor class is implemented.
Such an implementation may take 1000–4000 lines of
code, but need not be written from scratch.

6. Discussion

In this paper, we have presented two different ap-
proaches to developing numerical software. The first,
the conventional methodology, is that followed by the
majority of the numerical programming and applied
mathematical community. The other approach, advo-
cated here, is an abstraction method using coordinate
free mathematics.

We can view the two methods as indicated in Fig. 2.
Both methods start with the mathematical formulation
on the left. The conventional method then drops down
to the machine level (left downward arrow and bottom
horizontal arrow). In the coordinate free method, all
development takes place at the abstract level, and the
library modules link down to the machine level (top
horizontal arrow and dotted right vertical arrow).

We observe here one symptom of a cultural divide
between the field of programming theory and numer-
ical analysis. This divide does not simply depend on
the individual problems each community normally ad-
dresses, but goes deeper, and depends on the way we
reason about problem solving and programming. This
can be seen in the different methodological approaches
to solving a complex problem like the coating problem
and its implementation using the finite element method
(FEM), as illustrated in this paper. This indicates that

for the abstraction method to be accepted by the numer-
ical community would require new training and instruc-
tion. Thus only a gradual transition to coordinate free
numerics and other abstraction oriented methodologies
is to be expected.

From a programming theory viewpoint, there is a
definite need to present the coating problem at the ab-
stract level as far as possible. Only after all the techni-
cal details have been exposed at that level, should the
discretisation technique be introduced as an orthogonal
issue. Here the FEM should be exposed algorithmical-
ly, not solely on its mathematical merits as an approxi-
mation technique. If this is done properly, the change of
coordinate systems, such as switching from Cartesian
to axi-symmetric will be orthogonal to both the detailed
exposition of the abstract mathematical algorithm and
the discretisation technique.

The two methodological approaches to the presenta-
tion of the problem as discussed in this paper, are ex-
posed in the manner the software development is han-
dled.

Conventional software development in the field of
computational modelling typically commences with
some partial differential equation (PDE). This is then
refined into an abstract algorithm, and then experience
and insight is used to transform to a discretised version
of the algorithm. Further refinement takes place at the
discrete level, and the language being used allows for
the elementary data types of arrays and matrices. We
then arrive at a sequential program, that may be further
refined into a parallel program.

The software development methodology we propose
would also start with the step of converting from a PDE
to an abstract algorithm. The departure then lies in the
further developments that would stay at a mathemati-
cal level, yielding an abstract program. This may then
be linked together with a software library such as So-
phus, yielding either a sequential or a parallel program
without any further significant modification.

The two different development strategies give vastly
different software characteristics. First, consider the
relative sizes of code produced by the two approach-
es. The conventional Fortran code for our case study
totals approximately 18,000–19,000 lines of code. In
contrast, the exposition of the coating program and its
detailed pseudocode is well below 1,000 lines of code,
with an estimate of the size of the final coded applica-
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Fig. 2. Coordinate free versus conventional methodology.

tion program being approximately 2,000 lines. 4 Tak-
ing lines of code as a measurement of the development
costs, which is the basis for cost estimating models
like COCOMO [4], we find an overwhelming reduc-
tion in code development costs for the coordinate free
methodology compared to the traditional methodology.

Second, consider the modifiability and adaptivity of
the resulting software. The conventional development
produces one application, and reuse of components
from this software will be incidental. The Sophus Li-
brary framework is designed for reuse and to be incre-
mentally implemented. Basically the solver for a new
problem relies on the concepts defined by the Sophus
library interface. When configuring the program, rele-
vant modules from the library are reused, but if the li-
brary lacks an implementation with certain characteris-
tics, such a code may be developed and integrated into
the library. The cost of implementing a discretisation
from scratch, i.e., defining the manifold with associat-
ed point set and scalar field, we estimate as requiring
approximately 4,000 lines of code [16]. Adding a new
discretisation technique for an existing manifold corre-
sponds to developing only 1,000–2,000 lines of code.
It should also be recalled that all implementation of
the same abstraction, such as that of scalar fields, have
the same interface. So that given two different scalar
field discretisations, we may interchange them within
the same application program with little adaptation.

The above observations and statistics indicate that
the abstraction oriented methodology promoted in this

4This comparison may seem quite unfair since we are comparing
unstructured Fortran code without the use of libraries with estimates
of highly structured C++ code using library modules. The compari-
son is still relevant, as we are comparing the outcome of two different
development methodologies. We are not discussing whether code
can be structured in one language or not in another, nor the gener-
al availability of libraries and how these may be used in different
languages.

paper may well improve computational modelling pro-
ductivity dramatically. An added bonus is that such an
approach supports easy transition between sequential
and parallel versions of the code [15].

Traditionally, applied mathematicians and numerical
analysts have been sceptical in adopting programming
languages other than Fortran. This is mainly due to a
fear of efficiency loss in their codes. This no longer
seems the case, as a language such as C++ and the use
of abstractions in many cases, has been shown to be
comparable in efficiency to Fortran, see [3,25,32]. This
is deemed highly encouraging for emerging abstraction
oriented implementations of numerical solvers. Un-
fortunately, the resulting efficiency seems sensitive to
memory layout and other factors which are difficult to
control. However, a source-level transformation tool,
such as CodeBoost [9], can be invaluable in this re-
spect. It makes it possible to systemise experiments
with various data layouts and other transformations of
the code. It is clear that several pilot implementations,
with execution speed comparable to conventional For-
tran code, of different problems is needed to convince
a larger proportion of the numerical community of the
benefits of abstraction oriented methodologies.

A further open question, clearly relevant to the prac-
titioner, is to what extent this manner of writing pro-
grams affects numerical error propagation. There is no
reason to expect it to be worse than for conventionally
developed programs, but the ease with which one may
change discretisation technique may lead to situations
where an inappropriate discretisation technique is being
used. One possibility to prevent this from happening,
is to provide the scalar fields with some “certificate” of
their numerical properties at the abstract level.
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