
Run-Time and Compiler Support for
Programming in Adaptive Parallel
Envirornnents *

GUY EDJLALI,2 GAGAN AGRAWAL/ ALAN SUSSMAN,2 JIM HUMPHRIES,2 AND JOEL SALTZ2

1Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716; e-mail: agrawal@cis.udel.edu
2UMIACS and Department of Computer Science, University of Maryland, College Park, MD 20742;
e-mail: {edjlali,gagan,als,humphrie,saltz}@cs.umd.edu

ABSTRACT

For better utilization of computing resources, it is important to consider parallel programming
environments in which the number of available processors varies at run-time. In this article,
we discuss run-time support for data-parallel programming in such an adaptive environment.
Executing programs in an adaptive environment requires redistributing data when the number
of processors changes, and also requires determining new loop bounds and communication
patterns for the new set of processors. We have developed a run-time library to provide this
support. We discuss how the run-time library can be used by compilers of high-performance
Fortran (HPF)-Iike languages to generate code for an adaptive environment. We present
performance results for a Navier-Stokes solver and a multigrid template run on a network of
workstations and an IBM SP-2. Our experiments show that if the number of processors is not
varied frequently, the cost of data redistribution is not significant compared to the time required
for the actual computation. Overall, our work establishes the feasibility of compiling HPF for
a network of nondedicated workstations, which are likely to be an important resource for
parallel programming in the future. © 1997 John Wiley & Sons, Inc.

1 INTRODUCTION

In most existing parallel programming systems, each
parallel program or job is assigned a fixed number of
processors in a dedicated mode. Thus, the job is exe­
cuted on a fixed number of processors, and its execu-

Received Septembcr 1995
Revised Ylarch 1996

* This work was supported by ARPA under contract :\A.G-1-
148') and by the :\SF under !(rant ASC 921:~821. The authors
assume all responsibility for the contents of this article.

© 1997 by John Wiley & Sons. Inc.

Scientific Programming. Vol. 6, pp. 215-227 (1997)

CCC 1038-9244/97 /02021S-13

tion is not affected by other jobs on any of the proces­
sors. This simple model often results in relatively poor
use of available resources. A more attractive model
would be one in which a particular parallel program
could use a large number of processors when no other
job is waiting for resources, as well as a smaller number
of processors when other jobs need resources. Setia et
al. [1, 2] have shown that such a dynamic scheduling
policy results in better utilization of the available pro­
cessors.

There has been an increasing trend toward using
a networkk of workstations for parallel execution of
programs. A workstation usually has an individual
owner or small set of users who would like to have
sole use of the machine at certain times. However,
when the individual users of workstations are not

216 EDJLALI ET AL.

logged in. these workstations can lw used for executin~
a parallel application. When the individual user of a
workstation returns. the application must be adjusted
either not to use the workstation at all or to use very
few cvcles on the workstation. The idea is that individ­
ual users of the workstation do not want the execution
of a large parallel application to slow down the pro­
cesses they want to execute.

We refer to a parallel programming environment
in which the number of processors available for a given
application varies with time as an adaptive parallel
programming erwironment. The major difficulty in us­
ing an adaptive parallel programming environment is
in developing applications for execution in such an
environment. In this article, we address this problem
for distributed memory parallel machines and net­
works of workstations, neither of which support shared
memory. In these machines, communication between
processors has to be explicitly scheduled by a compiler
or bv the user.

A commonly used model for developing parallel
applications is the data-parallel programming model.
in which parallelism is achieved by dividing large data
sets between processors and having each processor
work only on its local data. High-performance fortran
(HPF) [3], a language proposed by a consortium from
industry and academia and is being adopted by a
number of vendors, targets the data-parallel program­
ming model. In compiling HPF programs for execution
on distributed memory machines, two major tasks are
dividing work or loop iterations across processors. and
detecting. inserting, and optimizing communication
between processors. To the best of our knowledge, all
existing work on compiling data-parallel applications
assumes that the number of processors available for
execution does not vary at run-time [4-6]. If the num­
ber of processors varies at run-time, run-time routines
need to be inserted for determining work partitioning
and communication during the execution of the
program.

We have developed a run-time library for devel­
oping data-parallel applications for execution in an
adaptive environment. There are two major issues in
executing applications in an adaptive environment:

1. Redistributing data when the number of avail­
able processors changes during the execution of
the program

2. Handling work distribution and communication
detection, insertion, and optimization when the
number of processors on which a given parallel
loop will be executed is not known at com­
pile-time.

Executing a program in an adaptive environment

can potentially incur a high overhead. If the number
of available processors is varied frequently. then the
cost of redistributing data can become significant. Be­
cause the number of available processors is not known
at compile-time. work partitioning and communica­
tion need to be handled by run-time routines. This
can result in a significant overhead if the run-time
routines an~ not efficient or if the run-time analysis is
applied too often.

Our run-time library, called Adaptive Multiblock
PARTI (A\1P). includes routines for handling the two
tasks we have described. This run-time library can be
used by compilers for data-parallellanguages or it can
be used by a programmer parallelizing an application
by hand. This article describes our run-time library
and discusses how it can be used by a compiler. We
restrict our work to data-parallel languages in which
parallelism is specified through parallel loop con­
structs like forall statements and array expressions.
We present experimental results on two applications
parallelized for adaptive execution by inserting our
run-time support by hand. Our experimental results
show that if the number of available processors does
not vary frequently, the cost of redistributing data is
not significant as compared to the total execution time
of the program. Overall, our work establishes the feasi­
bility of compiling HPF -like data-parallel languages
for a network of nondedicated workstations.

The rest of this article is organized as follows. Sec­
tion 2 discusses the programming model and model
of execution we are targeting. Section 3 describes the
run-time library we have developed. We briefly discuss
how this run-time library can be used by a compiler
in Section 4. Section 5 presents experimental results
we obtained by using the library to parallelize two
applications and running them on a network of
workstations and an IBM SP-2. In Section 6, we com­
pare our work with other efforts on similar problems.
We conclude in Section 7.

2 MODEL FOR ADAPTIVE PARALLELISM

This section discusses the programming model and
model of program execution targeted by our run-time
library. A parallel programming system in which the
number of available processors varies during the exe­
cution of a program is called an adaptive programming
environment. A program executed in such an environ­
ment is referred to as an adaptive program. These
programs should adapt to changes in the number of
available processors. The number of processors avail­
able to a parallel program changes when users log in
or out of individual workstations, or when the load

Real A(N,N), B(N,N)

Do Time_step = 1 to 100
Do (i = l:N, j = l:N)

A(i,j) = B(j,i) + A(i,j)
End do

More Computation involving A 8 B ..

End do

FIGURE 1 Example of a data-parallel program.

on processors change for various reasons (such as from
other parallel jobs in the systPm). We refer to remap­
ping as the activity of a program adjusting to the
change in the number of available processors.

\Ve have chosen our model of program execution
with two main concerns:

1. We want a model which is practical for dPvel­
oping and running common scientific and engi­
neering applications.

2. We want to develop adaptive programs that are
portable across many existing parallel program­
ming systems. This implies that thP adaptive
programs and the run-time support developed
for them should require minimal operating sys­
tem support.

We restrict our work to parallel programs using
the single-program multiple-data (SPMD) modPl of
execution. In this modeL the same program text is run
on all the processors and parallelism is achieved by
partitioning data structures (typically arrays) between
processors. This model is frequently used for scientific
and engineering applications, and most of the existing
work on developing languages and compilers for pro­
gramming parallel machines uses the SPMD model
[3]. An example of a simple data-parallel program
that can be easily transformed into a parallel program
that can be executed in SPMD mode is shown in Figure
1. The only change required to turn this program into
an SPMD parallel program for a static environment
would be to change the loop bounds of the forall loop
appropriately so that each processor only executes on
the part of array A that it owns and then to determine
and place the communication between processors for
array B.

We are targeting an environment in which a parallel
program must adapt according to the system load. A
program may be required to execute on a smaller rnnn­
ber of processors because an individual user logs in
on a workstation or because a new parallel job requires

ADAPTIYE PARALLEL ENYIRON"1E:\TS 217

resources. Similarly. it may be desirable for a parallel
program to execute on a larger number of processors
because a user on a workstation has logged out or
because another parallel job executing in the parallel
system has finished. In such scenarios. it is accept­
able if:

1. The adaptive program does not remap immedi­
ately when the system load changes.

2. TllP program remaps from a larger number of
processors to a smaller number of processors.
However. it mav continue to usE' a small number
of cycles on the processors it no longer uses
for computation.

This kind of flexibility can significantly easr remap­
ping of data-parallel applications, with minimal op­
erating system support. If an adaptive program has
to be remapped from a larger number of processors
to a smaller number of processors. this can be done by
redistributing the distributed data so that processors
which should no longer he executing the program do
not own any part of the distributed data. The SPMD
program will continue to exf'cute on all processors. We
refer to a process that owns distributed data as an
active process and a process from which all data have
been removed as a skeleton process. A processor own­
ing an active process is referred to as an activE' proces­
sor and similarly. a processor owning a skeleton pro­
cess is referred to as a skeleton processor. A skeleton
processor will still execute each parallel loop in the
program. However. after evaluating the local loop
bounds to restrict execution to local data. a skeleton
processor will determine that it does not need to exe­
cute any itf'rations of the parallel loop. All computa­
tions involving writing into scalar variables or repli­
cated arrays will continue to be executed on all
processors. The parallel program will use some cycles
in the skeleton processors, in the evaluation of loop
bounds for parallel loops, and in the computations
involving writing into scalar variables or replicated
arrays. However, for data-parallel applications involv­
ing large arrays this is not likPly to cause any noticeable
slowdown for other processes executing on the skeleton
processors, especially because replicated arrays are
rarely used in significant computations. This model
substantially simplifies remapping when a skeleton
processor again becomes available for executing the
parallel program. A skeleton processor can be made
active simply by redistributing the data so that this
processor owns part of the distributed data. ~ew pro­
cesses do not need to be spawned when skeleton pro­
cessors become available, hence no operating system
support is required for remapping to start execution

218 EDJLALT ET AL.

3 different states of workstations and program

Time tO

Timet1

Timet2

li
1 P3 '

FIGURE 2 An adaptive programming environment.

on a larger number of processors. In this modeL a
maximal possible set of processors is specified before
starting execution of a program. The program text is
executed on all these processors, although some of
these may not own any portions of the distributed
data at any given point in the program execution. W'e
believe that this is not a limitation in practice, because
the set of workstations or processors of a parallel ma­
chine that can possibly be used for running an applica­
tion is usually known in advance.

Figure 2 represents three different states of five
processors (workstations) executing a parallel pro­
gram using our model. In the initial state, the program
data are spread across all five processors. In the second
state, two users have logged in on processors 0 and 2,
so the program data are remapped onto processors 1,
3, and 4. After some time. those users log off and
another user logs in on processor 1. The program
adapts itself to this new configuration by remapping
the program data onto processors 0, 2, 3, and 4.

If an adaptive program needs to be remapped while
it is in the middle of a parallel loop, much effort may

be required to ensure that all computations restart at
the correct point on all the processors after remapping.
The main problem is ensuring that each iteration of
the (parallel) loop is executed exactly once, either be­
fore or after the remapping. Keeping track of which
loop iterations have been completed before the remap­
ping, and only executing those that haven't already
been completed after the remapping, can be expensive.
However, if the program is allowed to execute for a
short time after detecting that remapping needs to be
done, the remapping can be substantially simplified.
Therefore, in our model, the adaptive program is
marked with remap points. These remap points can
be specified by the progranmH:'r if the program is par­
allelized by hand, or they may be determined by the
compiler if the program is compiled from a single
program specification (e.g., using an HPF compiler).
We allow remapping when the program is not execut­
ing a data-parallel loop. The local loop hounds of a
data-parallel loop are likely to be modified when the
data are redistributed, because a processor is not likely
to own exaetlv the same data both before and after

remapping. Also. remapping can be done at a point
only if none of the nodf's arc in the middle of any
I/0 activity. We will further discuss how the compiler
can determine placement of remap points in Section 4.

At each remap point, the program must determine
if there is a reason to remap. \Ve assume a detection
mechanism that determines if the load needs to be
shifted away from any of the processors which are
currently active, or if any of thf' skeleton processors
can be made active. This detection mechanism is the
only operating system support our model assumes. All
the proct'ssors synchronize at the remap point and, if
the detection mechanism determines that remapping
is required. data redistribution is done.

Two main considerations arise in choosing remap
points. If the remap points are too far apart, i.e .. if
the program takes too much time between remap
points, this may not be acceptable to the users of the
machine(s). If remap points are too dose together. the
overhead of using the detection mechanism may start
to lwcome significant.

Support for the detection mechanism can be easily
implemented in one of the two ways. The operating
system can check if a user is logged in (or if the user
has been idle for a long time). Alternatively, users of
the individual workstations can change a variable to
let the system know whether or not they want their
workstation to be used for parallel programs.

Our model for adaptive parallel programming is
closest to the one presented by Konuru et al. [7].
They also consider data-parallel programming in an
adaptive environment, including a network of hetero­
geneous workstations. The main difference in their
approach is that the responsibility for data reparti­
tioning is given to the application programmer. We
have concentrated on developing run-time support
that can perform data repartitioning, work parti­
tioning, and communication after remapping. Our
model satisfies the three requirements stated by Ko­
nuru et al. [7], namely. withdrawal (the ability to
withdraw computation from a processor within a rea­
sonable time), expansion (the ability to expand into
newly available processors), and redistribution (the
ability to redistribute work onto a dynamic number of
processors so that no processor becomes a bottleneck).

3 RUN-TIME SUPPORT

This section discusses the run-time library we have
df'veloped for adaptive programs. The run-time li­
brary has been developed on top of an existing run­
time library for structured and block -structured appli­
cations. This librarv is called Multiblock PARTI [8. 9],

ADAPTIVE PARALLEL E:\VIR0:\.\1£:\TS 219

because it was initially used to parallelize multiblock
applications. We have developed our run-time support
for adaptive parallelism on top of Y1ultiblock PARTI
because this run-time library provides much of the
run-time support required for forallloops and array
expressions in data-parallel languages like HPF. This
library was also integrated with the HPF /Fortran 90D
compiler developed at Syracuse (;niversity [4, 10, 11].
We discuss the functionality of the existing library and
then present the extensions that were implemented
to support adaptive parallelism. We refer to the new
library. with extensions for adaptive parallelism, as
AMP.

3.1 Multiblock PARTI

This run-time library can be used in optimizing com­
munication and partitioning work for HPF codes in
which data distribution, loop bounds, and/ or strides
are unknown at compile-time and indirection arrays
are not used. Consider the problem of compiling a
data-parallel loop, such as a forallloop in HPF, for a
distributed memory parallel machine or network of
workstations. If all loop bounds and strides are known
at compile-time and if all information about the data
distribution is also known. then the compiler can per­
form work partitioning and can also determine the
Sf'ts of data elements to be communicated between
processors. However. if all this information is not
known, then these tasks may not be possible to per­
form at compile-time. Work partitioning and commu­
nication generation become especially difficult if there
are svmbolic strides or if the data distribution is not
known at compile-time. In such cases, run-time analy­
sis can be used to determine work partitioning and
generate communication. The Multiblock PARTI li­
brary has been developed for providing the required
run-time analvsis routines.

In summary, the run-time library has routines for
three sets of tasks:

1. Defining data distribution at run-time; this in­
cludes storing this information in a distributed
array descriptor (DAD). which can later be used
by communication generation and work parti­
tioning routines.

2. Performing communication when the data dis­
tribution, loop bounds, and/or strides are un­
known at compile-time.

:1. Partitioning work (loop iterations) when data
distribution, loop bounds. and/ or strides are un­
known at compile-time.

A key consideration in using run-time routines for

220 EDJLALI ET AL.

work partitioning and communication is to keep the
overhead of run-time analysis low. For this reason,
the run-time analysis routines must be efficient and
it should be possible to reuse the results of run-time
analysis whenever possible. In this run-time system,
communication is performed in two phases. First, a
subroutine is called to build a communication schedule
that describes the required data motion .. and then an­
other subroutine is called to perform the data motion
(sends and receives on a distributed memory parallel
machine) using a previously built schedule. Such an
arrangement allows a schedule to be used multiple
times in an iterative code.

To illustrate the functionalitv of the run-time rou­
tines for communication analysis. consider a single
statement forall loop as specified in HPF. This is a
parallel loop in which loop bounds and strides associ­
a ted with any loop variable cannot be functions of any
other loop variable [3]. If there is only a single array
on the right-hand side. and all subscripts are affine
functions of the loop variables. then this forall loop
can be thought as copying a rectilinear section of data
from the right-hand side array into the left-hand
array. potentially involving changes of offsets and
strides and index permutation. We refer to such com­
munication as a regular section move [12]. The library
includes a regular section move routine. Regular_
SectiorLMove_Sched. that can analvze the commu­
nication associated with a copy from a right-hand side
array to left-hand side array when data distribution.
loop bounds, and/or strides are not known at com­
pile-time.

A regular section move routine can be invoked for
analyzing the communication associated with any for­
all loop. but this may result in unnecessarily high run­
time overheads for both execution time and memory
usage. Communication resulting from loops in many
real codes has much simpler features that make it
easier and less time-consuming to analyze. For exam­
ple, in many loops in mesh-based codes. only ghost
(or overlap) cells [13] need to be filled along certain
dimension(s). If the data distribution is not known
at compile-time, the analysis for communication can
be much simpler if it is known that only overlap cells
need to be filled. The Multiblock PART! library in­
cludes a comrmmication routine, Overlap_CelLFilL
Sched, which computes a schedule that is used to
direct the filling of overlap cells along a given dimen­
sion of a distributed array. The schedules produced
by Overlap_CelLFilLSched and Regular_
SectiorLMove_Sched are employed by a routine
called Da ta..Move that carries out both interprocessor
communication (sends and receives) and intra proces­
sor data copying.

Real *A, *B, *Temp
DAD*D
SCHED *Sched

Num_Proc
D
Sched
Lo_Bnd1
Lo_Bnd2
Up_Bnd1
Up_Bnd2

DAD for A and B

Get__N umber _oLProcessors()
Create_DAD(Num_Froc, ...)
Compute_ Transpose_5ched(D)
Local_Lower _Bound(D, 1)
Local_Lower _Bound(D ,2)
Local_U pper _Bound(D,1)
Local_ Upper _Bound(D,2)

Do Time_.step = 1 to 100
Data__Move(B, Temp, Sched)

End do

Do (i = Lo_Bnd1:Up_Bnd1,

End do

j = Lo_Bnd2:Up_Bnd2)
A(ij) = Temp(ij) + A(i,j)

More Computation involving A & B ..

FIGURE 3 Example of SP.\IID program using \1ultiblock
PARTI.

The final form of support provided by the
Ylultiblock PARTI library is to distribute loop itera­
tions and transform global distributed array references
into local references. In distributed memory compila­
tion, the owner-computes rule is often used for distrib­
uting loop iterations [5]. Owner computes means that
a particular loop iteration is executed by the processor
owning the left-hand side array element written into
during that iteration. Two routines, LocaLLower_
Bound and LocaLUpper_Bound, are provided by
the library for transforming loop bounds (returning,
respectively. the local lower and upper bounds of a
given dimension of the referenced distributed array)
based on the owner-computes rule.

An example of using the library routines to paral­
lelize the program from Figure 1 is shown in Figure
3. The library routines are used for determining work
partitioning (loop hounds) and for determining and
optimizing communication between the processors. In
this example. the data distribution is known only at
run-time and therefore, the DAD is filled in at run­
time. Work partitioning and communication are deter­
mined at run-time using the information stored in the
DAD. The function Compute_Transpose_Sche­
dule () is shorthand for a call to the Regular_Sec­
tiorLMove_ Sched routine. with the parameters set
to do a transpose for a two-dimensional distributed
array. The schedule generated by this routine is then
used by the Da ta..Move routine for transposing the
array B and storing the result in the array Temp.
Functions LocaLLower_Bound and LocaLUp­
per _Bound are used to partition the data -parallel loop
across processors, using the DAD. The sizes of the

arrays A, B.. and T~mp on each proc~ssor dt>pend on
th~ data distribution and are known onlv at run-time.
Therefor~. arrays A. B. and T~mp are allocated at run­
time. The calls to the memory management routines
are not shown in Figure 3. Tht> codt> could be optimized
further by writing specialized routin~s to perform the
transpose operation. but the library routin~s are also
applicable to mort> gt>neral forallloops.

Tlw \1ultiblock PARTI library is currently impl~­
rnented on the Intel iPSC/860 and Paragon. tht>
Thinking \1achines CM-5. th~ IBM SP1 /2, and tlw
PVM message-passing environment for a n~twork of
workstations [14 J. The d~sign of the library is archi­
t~cture independent and, thert>for~. it can be easily
port~d to any distributed memory parallel machine or
any environment that supports message passing (t>.g ..
Express). The current implementation of the library
is restricted to handling only block-distributed arrays.

3.2 AMP

The existing functionality of the \lultiblock PARTI
library was useful for d~veloping adaptive programs
in several ways. If the numb~r of processors on \vhich
a data-parallel loop is to be execut~d is not known at
compil~-time. it is not possible for the compil~r to
analyze the communication, and in some cases. ev~n
th~ work partitioning. This holds tru~ ~ven if all other
information, such as loop bounds and strid~s. is known
at compile-time. Thus, run-time routin~s ar~ r~quired
for analyzing communication (and work partitioning)
in a program written for adaptive execution, even if
the same program written for static execution on a
fixed number of processors did not r~quire any run­
time analnis.

Several ext~nsions were r~quired to the existing li­
brary to provide th~ required functionality for adap­
tive programs. When th~ set of processors on which
the program ~xecutes changes at run-time. all activ~
processors must obtain information about which pro­
cessors are active and how the data are distributed
across th~ set of activ~ processors. To dt>al with only
some of th~ processors b~ing active at any tim~ during
execution of the adaptiv~ program, the implementa­
tion of AMP uses the notion of physical and logical
numbering of processors. If p is the number of proces­
sors that can possibly be actiw during the execution of
the program, each such processor is assigned a unique
physical processor number between 0 andp - 1 before
starting program execution. If we let c be the number
of processors that are active at a given point during
execution of a program, then each of these active pro­
cessors is assigned a unique logical proc~ssor number
between 0 and c - 1. For active processors. the map-

ADAPTIVE PARALLEL E1\TTRO:\ME\TS 221

ping b~tw~f'Il physical and logical processor numlwrs
is updatt>d at rt>map points. The use of a logical proces­
sor numbering is similar in conc~pt to the scheme used
for processor groups in the mt>ssag~-passing interface
standard (\IPI) [15].

Information about data distributions is available at
each proc~ssor in the DADs. However, DADs only stor~
the total siz~ in each dimension for each distributt>d
array. Tht> t>xact part of the distributed array owrwd
by an active proc~ssor can be determined using tlw
logical processor numb~r. Each proc~ssor maintains
information about what physical processor corrt>s­
ponds to each logical proc~ssor number at any timf'.
The mapping from logical processor number to physi­
cal proc~ssor is used for communicating data be­
tween proct>ssors.

In summary, the additional functionality implt>­
mented in AMP over that available in Multiblock
PARTI is as follows:

1. Routines for consistently updating the logical
proc~ssor numbering when it has bet>n detected
that rt>distribution is required.

2. Routines for redistributing data at remap points.
:1. ~Iodified communication analYsis and data

movf' routin~s to incorporate information about
the logical processor numbering.

Tht> communication required for rNlistributing
data at a remap point depends on tlw logical processor
numberings b~for~ and after redistribution. Therefore.
after it has been d~cid~d that remapping is required.
all processors must obtain tlw new logical processor
numb~ring. The detection routine. after determining
that data redistribution is required, decid~s on a new
logical processor numb~ring of the processors which
will bt> active. The detection routine informs all tht>
processors which were either active befor~ remapping
or will be active aft~r remapping of the new logical
numbering. It also informs th~ processors which will
be activ~ after remapping about tht> existing logical
numbering (processors that are active both before and
after remapping will already have this information).
These processors need this information for determin­
ing what portions of the distributed arrays th~y will
receive from which physical proct>ssors.

The communication analysis requir~d for redistrib­
uting data was impl~mented by modifying the
Multiblock PARTT Regular_SectioiLMove_Sched
routine. Th~ new routine takes both the new and old
logical numbering as parameters. The analysis for dc­
t~rmining the data to he s~nt by each processor is done
using the new logical numbering (because data will
be sent to processors with the n~w logical numbering)

222 EDJLALI ET AL

Compute Initial DAD, Sched and Loop Bounds

Do Time _step = 1 to 100

End do

If Detection() then Remap()
Data_Move(B, Temp, Sched)
Do (i = Lo.llndl:Up_Bndl,

j = Lo_Bnd2:Up_Bnd2)
A(ij) Temp(i,j) + A(i,j)

End do

More Computation involving A & B ..

Remap()

End

Real *New..A, *Ciiew_B

New_NProc Get_No_oLProc..and_Numb()
NewJ) CreateJ)AD(New_NProc)
Redistribute_Data(A, New ..A, D, New_]))
Redistribute_Data(B, New_B, D, New.D)
D = NewJ); A= New..A; B = New . .B ;
Sched Compute_Trausp..Sched(D)
Lo_Bndl LocaLLower ..Bound(D, 1)
Lo_Bnd2 LocaJ..Lower.llound(D,2)
Up..Bndl Local.Upper_Bound(D,l)
Up_Bnd2 Local.Upper_Bound(D,2)

FIGURE 4 Adaptive SPMD program using AY"IP.

and the analysis for determining tlw data to be re­
ceived is done using the old logical numbering (be­
cause data will be reeeived from processors with the
old logical numbering).

Modifications to the Ylultiblock PARTI communi­
cation functions were also required for incorporating
information about logical processor numberings. This
is because the data distribution infom1ation in a
DAD only determines which logical processor owns
what part of a distributed array. To actually perform
communication, these functions must use the map­
ping between logical and physical processor num­
berings.

Figure 4 shows the example from Figure :3 paral­
lelized using AMP. The only difference from the
nonadaptive parallel program is the addition of the
detection and remap calls at the beginning of the
time-step loop. The initial computation of the loop
bounds and communication schedule are the same
as in Figure 3. The remap point is the beginning
of the time-step loop. If remapping is to be performed
at this point, the function Remap is invoked. Remap
determines the new logical processor numbering.
after it is known what processors are available, and
creates a new Data Access Descriptor (DAD). The
Redistribute_Data routine redistributes arrays
A and B. using both the old and new DADs. After

redistribution. the old DAD can hf' discarded. The
new communication sehf'dule and loop bounds are
determined using the nf'w DAD. We have not shown
the details of the memorv allocation and df'allocation
for thf' data redistribution.

4 COMPILATION ISSUES

The example shown previously illustrates how A~lP
can be used by application programmers to develop
adaptive programs by hand. We now briefly describe
the major issues in compiling programs written in an
HPF-like data-parallel programming language for an
adaptive environment. We also discuss some issues in
expressing adaptive programs in HPF. As we stated
earlier_ our work is restricted to data-parallel lan­
guages in which parallelism is specified explicitly. In­
corporating adaptive parallelism in compilation sys­
tems in which parallelism is detected automatically
[5] is beyond the scope of this article.

In previous work, we successfully integrated the
Multihloek PARTI library with a prototype Fortran
90D/IIPF compiler developed at Syracuse University
[4. 10. 11]. Routines provided by the library wert'
inserted for analyzing work partitioning and commu­
nication at run-time, whenever compile-time analysis
was inadequate. This implementation can be extended
to use AD.\1 and compile HPF programs for adaptive
execution. The major issues in compiling a program
for adaptive execution are determining remap points,
inserting appropriate actions at remap points, and en­
suring reuse of the results of run-time analysis to mini­
mize the cost of such analysis.

4. 1 Remap Points

In our model of execution of adaptive programs. re­
mapping is considered only at certain points in the
program text. If our run-time library is to ht> used, a
program cannot be remapped inside a data-parallel
loop. Thr rrason is that the local loop bounds of a
data-parallelloop are determined based on the current
data distribution. and in general it is very difficult to
ensure that all iterations of the parallel loop are exe­
cuted by exactly one processor, either before or
after remapping.

There are (at least) two possibilities for determining
remap points. They may be specified by the program­
mer in the form of a directive. or they may be deter­
mined automatically by the eompiler. For the data­
parallel language HPF, parallelism can only be explic­
itly specified through certain constructs (e.g .• fora II
statement, forall construct. independent statement

[3]). Inside any of these constructs. tlw only functions
that can lw callt>d are those explicitly markt>d as pure
functions. Thus. it is simplt> to determine. solely from
the syntax. what points in the program art> not inside
any data-parallel loop and therefore can be remap
points. Making all such points rPmap points may, how­
ever. lead to a large number of remap points. 1\atu­
rally. this will lead to significant overhead from Pm­
ploying thP detection mPchanism (and synchroniza­
tion of all processors at each remap point).

Alternatively. a programmer may specify cPrtain
points in the program to be remap points, through
an explicit dirPctive. This. however. makes adaptiw
execution less transparent to thP programmer.

Once remap points are known to the compiler. it
can insert calls to the detection mechanism at those
points. The compiler also needs to insert a conditional
based on the result of the detection mechanism, so that
if the detection mechanism determines that remapping
needs to be done, then calls are made both for building
new DADs and for redistributing the data as specified
by the new DADs. The resulting code looks very similar
to the code shown in the example from Section 3,
except that the compiler will not explicitly regenerate
schedules after a remap. The compiler generates
schedules anywht>re they will be needed. and relies on
the run-time library to cache schedules that may be
reused, as described in the next section.

4.2 Schedule Reuse in the Presence
of Remapping

As we discussed in Section :3, a very important consid­
eration in using run-time analysis is the ability to reuse
the results of run-time analysis whenever possible.
This is relatively straightforward if a program is paral­
lelized by inserting the run-time routines by hand.
When the run-time routines are automaticallv inserted
by a compiler, an approach based on additional run­
time bookkeeping can be used. In this approach. all
schedules generated are stored in hash tables by the
run-time library, along with their input parameters.
Whenever a call is made to generate a schedule. the
input parameters specified for this call are matched
against those for all existing schedules. If a match is
found, the stored schedule is returned by the library.
This approach was successfully used in the prototype
HPF IF ortran 90D compiler that used the Multihlock
PARTI run-time library. Our previous experiments
have shown that saving schedules in hash tables and
searching for existing schedules result in less than 10%
overhead, as compared to a hand implementation that
reuses schedules optimally [1 0 J.

This approach easily extends to programs which

ADAPTIVE PARALLEL ENVTRO!\ME:\"TS 223

include remapping. One of the parameters to the
schedule call is the DAD. After remapping. a call for
building a new DAD for each distributed array is in­
serted by the compiler. For the first execution of any
parallel loop after remapping, no schedule having the
new DADs as parameters will be available in the hash
table.)/ew schedules for communication will therefore
be generated. The hash tables for storing schedules
can also be cleared after remapping to reduce the
amount of memory used by the library.

4.3 Relationship to HPF

In HPF. the Processor directive can be used to
declare a processor arrangement. An intrinsic func­
tion, Number_oLProcessors, is also available for
determining the number of physical processors avail­
able at run-time. HPF allows the use of the intrinsic
function Number_oLProcessors in the specifica­
tion of a processor arrangement. Therefore, it is possi­
ble to write HPF programs in which the number of
physical processors available is not known until run­
time. The Processor directive can appear only in the
specification part of a scoping unit (i.e., a subroutine or
main program). There is no mechanism available for
changing the number of processors at run-time.

Most of the existing work on compiling data-paral­
lel languages for distributed memory machines as­
sumes a model in which the number of processors is
statically known at compile-time [4-6]. Therefore,
several components of our run-time library are also
useful for compiling HPF programs in which a proces­
sor arrangement has been specified using the intrinsic
function Number_oLProcessors. HPF also allows
Redistribute and Realign directives, which can
he used to change the distribution of arrays at run­
time. Our redistribution routines would be useful for
implementing these directives in an HPF compiler.

5 EXPERIMENTAL RESULTS

To study the performance of the run-time routines
and to determine the feasibility of using an adaptive
environment for data-parallel programming, we have
experimented with a multihlock ~avier-Stokes solver
template [16 J and a multi grid template [17]. The
multiblock template was extracted from a computa­
tional fluid dynamics application that solves the thin­
layer Navier-Stokes equations over a three-dimen­
sional (3D) surface (multihlock TLl\S3D). The se­
quential Fortran 77 code was developed by V atsa et
al. [16] at l\ASA Langley Research Center, and con­
sists of nearly 18,000 lines of code. The multihlock

224 FDJLAIJ ET AL_

Table 1. Cost of Remapping (in ms): Multihlock Code on Network of Workstations

i\o. of
Processors

l:2
8
...
1

TinH' per
Iteration

2:213
2480
32-t2
8:2H

1:2 Proct>sson;

33:2;:)
:2:368
23-t8

template, which was designed to indude portions of
the entire code that are representative of the major
computation and communication patterns of thP origi­
nal code. consists of nearly 2000 lines of F77 code.
The multigrid code we expt>rimented with was devel­
oped by Overman and Van Rosendale [17] at J';ASA
Langley. In earlier work. we hand parallelized these
codes using Muhibloek PARTI and also parallelized
Fortran 90D versions of these codes using the proto­
type HPF/Fortran 90D compiler. lu Loth these codes,
the major computation is performed inside a (sequen­
tial) time-step loop. For each of the parallel loops in
the major computational part of the code, the loop
hounds ami communication patterns do not change
across iterations of the time-step loop when the code
is run in a static environment. Thus, communication
schedules can lw gNteratefl before the first iteration
of the time-step loop and can be used for all time steps
in a static environment.

We modified the hand-parallelized versions of these
codes to usc the A,\IIP routines. For both these codes.
we chose the beginning of an iteration of the time­
step loop as the remapping point. If remapping is done,
the data distribution changes and the schedules used
for previous time steps can no longer be used. For
our experiments, we used two parallel programming
environments. The first was a network of workstations,
connected through an Ethernet, and using PVM for
message passing. We had up to 12 workstations avail­
able for our experiments. The second environment was
a H)-processor IBM SP-2.

In demonstrating the feasibility of using an adaptive

CoSI of Remapping to

8 Procesc;ors

:27:);)

5698

-t Processors

:37-tO
:3715

1 Processor

67;~7

9400
6-+20

environment for parallel program execution, we con­
sidered the following factors:

1. The time required for remapping and eomputing
a new set of schedules,. as compared to the time
required for each iteration of the time-step loop.

2. The numlwr of tim<' steps that the code must
execute aftpr remapping to a greater number of
processors to effectively amortize the cost of re­
mapping.

3. The effect of skeleton processes on the perfor­
mance of their host processors.

On the network of Sun workstations, we considered
executing the program on 12, 8. 4, or l workstations
at any time. Remapping was possible from any of
these configurations to any other configuration. We
measured the time required for one iteration of the
time-step loop and the cost of remapping from one
configuration to another. The experiments were con­
ducted at a time when none of the workstations had
any other jobs executing.

Table 1 presents the time required per iteration for
each configuration and the time required for remap­
ping from one configuration to another for the
,\llultihlock code. The code was executed on a single
mesh of size 49 X 9 X 9. In Table 1, the second
column shows the time per iteration, and eolumns 3
to 6 show the time for remapping to a 12, 8, 4, and 1-
processor configuration, respectively. The remapping
cost indudes the time required for redistributing the
data and the time requin~d for building a new set of

Table 2. Cost of Remapping (in ms): Multihlock Code on IBM SP-2

1'\o. of Time per
Cost of Remapping to

Processors Iteration 16 Processors 8 Processors 4 Processors 2 Processors 1 Processor

16 59,2 3:) 4t) 86 159
8 91.5 :H 54 88 156
... 1:39.Ei 47 53 96 160
2 213.8 78 85 95 171
1 :~26.8 143 152 156 17:)

ADAPTIVE PARALLEL E:\VIRO:\.VlENTS 225

Table 3. Cost of Remapping (in ms): Multigrid Code on IBM SP-2

No. of Time per
ProcPssors ltPration 8 Processors

8 93.9
-+ 1:34.4 18
2 206.6 19

:308.4 33

communication schedules. The speed-up of the tem­
plate is not very high because it has a high communica­
tion to computation ratio and communication using
PVM is relatively slow. These results show that the
time required for remapping for this application is at
most the time required for four time steps.

Note that on a network of workstations connected
by an Ethernet, it takes much longer to remap from
a larger number of processors to a smaller number of
processors than from a smaller number of processors
to a larger number of processors. For example, the
time required for remapping from 8 processors to 1
processor is significantly higher than the time required
for remapping from 1 processor to 8 processors. This
is because if several processors try to send messages
simultaneously on an Ethernet, contention occurs and
none of the messages may actually be sent. leading to
significant delays overall. Instead, if a single processor
is sending messages to many other processors, no such
contention occurs.

We performed the same experiment on a 16-proces­
sor IBM SP-2. The results are shown in Table 2. The
program could execute on either 16, 8, 4, 2, or 1
processor and we considered remapping from any of
these configurations to any other configuration. The
templates obtain significantly better speed-up and the
time required for remapping is much smaller. The
superlinear speed-up noticed in going from one to two
processors is because on one processor, all data cannot
fit into the main memory of the machine.

Table 3 shows the results from the execution of the
multigrid template on the IBM SP-2. The code was

Cost of Remapping to

4 Processors 2 Processors 1 Processor

14 20 :36
22 29

2:1 29
3:3 36

run on an 8 X 8 X 8 mesh. Again, the remapping
time for this code is reasonably small.

Another interesting tradeoff occurs when additional
processors become available for running the program.
Running the program on a greater number of proces­
sors can reduce the time required for completing the
execution of the program, but at the same time remap­
ping the program onto a new set of processors causes
additional overhead for moving data. A useful factor
to determine is the number of iterations of the time­
step loop that must still be executed so that it will be
profitable to remap from fewer to a greater number
of processors. Using the timings from Table 1, we
show the results in Table 4. Table 4 shows that if the
program will continue to run for several more time
steps, remapping from almost any configuration to
any other larger configuration is likely to be profitable.
Because the remapping times are even smaller on the
SP-2, the number of iterations required for amortizing
the cost of remapping will be even smaller.

In our model of adaptive parallel programming, a
program is never completely removed from any pro­
cessor. A skeleton process steals some cycles on the
host processor, which can potentially slow down other
processes that want to use the processor (e.g., a work­
station user who has just logged in). The skeleton
processes do not perform any communication and do
not synchronize, except at the remap points. In our
examples, the remap point is the beginning of an itera­
tion of the time-step loop. We measured the time re­
quired per iteration on the skeleton processors. Our
experiments show that the execution time on skeleton

Table 4. Number of Time Steps for Amortizing Cost of Remapping: Multiblock Code on Network of
Sun Workstations

J\o. of
Processors

12
8
4
1

12 Processors

12.4
2.3
0.4

No. of Time Steps for Amortizing when Remapped to

8 Processors

3.6
1.1

4 Processors

1.0

1 Processor

226 EDJLALT ET AL.

processors is always less than 10% of the execution
time on active processors. For the multiblock code.
the time required per iteration for the skeleton proces­
sors was 4.7 and :10 ms on the IBM SP-2 and Sun-4
work-stations. respectively. The multigrid code took
11 ms per iteration on the IBM SP-2. We expecL there­
fore, that a skeleton process will not slow down any
other job run on that processor significantly (assuming
that the skeleton process gets swapped out by the
operating system when it reaches a remap joint).

6 RELATED WORK

In this section. we compare our approach to other
efforts on similar problems.

Condor [18] is a system that supports transparent
migration of a process (through check pointing) from
one workstation to another. It also performs detection
to determine if the user of the workstation on which
a process is being executed has returned, and also
looks out for other idle workstations. However, this
system does not support parallel programs; it considers
only programs that will be executed on a single pro­
cessor.

Several researchers have addressed the problem of
using an adaptive environment for executing parallel
programs. However, most of these consider a task par­
allel model or a master-slave model. In a version of
PVM called ~igratable PV~ (~PVM) [19], a process
or a task running on a machine can be migrated to
other machines or processors. However. MPVM does
not provide any mechanism for redistribution of data
across the remaining processors when a data-parallel
program has to be withdrawn from one of the pro­
cessors.

Another system called user level processes (CLP)
[17] has also been developed. This system provides
light-weight user-level tasks. Each of these tasks can
be migrated from one machine to another. Again. there
is no way of achieving load balance when a parallel
program needs to be executed on a smaller number
of processors. Piranha [20] is a system developed on
top of Linda [21 J. ln this system. the application pro­
grammer has to write functions for adapting to a
change in the number of available processors. Pro­
grams written in this system use a master-slave model
and the master coordinates relocation of slaves. There
is no clear way of writing data-parallel applications
for adaptive execution in all these systems.

Data-parallel C and its compilation system [22]
have been designed for load balancing on a network
of heterogeneous machines. The system requires con­
tinuous monitoring of the progress of the programs

executing on each machine. Experimental results have
shown that this involves a significant overhead, even
when no load balancing is required [22].

7 CONCLUSIONS AND FUTURE WORK

l11 this article we have addressed the problem of devel­
oping applications for execution in an adaptive paral­
lel programming environment. meaning an environ­
ment in which the number of processors available
varies at run-time. We have defined a simple model
for programming and program execution in such an
environment. In the SPMD model supported by IIPF.
the same program text is run on all the processors.
Remapping a program to include or exclude processors
only involves remapping the (parallel) data used in
the program. The only operating system support re­
quired in our model is for detecting the availability
(or lack of availability) of processors. This makes it
easier to port applications developed using this model
onto many parallel programming systems.

We have presented the features of AYIP, which pro­
vides run-time support that can be used for developing
adaptive parallel programs. We described how the
run-time library can be used by a compiler to compile
programs written in HPF -like data-parallellanguages
for adaptive execution. We have present,ed experimen­
tal results on a hand-parallelized 1\"avier-Stokes solver
template and a multigrid template run on a network
of workstations and an IBYI SP-2. Our experimental
results show that adaptive execution of a parallel pro­
gram can be provided at relatively low cost, if the
number of available processors does not vary fre­
quently.

We plan to experiment with several other scientific
codes. We would also like to integrate our run -time
library with a compiler for an HPF -like language.
which would allow HPF -like codes to be parallelized
to take advantage of an adaptive environment.

ACKNOWLEDGMENTS

We thank V. Vatsa and .\1. SanNrik at 1\"ASA Langley Re­
search Center for providing access to the multiblock
TL'IiS3D application code. We also thank John van Rosen­
dale at lCASE and Andrea Overman at :\ASA Langley for
making their 5equcntial and hand-parallclized multigrid
code available to us.

REFERENCES

[1] V. K. ;\;aik. S. Setia .. and M. SquillantP .. ·'Performance
analysis of job scheduling policies in parallel super-

computing Pnvironmt>nts. ·· in Prnc. ,'-,"upercomputin[<
'93, 1993. p. 82-+.

[2] S. St>tia. ··Scheduling on multi programmed distributt>d
memory parallel machines ... PhD Thesis. t ·niversity
of .Vlaryland. Aug. 199:1.

[:1] C. Kot>llwl. D. Lowman. R. Schrt>ibt>r. G. Stt>t>lt' Jr ..
and .VI. Zosel. The Iligh Performartce Fortran !land­
book. Cambridge . .VIA: \11T PrPss. 199-+.

["+] Z. Bozkus. A. Choudhury. G. Fox. T. Haupt. S. Ranka.
and \I.-Y. Wu. --Compiling Fortran 90D/J IPF for dis­
trilmted memory \H.\1D computers!. Parallel TJis­
trib. Comput .. vol. 21. pp. 1S-26. April 199-+.

[5] S. lliranandani. K. Knmedy. andC.-W. Tseng. ·'Com­
piling Fortran D for .V11\1D distrilmted-HH'lllory ma­
chinPs ... Commun. AClJ. vol. :1:}. pp. 66-80. Aug.
1992.

[h] H. P. Zima and B . .VI. Chapman. ""Compiling for dis­
tributt>d-memory systems ... Proc. IT:T:E, vol. 81. pp.
26-+-28?. Feb. 1993.

[7] R. Konuru. J. Casa. R. Prouty. and J. WalpolP. ""A
user-level process package for PY\1. ··in Proc. Scalable
Hir;/t Perj(mruwce Computing Cor({ (Sl/PCC-94).
199"-f. p. 4:8.

[8] C. AgrawaL :\. Sussman. and J. Saltz .. ·'Efficimt run­
time support for parallPlizing block struct urPd applica­
tions ... in Proc. Scalable lli[<h Perj.orrnancP Cornputin[<
Conf (SIIPCC-94). 1994. p. 158.

[9] A. Sussman. G. Agrawal. and .J. Saltz. --A manual
for tht> multiblock PART! nmtimP primitives. rPvision
4.1:· llniversity of Maryland. Department of Com­
puter Science and t :.vnACS. Tech. Rep. CS-TR-.30?0.1
and LT\HACS-TR-9:3-:36.1. Dt>c. 199::3.

[10] G. Agrawal. A. Sussman. and J. Saltz. ··Compilt>r and
runtinw support for structured and block structured
applications ... in Proc. Sllpercornputin[< '93, 199:3.
p. S?8.

[11] G. Agrawal. A. Sussman .. and .J. Saltz. ·'An integrated
runtime and compile-time approach for parallelizing
structurPd and block structurPd applications:· IE.t't"
Trwts. Parallel Distrib. c'i1·stems. (in press). Also avail­
able as l-nivcrsity of .\1arvland Tech. Rep. CS-TR­
:1 H<1 and l.V11ACS-TR-9:1-94.

ADAPTIYE PARALLEL E:\\'1R0:\\1E:\TS 227

[12] P. Havlak and K. Kmnedy .. ""An implementation of
intPrprocPdural bounded rPgular section analysis.··
IEEE Trans. Parallel Distrib. ,~\'Stems. vol. 2~ pp. :350-
:160. July 1991.

[B] .V1. Ct>rndt. ""Lpdating distrihutPd variables in local
computations ... Concllrrenc_r Practice .t":lp. vol. 2. pp.
171-19:3. Sept. 1990.

[14] A. Geist. A. Beguelin . .T. Dongarra. W . .liang. R. \lan­
chek. and \'. Sunderam ... PY.\1 .'l ust>r· s guidP and
reference manual. .. Oak Ridgt> '\ational Laboratory.
Oak Ridge .. T:\. Tech. Rt>p. OR\L/TM-1218?. \lay
199:3.

[15] \1essage Passing Tntt>rfact' Forum. ":\lPI: A mPssagP­
passing intt>rface standard.'' ComputPr SciPncP De­
partment l'niwrsity of TPnnessPP .. TPch. Rep. CS-9"-f-
2::30. April 1994. Also appPars in Int . ./. Supercomput.
Appl.. vol. 8. 1 99-+.

[16] Y. :\. \'atsa. \1. D. Sanetrik. and E. B. ParlPttP. ··DPvPl­
opment of a flt>xiblt> and efficient multigrid-basPd
multiblock flow solver: ATAA-9::3-067?. in Proc . .) 1st
Aerospace Sciences Jfeeting and Erhibit. 199.3.

[17] A. Overman and J. \'an Rosendale. --Mapping robust
paral!Pl multigrid algorithms to scalablt> memory ar­
chitecturPs:· in Proc. 1993 Copper }fountain Conf
Jfultigrid Jfethods, 199:3.

[18] .\1. Litzkow and \1. Solomon. "Supporting check­
pointing and procPss migration outside the t Tnix ker­
nel. .. prt>St'Jitt>d at tht> Lsenix Winter ConferPncP.
1992.

[19] J. Ca,;as. R. Konuru .. S. \\. Otto. R. Prouty. and .1.
Walpole. --Adaptive load migration svstt>ms for PV\1.''
in Proc. Supercornputin[< '94. 1994. p. :390.

[20] D. Gdernter and D. Kaminsky~ --Supercomputing out
of rPc.yclPd garbage: Preliminary experiPncP with Pira­
nha.·· in Proc. Sixth Int. Conf Supercomputing~ 1992.
p. "+17.

[21] R. Bjornson~ .. Linda on distributt>d mt>mory multi­
processors:· PhD Thesis. Yale l ~niversity. 1991.

[22] :\. :\t>dPljkovic and \1. 1. Quinn. ""Data-parallt>l pro­
gramming on a network of heterogt>nt>ous work­
stations.'' Concurreruy Practice E.rp .. vol. .'.i. 1993.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

