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ABSTRACT 

For better utilization of computing resources, it is important to consider parallel programming 
environments in which the number of available processors varies at run-time. In this article, 
we discuss run-time support for data-parallel programming in such an adaptive environment. 
Executing programs in an adaptive environment requires redistributing data when the number 
of processors changes, and also requires determining new loop bounds and communication 
patterns for the new set of processors. We have developed a run-time library to provide this 
support. We discuss how the run-time library can be used by compilers of high-performance 
Fortran (HPF)-Iike languages to generate code for an adaptive environment. We present 
performance results for a Navier-Stokes solver and a multigrid template run on a network of 
workstations and an IBM SP-2. Our experiments show that if the number of processors is not 
varied frequently, the cost of data redistribution is not significant compared to the time required 
for the actual computation. Overall, our work establishes the feasibility of compiling HPF for 
a network of nondedicated workstations, which are likely to be an important resource for 
parallel programming in the future. © 1997 John Wiley & Sons, Inc. 

1 INTRODUCTION 

In most existing parallel programming systems, each 
parallel program or job is assigned a fixed number of 
processors in a dedicated mode. Thus, the job is exe­
cuted on a fixed number of processors, and its execu-
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tion is not affected by other jobs on any of the proces­
sors. This simple model often results in relatively poor 
use of available resources. A more attractive model 
would be one in which a particular parallel program 
could use a large number of processors when no other 
job is waiting for resources, as well as a smaller number 
of processors when other jobs need resources. Setia et 
al. [1, 2] have shown that such a dynamic scheduling 
policy results in better utilization of the available pro­
cessors. 

There has been an increasing trend toward using 
a networkk of workstations for parallel execution of 
programs. A workstation usually has an individual 
owner or small set of users who would like to have 
sole use of the machine at certain times. However, 
when the individual users of workstations are not 
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logged in. these workstations can lw used for executin~ 
a parallel application. When the individual user of a 
workstation returns. the application must be adjusted 
either not to use the workstation at all or to use very 
few cvcles on the workstation. The idea is that individ­
ual users of the workstation do not want the execution 
of a large parallel application to slow down the pro­
cesses they want to execute. 

We refer to a parallel programming environment 
in which the number of processors available for a given 
application varies with time as an adaptive parallel 
programming erwironment. The major difficulty in us­
ing an adaptive parallel programming environment is 
in developing applications for execution in such an 
environment. In this article, we address this problem 
for distributed memory parallel machines and net­
works of workstations, neither of which support shared 
memory. In these machines, communication between 
processors has to be explicitly scheduled by a compiler 
or bv the user. 

A commonly used model for developing parallel 
applications is the data-parallel programming model. 
in which parallelism is achieved by dividing large data 
sets between processors and having each processor 
work only on its local data. High-performance fortran 
(HPF) [3], a language proposed by a consortium from 
industry and academia and is being adopted by a 
number of vendors, targets the data-parallel program­
ming model. In compiling HPF programs for execution 
on distributed memory machines, two major tasks are 
dividing work or loop iterations across processors. and 
detecting. inserting, and optimizing communication 
between processors. To the best of our knowledge, all 
existing work on compiling data-parallel applications 
assumes that the number of processors available for 
execution does not vary at run-time [ 4-6]. If the num­
ber of processors varies at run-time, run-time routines 
need to be inserted for determining work partitioning 
and communication during the execution of the 
program. 

We have developed a run-time library for devel­
oping data-parallel applications for execution in an 
adaptive environment. There are two major issues in 
executing applications in an adaptive environment: 

1. Redistributing data when the number of avail­
able processors changes during the execution of 
the program 

2. Handling work distribution and communication 
detection, insertion, and optimization when the 
number of processors on which a given parallel 
loop will be executed is not known at com­
pile-time. 

Executing a program in an adaptive environment 

can potentially incur a high overhead. If the number 
of available processors is varied frequently. then the 
cost of redistributing data can become significant. Be­
cause the number of available processors is not known 
at compile-time. work partitioning and communica­
tion need to be handled by run-time routines. This 
can result in a significant overhead if the run-time 
routines an~ not efficient or if the run-time analysis is 
applied too often. 

Our run-time library, called Adaptive Multiblock 
PARTI (A\1P). includes routines for handling the two 
tasks we have described. This run-time library can be 
used by compilers for data-parallellanguages or it can 
be used by a programmer parallelizing an application 
by hand. This article describes our run-time library 
and discusses how it can be used by a compiler. We 
restrict our work to data-parallel languages in which 
parallelism is specified through parallel loop con­
structs like forall statements and array expressions. 
We present experimental results on two applications 
parallelized for adaptive execution by inserting our 
run-time support by hand. Our experimental results 
show that if the number of available processors does 
not vary frequently, the cost of redistributing data is 
not significant as compared to the total execution time 
of the program. Overall, our work establishes the feasi­
bility of compiling HPF -like data-parallel languages 
for a network of nondedicated workstations. 

The rest of this article is organized as follows. Sec­
tion 2 discusses the programming model and model 
of execution we are targeting. Section 3 describes the 
run-time library we have developed. We briefly discuss 
how this run-time library can be used by a compiler 
in Section 4. Section 5 presents experimental results 
we obtained by using the library to parallelize two 
applications and running them on a network of 
workstations and an IBM SP-2. In Section 6, we com­
pare our work with other efforts on similar problems. 
We conclude in Section 7. 

2 MODEL FOR ADAPTIVE PARALLELISM 

This section discusses the programming model and 
model of program execution targeted by our run-time 
library. A parallel programming system in which the 
number of available processors varies during the exe­
cution of a program is called an adaptive programming 
environment. A program executed in such an environ­
ment is referred to as an adaptive program. These 
programs should adapt to changes in the number of 
available processors. The number of processors avail­
able to a parallel program changes when users log in 
or out of individual workstations, or when the load 



Real A(N,N), B(N,N) 

Do Time_step = 1 to 100 
Do ( i = l:N, j = l:N) 

A(i,j) = B(j,i) + A(i,j) 
End do 

More Computation involving A 8 B .. 

End do 

FIGURE 1 Example of a data-parallel program. 

on processors change for various reasons (such as from 
other parallel jobs in the systPm). We refer to remap­
ping as the activity of a program adjusting to the 
change in the number of available processors. 

\Ve have chosen our model of program execution 
with two main concerns: 

1. We want a model which is practical for dPvel­
oping and running common scientific and engi­
neering applications. 

2. We want to develop adaptive programs that are 
portable across many existing parallel program­
ming systems. This implies that thP adaptive 
programs and the run-time support developed 
for them should require minimal operating sys­
tem support. 

We restrict our work to parallel programs using 
the single-program multiple-data (SPMD) modPl of 
execution. In this modeL the same program text is run 
on all the processors and parallelism is achieved by 
partitioning data structures (typically arrays) between 
processors. This model is frequently used for scientific 
and engineering applications, and most of the existing 
work on developing languages and compilers for pro­
gramming parallel machines uses the SPMD model 
[3]. An example of a simple data-parallel program 
that can be easily transformed into a parallel program 
that can be executed in SPMD mode is shown in Figure 
1. The only change required to turn this program into 
an SPMD parallel program for a static environment 
would be to change the loop bounds of the forall loop 
appropriately so that each processor only executes on 
the part of array A that it owns and then to determine 
and place the communication between processors for 
array B. 

We are targeting an environment in which a parallel 
program must adapt according to the system load. A 
program may be required to execute on a smaller rnnn­
ber of processors because an individual user logs in 
on a workstation or because a new parallel job requires 
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resources. Similarly. it may be desirable for a parallel 
program to execute on a larger number of processors 
because a user on a workstation has logged out or 
because another parallel job executing in the parallel 
system has finished. In such scenarios. it is accept­
able if: 

1. The adaptive program does not remap immedi­
ately when the system load changes. 

2. TllP program remaps from a larger number of 
processors to a smaller number of processors. 
However. it mav continue to usE' a small number 
of cycles on the processors it no longer uses 
for computation. 

This kind of flexibility can significantly easr remap­
ping of data-parallel applications, with minimal op­
erating system support. If an adaptive program has 
to be remapped from a larger number of processors 
to a smaller number of processors. this can be done by 
redistributing the distributed data so that processors 
which should no longer he executing the program do 
not own any part of the distributed data. The SPMD 
program will continue to exf'cute on all processors. We 
refer to a process that owns distributed data as an 
active process and a process from which all data have 
been removed as a skeleton process. A processor own­
ing an active process is referred to as an activE' proces­
sor and similarly. a processor owning a skeleton pro­
cess is referred to as a skeleton processor. A skeleton 
processor will still execute each parallel loop in the 
program. However. after evaluating the local loop 
bounds to restrict execution to local data. a skeleton 
processor will determine that it does not need to exe­
cute any itf'rations of the parallel loop. All computa­
tions involving writing into scalar variables or repli­
cated arrays will continue to be executed on all 
processors. The parallel program will use some cycles 
in the skeleton processors, in the evaluation of loop 
bounds for parallel loops, and in the computations 
involving writing into scalar variables or replicated 
arrays. However, for data-parallel applications involv­
ing large arrays this is not likPly to cause any noticeable 
slowdown for other processes executing on the skeleton 
processors, especially because replicated arrays are 
rarely used in significant computations. This model 
substantially simplifies remapping when a skeleton 
processor again becomes available for executing the 
parallel program. A skeleton processor can be made 
active simply by redistributing the data so that this 
processor owns part of the distributed data. ~ew pro­
cesses do not need to be spawned when skeleton pro­
cessors become available, hence no operating system 
support is required for remapping to start execution 
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3 different states of workstations and program 

Time tO 

Timet1 

Timet2 

li 
1 P3 ' 

FIGURE 2 An adaptive programming environment. 

on a larger number of processors. In this modeL a 
maximal possible set of processors is specified before 
starting execution of a program. The program text is 
executed on all these processors, although some of 
these may not own any portions of the distributed 
data at any given point in the program execution. W'e 
believe that this is not a limitation in practice, because 
the set of workstations or processors of a parallel ma­
chine that can possibly be used for running an applica­
tion is usually known in advance. 

Figure 2 represents three different states of five 
processors (workstations) executing a parallel pro­
gram using our model. In the initial state, the program 
data are spread across all five processors. In the second 
state, two users have logged in on processors 0 and 2, 
so the program data are remapped onto processors 1, 
3, and 4. After some time. those users log off and 
another user logs in on processor 1. The program 
adapts itself to this new configuration by remapping 
the program data onto processors 0, 2, 3, and 4. 

If an adaptive program needs to be remapped while 
it is in the middle of a parallel loop, much effort may 

be required to ensure that all computations restart at 
the correct point on all the processors after remapping. 
The main problem is ensuring that each iteration of 
the (parallel) loop is executed exactly once, either be­
fore or after the remapping. Keeping track of which 
loop iterations have been completed before the remap­
ping, and only executing those that haven't already 
been completed after the remapping, can be expensive. 
However, if the program is allowed to execute for a 
short time after detecting that remapping needs to be 
done, the remapping can be substantially simplified. 
Therefore, in our model, the adaptive program is 
marked with remap points. These remap points can 
be specified by the progranmH:'r if the program is par­
allelized by hand, or they may be determined by the 
compiler if the program is compiled from a single 
program specification (e.g., using an HPF compiler). 
We allow remapping when the program is not execut­
ing a data-parallel loop. The local loop hounds of a 
data-parallel loop are likely to be modified when the 
data are redistributed, because a processor is not likely 
to own exaetlv the same data both before and after 



remapping. Also. remapping can be done at a point 
only if none of the nodf's arc in the middle of any 
I/0 activity. We will further discuss how the compiler 
can determine placement of remap points in Section 4. 

At each remap point, the program must determine 
if there is a reason to remap. \Ve assume a detection 
mechanism that determines if the load needs to be 
shifted away from any of the processors which are 
currently active, or if any of thf' skeleton processors 
can be made active. This detection mechanism is the 
only operating system support our model assumes. All 
the proct'ssors synchronize at the remap point and, if 
the detection mechanism determines that remapping 
is required. data redistribution is done. 

Two main considerations arise in choosing remap 
points. If the remap points are too far apart, i.e .. if 
the program takes too much time between remap 
points, this may not be acceptable to the users of the 
machine(s ). If remap points are too dose together. the 
overhead of using the detection mechanism may start 
to lwcome significant. 

Support for the detection mechanism can be easily 
implemented in one of the two ways. The operating 
system can check if a user is logged in (or if the user 
has been idle for a long time). Alternatively, users of 
the individual workstations can change a variable to 
let the system know whether or not they want their 
workstation to be used for parallel programs. 

Our model for adaptive parallel programming is 
closest to the one presented by Konuru et al. [7]. 
They also consider data-parallel programming in an 
adaptive environment, including a network of hetero­
geneous workstations. The main difference in their 
approach is that the responsibility for data reparti­
tioning is given to the application programmer. We 
have concentrated on developing run-time support 
that can perform data repartitioning, work parti­
tioning, and communication after remapping. Our 
model satisfies the three requirements stated by Ko­
nuru et al. [7], namely. withdrawal (the ability to 
withdraw computation from a processor within a rea­
sonable time), expansion (the ability to expand into 
newly available processors), and redistribution (the 
ability to redistribute work onto a dynamic number of 
processors so that no processor becomes a bottleneck). 

3 RUN-TIME SUPPORT 

This section discusses the run-time library we have 
df'veloped for adaptive programs. The run-time li­
brary has been developed on top of an existing run­
time library for structured and block -structured appli­
cations. This librarv is called Multiblock PARTI [8. 9], 
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because it was initially used to parallelize multiblock 
applications. We have developed our run-time support 
for adaptive parallelism on top of Y1ultiblock PARTI 
because this run-time library provides much of the 
run-time support required for forallloops and array 
expressions in data-parallel languages like HPF. This 
library was also integrated with the HPF /Fortran 90D 
compiler developed at Syracuse (;niversity [ 4, 10, 11]. 
We discuss the functionality of the existing library and 
then present the extensions that were implemented 
to support adaptive parallelism. We refer to the new 
library. with extensions for adaptive parallelism, as 
AMP. 

3.1 Multiblock PARTI 

This run-time library can be used in optimizing com­
munication and partitioning work for HPF codes in 
which data distribution, loop bounds, and/ or strides 
are unknown at compile-time and indirection arrays 
are not used. Consider the problem of compiling a 
data-parallel loop, such as a forallloop in HPF, for a 
distributed memory parallel machine or network of 
workstations. If all loop bounds and strides are known 
at compile-time and if all information about the data 
distribution is also known. then the compiler can per­
form work partitioning and can also determine the 
Sf'ts of data elements to be communicated between 
processors. However. if all this information is not 
known, then these tasks may not be possible to per­
form at compile-time. Work partitioning and commu­
nication generation become especially difficult if there 
are svmbolic strides or if the data distribution is not 
known at compile-time. In such cases, run-time analy­
sis can be used to determine work partitioning and 
generate communication. The Multiblock PARTI li­
brary has been developed for providing the required 
run-time analvsis routines. 

In summary, the run-time library has routines for 
three sets of tasks: 

1. Defining data distribution at run-time; this in­
cludes storing this information in a distributed 
array descriptor (DAD). which can later be used 
by communication generation and work parti­
tioning routines. 

2. Performing communication when the data dis­
tribution, loop bounds, and/or strides are un­
known at compile-time. 

:1. Partitioning work (loop iterations) when data 
distribution, loop bounds. and/ or strides are un­
known at compile-time. 

A key consideration in using run-time routines for 
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work partitioning and communication is to keep the 
overhead of run-time analysis low. For this reason, 
the run-time analysis routines must be efficient and 
it should be possible to reuse the results of run-time 
analysis whenever possible. In this run-time system, 
communication is performed in two phases. First, a 
subroutine is called to build a communication schedule 
that describes the required data motion .. and then an­
other subroutine is called to perform the data motion 
(sends and receives on a distributed memory parallel 
machine) using a previously built schedule. Such an 
arrangement allows a schedule to be used multiple 
times in an iterative code. 

To illustrate the functionalitv of the run-time rou­
tines for communication analysis. consider a single 
statement forall loop as specified in HPF. This is a 
parallel loop in which loop bounds and strides associ­
a ted with any loop variable cannot be functions of any 
other loop variable [3]. If there is only a single array 
on the right-hand side. and all subscripts are affine 
functions of the loop variables. then this forall loop 
can be thought as copying a rectilinear section of data 
from the right-hand side array into the left-hand 
array. potentially involving changes of offsets and 
strides and index permutation. We refer to such com­
munication as a regular section move [ 12]. The library 
includes a regular section move routine. Regular_ 
SectiorLMove_Sched. that can analvze the commu­
nication associated with a copy from a right-hand side 
array to left-hand side array when data distribution. 
loop bounds, and/or strides are not known at com­
pile-time. 

A regular section move routine can be invoked for 
analyzing the communication associated with any for­
all loop. but this may result in unnecessarily high run­
time overheads for both execution time and memory 
usage. Communication resulting from loops in many 
real codes has much simpler features that make it 
easier and less time-consuming to analyze. For exam­
ple, in many loops in mesh-based codes. only ghost 
(or overlap) cells [ 13] need to be filled along certain 
dimension( s). If the data distribution is not known 
at compile-time, the analysis for communication can 
be much simpler if it is known that only overlap cells 
need to be filled. The Multiblock PART! library in­
cludes a comrmmication routine, Overlap_CelLFilL 
Sched, which computes a schedule that is used to 
direct the filling of overlap cells along a given dimen­
sion of a distributed array. The schedules produced 
by Overlap_CelLFilLSched and Regular_ 
SectiorLMove_Sched are employed by a routine 
called Da ta..Move that carries out both interprocessor 
communication (sends and receives) and intra proces­
sor data copying. 

Real *A, *B, *Temp 
DAD*D 
SCHED *Sched 

Num_Proc 
D 
Sched 
Lo_Bnd1 
Lo_Bnd2 
Up_Bnd1 
Up_Bnd2 

DAD for A and B 

Get__N umber _oLProcessors() 
Create_DAD(Num_Froc, ... ) 
Compute_ Transpose_5ched( D) 
Local_Lower _Bound( D, 1) 
Local_Lower _Bound( D ,2) 
Local_U pper _Bound(D,1) 
Local_ Upper _Bound(D,2) 

Do Time_.step = 1 to 100 
Data__Move(B, Temp, Sched) 

End do 

Do ( i = Lo_Bnd1:Up_Bnd1, 

End do 

j = Lo_Bnd2:Up_Bnd2) 
A(ij) = Temp(ij) + A(i,j) 

More Computation involving A & B .. 

FIGURE 3 Example of SP.\IID program using \1ultiblock 
PARTI. 

The final form of support provided by the 
Ylultiblock PARTI library is to distribute loop itera­
tions and transform global distributed array references 
into local references. In distributed memory compila­
tion, the owner-computes rule is often used for distrib­
uting loop iterations [5]. Owner computes means that 
a particular loop iteration is executed by the processor 
owning the left-hand side array element written into 
during that iteration. Two routines, LocaLLower_ 
Bound and LocaLUpper_Bound, are provided by 
the library for transforming loop bounds (returning, 
respectively. the local lower and upper bounds of a 
given dimension of the referenced distributed array) 
based on the owner-computes rule. 

An example of using the library routines to paral­
lelize the program from Figure 1 is shown in Figure 
3. The library routines are used for determining work 
partitioning (loop hounds) and for determining and 
optimizing communication between the processors. In 
this example. the data distribution is known only at 
run-time and therefore, the DAD is filled in at run­
time. Work partitioning and communication are deter­
mined at run-time using the information stored in the 
DAD. The function Compute_Transpose_Sche­
dule () is shorthand for a call to the Regular_Sec­
tiorLMove_ Sched routine. with the parameters set 
to do a transpose for a two-dimensional distributed 
array. The schedule generated by this routine is then 
used by the Da ta..Move routine for transposing the 
array B and storing the result in the array Temp. 
Functions LocaLLower_Bound and LocaLUp­
per _Bound are used to partition the data -parallel loop 
across processors, using the DAD. The sizes of the 



arrays A, B.. and T~mp on each proc~ssor dt>pend on 
th~ data distribution and are known onlv at run-time. 
Therefor~. arrays A. B. and T~mp are allocated at run­
time. The calls to the memory management routines 
are not shown in Figure 3. Tht> codt> could be optimized 
further by writing specialized routin~s to perform the 
transpose operation. but the library routin~s are also 
applicable to mort> gt>neral forallloops. 

Tlw \1ultiblock PARTI library is currently impl~­
rnented on the Intel iPSC/860 and Paragon. tht> 
Thinking \1achines CM-5. th~ IBM SP1 /2, and tlw 
PVM message-passing environment for a n~twork of 
workstations [ 14 J. The d~sign of the library is archi­
t~cture independent and, thert>for~. it can be easily 
port~d to any distributed memory parallel machine or 
any environment that supports message passing ( t>.g .. 
Express). The current implementation of the library 
is restricted to handling only block-distributed arrays. 

3.2 AMP 

The existing functionality of the \lultiblock PARTI 
library was useful for d~veloping adaptive programs 
in several ways. If the numb~r of processors on \vhich 
a data-parallel loop is to be execut~d is not known at 
compil~-time. it is not possible for the compil~r to 
analyze the communication, and in some cases. ev~n 
th~ work partitioning. This holds tru~ ~ven if all other 
information, such as loop bounds and strid~s. is known 
at compile-time. Thus, run-time routin~s ar~ r~quired 
for analyzing communication (and work partitioning) 
in a program written for adaptive execution, even if 
the same program written for static execution on a 
fixed number of processors did not r~quire any run­
time analnis. 

Several ext~nsions were r~quired to the existing li­
brary to provide th~ required functionality for adap­
tive programs. When th~ set of processors on which 
the program ~xecutes changes at run-time. all activ~ 
processors must obtain information about which pro­
cessors are active and how the data are distributed 
across th~ set of activ~ processors. To dt>al with only 
some of th~ processors b~ing active at any tim~ during 
execution of the adaptiv~ program, the implementa­
tion of AMP uses the notion of physical and logical 
numbering of processors. If p is the number of proces­
sors that can possibly be actiw during the execution of 
the program, each such processor is assigned a unique 
physical processor number between 0 andp - 1 before 
starting program execution. If we let c be the number 
of processors that are active at a given point during 
execution of a program, then each of these active pro­
cessors is assigned a unique logical proc~ssor number 
between 0 and c - 1. For active processors. the map-

ADAPTIVE PARALLEL E1\TTRO:\ME\TS 221 

ping b~tw~f'Il physical and logical processor numlwrs 
is updatt>d at rt>map points. The use of a logical proces­
sor numbering is similar in conc~pt to the scheme used 
for processor groups in the mt>ssag~-passing interface 
standard (\IPI) [15]. 

Information about data distributions is available at 
each proc~ssor in the DADs. However, DADs only stor~ 
the total siz~ in each dimension for each distributt>d 
array. Tht> t>xact part of the distributed array owrwd 
by an active proc~ssor can be determined using tlw 
logical processor numb~r. Each proc~ssor maintains 
information about what physical processor corrt>s­
ponds to each logical proc~ssor number at any timf'. 
The mapping from logical processor number to physi­
cal proc~ssor is used for communicating data be­
tween proct>ssors. 

In summary, the additional functionality implt>­
mented in AMP over that available in Multiblock 
PARTI is as follows: 

1. Routines for consistently updating the logical 
proc~ssor numbering when it has bet>n detected 
that rt>distribution is required. 

2. Routines for redistributing data at remap points. 
:1. ~Iodified communication analYsis and data 

movf' routin~s to incorporate information about 
the logical processor numbering. 

Tht> communication required for rNlistributing 
data at a remap point depends on tlw logical processor 
numberings b~for~ and after redistribution. Therefore. 
after it has been d~cid~d that remapping is required. 
all processors must obtain tlw new logical processor 
numb~ring. The detection routine. after determining 
that data redistribution is required, decid~s on a new 
logical processor numb~ring of the processors which 
will bt> active. The detection routine informs all tht> 
processors which were either active befor~ remapping 
or will be active aft~r remapping of the new logical 
numbering. It also informs th~ processors which will 
be activ~ after remapping about tht> existing logical 
numbering (processors that are active both before and 
after remapping will already have this information). 
These processors need this information for determin­
ing what portions of the distributed arrays th~y will 
receive from which physical proct>ssors. 

The communication analysis requir~d for redistrib­
uting data was impl~mented by modifying the 
Multiblock PARTT Regular_SectioiLMove_Sched 
routine. Th~ new routine takes both the new and old 
logical numbering as parameters. The analysis for dc­
t~rmining the data to he s~nt by each processor is done 
using the new logical numbering (because data will 
be sent to processors with the n~w logical numbering) 
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Compute Initial DAD, Sched and Loop Bounds 

Do Time _step = 1 to 100 

End do 

If Detection() then Remap() 
Data_Move(B, Temp, Sched) 
Do ( i = Lo.llndl:Up_Bndl, 

j = Lo_Bnd2:Up_Bnd2) 
A(ij) Temp(i,j) + A(i,j) 

End do 

More Computation involving A & B .. 

Remap() 

End 

Real *New..A, *Ciiew_B 

New_NProc Get_No_oLProc..and_Numb() 
NewJ) CreateJ)AD(New_NProc) 
Redistribute_Data(A, New ..A, D, New_])) 
Redistribute_Data(B, New_B, D, New.D) 
D = NewJ); A= New..A; B = New . .B ; 
Sched Compute_Trausp..Sched(D) 
Lo_Bndl LocaLLower ..Bound(D, 1) 
Lo_Bnd2 LocaJ..Lower.llound(D,2) 
Up..Bndl Local.Upper_Bound(D,l) 
Up_Bnd2 Local.Upper_Bound(D,2) 

FIGURE 4 Adaptive SPMD program using AY"IP. 

and the analysis for determining tlw data to be re­
ceived is done using the old logical numbering (be­
cause data will be reeeived from processors with the 
old logical numbering). 

Modifications to the Ylultiblock PARTI communi­
cation functions were also required for incorporating 
information about logical processor numberings. This 
is because the data distribution infom1ation in a 
DAD only determines which logical processor owns 
what part of a distributed array. To actually perform 
communication, these functions must use the map­
ping between logical and physical processor num­
berings. 

Figure 4 shows the example from Figure :3 paral­
lelized using AMP. The only difference from the 
nonadaptive parallel program is the addition of the 
detection and remap calls at the beginning of the 
time-step loop. The initial computation of the loop 
bounds and communication schedule are the same 
as in Figure 3. The remap point is the beginning 
of the time-step loop. If remapping is to be performed 
at this point, the function Remap is invoked. Remap 
determines the new logical processor numbering. 
after it is known what processors are available, and 
creates a new Data Access Descriptor (DAD). The 
Redistribute_Data routine redistributes arrays 
A and B. using both the old and new DADs. After 

redistribution. the old DAD can hf' discarded. The 
new communication sehf'dule and loop bounds are 
determined using the nf'w DAD. We have not shown 
the details of the memorv allocation and df'allocation 
for thf' data redistribution. 

4 COMPILATION ISSUES 

The example shown previously illustrates how A~lP 
can be used by application programmers to develop 
adaptive programs by hand. We now briefly describe 
the major issues in compiling programs written in an 
HPF-like data-parallel programming language for an 
adaptive environment. We also discuss some issues in 
expressing adaptive programs in HPF. As we stated 
earlier_ our work is restricted to data-parallel lan­
guages in which parallelism is specified explicitly. In­
corporating adaptive parallelism in compilation sys­
tems in which parallelism is detected automatically 
[5] is beyond the scope of this article. 

In previous work, we successfully integrated the 
Multihloek PARTI library with a prototype Fortran 
90D/IIPF compiler developed at Syracuse University 
[4. 10. 11]. Routines provided by the library wert' 
inserted for analyzing work partitioning and commu­
nication at run-time, whenever compile-time analysis 
was inadequate. This implementation can be extended 
to use AD.\1 and compile HPF programs for adaptive 
execution. The major issues in compiling a program 
for adaptive execution are determining remap points, 
inserting appropriate actions at remap points, and en­
suring reuse of the results of run-time analysis to mini­
mize the cost of such analysis. 

4. 1 Remap Points 

In our model of execution of adaptive programs. re­
mapping is considered only at certain points in the 
program text. If our run-time library is to ht> used, a 
program cannot be remapped inside a data-parallel 
loop. Thr rrason is that the local loop bounds of a 
data-parallelloop are determined based on the current 
data distribution. and in general it is very difficult to 
ensure that all iterations of the parallel loop are exe­
cuted by exactly one processor, either before or 
after remapping. 

There are (at least) two possibilities for determining 
remap points. They may be specified by the program­
mer in the form of a directive. or they may be deter­
mined automatically by the eompiler. For the data­
parallel language HPF, parallelism can only be explic­
itly specified through certain constructs (e.g .• fora II 
statement, forall construct. independent statement 



[3]). Inside any of these constructs. tlw only functions 
that can lw callt>d are those explicitly markt>d as pure 
functions. Thus. it is simplt> to determine. solely from 
the syntax. what points in the program art> not inside 
any data-parallel loop and therefore can be remap 
points. Making all such points rPmap points may, how­
ever. lead to a large number of remap points. 1\atu­
rally. this will lead to significant overhead from Pm­
ploying thP detection mPchanism (and synchroniza­
tion of all processors at each remap point). 

Alternatively. a programmer may specify cPrtain 
points in the program to be remap points, through 
an explicit dirPctive. This. however. makes adaptiw 
execution less transparent to thP programmer. 

Once remap points are known to the compiler. it 
can insert calls to the detection mechanism at those 
points. The compiler also needs to insert a conditional 
based on the result of the detection mechanism, so that 
if the detection mechanism determines that remapping 
needs to be done, then calls are made both for building 
new DADs and for redistributing the data as specified 
by the new DADs. The resulting code looks very similar 
to the code shown in the example from Section 3, 
except that the compiler will not explicitly regenerate 
schedules after a remap. The compiler generates 
schedules anywht>re they will be needed. and relies on 
the run-time library to cache schedules that may be 
reused, as described in the next section. 

4.2 Schedule Reuse in the Presence 
of Remapping 

As we discussed in Section :3, a very important consid­
eration in using run-time analysis is the ability to reuse 
the results of run-time analysis whenever possible. 
This is relatively straightforward if a program is paral­
lelized by inserting the run-time routines by hand. 
When the run-time routines are automaticallv inserted 
by a compiler, an approach based on additional run­
time bookkeeping can be used. In this approach. all 
schedules generated are stored in hash tables by the 
run-time library, along with their input parameters. 
Whenever a call is made to generate a schedule. the 
input parameters specified for this call are matched 
against those for all existing schedules. If a match is 
found, the stored schedule is returned by the library. 
This approach was successfully used in the prototype 
HPF IF ortran 90D compiler that used the Multihlock 
PARTI run-time library. Our previous experiments 
have shown that saving schedules in hash tables and 
searching for existing schedules result in less than 10% 
overhead, as compared to a hand implementation that 
reuses schedules optimally [ 1 0 J. 

This approach easily extends to programs which 

ADAPTIVE PARALLEL ENVTRO!\ME:\"TS 223 

include remapping. One of the parameters to the 
schedule call is the DAD. After remapping. a call for 
building a new DAD for each distributed array is in­
serted by the compiler. For the first execution of any 
parallel loop after remapping, no schedule having the 
new DADs as parameters will be available in the hash 
table. )/ew schedules for communication will therefore 
be generated. The hash tables for storing schedules 
can also be cleared after remapping to reduce the 
amount of memory used by the library. 

4.3 Relationship to HPF 

In HPF. the Processor directive can be used to 
declare a processor arrangement. An intrinsic func­
tion, Number_oLProcessors, is also available for 
determining the number of physical processors avail­
able at run-time. HPF allows the use of the intrinsic 
function Number_oLProcessors in the specifica­
tion of a processor arrangement. Therefore, it is possi­
ble to write HPF programs in which the number of 
physical processors available is not known until run­
time. The Processor directive can appear only in the 
specification part of a scoping unit (i.e., a subroutine or 
main program). There is no mechanism available for 
changing the number of processors at run-time. 

Most of the existing work on compiling data-paral­
lel languages for distributed memory machines as­
sumes a model in which the number of processors is 
statically known at compile-time [ 4-6]. Therefore, 
several components of our run-time library are also 
useful for compiling HPF programs in which a proces­
sor arrangement has been specified using the intrinsic 
function Number_oLProcessors. HPF also allows 
Redistribute and Realign directives, which can 
he used to change the distribution of arrays at run­
time. Our redistribution routines would be useful for 
implementing these directives in an HPF compiler. 

5 EXPERIMENTAL RESULTS 

To study the performance of the run-time routines 
and to determine the feasibility of using an adaptive 
environment for data-parallel programming, we have 
experimented with a multihlock ~avier-Stokes solver 
template [ 16 J and a multi grid template [ 17]. The 
multiblock template was extracted from a computa­
tional fluid dynamics application that solves the thin­
layer Navier-Stokes equations over a three-dimen­
sional (3D) surface (multihlock TLl\S3D). The se­
quential Fortran 77 code was developed by V atsa et 
al. [16] at l\ASA Langley Research Center, and con­
sists of nearly 18,000 lines of code. The multihlock 
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Table 1. Cost of Remapping (in ms): Multihlock Code on Network of Workstations 

i\o. of 
Processors 

l:2 
8 
... 
1 

TinH' per 
Iteration 

2:213 
2480 
32-t2 
8:2H 

1:2 Proct>sson; 

33:2;:) 
:2:368 
23-t8 

template, which was designed to indude portions of 
the entire code that are representative of the major 
computation and communication patterns of thP origi­
nal code. consists of nearly 2000 lines of F77 code. 
The multigrid code we expt>rimented with was devel­
oped by Overman and Van Rosendale [ 17] at J';ASA 
Langley. In earlier work. we hand parallelized these 
codes using Muhibloek PARTI and also parallelized 
Fortran 90D versions of these codes using the proto­
type HPF/Fortran 90D compiler. lu Loth these codes, 
the major computation is performed inside a ( sequen­
tial) time-step loop. For each of the parallel loops in 
the major computational part of the code, the loop 
hounds ami communication patterns do not change 
across iterations of the time-step loop when the code 
is run in a static environment. Thus, communication 
schedules can lw gNteratefl before the first iteration 
of the time-step loop and can be used for all time steps 
in a static environment. 

We modified the hand-parallelized versions of these 
codes to usc the A,\IIP routines. For both these codes. 
we chose the beginning of an iteration of the time­
step loop as the remapping point. If remapping is done, 
the data distribution changes and the schedules used 
for previous time steps can no longer be used. For 
our experiments, we used two parallel programming 
environments. The first was a network of workstations, 
connected through an Ethernet, and using PVM for 
message passing. We had up to 12 workstations avail­
able for our experiments. The second environment was 
a H)-processor IBM SP-2. 

In demonstrating the feasibility of using an adaptive 

CoSI of Remapping to 

8 Procesc;ors 

:27:);) 

5698 

-t Processors 

:37-tO 
:3715 

1 Processor 

67;~7 

9400 
6-+20 

environment for parallel program execution, we con­
sidered the following factors: 

1. The time required for remapping and eomputing 
a new set of schedules,. as compared to the time 
required for each iteration of the time-step loop. 

2. The numlwr of tim<' steps that the code must 
execute aftpr remapping to a greater number of 
processors to effectively amortize the cost of re­
mapping. 

3. The effect of skeleton processes on the perfor­
mance of their host processors. 

On the network of Sun workstations, we considered 
executing the program on 12, 8. 4, or l workstations 
at any time. Remapping was possible from any of 
these configurations to any other configuration. We 
measured the time required for one iteration of the 
time-step loop and the cost of remapping from one 
configuration to another. The experiments were con­
ducted at a time when none of the workstations had 
any other jobs executing. 

Table 1 presents the time required per iteration for 
each configuration and the time required for remap­
ping from one configuration to another for the 
,\llultihlock code. The code was executed on a single 
mesh of size 49 X 9 X 9. In Table 1, the second 
column shows the time per iteration, and eolumns 3 
to 6 show the time for remapping to a 12, 8, 4, and 1-
processor configuration, respectively. The remapping 
cost indudes the time required for redistributing the 
data and the time requin~d for building a new set of 

Table 2. Cost of Remapping (in ms): Multihlock Code on IBM SP-2 

1'\o. of Time per 
Cost of Remapping to 

Processors Iteration 16 Processors 8 Processors 4 Processors 2 Processors 1 Processor 

16 59,2 3:) 4t) 86 159 
8 91.5 :H 54 88 156 
... 1:39.Ei 47 53 96 160 
2 213.8 78 85 95 171 
1 :~26.8 143 152 156 17:) 
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Table 3. Cost of Remapping (in ms): Multigrid Code on IBM SP-2 

No. of Time per 
ProcPssors ltPration 8 Processors 

8 93.9 
-+ 1:34.4 18 
2 206.6 19 

:308.4 33 

communication schedules. The speed-up of the tem­
plate is not very high because it has a high communica­
tion to computation ratio and communication using 
PVM is relatively slow. These results show that the 
time required for remapping for this application is at 
most the time required for four time steps. 

Note that on a network of workstations connected 
by an Ethernet, it takes much longer to remap from 
a larger number of processors to a smaller number of 
processors than from a smaller number of processors 
to a larger number of processors. For example, the 
time required for remapping from 8 processors to 1 
processor is significantly higher than the time required 
for remapping from 1 processor to 8 processors. This 
is because if several processors try to send messages 
simultaneously on an Ethernet, contention occurs and 
none of the messages may actually be sent. leading to 
significant delays overall. Instead, if a single processor 
is sending messages to many other processors, no such 
contention occurs. 

We performed the same experiment on a 16-proces­
sor IBM SP-2. The results are shown in Table 2. The 
program could execute on either 16, 8, 4, 2, or 1 
processor and we considered remapping from any of 
these configurations to any other configuration. The 
templates obtain significantly better speed-up and the 
time required for remapping is much smaller. The 
superlinear speed-up noticed in going from one to two 
processors is because on one processor, all data cannot 
fit into the main memory of the machine. 

Table 3 shows the results from the execution of the 
multigrid template on the IBM SP-2. The code was 

Cost of Remapping to 

4 Processors 2 Processors 1 Processor 

14 20 :36 
22 29 

2:1 29 
3:3 36 

run on an 8 X 8 X 8 mesh. Again, the remapping 
time for this code is reasonably small. 

Another interesting tradeoff occurs when additional 
processors become available for running the program. 
Running the program on a greater number of proces­
sors can reduce the time required for completing the 
execution of the program, but at the same time remap­
ping the program onto a new set of processors causes 
additional overhead for moving data. A useful factor 
to determine is the number of iterations of the time­
step loop that must still be executed so that it will be 
profitable to remap from fewer to a greater number 
of processors. Using the timings from Table 1, we 
show the results in Table 4. Table 4 shows that if the 
program will continue to run for several more time 
steps, remapping from almost any configuration to 
any other larger configuration is likely to be profitable. 
Because the remapping times are even smaller on the 
SP-2, the number of iterations required for amortizing 
the cost of remapping will be even smaller. 

In our model of adaptive parallel programming, a 
program is never completely removed from any pro­
cessor. A skeleton process steals some cycles on the 
host processor, which can potentially slow down other 
processes that want to use the processor (e.g., a work­
station user who has just logged in). The skeleton 
processes do not perform any communication and do 
not synchronize, except at the remap points. In our 
examples, the remap point is the beginning of an itera­
tion of the time-step loop. We measured the time re­
quired per iteration on the skeleton processors. Our 
experiments show that the execution time on skeleton 

Table 4. Number of Time Steps for Amortizing Cost of Remapping: Multiblock Code on Network of 
Sun Workstations 

J\o. of 
Processors 

12 
8 
4 
1 

12 Processors 

12.4 
2.3 
0.4 

No. of Time Steps for Amortizing when Remapped to 

8 Processors 

3.6 
1.1 

4 Processors 

1.0 

1 Processor 
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processors is always less than 10% of the execution 
time on active processors. For the multiblock code. 
the time required per iteration for the skeleton proces­
sors was 4.7 and :10 ms on the IBM SP-2 and Sun-4 
work-stations. respectively. The multigrid code took 
11 ms per iteration on the IBM SP-2. We expecL there­
fore, that a skeleton process will not slow down any 
other job run on that processor significantly (assuming 
that the skeleton process gets swapped out by the 
operating system when it reaches a remap joint). 

6 RELATED WORK 

In this section. we compare our approach to other 
efforts on similar problems. 

Condor [18] is a system that supports transparent 
migration of a process (through check pointing) from 
one workstation to another. It also performs detection 
to determine if the user of the workstation on which 
a process is being executed has returned, and also 
looks out for other idle workstations. However, this 
system does not support parallel programs; it considers 
only programs that will be executed on a single pro­
cessor. 

Several researchers have addressed the problem of 
using an adaptive environment for executing parallel 
programs. However, most of these consider a task par­
allel model or a master-slave model. In a version of 
PVM called ~igratable PV~ (~PVM) [ 19], a process 
or a task running on a machine can be migrated to 
other machines or processors. However. MPVM does 
not provide any mechanism for redistribution of data 
across the remaining processors when a data-parallel 
program has to be withdrawn from one of the pro­
cessors. 

Another system called user level processes (CLP) 
[ 17] has also been developed. This system provides 
light-weight user-level tasks. Each of these tasks can 
be migrated from one machine to another. Again. there 
is no way of achieving load balance when a parallel 
program needs to be executed on a smaller number 
of processors. Piranha [20] is a system developed on 
top of Linda [21 J. ln this system. the application pro­
grammer has to write functions for adapting to a 
change in the number of available processors. Pro­
grams written in this system use a master-slave model 
and the master coordinates relocation of slaves. There 
is no clear way of writing data-parallel applications 
for adaptive execution in all these systems. 

Data-parallel C and its compilation system [22] 
have been designed for load balancing on a network 
of heterogeneous machines. The system requires con­
tinuous monitoring of the progress of the programs 

executing on each machine. Experimental results have 
shown that this involves a significant overhead, even 
when no load balancing is required [22]. 

7 CONCLUSIONS AND FUTURE WORK 

l11 this article we have addressed the problem of devel­
oping applications for execution in an adaptive paral­
lel programming environment. meaning an environ­
ment in which the number of processors available 
varies at run-time. We have defined a simple model 
for programming and program execution in such an 
environment. In the SPMD model supported by IIPF. 
the same program text is run on all the processors. 
Remapping a program to include or exclude processors 
only involves remapping the (parallel) data used in 
the program. The only operating system support re­
quired in our model is for detecting the availability 
(or lack of availability) of processors. This makes it 
easier to port applications developed using this model 
onto many parallel programming systems. 

We have presented the features of AYIP, which pro­
vides run-time support that can be used for developing 
adaptive parallel programs. We described how the 
run-time library can be used by a compiler to compile 
programs written in HPF -like data-parallellanguages 
for adaptive execution. We have present,ed experimen­
tal results on a hand-parallelized 1\"avier-Stokes solver 
template and a multigrid template run on a network 
of workstations and an IBYI SP-2. Our experimental 
results show that adaptive execution of a parallel pro­
gram can be provided at relatively low cost, if the 
number of available processors does not vary fre­
quently. 

We plan to experiment with several other scientific 
codes. We would also like to integrate our run -time 
library with a compiler for an HPF -like language. 
which would allow HPF -like codes to be parallelized 
to take advantage of an adaptive environment. 
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