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ABSTRACT 

This paper describes a general compiler optimization technique that reduces communica­
tion over-head for FORTRAN-90 (and High Performance FORTRAN) implementations on 
massively parallel machines. 
The main sources of communication, or data motion, for the parallel implementation of a 

FORTRAN-90 program are array assignments, array operators (e.g., CSHIFT, TRANSPOSE, 

etc.), and array parameters passing to and from subroutines. Coupled with the variety of 
ways arrays can be distributed, a FORTRAN-90 implementor faces a rich space of posibili­
ties by which data motion can be organized. 
We propose a unified framework for optimizing intra- and inter-procedural data motion. 

The central idea of this framework is algebraic analysis of data motion. We give an alge­
braic representation for each HPF's array intrinsics and data distribution specifications. An 
array reference extracted from the source FORTRAN-90 program, given a particular data 
distribution specification, is represented as a communication expression, which in turn can 
be simplified according to a communication algebra. Fast communication is uncovered by 
pattern matching with a set of communication idioms. Experimental results on the Connec­
tion Machine CM-5 demonstrating the effectiveness of this approach are reported. 

1 INTRODUCTION 

Massively parallel machines offer the potential teraflop 
computing power. Such power cannot be fully utilized un­
til such machines are made easy to program. A major dif­
ficulty of this class of machines is the need to distribute 
data and manage interprocessor communication explic­
itly. In recent years, much research effort has been de­
voted to providing suitable programming tools. One sub­
ject on which research focusses is the provision of appro­
priate high-level, data-parallel programming languages 
to easy parallel programming. In 1992, a coalition of 
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researchers from academies, industry and governmental 
labs formed the High Performance Fortran Forum to de­
velop a standard set of language extensions to Fortran 90. 
The forum has produced a proposal for a language, called 
High Performance Fortran (HPF) [24 ], which extends the 
Fortran 90 standard with data distribution directives for 
high performance target machines such as massively par­
allel machines and workstation clusters. 

One of the main factors in achieving high performance 
for parallel programs on massively parallel machines is 
the reduction of communication overhead. While the de­
velopment of optimizing compilers for super-scalar archi­
tectures is becoming commonplace in the industry, work 
on optimization for data movement and node code per­
formance is mostly done in the context of specialized, 
hand-crafted code written in assembly code, if not mi-
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crocode, for specific target machines (e.g TMC's Convo­
lution Compiler for stencil computation [7]). Automatic 
transformations to reduce data movement have become 
an important issue for HPC architectures, where the time 
spent communicating can easily outweigh the time spent 
performing actual arithmetic. 

In this paper, we describe a general compiler opti­
mization technique that reduces communication overhead 
for Fortran-90/HPF implementations on massively paral­
lel machines. Movement of distributed data in HPF can 
occur in two ways: 

(1) passing of distributed arrays in procedure calls. 
Note that the actual and dummy arguments may 
have different data distribution; 

(2) assignments on distributed arrays within a 
procedure body. Again, the LHS (left-hand side) 
and the RHS (right-hand side) of an assignment 
statement may have different data distribution. 

So there are short-range (between LHS and RHS), 
medium-range (between a LHS or RHS and the align­
ment and distribution that are in force in the current scop­
ing block), and long-range (actual to dummy across the 
procedure calling sequence) effects of data layout to con­
sider. This makes compilation of HPF to efficient target 
code a complex task. 

We propose an algebraic transformation and runtime 
support technique for reducing intra- and inter-procedural 
data movement in HPF programs. The theoretical frame­
work within which we designed program transformations 
is algebraic analysis of data movement. We give each of 
HPF's array operations and data distribution directives an 
algebraic representation. We then formalize data distri­
bution, intra-procedural and inter-procedural data move­
ment using communication expressions. We have devel­
oped a communication algebra and its associated heuris­
tics to simplify communication expressions, and a hand­
coded, optimized runtime communication library to carry 
out aggregate communication. Fast communication is un­
covered by pattern-matching with a set of communication 
idioms. Calls to fast communication is generated if pat­
tern matching is successful; otherwise, a general commu­
nication routine using direct send/receive is used. 

The algebraic transformations are done abstractly in 
the logical, global space defined in the program. It does 
not require the notion of processor IDs and local mem­
ory offsets. As a result, although being demonstrated 
in the context of an HPF compiler for the Connection 
Machine CM-5, the optimization technique is applica­
ble to other data-parallel languages and other massively 
parallel-machines. 

We have conducted experiments on the Connection 
Machine CM-5 to evaluate the effectiveness of this op­
timization. Our experimental results demonstrate signifi­
cant performance improvement over benchmark codes. 

The rest of the paper is organized as follows. Sec­
tion 2 reviews the data mapping model of HPF and the 
associated data movement problem. Section 3 gives an 
overview of the algebraic transformation framework. Sec­
tion 4 presents in more detail the communication algebra. 
Section 5 reports our experimental results on the Con­
nection Machine CM-5. Finally, Section 6 reviews related 
work and Section 7 gives the conclusions. 

2 HIGH PERFORMANCE FORTRAN 

2.1 Data Mapping 

There is a two-level mapping of array elements to log­
ical processors. An HPF user can align array elements 
to a template, which is then partitioned and distributed 
onto an array of logical processors. The mapping of logi­
cal processors to physical processors is implementation 
dependent and may be specified by optional physical­
mapping directives. We will use the term "data layout" as 
a generic term for the composition of the alignment and 
distribution (and physical mapping, if given explicitly). 

Figure 1 shows an HPF program segment and a 
corresponding graphical representation of the effect of 
data mapping. Two arrays A and B are related by the 
FORTRAN-90 array intrinsic CSHIFT which shifts array 
A toward the negative direction by one element in wrap­
around fashion. Assuming the number of processors is 
two and the logical processors are mapped in an obvious 
way to the physical processors (that is, the first block is 
assigned to processor Pl and the second block to pro­
cessor P2), the alignment of the two arrays is intended 
for the eventual reduction of the interprocessor commu­
nication (only one element out of four references in the 
statement 

B = CSHIFT(A,dim=l,shift=l) 

requires communication). 

2.2 Procedure Interfaces 

HPF provides a rich set of procedure interface specifica­
tions for distributed array arguments. A dummy argument 
has a data layout that is either explicitly specified via user 
directives, or implicitly inherited from the caller's actual 
argument. Similarly, an actual argument may have an ex­
plicitly prescriptive data layout, or inherits itself a data 
layout from yet another calling context. Consider the pos­
sibility of extended calling chains ('A' calls 'B' calls 'C', 
and fo forth, each of which may add additional directives 
to the data layout specification and inherits the rest). This 
makes compilation of efficient data movement a complex 
task. 
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! ! ! HPF code 
REAL, DIMENSION(4): :A,B 
TEMPLATE T(S) !HPF$ 

!HPF$ 
!HPF$ 
!HPF$ 

DISTRIBUTE T BLOCK 
ALIGN A(I) WITH T(I) 
ALIGN B(I) WITH T(I+l) 
B = CSHIFT (A, dim=l, shift=l) 

A9 
B~ 

T j .... ·I 

I···· I 

j .... l 

, ... I .. I 

, ... 1·1 

, .. , .. 1 

array reference 
real, dimension(4): :A,B 
B=CSHIFT (A, 1) 

alignment distribution 
HPF$ distribute T block 

processor map communication 

!HPF$ template T(5) 
!HPF$ align A(i) with T(i) 
!HPF$ align B(i) with T(i+l) 

FIGURE 1 An example of data mapping and data movement in HPF. The alignment of the two arrays is intended for the eventual 
reduction of the communication in the CSHIFT array intrinsic. 

Figure 2 shows three levels of procedure calls (ALPHA 
calls BETA calls FOO calls BAR). For the procedure call 
statement in ALPHA, both the actual (array A) and the 
dummy (array B) have explicit alignments. Array A is 
aligned to the template T by offseting one element. The 
template T, by default, is partitioned into contiguous 
blocks. In procedure BETA, array B (the dummy argu­
ment of BETA) is aligned toT by offseting two data ele­
ments. Therefore, data realignment is required for passing 
array A between ALPHA and BETA. In procedure FOO, 
the dummy argument (array C) inherits the alignment di­
rective of the actual argument (array B). By aligning to 
the dummy argument C, the local array D defined in pro­
cedure FOO also inherits the actual argument's alignment 
specification, resulting in totally offseting five data ele­
ments with respective to template T. This layout effect 
will be propagated to the procedure interface when call­
ing procedure BAR. In the procedure body of BAR, the 
dummy argument E inherits its actual argument's (array 
D) alignment, which differs from the local array L's align­
ment specification. When the calling chain is long, a sys­
tematic approach is desirable to automate the process of 
optimizing data movement for passing array arguments 
across procedure boundaries, as well as moving data ele­
ments in array assignment statements within a procedure 
body. 

2.3 Optimization for Data Movement 

Consider the case where both the actual and dummy ar­
guments of a single-level procedure call. have explicit 

! ! ! explicit 
ALPHA (A) 
real A(lOO) 

explicit 
BETA (B) 
real B(lOO) 

align A(i) with T(i+l) align B(i) with T(i+2) 
call BETA(A) call FOO(B) 

! ! ! inherited 
FOO(C) 
real C(lOO) 
align c * 
real D(lOO) 

inherited 
BAR(E) 
real E(lOO) 
align E * 
real L(lOO) 

align D(i) with C(i+3) align L(i) with T(i) 
call BAR(D) D = L 

FIGURE 2 Examples of HPF procedure interfaces. 

data layouts (Figure 3). Array A is cyclically partitioned 
in procedure ALPHA , and should be redistributed using 
block partition within procedure BETA. Layout conver­
sion for array B is a complex one due to change of both 
alignment (changing between offseting two elements and 
offseting one element) and distribution (changing be­
tween cyclic partition and block partition). In the proce­
dure body of BETA, the assignment statement shifts array 
C toward the negative direction by one element and as­
signs the result to array D (i.e., C ( i + 1) is assigned to 
D ( i) ). We call this logical data movement defined by 
the program. Due to the effect of the alignment directives, 
actual data movement for executing the assignment state­
ment may be different from the logical data movement as 
it appears. In order to satisfy the directives as given by the 
user, the compiler must combine all the layout requests 
that are in force. 
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! ! ! actual explicit I 
ALPHA 

dummy explicit 
BETA(C,D) 

real A(lOO),B(lOO) real C(lOO) ,D(lOO) 
distribute T cyclic distribute T block 
align A(i) with T(i) align C(i) with T(i) 
align B(i) with T(i+2) align D(i) with T(i+l) 
call BETA(A,B) D = EOSHIFT(C,dim=l,shift=l) 

FIGURE 3 An example for data movement optimization where both the actual and dummy arguments have explicit data layouts. 

Assuming "owner-compute" rule for the compilation 
of data movement, the compiler has two roles. First, the 
compiler should minimize time spent in moving A and B 
to C and D's preferred layouts, and moving them back 
when returning from the call. For instance, the com­
piler should optimize communication for BLOCK and 
CYCLIC data redistribution. It should also determine the 
order in moving data for complex data movement. For 
instance, layout conversion for passing array B to proce­
dure BETA involves an offseting alignment change and 
a conversion from CYCLIC distribution to BLOCK dis­
tribution. There are two alternatives in arranging data 
movement: offsetting realignment under CYCLIC distri­
bution followed by CYCLIC-to-BLOCK redistribution, 
or CYCLIC-to-BLOCK redistribution followed by off­
setting realignment under BLOCK distribution. The lat­
ter is more efficient because offsetting realignment re­
quires much less communication under BLOCK distribu­
tion. Secondly, the compiler should minimize time spent 
in moving data array D for the execution of the assign­
ment statement. For instance, with compiler optimization, 
the logical data movement specified by the EOSHIFT op­
eration can be turned into local memory accesses as are­
sult of the alignment directives for arrays C and D. 

A simple but naive approach is to use general com­
munication or array copying through temporary storage 
whenever non-canonical* data layouts is in force. This 
approach not only causes excessive data copying but 
also ignores many opportunities for fast communication. 
A better approach is to analyze data movement systemat­
ically. This can be achieved if we capture and manipulate 
data movement algebraically. 

In this paper, we propose an algebraic analysis frame­
work for optimizing data movement. Data layouts and 
data movement caused by passing distributed arrays be­
tween procedure boundaries, and array intrinsic fraffic 

*By "canonical" we mean an array is only aligned to itself identi­
cally, and is distributed to the processors using the default distribution 
strategy. For instance, if the array size is 8 x 8 and the number of pro­
cessors is four, CM-Fortran compiler partitions the array contiguously 
into four equal-sized (4 x 4) subarrays, and assign one subarray to one 
processor distinctly. 

within procedure bodies can all be captured algebraically. 
Data movement can be reduced by simplifying corre­
sponding algebraic expressions according to a set of 
rules. The manipulation of algebraic expressions can be 
carried out in the global, logical space defined in the 
program. Detailed, machine-dependent aspects of data 
movement can be postponed to runtime through a set of 
communication library routines. 

3 ALGEBRAIC ANALYSIS FRAMEWORK 

Figure 4 gives an overview of the framework. Data lay­
outs and data movement in HPF codes are extracted and 
formalized as communication expressions. Reducing the 
terms in such an expression one by one from right to left 
does not eliminate unnecessary communication. Under 
the "owner compute" rule, the amount of communica­
tion is determined by the number of operators in a com­
munication expression; i.e., a communication expression 
is simplified if its operator count is decreased. Our goal 
is to minimize the operator count. We design an alge­
braic engine which contains a set of rules for simplifying 
communication expressions and the associated heuristics 
which guide the engine in applying the rules. A commu­
nication expression is reduced to an expression that no 
further rules will be applied under the particular set of 
heuristics. 

In the following, we describe the algebraic framework 
in more detail. We first describe the algebraic represen­
tations of data layout and array intrinsics. We then show 
what a communication expression might look like. Next, 
we give an overview of the communication algebra and 
outline the set of communication idioms we have col­
lected. 

3.1 Algebraic Representations 

General integer matrix notations are commonly used 
for affine alignment functions, which lead to a general 
transformation technique called affine transformation for 
optimizing data-parallel programs [3, 46]. General ma­
trix notations and affine transformations are insufficient 
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Idiom 

matching 

Call to fast 

FIGURE 4 Overview of the algebraic analysis framework. 

for transforming non-linear alignment operators such as 
CSHIFT (cyclic shift), CSKEW (cyclic skew), and repli­
cation. A solution is to separate boundary array elements 
from interior elements using explicit loop structures fol­
lowed by index function transformation within the loop 
bodies. However, this approach may increase program 
size rapidly when large number of non-linear operations 
occur in the source program. 

Our approach is to associate each HPF alignment/dis­
tribution operation with a special algebraic representa­
tion. Each representation has a name and a matrix/vector/ 
integer parameter as appropriate. The name characterizes 
the value of the parameter, and facilitates the design of the 
algebraic rules as well as efficient pattern matching for 
communication idioms. Formally speaking, these alge­
braic representations are functions with dependent types, 
which will become clear later. 

We divided these algebraic representations into several 
classes according to the dimensionalities of their argu­
ments and results. ALIGN I operators capture alignments 
within a single dimension, including offsetting, strided, 
and reflection alignments. ALIGN2 and ALIGN3 opera­
tors capture alignments across multiple dimensions. The 
argument and result of an ALIGN2 operator have identi­
cal dimensionality. Typical examples are transposing an 
array (i.e. dimension permutation) and skewing an ar­
ray dimension with respect to others. An ALIGN3 op­
erator has different shapes for its argument and result. 
Array reshaping, replication, and embedding into higher­
dimensional space all belong to ALIGN3. Figure 5 gives 
graphical representations of these operators. Table 1 out­
lines these classes, the HPF operators, and the corre­
sponding algebraic representations and their definitions. 
In the following, we explain some of the definitions. 

In ALIGN I, both the array intrinsic 

EOSHIFT(A,dirn,shift=-c) 

and the alignment directive 

ALIGN A(i) with T(i+c) 

offsets array A at the positive direction by distance c, 
therefore both are denoted by EOSHIFT(c), which, when 

given an index domain D with lower bound lb(D) and 
upper bound ub(D), maps D to anew index domain with 
lower bound lb(D) + c and upper bound ub(D) + c. 
The CSHIFT operator performs offseting operations in a 
wrap-around fashion. 

In ALIGN2, both the TRANSPOSE array intrinsics 
(e.g., TRANSPOSE (A, ( 1 , 3 , 2 ) ) , which exchanges the 
second and the third dimensions of array A) and the 
"transpose" alignment directives (e.g., 

ALIGN A(i,j,k) WITH T(i,k,j)) 

are denoted by TRANS(dl(M), which, when given d­
dimensional index domain D, permutes dimensions of D 
according to M (which is the matrix representation for 
the permutation vector and the alignment index expres­
sion) and results in another index domain M(D). The 
SKEW(dl(M) operator, when given d-dimensional index 
domain D, skews D (i.e., performs affine mapping on 
domain D) according to the coefficient matrix M. For in­
stance, the operator 

SKEWC
2
l ( ~ ~) 

skews the second dimension of a two-dimensional do­
main (i.e. it maps index (i, j) to (i, i + j)). The 

CSKEW(d)(M) 

operator performs skewing operations in a wrap-around 
fashion. 

In ALIGN3, both the array intrinsic 

SPREAD(A,dirn=2,ncopies=n) 

and the alignment directive 

ALIGN A(i) WITH T(i,*) 
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CLASSES OPERATORS 

I 1 2 3 41 12 341 
ALIGN! 

I 4 3 2 1 I 
EOSHIFT(A,shift=-1) 
end-of-shift 

I 4 1 2 31 
CSHIFT(A,shift=-1) 
cyclic shift 

ALIGN A(i) WITH T(5-i) 
reflection alignment 

ALIGN A(i) WITH T(2i) 
strided alignment 

ALIGN2 

ALIGN3 

MULTID 
ALIGNMENT 

MULTID 
DISTRIBUTION 

TRANSPOSE(A) 
transposition 

A CJ 
B EJ 

ALIGN A(i) WITH B(1,i) 
embedded alignment 

EOSHIFT(EOSHIFT(A,dirn=1, 
shift=1),dirn=2,shift=-1) 
two-dimensional shift 

P1 P2 P3 P4 

1 2 3 4 

5 6 7 8 
9 10 1112 

13 14 15 16 

DISTRIBUTE T(*,BLOCK) 
column partition 

D 
u 

SKEW (A, (: n) 
skewing along the second dimension 

fi35l 
~ 

II 2 3 4 5 61 
B=RESHAPE(A,s1=(2,3) ,s2=6) 
reshape alignment with default ordering 
(column-major) 

CSHIFT(CSHIFT(A,dirn=1, 
shift=1) ,dirn=2,shift=-1) 
two-dimensional cyclic shift 

P1 P2 

1 2 3 4 
5 6 7 8 

9 10 1112 
13 14 15 16 

P3 P4 
DISTRIBUTE T(BLOCK,BLOCK) 
20 block partition 

CSKEW (A,(: n) 
cyclic (wrap-around) skewing 
along the second dimension 

SPREAD(A,dirn=2,ncopies=3) 
replication 

A T 

rt234l 
~ D 

lUllJ 
ALIGN A(i,j) WITH T(i+2,5-j) 
offsetting alignment at the first dimension 
and reflection alignment at the second 

PI P2 P1 P2 
1 2 3 4 

5 6 7 8 
9 10 1112 

13 14 15 16 
P3 P4 P3 P4 

DISTRIBUTE T(BLOCK,CYCLIC(1)) 
block partition at the first dimension and 
cyclic partition at the second 

FIGURE 5 Graphical illustration of some alignment operators and MULTID operators. 
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Table 1. Algebraic Notations and Definitions of Array Intrinsics and Layout Operators 

Class 

ALIGN! 

ALIGN2 

ALIGN3 

DIST 

MULTID 

HPF Intrinsics/directives 

EOSHIFT(A,dim,shift=-c) 
ALIGN A(i) WITH T(i+c) 
CSHIFT(A,dim,shift=-c) 
ALIGN A(i) WITH T(n-i+l) 
ALIGN A(i) WITH T(a*i+c) 

TRANSPOSE(A) 

ALIGN A(i,j) WITH T(j,i) 

TRANSPOSE(A, permute_vector) 

ALIGN A(i,j) WITH T(i,i+j) 

ALIGN A(I) WITH T(M * I) 

CSHIFT(A,dim=2,shift=l:n) 

RESHAPE(A,sl,s2, [,ol) [,o2)) 
SPREAD(A,dim=k,ncopies=n) 

ALIGN A(I) WITH T(I,*) 

ALIGN A(I) WITH T(I,l) 

DISTRIBUTE A BLOCK [(b)) onto P 
DISTRIBUTE A CYCLIC [(b)) onto P 

* 
multi-dimensional shift, reflection, etc., 
and distribution of multi-dimensional arrays. 

Internal representations 

EOSHIFT(c) 

CSHIFT(c) 
REFLECT 
STRIDE(a, c) 

TRANS(2) ( ~ ~ ) 

TRANS(d) (M), where M is the matrix representation for permute_vector 

SKEW(Z) ( : ~) 
SKEW(d)(M) 

CSKEW(Z) ( : ~I ) 
RESHAPE(DJ, OJ, Dz, oz), where D; is the index domain representing s; 
REPLICATE(rank(Dl(V, Interval(!, n)), where V(k) =I 

REPLICATE(Z) ( ( ~) , Domain(T(l,: )) ) 

EMBED(ZJ) ( ( ~) , Domain(T)) 

BLOCK(h), where h = nfp 
CYCLIC(b, p) 

SEQ 
Product of ID Operators 
(ALIGN!, DIST) 

Tis the template that array A is aligned to. V denotes an integer vector oflength rank (T) and V (k) denotes the kth element of V. g<d) (M) denotes 
an operator which takes ad-dimensional integer matrix M as argument, and M * l denotes the multiplication of matrix M with the index vector !. 
DJ and Dz are the index domains representations for shape specifications SJ and sz, and OJ and oz are permutation matrices representing the storage 
ordering in reshaping. 

Class Operator Domain Codomain Definition 

ALIGN! EOSHIFT(c) D D+c (i) t-----+ (i +c) 
CSHIFT(c) D D (i) t-----+ lb(D) + (i- lb(D) +c) mod IDI 
REFLECT D D (i) t-----+ lb(D) + ub(D) - i) 
STRIDE(a, c) D aD+c (i) t-----+ (a* i +c) 

ALIGN2 TRANS(n)(M) D M(D) (iJ, ... , in) t-----+ M(iJ, ... , in) 
SKEW(n)(M) D M(D) (iJ, ... , in) t-----+ M(iJ, ... , in) 
CSKEW(n) (M) D Mod(M(D), IDI) (iJ, ... , in) t-----+ ((MJ -l)modmJ, .. . , (MJ · /) modmn). 

where mk are the sizes of Dk 
ALIGN3 REPLICATE(nl(V, Dk) DJ X ... X Dk-J DJ X ... X Dk-J (iJ, ... , ik-J· ik+J, ... , in) t-----+ 

xDk+J'·. X Dn xDk x Dk+J · · · x Dn UJ, ... , ik-J, lb(Dk) : ub(Dk), ik+J, ... , in). 
where V(k) i- 0 

EMBED(m,n)(M, E) D E UJ. - .,in)t-----+M(iJ, ... ,in) 
DIST BLOCK(b) D PxL (i) t-----+ (i div h, i mod h) 

CYCLIC(h, p) D PxL (i) t-----+ ((i div h) mod p, (i di~·(p *b))* b + i mod h) 
SEQ D [OJ X D (i) t-----+ (0, i) 

lb(D) and ub(D) denote the lower and upper bound of interval domain D, aD+ c denotes an interval domain of range [(a* lb(D) +c) ... (a* 
ub(D) +c)], IDI denotes the size of interval domain D, M(D) constructs a multi-dimensional domain by permuting or skewing domain D according 
to the integer matrix M, and Mod(M(D), IDil constructs a multi-dimensional domain where each dimension of M(D) is modulus by the size of D at 
that dimension. 
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(assuming the size of template Tat the second dimension 
is n)t duplicate n copies of A at the second dimension. 
Both are denoted by 

REPLICATEC2l ( (~),Interval(!, n)). 
where the nonzero element (the second element) in the 
vector argument indicates that the replication takes place 
at the second dimension. The directive ALIGN A ( i) 
with T ( i, 1) aligns A to the first column ofT, denoted 
by 

EMBEd2·1l ( ( ~). Domain(T)). 

which, when given index domain D, maps D to 

Domain(T) 

according to the coefficient matrix (b). The 

operator maps index domain D1 to D2, according to the 
mapping orderings given in permutation matrices OJ and 
02, respectively. For instance, 

RESHAPE (Interval(!, 2) x Interval(!, 6), 

( ~ ~)' 
Interval(!, 3) x Interval(!, 4), 

(~ ~)) 
reshapes a 2 by 6 domain into a 3 by 4 domain, where 
the argument is enumerated in a column-major fashion 
(denoted by the first matrix) and the result is enumerated 
in a row-major fashion (denoted by the second matrix). 

The standard distribution directives in HPF are BLOCK, 
CYCLIC and generic BLOCK_ CYCLIC partitioning strate­
gies. We collect them in the class DIST. MULTID op­
erations capture multi-dimensional array intrinsics and 
data layouts that can be formulated as "product" of one­
dimensional operators. For instance, a two-dimensional 
shift operation 

CSHIFT(CSHIFT(A,dim=l,shift=-cl), 

dim=2,shift=-c2) 

is denoted by the product of the two ALIGN! operators 
CSHIFT(CJ) and CSHIFT(c2). 

tu template T is partitioned at the second dimension, the effect of 
the directive ALIGN A ( i) WITH T ( i, *) is to duplicate the same 
data of A onto all processors. 

The five classes of algebraic representations capture 
most of HPF's array intrinsics and alignment/distribu­
tion directives which can be formalized as index domain 
morphisms (functions that map an index domain to an­
other). General array references using index expressions 
are transformed to corresponding algebraic representa­
tions (or composition of algebraic representations) when­
ever possible, according to a set of simple transformation 
rules. 

3.2 Communication Expressions 

We can formalize data layout and data movement as 
communication expressions using "product" and "com­
position" operators. The product of f : D1 -+ E 1 and 
g : D2 -+ E2 is defined as 

f X g = )..(i, j): DJ X D2-+ EJ X El-(f(i), g(i) ). 

The composition of two functions g : D2 -+ D3 and 
f: D1 -+ D2 is defined as 

In order to formalize to relationship between a data el­
ement and a concrete store within a processor, it is neces­
sary to formalize the three stages of data mapping (align­
ment to template, partitioning template to logical pro­
cessors, and the mapping logical processors to physical 
processors). Let a denote the alignment operator which 
aligns array D to template E, f3 denote the partition op­
erator which partitions template E into a pair of logical 
processors L and local index domain M, and y denote 
the operator which maps logical processor-memory pairs 
(L x M) to physical processor-memory pairs (P x M). 

Data Layout 

Data layout is simply the composition of the three stages 
of data mapping (a, {3, and y). The layout of an array 
D can be defined as a communication expression g = 
yo f3 oa, as shown in the commuting diagram of Figure 6a. 

The formalization of data layout is used to derive 
communication expression for data movement. Intra­
procedural data movement refers to array references 
within a procedure body. Inter-procedural data move­
ment, also called layout conversion, refers to array copy­
ing due to change of data layouts between the actual and 
dummy arguments in procedure calls, which is a special 
case of intra-procedural data movement with array refer­
ence being identity. 



D~t9 

alignm:nt! ------... 

E- LxM- PxM 
p 'Y 

distribution physical mapping 

(a) data layout 

91 

ar~ay T --; p XI :~a motion 
reference~ ~ 

D2- PxM2 
92 

(b) intra-procedural data movement 

layout 
convenion 

(c) layout conversion 

FIGURE 6 Commuting diagrams for data layout (a), intra­
procedural data movement (b), and inter-procedurallayout con­
version (c). 

Intra-Procedural Data Movement 

Consider an assignment statement where the left-hand­
side array D2 and the right-hand-side array D1 are re­
lated by an array reference a. Let the data layouts of D 1 

and D2 be g1 and g2, respectively. The data movement 
induced by the reference a can be formalized by the com-

. . . I 
mum catron expressiOn e = g2 o a o g 1 , as shown in the 
commuting diagram of Figure 6b. 

Inter-Procedural Data Movement 

Let the data layout of array D in procedure B1 and pro­
cedure B2 be g1 and g2, respectively. The data movement 
required to move array D from B1 to B2 is given by the 
communication expression e = g2 o g 11

, as shown in 
Figure 6c. 

Most of the HPF alignment operators are reshape mor­
phisms [13], which essentially are bijective functions de­
fined over index domains. For an operator f : D ~ E 
which is injective but not bijective, a reshape morphism 
f': D ~ irnage(D, f) can be derived from f where 
irnage(D, f) is the image of D under f which is a sub­
set of E (i.e., f': D ~ irnage(D, f) c E). Since f 
is bijective, let f- 1 denote the inverse of f. Let g be the 
composition of n bijective functions fi, i = 1, n (defined 
as g = fn o · · · o /J). The inverse of g can be denoted by 
g-1, and 

-1 (f, f)-1 -1 . -1 g = n o ... o I = Jl o ... o fn . 
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One exception is replication operations, which are re­
lations. For instance, the operator 

maps (i) E D1 to 

((i, j), j = lb(D2), ub(D2)) E D1 x D2. 

We abuse the notation 

for its inverse, which is a relation that maps (i, j) E D1 x 
D2 to (i) E DJ. The composition of two relations A and 
B is denoted as C = A o B such that (a, c) is in C iff 
there exists a b such that (a, b) is in A and (b, c) is in B. 
If both A and B are functions, this definition is the same 
as function composition. 

Examples 

Figure 7 shows a communication expression for inter­
procedural layout conversion. In order to formalize the 
data movement between procedures ALPHA and BETA, 
is is necessary to construct the layouts of the actual and 
dummy arguments and to use these constructions in the 
application of the Inter-Procedural Rule (Figure 6c). We 
explicitly indicate the domain D and codomain E of each 
operator g (written as g D-+ E) because now the operators 
are bound to the index domain of array A. The actual ar­
gument A is aligned with the template Tl, which is parti­
tioned into columns of blocks (denoted by 

by offsetting one element at the first dimension and two 
elements at the second dimension (denoted by 

(refer to Figure 6a). The dummy argument B is aligned 
with template T2 by a transposition followed by an off­
setting alignment with distance two at the first dimension 
and with distance 1 at the second dimension (denoted by 

(EOSHIFT(2)n2-+Dz+2 X EOSHIFT(l)n,-+D,+i) 

o TRANS(2) ( O 
1 

) ) 
1 O D1 xDz-+Dz xD1 

The communication expression for changing from A's 
layout to B's can be constructed by composing B's lay­
out and the inverse of A's layout. A communication ex­
pression for intra-procedural data movement is shown in 
Figure 11 of Appendix A. 
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Pl 
ALPHA 
real A(2,4) 

Pl P2 
P2 

BETA(B) 
real B(2,4) 
template T2(6,3) template T1(3,6) 

distribute Tl(*,block) actual distribute T2 (*,block) 
align B(i,j) with T2(j+2,i+l) align A(i,j) with Tl(i+l,j+2) 

call BETA(A) 
data layout of A in ALPHA . data layout of A in BETA 

Index domains: 
D1 =Interval(!, 2), D2 =Interval(!, 4). 

Actual's layout: 

Dummy's layout: 

g2 = (SEQo2+2-+[0]x(Dz+2) X BLOCK(b)o1+1-+PxV2 ) 

o (EOSHIFT(2)v2-+Dz+2 X EOSHIFT(l)v1_.v1+1) oTRANS(
2
) (~ ~) 

DtxDz-+DzxDl 

Communication expression for changing from actual's layout to dummy's: 
" 

e -1 
= g2 0 gl 

(SEQo2+2-+(0]x(Dz+2) X BLOCK(b)D1+1-+PxV2 ) 

o (EOSHIFT(2)o2-+Dz+2 X EOSHIFT(l)o1-+Dt+l) o TRANS(
2
) (~ ~) 

DtxDz-+DzxDt 

o (EOSHIFT(l)l):_.D1+l X EOSHIFT(2)1)~-+Dz+2) o (SEQD:+l-+(O]x(Dt+l) X BLOCK(b)D~+2-+PxVJ 

FIGURE 7 A communication expression for inter-procedurallayout conversion. In order to formalize the data movement between 
procedures AlPHA and BETA, it is necessary to construct the layouts of the actual and dummy arguments and to use these constructions 
in the application of the inter-procedural rule. 

3.3 Algebraic Simplification 

A generic method for simplifying a communication ex­
pression is using functional transformation [6, 47]. Since 
we only deal with the set of standard HPF data distribu­
tion directives (instead of general functions) in the con­
text of optimizing data movement, we look for a simpler 
and more efficient solution. We have designed a commu­
nication algebra to serve this purpose. The communica­
tion algebra manipulates communication expressions at 
the algebraic representation level only. 

Recal that we divide HPF's array operators and layout 
operators into several classes according to the dimension­
ality of their domains and ranges. A communication ex­
pression may be the composition of operators from any 
or all of the classes. Based on the classification, we de­
sign sub-algebras for each class to manipulate the inter­
action of operators within that class, as well as bridging 

sub-algebras for manipulating the interaction of operators 

from different classes. 

Each sub-algebra con taints three kinds of rules: 

(1) the inverse rules that computes the inverse of an 

operator; 

(2) the reduction rules that reduce two adjacent 

operators to one or zero new operator; and 

(3) the exchange rules that make two operators 

adjacent to each other by exchanging with other 

operators between them, so that the reduction 

rules may be applied later to simplify them. 

The communication algebra will be presented in more 

detail in Section 4. 



Example 

Consider the communication expression e in Figure 7. 
By exchanging the TRANS operator with one of the two­
dimensional EOSHIFT operators (using one of exchange 
rules in the bridging sub-algebra for ALIGN2 and MDL­
TID), the two EOSHIFT operators become adjacent and 
can be canceled with each other (using one of the re­
duction rules in ALIGN1 sub-algebra). This results in a 
TRANSPOSE operation on a two-dimensional index do­
main which is partitioned at the second dimension as 
show below: 

8 = (SEQD2+2---+[0]x(Dz+2) X BLOCK(b)D1+I---+Pxv2) 

o (EOSHIFT(2)Dz---+D2+2 X EOSHIFT(l)D1---+D1+I) 

o TRANS(2) ( O 
1 ) 

1 0 D, X D2---+ Dz X D, 

o (EOSHIFT(1)D~---+D,+I X EOSHIFT(2)D~---+D2+2) 
o (SEQD~+h[O]x(D,+I) X BLOCK(b)D~+2---+PxVJ 

(SEQD2+2---+[0]x(D2+2) X BLOCK(b)D1+I---+Pxvz) 

o TRANS(2) ( O 
1 

) 
1 0 (D1+I)x(D2+2)---+(D2+2)x(D,+I) 

o (SEQD~+I---+[O]x(D,+I) X BLOCK(b)D~+2---+PxVJ 

3.4 Communication Idiom Matching 

A simplified communication expression contains the ac­
tual data movement that needs be performed. A naive 
approach is to use general communication for all cases. 
This approach ignores any opportunity for fast commu­
nication. A better approach is to uncover frequently oc­
curring data movement and use specialized, fast commu­
nication whenever possible. For instance, the simplified 
communication expression e shown in the example in 
Section 3.3 is a transposition of a two-dimensional ma­
trix which is partitioned one-dimensionally, resulting in 
so-called all-to-all personalized communication [21], in 
which every processor exchanges distinct data with every 
other processor. Due to the uniform communication pat­
terns, communication overhead may be reduced be care­
fully scheduling messages to avoid contention in the net­
work. 

Since the advent of massively parallel machines, many 
researchers have developed specialized communication 
routines to facilitate direct programming of distributed­
memory machines (e.g. [5, 21-23, 26, 36, 37, 39, 42]). 
In building compilers, we might take advantage of these 
hand-crafted, highly optimized routines which become 
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part of the runtime system for the language. In the Crys­
tal compiler developed at Yale University [30-32], this 
approach is used to generate intra-procedural communi­
cation. We extend that work further to include those com­
munication routines for converting data layouts between 
subprograms. 

We have collected a set of frequently occurring com­
munication patterns, and extracted the contents of their 
communication expressions into communication idioms. 
They include most of the array intrinsics and frequently 
occurring layout conversions such as conversion between 
BLOCK and CYCLIC partitioning and conversion be­
tween column partition (*, BLOCK) and row partition 
(BLOCK, *). These idioms may or may not have special­
ized, fast communication, perhaps microcoded or other­
wise hand-optimized, depending on the target machine. 
A list of communication idioms is shown in Table 2. The 
optimization procedure simply goes through this list of 
idioms and pattern matches with the communication ex­
pression. If a simplified communication expression con­
tains more than one alignment operators, the compiler 
will either expand the expression to match multiple id­
ioms or unfold and collapse the expression into a general 
communication, depending on the characteristics of the 
target machine. 

Example 

The expression YI o y2-I in the first row of Table 2 indi­
cates change of physical mapping strategy (e.g. change 
from Gray code encoding to Binary code encoding on 
hypercube architectures) because alignment and partition 
operators have all been reduced away. The expression 
x d (y; I o {3; I o f3i2 I o Y;2. I) in the second row of the table 
indicates change of data partition. For instance, the idiom 
CYCLIC(1, p) o BLOCK(b)-I indicates conversion from 
BLOCK partition to CYCLIC partition. The idiom 

indicates conversion from column partition to row parti­
tion. 

4 COMMUNICATION ALGEBRA 

In this section we present in more detail the communica­
tion algebra. Recall that the alignment/distribution oper­
ators are functions with matrix/vector/integer parameters. 
Although the simplification structure is not closed under 
composition, we abuse the name "algebra" to reflect that 
the algebraic properties are preserved in combining the 
matrix/vector/integer parameters between composition of 
operators. 
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Table 2. Communication Idioms 

Idioms 

-1 
Y1 ° Y2 
"( f3 {3-1 -1) 

X Yi 1 ° i 1 ° i2 ° yi2 

( ) {3 -1 -1 Y1 o fJ1 o EOSHIFT c o 2 o y2 
( ) {3 -1 -1 

YI o f3J o CSHIFT c o 2 o y2 

{3 -1 -1 
YI o f31 o REFLECT o 2 o y2 
xd (Yil o f3il o EOSHIFT(ci) o {3j2 1 

o Yi2_ 1
) 

xd (Yil o f3il o CSHIFT(ci) o f3i2. 1 
o Yi2_ 1

) 

xd (Yil o f3il o REFLECT o {Jill o Yi2_ 1
) 

xd(YiJ o f3i!) o TRANS(d)(M) o xd (f3ill o Yi2_ 1) 

xd (YiJ o f3i!) o SKEW( d) (M) o xd (f3il1 o Yi2 1) 

xd (YiJ o f3i!) o CSKEW(d) (M) o xd (f3f2 1 o Yi2 1) 

xd(Yi o f3i) o REPLICATE(d)(V, D) o xm(f3j 1 o Yj 1) 

Data Movement 

change physical mapping 

change partition 

end-of-shift 

cyclic shift 

reversal permutation 

multi-dimensional end-of-shift 

multi-dimensional cyclic shift 

multi-dimensional reflection 

matrix transpose 

skewing 

cyclic skewing 

replication 

YI o fJJ o RESHAPE(d.I)(D, M, interval(!, n), I) o x"(f3ill o Yi2 1
) 

x"(Yil o f3i!) o RESHAPE(l,d)(interval(l, n), I, D, M) o f32 1 o y2-I 

axis combining 

axis spliting 

where a denotes alignment operators or array references, f3 denotes distribution operators, y denotes physical 
mapping operators, and x" (ai o hi) denotes (at o h1) x · · · x (ad o bc~). 

FIGURE 8 Organization of the communication algebra. 

Based on our classification of array operators and lay­
out operators, we design subalgebras for each class to ma­
nipulate the interaction of operators within that class, as 
well as bridging subalgebras for manipulating the inter­
action of operators from different classes. Figure 8 shows 
the organization of these subalgebras. Each subalgebra 
contains three kinds of rules: 

(1) the inverse rules that compute the inverse of an 
operator; 

(2) the reduction rules that reduce two adjacent 
operators to one or zero new operator; and 

(3) the exchange rules that make two operators 
adjacent to each other by exchanging positions 
with the operators in between. 

Given a communication expression, the algebraic en­
gine applies these rules according to a simple heuristic 
until no rules can be applied. · 

In the following, we present the subalgebras, the 
bridging subalgebras and the simplification procedure for 
communication expressions. Each subalgebra is denoted 
by a triple (S, Q, R), where Sis the sorts, Q is the opera­
tors and R is the set of rules. The sorts of each subalgebra 
define the appropriate set of index domains in which the 
operators in the particular classes are defined. The set R 
outlines the rules that either directly or indirectly reduce 
the length for a communication expression. Proofs of the 
rules are included in Appendix B. 

4.1 Subalgebra for ALIGN1 

The sorts of subalgebra for ALIGNl contains the integer 
set N and the set of interval domains Dom. The opera­
tors include the four ALIGNl operators and one com­
position operation ( o). The composition operator is a 
higher-order function that takes two ALIGNl operators 
(D 1 --+ D2, D2 --+ D3) as arguments. For convience, we 
use the notation a * D + c for an index domain with lower 
bound a * lb(D) + c and upper bound a * ub(D) +c. 
Rule 1 computers the inverse of an ALIGN] operator, 
Rule 2 reduces two adjacent ALIGNl operators into one 
simply by integer addition and multiplication on their ar­
guments. Rule 3 exchanges the positions of two adjacent 
ALIGNl operators that cannot be directly reduced. Non­
adjacent operators are reduced by applying a sequence of 
Rule 3 and Rule 2. 



Rule 1 Inverse of ALIGNl Operators 

(I) EOSHIFT(c)D:....D+c = EOSHIFT(-c)D+c---+D 

(2) CSHIFT(c)D:....D = CSHIFT(-c)D---+D 

-r 
(3) REFLECTD---+D = REFLECTD---+D 
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(4) STRIDE(a, c)D:....a*D+c =STRIDE(~. -l~J) 
a a a*D+c---+D 

Rule 2 Reduction of Adjacent ALIGNl Operators 

(1) EOSHIFT(cl)D+c2---+D+c2+cr o EOSHIFT(c2)D---+D+c2 = EOSHIFT(cl + c2)D---+D+c2+cl 

(2) CSHIFT(cl)D---+D o CSHIFT(c2)D---+D = CSHIFT(cl + c2)D---+D 

(3) REFLECTD---+D o REFLECTD---+D = idv 

(4) STRIDE(al, cl)a2*D+c2---+aha2*D+ar*c2+cl o STRIDE(a2, c2)D---+a2*D+c2 

= STRIDE(al * a2, al * c2 + cl)D---+ar*a2*D+ar*c2+cl 

(5) STRIDE(a, b)D+c---+a*D+{I*C+b o EOSHIFT(c)D---+D+c = STRIDE(a, a* c + b)D---+a*D+a*c+b 

(6) EOSHIFT(c)a*D+h---+a*D+b+c o STRIDE(a, b)D---+a*D+b = STRIDE(a, b + c)D---+a*D+h+c 

Rule 3 Exchange of ALIGNl Operators 

(I) CSHIFT(c2)D+cl---+D+cl o EOSHIFT(cl)D---+D+cl = EOSHIFT(cl)D---+D+cl o CSHIFT(c2)D---+D 

(2) CSHIFT(c)D---+D o REFLECTD---+D = REFLECTD---+D o CSHIFT(c)D---+D 

(3) EOSHIFT(c)D---+D+c o REFLECTD---+D = REFLECTD+c---+D+c o EOSHIFT(c)D---+D+c 

(4) STRIDE(a, c)D---+a*D+c o REFLECTD---+D = REFLECTa*D+c---+a*D+c o STRIDE(a, c)D---+MD+c 

(5) STRIDE(a, c2)D---+a*D+c2 o EOSHIFT(cl)D---+D = CSHIFT(a, cl)a*D+c2---+a*D+c2 o STRIDE(a, c2)D---+a*D+c2 

r2r = {EOSHIFT(c E N)(D E Dom): D--+ D + c, 

CSHIFT(c E N)(D E Dom): D --+ D, 

REFLECT(D E Dom): D--+ D, 

STRIDE(a E N, c E N)(D E Dom): 

D--+a*D+c, 

o: (Dr --+ D2) --+ (D2 --+ D3) --+ (Dr --+ D3), 

where Dr, D2, D3 E Dom} 

Rr = {Rule 1, Rule 2, Rule 3} 

Example 

CSHIFT(2)D+r---+D+r o EOSHIFT(1)D---+D+r 

o CSHIFT(-2)D---+D 

By Rule 3(1) 

EOSHIFT(l)D---+D+r o CSHIFT(2)D---+D 

o CSHIFT(-2)D---+D 

By Rule 2(2) 

EOSHIFT(1)D---+D+r 

4.2 Subalgebra for ALIGN2 

The sorts of subalgebra for ALIGN2 contains the in­
teger set N, the set of d x d integer matrices Matd and 
the set of interval domains Dom. Let Domd denote the set 
of d-dimensional index domains, and M(D) denote an 
affine transformation on index domain D with coefficient 
matrix M. The operators include the three ALIGN2 op­
erators and one composition operation (o). The compo­
sition operator is a higher-order function that takes two 
ALIGN2 operators (Dr --+ D2, D2 --+ D3) as argu­
ments. Rule 1 computes the inverse of an ALIGN2 op­
erator by deriving the inverse of its coefficient matrix. 
Rules 5-7 reduce two adjacent ALIGN2 operators into 
one by multiplying their coefficient matrices. 

A2 = ({N,Matd,Dom},r22,R2) 

R2 = {Rule 4, Rule 5, Rule 6, Rule 7} 

Example 

CSKEW(2) ( 
1 O) o CSKEW(2) ( 

1 1
) 

1 1 D---+D 0 1 D---+D 
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Rule 4 Inverse of ALIGN2 Operators 

(1) TRANS(d)(M)- 1 = TRANS(d)(M- 1) 
D~E E~D 

(2) SKEW(d)(M)- 1 = SKEW(dl(M- 1) 
D~E E~D 

(3) CSKEW(d)(M)- 1 = CSKEW(d)(M- 1) 
D~E E~D 

Rule 5 Reduction of ALIGN2 Operators 

(1) TRANS(d)(M2)v2~v3 o TRANS(d)(M1)v 1 ~v2 = TRANS(d)(M2 * M1)v1 ~v3 
(2) SKEW(d)(M2)v2~v3 o SKEW(d)(M1)v 1 ~v2 = SKEW(d)(M2 * Ml)v1 ~v3 
(3) CSKEW(d)(M2)v~D o CSKEW(d)(Ml)v~D = CSKEW(d)(M2 * M1)D~D 

Rule 6 Left-Trans Reduction 

(1) TRANS(d)(M2)v2~v3 o SKEW(d)(M1)v 1 ~v2 = SKEW(d)(M2* M1)v1 ~v3 
(2) TRANS(d)(M2)v1 ~v2 o CSKEW(d)(M1)v 1 ~v1 = CSKEW(d)(M2* M1)v1 ~v2 

Rule 7 Right-Trans Reduction 

(1) SKEW(d)(M2)v2~v3 o TRANS(d)(M1)v 1 ~v2 = SKEW(d)(M2 * M1)v 1 ~v3 
(2) CSKEW(d)(M2)v2~v2 o TRANS(d)(M1)v

1 
~Dz = CSKEW(d)(M2 * M1)v 1~v2 

S12 = {TRANS(d E N)(M E Matd){D E Domd): D-+ M(D), 

SKEW(d E N){M E Matd){D E Domd): D-+ M(D), 

CSKEW(d E N){M E Matd){D E Domd): D-+ D, 

o : (D1 -+ D2) -+ (D2 -+ D3) -+ (D1 -+ D3), 

where D1, D2, D3 E Domd} 

By Rule 5(3) 

(2) ( ( 1 0) ( 1 1 ) ) 
CSKEW 1 1 * 0 1 D~D 

= CSKEW(2l (
2 1

) 
1 1 D~D 

The result is to skew index domain D at both dimen­
sions in wrap-around fashion according to the coeficient 

matrix {i D-

4.3 Subalgebra for ALIGN3 

The sorts of subalgebra for ALIGN3 contains the in­
teger set N, the set of interval domains Dom, the set of 
m x n integer matrices Ma tm,n, the set of.length-d inte-

ger vectors Vecd (we define V E Vecd, 

V{D1 X ... X Dk-1 X Dk+1 X ... X DJ, Dk) 

= D1 X ... X Dk-1 X Dk X Dk+1 X ... X Dd, 

where V(k) =J 0 (kth element of V is nonzero), to 
be a length-d vector). The operators include the three 
ALIGN3 operators and one composition operation (o). 
The composition operator is a higher-order function that 
takes two ALIGN3 operators as arguments. 

Inverses of ALIGN3 operators can be devised with­
out appeal to standard matrix/vector/integer algebra (for 
discussion on inverses of ALIGN3 operators, please refer 
to Section 3.2). Therefore, no algebraic rules are needed 
for finding their inverses. We abuse the notation a - 1 to 
denote the inverse of an ALIGN3 operator. The inverse-
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Rule 8 Inverse Cancellation of ALIGN3 Operators 

For all av---+E in ALIGN3, 

Rule 9 Reduction of Adjacent ALIGN3 Operators 

(1) EMBED(m,k)(M2)v
2

---+D
3 

o EMBED(k,l)(Ml)v
1

---+Dz = EMBEo(m.I)(M2 * Ml)Dt---+D
3 

(2) REPLICATE(k)(V2, E2)Dz---+D3 o REPLICATE(k)(Vl, EI)Dt---+Dz = REPLICATE(k)(V2 + Vl, E1 x E2)Dt---+D
3 

(3) RESHAPE(l,m)(D2, M3, D3, M4)Dz---+D
3 

o RESHAPE(k,l)(DJ, Ml, D2, M2)Dt---+Dz 

= RESHAPE(k,m)(DJ, Ml, D3, M4)v
1

---+v
3

, if M2 = M3 

Q3 = {EMBED(m E N)(n E N)(m E Mat(m,nl)(D E Domn): D---+ M(D), 

REPLICATE(n E N)(V E Vecn)(E E Dom)(D E Dom): D---+ V(D, E), 

RESHAPE(m E N)(n E N)(D1 E Domn)(M1 E Mat(m,m))CD2 E Domn)(M2 E Mat(n,n)): D1 ---+ D2, 

o: (DI ---+ D2) ---+ (D2 ---+ D3) ---+ (DI ---+ D3)}, 

ns = { xd: (DJ ---+ E2)---+ ... ---+ (Dd---+ Ed)---+ (DI X' .. X Dd---+ EI X ... X Ed). 

where D1, ... , Dd E Dom, E1, ... , Ed E Dom, 

o: (DI ---+ D2) ---+ (D2 ---+ D3) ---+ (D1 ---+ D3), 

where D1, D2, D3 E Domd} 

cancellation rule (Rule 8) cancels out an ALIGN3 opera­
tor with its inverse. Rule 9 reduces two adjacent ALIGN3 
operators into one simply by standard matrix-vector al­
gebra. The purpose of this rule is to simplify a chain of 
compositions of ALIGN3 operators, which may be a re­
sult of propagating inherited alignments across multiple 
levels of procedure calls. 

A3 = {{N, Mat(m,n),Vecd,Dom}, Q3, R3) 

R3 = {Rule 8, Rule 9} 

Example 

A replication along the second dimension followed by 
a replication of the new index domain along the third di­
mension can be combined into a multi-dimensional repli­
cation of the original domain. 

4.4 Subalgebra for MULTID 

The purpose of this subalgebra is to distribute composi­
tion operations through product operations so that com­
position of MULTID operators can be simplified. 

As = ({N, Dom}, QI U Qs, Rs) 
Rs = {Rule 10} 

·Example 

{EOSHIFT(l) x CSHIFT(2)) 

o {EOSHIFT(3) x CSHIFT(4)) 

= By Rule 10 

{EOSHIFT(1) o EOSHIFT(3)) 

x(CSHIFT(2) o CSHIFT(4)) 

= By Rules 2(1) and 2(2) 

EO SHIFT( 4) x CSHIFT(6) 
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Rule 10 Product-Composition Exchange 

For all cdi(ci, di)Ei-+Fi and a2i(ai, bi)Dj-+Ej in ALIGN!, 

xdali(ci,di)Ei-+Fi o xda2i(ai,bi)Di-+Ei = xd(ali(Ci,di)Ei-+Fi o a2i(Ui,bi)Di-+Ei). 

Rule 11 Exchange of ALIGN2 and MULTID Operators 

(1) Let K(n) (V) D-+E = av(i)o E x · · · x av(n)v E where ai, i = 1, n are ALIGN I operators, 
V(l)-> V(l) V(n)--> V(n) 

SKEW(n) (M)(D1+q)x .. ·x(Dn+cn)-+E1 x .. ·XEn ° SH(n) (V)(DJ x .. ·XDn-+(DJ +q)x .. ·x(Dn+cn) 

= SH(n)(M * V)M(D1 x .. ·XDn)-+E] x .. ·XEn 0 SKEW(n) (M)vl x .. ·XDn-+M(D] x .. ·XDn)· 

(4) LetCSH(n)(V)v1x ... xDn-+D1x .. ·XDn = (CSHIFT(V(l))D1-->DJ X··· X CSHIFT(V(n))Dn-+Dn) 

where IDJI = D2l = · · · = IDnl. 

CSKEW(n) (M)v1 X"·XDn-->D] x .. ·XDn 0 CSH(n)(V)v1 x .. ·XDn-->D] X .. ·XDn 

= CSH(n)(M * V)v1 x .. ·XDn-+D] x .. ·XDn 0 CSKEW(n)(M)D1 x .. ·XDn-+D] X .. ·XDn • 

4.5 Bridging Subalgebra for ALIGN2 and 
MULTID 

This subalgebra exchanges the positions of adjacent 
ALIGN! and MULTID operators, so that either one of 
them may be reduced with other operators in the commu­
nication expression. 

A6 = ({N, Matd, Dam}, Q2 U ns, R2 U Rs, UR6) 

R6 = {Rule 11} 

Example 

The expression 

TRANS(2) ( ( 0 1 ) ) 
l O D2 xDJ-+D1xD2 

o (CSHIFT(l) x REFLECT)D D D D zx J-+ zx I 

o TRANs<2l ( ( O l ) ) 
l O D1xDz-+DzxDI . 

can be reduced to a MULTID operation 

by first exchanging the position of the left-most TRANS 

operator with the MULTID operator using Rule 11(1), 
and then cancelling out the two TRANS operators by ap­
plying Rule 5(1). 

4.6 Bridging Subalgebra for ALIGN3 and 
MULTID 

This subalgebra exchanges the positions of adjacent 
ALIGN3 and MULTID operators, so that either one of 
them may be reduced with other operators in the commu­
nication expression. Let V1 II V2 denote the concatenation 
of two vectors, Od denote a vector of d zeros. 

A7 = ({N,Matd,Dom},Q3UQs,R3URs,UR7) 

R7 = {Rule 12} 
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Rule 12 Exchange of Adjacent ALIGN3 and MULTID Operators 

Let SH(n)(V)v1 X···xDn->-(DJ+ct)X···x(Dn+cn) = (EOSHIFT(V(l))v1_,.D,+CJ X··· X EOSHIFT(V(n))Dn->-Dn+cn) and 
CSH(n)(V)v1 X···XDn->-(D,+ci)x···x(Dn+cn) = (CSHIFT(V(l))v1_,.D1 X··· X CSHIFT(V(n))Dn->-Dn). 

(1) EMBED(m,n)(M)v
2
_,.v

3 
o SH(m)(V)v

1
_,.v

2 
= SH(n)(M * V)M(DI)->-D

3 
o EMBED(m,n)(M)v

1
_,.M(DI) 

(2) EMBED(m,n) (M) Dz->-D3 o CSH(m) (V) v
1 
->-Dz = CSH(n) (M * V) M(DI}->-D

3 
o EMBED(m,n) (M) v

1 
->-M(DI) 

(3) REPLICATE(m)(V2, E)v
2
_,.v

3 
o SH(n)(VJ)D

1
->-Dz 

= SH(m)(Vl II om-n)v
2

(D
1
,£)->-D

3 
o REPLICATE(m)(V2, E)v

1
_,.y

2
(D

1
,£) 

(4) REPLICATE(n)(V2, E)v
2
_,.v

3 
o CSH(m)(VJ)D

1
_,.v

2 

= CSH(m)(VJ II om-n)v2 (D,,£)->-D3 o REPLICATE(m)(V2, E)D1->-Vz(D1,E)· 

Rule 13 Reduction of ALIGN2 and ALIGN3 Operators 

(1) TRANS(m)(MJ)D
2
_,.v

3 
o EMBED(m,n)(M2)v

1
_,.v

2 
= EMBED(m,n)(M! * M2)D

1
_,.v

3 

(2) SKEW(m)(MJ)v
2
_,.v

3 
o EMBEo(m,n)(M2)D

1 
->-Dz = EMBED(m,n)(MJ * M2)v

1 
_,.D

3 

(3) TRANS(n)(M3)D
2
_,.v

3 
o RESHAPE(m,n)(DJ, MJ, D2, M2)D,->-Dz = RESHAPE(m,n)(DJ, MJ, M3(DJ), M3 * M2)D

1
_,.v

3 

(4) RESHAPE(m,n)(D2, MJ, D3, M2)Dz->-D
3 

o TRANS(m)(M3)D,_,.D2 = RESHAPE(m,n)(M2(D2), M3 * MJ, D3, M2)D1_,.v3 

4.7 Bridging Subalgebra for ALIGN2 and 
ALIGN3 

The reduction rules in this subalgebra collapse adjacent 
ALIGN2 and ALIGN3 operators into an ALIGN3 opera­
tor. 

As = ({N, Matd, Dom}, !:22 U !:23, R2 U R3, URs) 

Rs = {Rule 13} 

4.8 Subalgebras for Distribution 

Since change of data distribution and physical mapping 
strategies is a task that is handed over to the runtime 
system, the compiler's job is simply to detect whether 
data movement is required and to identify the appropri­
ate communication routine for it. Applying the Product­
composition-exchange rule (in the subalgebra for MDL­
TID) followed by inverse-cancellation (g canceled out 
with g- 1) for each product component is sufficient for 
this purpose. 

4.9 Simplification Procedure 

The compiler simplifies a communication expression by 
applying a sequence of the algebraic rules. Although the 
length of a communication expression (and.therefore the 

complexity of the algebraic simplification) only depends 
on the number of levels in nested procedure calls, which 
usually is a small constant (less than four or five in most 
application programs). For efficiency of the compiler, it 
is desirable to minimize the execution time of the simpli­
fication procedure. We use a simple heuristic to solve this 
problem. Before describing the heuristic, we first define 
some relevant terminology. 

Definition. The composition of two operators e = g1 o g2 
is immediately reducible if e can be reduced to a basic 
operator by the reduction rules. A basic operator is either 
an identify function or a single alignment operator. 

For example, the composition 

CSHIFT(c2) o CSHIFT(CJ) 

is immediately reducible (it can be reduced to a basic op­
erator CSHIFT(c2 + CJ)). 

Definition. A redcom is a subexpression e = g, o [· · ·lg2 
in a communication expression such that either e is im­
mediately reducible or the two operators g1 and g2 can 
be reduced to a basic operator by applying a sequence of 
exchange rules and reduction rules. 

For example, the subexpression 

CSHIFT(CJ) o CSHIFT(c2) 



314 WU AND CHEN 

is a redcom, and the subexpression 

(CSHIFT(c 1) x CSHIFT(c2)) o TRANS(2l ( ~ ~) 

o (CSHIFT(q) x CSHIFT(c4)) o CSKEW(2) ( ~ ~) 

contains two redcoms: one is 

(CSHIFT(q) x CSHIFT(c2)) o TRANS(2l ( ~ ~) 
o (CSHIFT(C3) X CSHIFT(q)) 

and the other is 

TRANS(2) (~ ~) o (CSHIFT(c3) x CSHIFT(q)) 

(2) ( 1 1) o CSKEW O l . 

Definition. If a communication expression contains no 
redcoms then the communication expression is said to be 
in its final form. 

The compiler simplifies a communication expression 
by repeatedly reducing the redcoms in the expression un­
til the expression reaches its final form. A communication 
expression may contain multiple redcoms, therefore there 
exist multiple choices in simplification order. 

Compiler execution time may vary depending on the 
order of simplification. We use a simple heuristic to 
minimize simplification time. Under "owner-compute" 
model, the amount of communication is determined by 
the number of operators in a communication expression; 
i.e., a communication expression is simplified if its op­
erator count is decreased. Our current heuristic employs 
a greedy algorithm which reduces immediately reducible 
operators as early as possible because that always reduces 
operator count. The algorithm also avoids infinite looping 
by adjusting the starting pointer after application of each 
exchange rule. Note that MULTID operators are denoted 
by the product of one-dimensional operators (e.g. product 
of ALIGN!, DIST, etc.). The simplification of the com­
position of MULTID operators proceeds by simplifying 
each product terms independently. 

Recall that a communication expression is in the form 

where ai are alignment operators, f3i are distribution op­
erators, and Yi physical mapping operators (please re­
fer to Figure 6). Following elaboration, we simplify a 
communication expression according to the order: align­
ment a1 o a o a;- 1 first (which is machine independent), 

then distribution f31 o f32 1 (which is somewhat machine 
dependent), and then physical mapping Yt o Y2 (which 

is completely machine dependent), as shown in Proce­
dure simplify-communication (Figure 9). Since in most 
cases, the length of a communication expression is dom­
inated by the number of alignment operators and array 
intrinsics in the expression, our heuristic is mainly ap­
plied to the simplification of alignment subexpressions, as 
shown in Procedure simplify-alignment (Figure 9). The 
procedure for simplifying distribution and physical map­
ping is just to cancel out g with g- 1 in each dimension. 

4.10 Discussion on Algebraic Simplification 

In the communication algebra, each reduction rule results 
in a basic operator, decreasing the length of the commu­
nication expression. The inverse rules and the exchange 
rules do not increase the number of operators in the ex­
pression. Consequently, the algebraic simplification pro­
cedure converges. 

The simplification procedure can be carried out effi­
ciently. The length of a communication expression only 
depends on the number of levels in nested procedure 
calls, which usually is a small constant (less than 4 in 
most application programs). Let the length of a communi­
cation expression be l and the number of array references 
in the program be N. It requires i l (l - 1) N time steps 
to simplify the communication expressions for the entire 
program. 

4.11 Optimization of Composition Order 

The simplification procedure reduces a communication 
expression to its final form. The compiler then pattern 
matches the final form with the set of communication id­
ioms. If the final form contains more than one alignment 
operators (i.e., which cannot be further simplified by cur­
rent set of rules), it will either be pattern matched with 
multiple communication idioms or be unfolded and col­
lapsed into a general communication function, depending 
on the characteristics of the target machine. 

Note that the ordering of the operators in the compo­
sition in the final form does not affect the correctness of 
the target program. However, it does affect the cost of 
communication. For example, suppose a communication 
expression is reduced to a final form which contains a 
shift operation and a replication operation. There are two 
alternative order of composition: 

(1) (EOSHIFT(l) X id)D1xDr+(D!+l)xDz 

o SPREAD((~), ub(D2)) ; 
D1--+D1xDz 

(2) SPREAD((~), ub(D2)) 
D1+l--+(Dl+l)xDz 

o EOSHIFT(l)D1--+D1 +l· 
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Procedure simplify-communication 
Input: a communication expression Y1 ofh oa1 oa:2 1 ofJ:2 1 oy2-

1, where fJ1, fJ2, Y1, Y2 are d-dimensional operators denoted 
by the product of d one-dimensional operators. We use g; to refer to the ith product component of multi-dimensional 
operator g (i.e. g; is the one-dimensional operator in dimension i). 
Output: a simplified communication expression 

I. Call Procedure simplify-alignment to simplify the alignment subexpression a1 o a;- 1
. 

2. If the alignment subexpression is reduced to an identity operator, then simplify the distribution subexpression 
fJ 1 o fJ2 1 by reducing the composition of fJ 1i and fJ~ 1 in each dimension i. Otherwise, return the simplified 
expression (It will then be pattern matched with the communication idioms). 

3. If the distribution subexpression is reduced to an identity operator, then simplify the physical mapping subexpression 
Yl o y2-

1 by reducing the composition of Y1i, and y2~ 1 in each dimension i. Otherwise, return the simplified 
expression (It will then be pattern matched with the communication idioms for layout conversion). 

4. If the physical mapping subexpression is reduced to an identity operator, then no data movement is required. 
Otherwise, return the simplified expression for pattern matching with the communication idioms for changing 
physical mapping. 

Procedure simplify -alignment 
Input: an alignment subexpression 
Output: a simplified alignment subexpression 
Repeat step 1 to step 4 until no rules can be applied. 

1. Reduce immediately reducible operators, except adjacent MULTID operators, in the expression by the inverse rules 
and reduction rules. 

2. Apply the appropriate exchange rule to the first pair of operators in the expression that cannot be reduced 
immediately. Then move the starting pointer to right by one operator. 

3. Perform Product-composition-exchange on adjacent MULTID operators in the expression, so tat composition of 
MULTID operators becomes a product form whose components are composition of ALIGN I operators. 

4. Simplify each of the product components produced from step 3 using the rules in ALIGN I subalgebra. 

FIGURE 9 Algebraic simplification procedure. 

Expression (1), which contains replication in dimen­
sion two followed by end-of-shift in dimension one, costs 
more than expression (2), which contains shift in dimen­
sion one followed by replication in dimension two, since 
the communication volume for replication is the same 
in both expression, but expression (1) requires commu­
nicating sizeof(DJ) · sizeof(Dz) elements in the 
EOSHIFT operation, while expression (2) only requires 
communicating sizeof(D1) data elements. 

To further optimize communication volume, we have 
communication idioms in the final form appear in the fol­
lowing order from right to left: message reducing oper­
ators (e.g. reduction), then message-preserving operators 
(e.g. shift, transpose, affine transform), and then finally 
message-broadcasting operaotors (e.g. spread). 

Example 

Figure 10 shows the transformation result for the inter­
procedural layout conversion given in Figure 7. The sim­
plified communication expression matches with the idiom 

for matrix transposition where the matrix is partitioned 
one-dimensionally. In the transformed program, the size 
of array A is expanded to match template size accord­
ing to the alignment directives. Calls to a communica­
tion routine matrix-transpose-ld-parti tion 
are inserted to move array A to the proper layout before 
calling BETA and restore array A's layout after returning 
from BETA. 

Figure 12 of Appendix A illustrates the transformation 
for intra-procedural data movement. 

5 EXPERIMENTAL STUDIES 

Experiments were conducted to evaluate the effectiveness 
of the optimizations. Three synthetic codes (ALIGN!, 
ALIGN2, ALIGN3) were used to evaluate the benefit of 
algebraic simplification, and two benchmark codes (ADI: 
a PDE solver using Alternate Direction Method, and FFf: 
Fast Fourier Transform using hybrid block and cyclic dis-
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procedure ALPHA in Figure 7 

source program 
real A(2,4) 
template T1(3,6) 

transformed program 
real A1(2 : 3, 3 : 6) TEMP(3 : 6, 2 : 3) 

align A(i,j) with Tl(i+l,j+2) 

call BETA(A) 
call matrix-transpose-ld-partition(TEMP,A') 
call BETA(TEMP) 
call matrix-transpose-ld-partition(A' ,TEMP) 

Simplification procedure 

e = (SEQo2+2---+[0]x(D2+2) x BLOCK(v)o1+1---+PxV1) o (EOSHIFT(2)o2---+D2+2 X EOSHIFT(l)o1---+D!+J) 

o TRANS(Z) ( O I) 
I O D1 xD2---+D2xD1 

o (EOSHIFT(-1) 01 +!---+Dl X EOSHIFT(-2)o2+2---+D2) 

o (sEQD:+I---+[O]x(DI+I) x BLOCK(v)D~+Z---+PxVJ 
By Rule 11: exchange of MULTID and ALIGN2 

(SEQo2+2---+[0]x(D2+2) X BLOCK(v)o1+1---+PxV1) o TRANS(Z) (~ ~) 
D1 +I xD2+2---+D2+2xD1 +I 

o (E,0SHIFT(l) 01 ---+D1+J x EOSHIFT(2)o2---+D2+ 2) o (EOSHIFT(-l)o1+t---+Dl x EOSHIFT(-2)o2+Z---+D2) 

o ((sEQ[): +I---+[O]x(D! +I) X BLOCK(v)D~+Z---+PxVJ 
By Rule 10: product composition exchange 

(SEQo2+2---+[0]x(D2+2) x BLOCK(v)o1 +1---+PxV!) o TRANS(Z) ( ~ ~) 
D1 +lxD2+2---+D2+2xD1 +I 

o (EOSHIFT(1)o1---+DI+I OJ EOSHIFT(-l)o1+l---+Dl) X (EOSHIFT(2)o2---+D2+ 2 OJ EOSHIFT(-2)o2+Z---+D2) 

o (sEQD:+I---+[O]x(DI+I) x BLOCK(v)D~+2---+Pxv2) 
By Rule 2: reduction of ALIGN! operators 

(SEQo2+2---+[0]x(D2+2) x BLOCK(v)o1+1---+PxV1) o TRANS(Z) ( ~ ~) 
D1 +I xD2+2---+D2+ZxD1 +I 

o( SEQ[): +I---+[O]x(D! +I) x BLOCK(v)D;+Z---+ Px vJ 

Match Idiom: matrix transposition 

FIGURE 10 Algebraic simplification for inter-procedurallayout conversion. 

tribution) were used to demonstrate the impact of idiom 
matching for fast data layout conversion. The benchmark 
codes were listed in Appendix C. 

We report our experimental results on the Connection 
Machines CM-5 located at AHPCRC of Minnesota Uni­
versity. The CM-5 has totally 896 processing nodes (PN), 
configured as various-sized partitions. Each processing 
node is a SPARC with four optional vector units that to­
tally can deliver peak rate of 128Mftops [14]. 

In our experiments, we wrote the five benchmark 
codes in CM-Fortran syntax. Two versions of codes were 
generated for each benchmark code: a CM-Fortran ver­
sion without any of the algebraic optimizations (called 
unoptimized version), and a CM-Fortran version which 
was the transformed result from algebraic .optimization. 

We then compiled the CM-Fortran codes with vector-unit 
option on. 

5.1 Algebraic Simplification 

Table 3 shows the performance of the three synthetic 
codes on 64 processors. In ALIGN I, without optimiza­
tion, array a was copied to a canonical heap temporary 
using shift communication, and then the two-dimensional 
EOSHIFT was carried out on the temporary. With al­
gebraic simplification, the EOSHIFT intrinsic traffic in 
the assignment statement was cancelled out with the 
data alignment and therefore all data movement be­
came local memory accesses. This optimization improves 
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Table 3. Execution Time in Seconds on 64 Processors 

Program Problem size unoptimized optimized speedup 

ALIGN I 256 X 256 0.005 0.002 2.50 
512 X 512 0.010 0.006 1.67 

Jk X Jk 0.027 0.021 1.29 
2k X 2k 1.105 O.D78 1.35 
4k X 4k 0.477 0.305 1.56 

ALIGN2 256 X 256 0.019 0.002 9.5 
512 X 512 0.062 0.005 12.4 

Jk X Jk 0.208 0.016 13.0 
2k X 2k 0.959 0.054 17.8 
4k X 4k 4.061 0.203 20.0 

ALIGN3 32 X 32 X 32 0.009 0.002 4.5 
64x64x64 0.017 0.004 4.3 

128 X 128 X 128 0.056 0.013 4.3 
256 X 256 X 256 0.277 0.063 4.4 
512 X 512 X 512 1.270 0.261 4.9 

Table 4. Execution Time in Seconds on 64 Processors (ADI: 10 iterations, double precision floating points, FFT: double 
precision complex, with block-cyclic layout conversion) 

Unoptimized Optimized Speedup 
Program Problem size total(comm) tota1(comm) total(comm) 

ADI 128 X 128 0.159 (0.127) 0.112 (0.081) 1.42 (1.57) 
256 X 256 0.331 (0.270) 0.219 (0.161) 1.51 (1.68) 
512 X 512 0.678 (0.562) 0.432 (0.319) 1.57 (1.76) 

Jk X Jk 1.511 (1.279) 0.863 (0.641) 1.75 (1.99) 
2k X 2k 3.658 (3.191) 1.723 (1.275) 2.12 (2.50) 

FFT 128k 0.137 (0.107) 0.074 (0.043) 1.85 (2.48) 
256k 0.201 (0.143) 0.109 (0.055) 1.84 (2.66) 
512k 0.337 (0.231) 0.186 (0.083) 1.80 (2.78) 
1M 0.635 (0.428) 0.357 (0.152) 1.78 (2.82) 
2M 1.262 (1.835) 0.701 (0.278) 1.80 (3.01) 
4M 2.692 (1.746) 1.369 (0.499) 1.92 (3.50) 

program performance of ALIGN! by a factor of 1.29 
to 2.50. In ALIGN2, without optimization, array a was 
moved to array b using general communication. With 

algebraic simplification, the TRANSPOSE intrinsic traf­
fic was cancelled out with the effect of data alignment 

and therefore actual data movement becomes a two­
dimensional EOSHIFT operation, which involves only 

nearest-neighbor communication. This optimization im­

proved program performance of ALIGN2 by a factor of 
9.5 to 20.0. Speedup factors increase with problem sizes. 
In ALIGN3, again, without optimization, the assignment 

statement was carried out via copying through a canon­
ical heap temporary. With algebraic simplification, the 
actual data movement become local copy on array sec­
tion. Program performance was improved by a factor of 4 

to 5. 

5.2 Data Layout Conversion 

Table 4 shows performance of ADI and FFT on 64 pro­
cessors. The computation time in different versions is 
almost identical. The unoptimized versions use general 
communication for layout conversion. With optimized 
transposition operations, communication time of ADI 
was improved by a factor of 1.6 to 2.5 and the total execu­
tion time of ADI was improved by a factor of 1.4 to 2.1. 
Speedup factors increase with problem sized. A possible 
explanation is that on CM-5 a long message is sent in 
patches; larger problem sizes produce longer messages, 
and therefore heavier traffic in the network and higher 
speedup factors due to optimized communication. With 
optimized block-cyclic layout conversions, communica­
tion time of FFT was improved by a factor of 1.4 to 3.5 
and the total execution time was improved by a factor of 
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Table 5. Execution Time in Seconds on Different Number of Processors with Fixed Per-Processor Problem Size (ADI: double 
precision, 128 x 128 per-processor problem size, FFT: double precision complex, 8k per-processor problem size) 

Problem 
Program nproc size 

ADI 32 lk X 2k 
64 2k X 2k 
128 2k X 4k 
256 4k X 4k 
512 4k X 8k 

FFf 32 256k 
64 512k 
128 1M 
256 2M 
512 4M 

1.3 to 1.9. The speedup factors in FFT are consistent with 
the results of ADI. 

Table 5 shows the scaled speedups (by fixing per­
processor problem size and changing number of proces­
sors) of ADI and FFT. When per-processor size is fixed, 
speedup factors for ADI increase with number of proces­
sors (by a factor of 2.15 on 32 processors to a factor of 
2.86 on 515 processors), because number of messages 
increases linearly with machine size and message con­
tention becomes a more serious problem on larger ma­
chines. For larger machine sizes, speedup factors for FFT 
also increase with machine sizes. 

5.3 Summary 

The results from the three synthetic codes all show posi­
tive impact of algebraic simplification on program perfor­
mance, because it is always beneficial to reduce away re­
dundant layout conversions between procedure calls and 
unnecessary local copying through canonical temporary 
storage. 

The results from the two benchmark codes ADI and 
FFT show that optimized layout conversion (compile­
time idiom matching + specialized runtime communi­
cation routine) can reduce communication time signifi­
cantly. The reason is that even on a regular communi­
cation architecture like CM-5, message contention may 
cause inefficiency. Both of the two benchmark codes in­
volve all-to-all communication, which produces heavy 
message traffic in the network. By carefully scheduling 
these messages, contention can be reduced greatly. Re­
search has shown that message contention problem is 
present on many massively parallel machines [4, 5, 36, 
37, 39]. Consequently, those machines will also profit 
from this optimization (perhaps with different implemen­
tation of the runtime communication routines). 

Unoptimized Optimized Speedup 
total(comm) total(comm) total(comm) 

3.07 (2.73) 1.61 (1.26) 1.90 (2.15) 
3.66 (3.19) 1.72 (1.27) 2.12 (2.50) 
5.28 (4.78) 2.33 (1.83) 2.27 (2.61) 
8.17 (7.23) 3.52 (2.61) 2.32 (2.76) 

11.59 (10.63) 4.65 (3.72) 2.49 (2.86) 
0.313 (0.208) 0.178 (0.073) 1.75 (2.85) 
0.336 (0.231) 0.185 (0.083) 1.80 (2.78) 
0.416 (0.311) 0.221 (0.114) 1.88 (2.73) 
0.648 (0.538) 0.282 (0.173) 2.29 (3.10) 
1.027 (0.924) 0.394 (0.284) 2.61 (3.25) 

6 RELATED WORK 

A number of prototype compilers for Fortran 90/HPF 
have been developed in the past few years. We first briefly 
review the communication optimization techniques used 
in some of these compilers. The Fortran D compiler [20, 
44] performs various optimizations (message vectoriza­
tion, message pipelining) to reduce communication over­
head. However, the Fortran D compiler currently only 
handle a small subset of HPF's data layouts: canonical 
alignment and one-dimensional data partitioning, while 
our framework is applicable to more general cases. The 
Fortran 90D compiler [6) optimizes data movement for 
subscripted array references in parallel loops using lin­
ear index-function transformation and pattern matching 
for collective communication. By formulating data move­
ment using linear transformations, optimization for non­
linear alignment, such as CSHIFT and replication, and 
data redistribution are not possible. Vienna Fortran and 
Vienna Fortran-90, based upon the parallelizing system 
SUPERB, extends Fortran/Fortran-90 by providing align­
ment and distribution specifications. The Vienna Fortran 
compiler [8, 48] currently only supports arbitrary rec­
tilinear block distributions. The ADAPT system [35], 
developed at University of Southampton, compiles For­
tran 90 for execution on MIMD distributed-memory ma­
chines. The ADAPT system also simplifies data move­
ment problem by restricting itself to a universal commu­
nication model. The SUIF compilation system [3, 46] de­
veloped at Stanford University uses integer matrix nota­
tions and affine transformation for optimizing data move­
ment in data-parallel programs. This approach is insuffi­
cient for handling HPF's non-linear alignment operations 
(e.g. CSHIFT (cyclic shift), CSKEW (cyclic skew), and 
SPREAD (replication)) and data redistribution. 

Of the part of industry, the CM Fortran compiler [ 15] 
uses simple but naive copy-in, copy-out strategy for inter­
procedural data movement, and copying via canonical 



temporary for intra-procedural data movement. To our 
knowledge, many commercial compilers either only sup­
port a subset of HPF standard alignment and distribution 
specifications or, although they support full HPF data dis­
tributions, do not tackle complex data movement opti­
mization issues like we do (e.g. APR's Forge90 compiler 
and the IBM x!HPF compiler). 

Our algebraic transformative framework also relates 
to other more specific research efforts. The technique 
for generating collective communication, pioneered by 
the Crystal compiler [32, 33], has great influence on our 
work. The major differences are: 

(I) the Crystal compiler finds optimal (or near 
optimal) data alignment automatically, while our 
framework optimizes data movement in the 
presence of user-provided data layout 
specifications; and 

(2) the Crystal compiler does not optimize 
inter-procedural data movement as we do. 

The array synthesis scheme proposed by Hwang [25] 
employs index function transformation for HPF's align­
ment directives and array intrinsics. Array operations are 
translated to nested loops with explicit index subscript 
expressions. Non-linear array operations are handled by 
duplicating multiple copies of the loop nest, each corre­
sponding to a particular boundary condition. Our concern 
with this approach is that the program size may increase 
rapidly with the number of non-linear operations. 

Another important research area is generating com­
munication sets for array section movement Several ap­
proaches have addressed the efficient execution of ar­
ray statements involving block-cyclically distributed ar­
ray sections (e.g. Gupta et al.'s virtual processor ap­
proach [28, 38], Chatterjee et al.'s finite-state machine 
approach [9], Stichnoth's [40, 41] array slice analy­
sis, Kenedy et al.'s [29] and Thirumalai and Ramanu­
jam 's [ 43] integer lattice approach, Venkatachar et al.'s 
[ 45] row-column padding techniques, and Reeuwijk et 
al.'s [1] address generation framework). We would like 
to point out that the algebraic transformative framework 
presented in this paper does not compete with that work. 
The main focus of this paper is a framework for high­
level optimization of data movement (i.e. the optimiza­
tion, including algebraic simplification and idiom match­
ing for collective communication, is performed purely in 
the global, logical space defined in the program, working 
on the algebraic representation level only). A lower level 
framework, which is not presented in this paper, handles 
all the details of generating send/receive pairs. Internally, 
the lower level framework employs similar techniques 
borrowed from existing literatures listed ab0ve. 
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There are also work on global optimization for data 
movement. Gilbert and Schreiber [ 10, 17] designed a dy­
namic programming algorithm for optimizing temporary 
storage use for Fortran 90 array statements. Chatterjee et 
al. [11, 12] extended that work to allow loop nests. Ju et 
al. [27] (and later Hwang et al. [25]) proposed a synthe­
sis scheme for combining consecutive data reference pat­
terns to reduce communication. Another line of work on 
global optimization of communication is based on data­
flow analysis, e.g. Amarasinghe and Lam's [2], Gong 
et al.'s [18], and Gupta et al.'s [19] work. The current 
implementation of our optimization framework assumes 
owner-computer rule for compilation of data movement. 
We plan to incorporate global optimization techniques in 
the near future. 

7 CONCLUSIONS 

In this paper, we have described the theoretical aspect 
and experimental results of the algebraic transformation 
framework. We expect the effectiveness of this optimiza­
tion technique to be even more significant for larger ap­
plication programs which usually contain many program 
modules and may involve abundant use of array opera­
tions. 

Two major optimization primitives in our framework 
are algebraic simplification of communication expres­
sions and idiom matching for fast communication. Most 
of the communication idioms we have collected are not 
architecture-specific. They may or may not have spe­
cialized, fast communication, depending on the target 
machine. Specialized implementation of communication 
routines may or may not have significant impact on more 
regular communication architectures. As a result, idiom 
matching may not be crucial to achieving high perfor­
mance on this kind of machines. On the other hand, al­
gebraic simplification is a high-level, abstract transfor­
mation technique that carries out data movement reduc­
tion within the purely logical, global space defined in the 
program. Any redundant layout conversions between pro­
cedure calls and any unnecessary local copying through 
canonical temporary storage will be reduced away ab­
stractly by algebraic simplification. Consequently, even 
on a very balanced, regular communication architec­
ture, communication overhead can still be reduced by 
high-level pattern matching and algebraically simplifying 
them. 

The algebraic transformation framework (including al­
gebraic representation of data movement, alignment and 
distribution, an algebraic engine and associated heuris­
tics, and runtime layout conversion and communication 
services) allows a compiler to reduce data movement at 
the abstract level and leave machine-dependent details to 
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the runtime system. Although presented in the context 
of an optimizing compiler, the algebraic transformation 
framework can also be used as part of a runtime system 
for O!Jtimizing data movement that is dynamic or depen­
dent on runtime computed values. By modeling different 
stages of data mapping (alignment, distribution, physical 
mapping) and data movement using communication ex­
pressions and providing algebraic rules to simplify each 
stage of data movement, the algebraic framework is con­
ceptually clean and portable to different target architec­
tures. 

Recently, there has been some progress on the part 
of industry toward applying some simple kinds of lay­
out optimizations in commercial HPF compilers. For ex­
ample, TMC's CM-Fortran compiler version 2.2 has in­
cluded some similar optimization techniques for a very 
restricted subset of layout directives (shift/shift combina­
tion). We hope that eventually most commercial compiler 
groups will adopt our algebraic trans formative strategy, or 
something similar to it, to make sure that users can write 
HPF code without worrying about compiler blind spots 
(like "copy in- copy out" calling sequences, or redundant 
sequences of copies through heap temporaries whenever 
non-trivial alignments are in force). 
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Appendix A 

Figure 11 shows some examples of communication ex­

pressions for intra-procedural data movement. In order to 
formalize data movement for the assignment statements, 

it is necessary to construct the layouts of the local data 

and to use these constructions in the application of the 

Intra-Procedural Rule (Figure 6b ). 



322 WU AND CHEN 

!HPF$ 

!HPF$ 
!HPF$ 

!HPF$ 

!HPF$ 

REAL A(100,200), B(l00,200), C(lOO), D(lOO) 

TEMPLATE, DISTRIBUTED (BLOCK, BLOCK) :: T(202,101) 
ALIGN A(I,J) WITH T(J+2,I+l) 

ALIGN B(I,J) WITH T(I,J) 

ALIGN C(I) WITH T(l,J) 

ALIGN D(I) WITH T(l,lOl-I) 

Sl B EOSHIFT(EOSHIFT(TRANSPOSE{A),dim=l,shift=-l),dim=2,shift=-l) 

S2 C = CSHIFT(D,dim=l,shift=-1) 

Index domains : 

D1 =Interval(!, 100), D2 = Interval(l, 200). 

Data movement for statement Sl: 

RHS layout (array A): 

g,A = (EOSHIFT(2)D2-+D2+2 X EOSHIFT(1)D1-+D1+1) o TRANS(
2
) (~ ~) 

D1 xD2-+Dz xD, 
Array reference: 

CYA = (EOSHIFT(1)D2-+D2+1 X EOSHIFT(1)D,-+D,+l) o TRANS(2) (O 1
) 

1 O D1 xDz-+D2xD1 

LHS layout (array A): 

g[A = id(D2+l)x(D1+1)->(D2+l)x(D!+l)· 

Actual data movement: 

eA = g[A 0 CYA 0 g;1 (see Figure 6b) 

= (EOSHIFT(1)Dz-+Dz+l X EOSHIFT(l)D1-+D1+1) o TRANS(
2
) (~ ~) 

D1 xDz-+Dz xD1 

o TRANS(
2
) (~ ~)-! o (EOSHIFT(2)0~-+Dz+l X EOSHIFT(l)0:-+DJ+l). 

D, xD2-+D2 xD1 
Data movement for statement S2 : 

RHS layout (array D): 

g,D = (id x REFLECTD,-+D,) o EMBED(l, 2) (~) ; 
D1-+([l]xD,) 

array reference: 

aD = CSHIFT(l)D1-+D1; 

LHS layout (array D): 

gw = EMBEd
1
·
2
) ( ~) , 

D1-+([l]xDJ) 
actual data movement: 

8D = gw o CYD o g;ri (see Figure 6b) 

= EMBEd1·2) (~) o CSHIFT(1)D1-+D1 o EMBEd1·2) (~)-! o (id x REFLECT[):-+D). 
D1-+([l]xD1) DJ-+([l]xDI) 

FIGURE 11 Communication expressions for intra-procedural data movement. For simplicity, we only show the alignment subex­
pressions. 



procedure ALPHA in Figure II 
source program 
real A(100,200), 8(100,200), C(lOO), D(lOO) 
template T(202,101) 
align A(i,j) with T(j+2,i+l) 
align C(i) with T(l,i) 
align D(i) with T(l,lOl-i) 
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transformed program 
real A' (3:202, 2:101), B' (100,200) 
real C' (1, 100), D' (1, 100) 

Sl B = EOSHIFT(EOSHIFT(TRANSPOSE(A), 
dim=l,shift=-l),dim=2,shift=-1) 

S2 C = CSHIFT(D,dim=l,shift=-1) 

Sl B' EOSHIFT(A' ,dim=l,shift=l) 

S2 C' CSHIFT(REFLECT(D' ,dim=2)dim=2,shift=l) 

Simplification procedure: 

Data movement for statement Sl: 

(EOSHIFT(l)D2---+D2+1 x CSHIFT(l)D1---+D1+1) o TRANS(~~) o 
D1 xD2---+D2xD1 

o (EOSHIFT(-2)D2+2---+D2 x EOSHIFT(-l)D1+1---+D1) 

By Rule 5: Reduction of ALIGN2 operators 

(EOSHIFT(l)D2---+D2+1 x EOSHIFT(l)D1---+DI+I) o (EOSHIFT(-2)D2+2--->D2 x EOSHIFT(-l)D1+1---+D1) 

By Rule 10: Product-Composition Exchange 

(EOSHIFT(l)D2---+D2+1 o EOSHIFT(-2)D2+2---+D2) x (EOSHIFT(l)D1---+D1+1 o EOSHIFT(-l)D1+1---+D1) 

By Rule 2: Reduction of ALIGN! operators 

EOSHIFT(-l)D2+2---+D2+1 X idD1+1---+D1+1 

Data movement for statement S2: 

eD = EMBED2 (~) o csH(I)D1---+D1 o EMBED2 (~)-
1 

o ( id x REFLEcT:;:---+DJ 
D1---+([l]xDJ) D1---+([l]xDJ) 

By Rule 12: Exchange of ALIGN! and ALIGN3 

CSH(O) oEMBED2 (
0

) oEMBED2 (
0
)-I o(idxREFLECTDI---+D) 

l [l]xD1--->[l]xD1 l D1---+([l]xD1) l D1---+([l]xDJ) 1 1 

By Rule 8: Inverse cancellation of ALIGN3 

CSH(~) o(id[I]---+[1] xREFLECTD1---+D1) 
[l]xD1---+[I]xD1 

By definition of CSH 

(id[J]---+[1] x CSHIFTD1---+D1) o (id[I]---+[1] x REFLECTD1---+D1) 

By Rule 10: Product-composition exchange 

id[I]---+[1] x (CSHIFTD1---+D1 o REFLECTD1---+D1). 

FIGURE 12 Algebraic simplification for intra-procedural data movement. 

Figure 12 illustrates the algebraic transformations for 

these expressions. Data movement in the first statement is 

reduced to an one-dimensional CSHIFT operation, while 

the second statement requires an additional reflection op­

eration (REFLECT) due to the effect of the data alignment 

directives. 

Appendix B 

This appendix gives proofs of some of the rules in each 

communication subalgebra. The inverse rules (Rules 1, 4, 
and 8) are obvious. Proofs of Rules 2(1), 5(3), and 9(2) 
are give below. Proofs of other rules are analogous. 
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Rule 2(1) CSHIFT(cz)D+q---+D+CJ o EOSHIFT(C!)D---+D+q = EOSHIFT(CJ)D---+D+q o CSHIFT(cz)D---+D· 

Proof. 

(CSHIFT(cz)D+q---+D+CJ o EOSHIFT(C!)D---+D+q)(i ED) 

By definition of EO SHIFT 

(CSHIFT(cz)D+c1---+D+q)((i + q) ED+ c1) 

By definition of CSHIFT 

lb(D + CJ) + (i + CJ- lb(D + q) + cz) mod (ub(D + CJ)- lb(D + q)) 

= lb(D) + c, + (i + CJ- lb(D)- c, + cz) mod (ub(D)- lb(D)) 

= lb(D) + (i- lb(D) + cz) mod IDI + CJ. 

(EOSHIFT(CJ)D---+D+CJ o CSHIFT(cz)D---+D)(i ED) 

By definition of CSHIFT 

EOSHIFT(C!)D---+D+CJ (lb(D) + (i- lb(D) + cz) mod IDI 

= lb(D) + (i- lb(D) + cz) mod IDI + CJ. D 

Rule 5(3) CSKEW(dl(Mz)D---+D o CSKEW(dl(MJ)D---+D = CSKEW(dl(Mz * MJ)D---+D· 

Proof. Let I= (i,, ... , id), D = D1 x · · · x Dd, Mod(!, IDI) = (i, mod ID1I, ... , id mod IDJI). 

(cSKEW(d)(Mz)D---+D o CKEW(d)(MJ)D---+D)(l ED) 

By definition of CSKEW 

(csKEw<dl(M2)v---+v)(Mod(MJ *I, ID11)) 

By definition of CSKEW 

Mod(Mz * (Mod(M, *I, IDD)) 
By property of modulus 

Mod((Mz * M,) *I, IDI). 

CSKEW(d)(Mz * MJ)D---+D)(l ED) 

By definition of CSKEW 

Mod((Mz * M,) *I, IDI). D 

Rule 9(2) 

Proof. Let v, (k) -I- 0, Vz(l) -I- 0. 

(REPLICATE(n)(Vz, Ez)D2 ---+D3 

oREPLICATE<nJcv,, EJ)D1---+Dz)((iJ, ... , ik-J, ik+J, ... , iz-J, it+J, ... , in) ED,) 

By definition of REPLICATE 

(REPLICATE(n)(Vz, Ez)Dz---+D3 )(i,, ... , ik-J, ik, ik+J, ... , iz-J, it+!, ... , in) 

By definition of REPLICATE 

(iJ, ... , ik-J, ik, ik+J, ... , it-1, it+J, ... , in)· 

(REPLICATE(n)(Vz + V1, £1 x Ez)D1---+v3)((iJ, ... , ik-1, ik+J, ... , it-1, it+l, ... , in) E D1) 

for V(k) -I- 0, V(l) -I- 0 

(REPLICATE(n)(V, £1 X Ez)v1---+D3)((iJ, ... , ik-J, ik+J, ... , it-1, it+J, ... , in) E D1) 

By definition of REPLICATE 



Appendix C: benchmark codes 

program ALIGN1 
cc test program for ALIGN1 

subalgebra 
integer m,n,ntimes 

!HPF$ template T(m,n) 
!HPF$ distribute T (block,block) 

real a(m-1,n-1), b(m-1,n-1) 
!HPF$ align a(i,j) with T(i+1,j+1) 
!HPF$ align b(i,j) with T(i,j) 

do n = 1, ntimes 
b = eoshift(eoshift(a,dim=1, 

shift=1,dim=2,shift=1) 
end do 

program ALIGN2 
cc test program for ALIGN1 

and ALIGN2 subalgebras 
integer n,ntimes 

!HPF$ template T(n,n) 
!HPF$ distribute T (block,block) 

real a(n-1,n-1), b(n-1,n-1) 
!HPF$ align a(i,j) with T(j+1,i+1) 
!HPF$ align b(i,j) with T(i,j) 

do n = 1, ntimes 
b = transpose (a) 
end do 

program ALIGN3 
cc test program for ALIGN1 

and ALIGN3 subalgebras 
integer m,n,k,ntimes 

!HPF$ template T(m,n,k) 
!HPF$ distribute (block,block,block) 

real a(m,n-2), b(m,n-2) 
!HPF$ align a(i,j) with T(i,j+2,1) 
!HPF$ align b(i,j) with T(i,j,1) 

do n = 1, ntimes 
a = eoshift (b,2,2) 
enddo 

program ADI 
cc Alternate Direction Implicit 

method 
cc for PDE solver 

OPTIMIZING DATA MOTION FOR HPF 325 

real U(n,n), V(n,n) 
!HPF$ distribute U (*,block) 
!HPF$ align V(i,j) with U(i,j) 

do i = 1, ntimes 

call tridiag_solver(V) 
!HPF$ realign V(i,j) with U(j,i) 

call tridiag_solver(V) 
!HPF$ realign V(i,j) with U(i,j) 

U=V 
enddo 

program FFT 
cc Fast Fourier Transform 
cc using hybrid data distribution 

complex x (n) , w 
logical ones(n) 
integer p 

!hpf$ distribute cyclic :: x 

p = nurnber_Of_processors() 

cc butterfly stages using cyclic 
distribution 
do k = log2(n)-1, log2(p), -1 
where (ones) 

x = x + w * cshift(x,dim=1, 
shift=2**k) 

elsewhere 
x = x * (-w) + cshift(x,dim=1, 

shift=-2**k) 
end where 
end do 

!hpf$ redistribute block :: x 

cc butterfly stages using 
block distribution 
do k = log2{p)-1, 0, -1 
where (ones) 

x = x + w * cshift(x,dim=1, 
shift=2**k) 

elsewhere 
x = x * (-w) + cshift(x,dim=1, 

shift=-2**k) 
end where 
end do 
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