
An Algebraic Machinery for Optimizing Data
Motion for HPF

JAN-JAN 1 WU AND MARINA C. CHEN2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan I 1529; e-mail: wuj@ iis.sinica.edu.tw
2Computer Science Department, Boston University, Ill Cummington Street, Boston, MA 02215, USA; e-mail: mcchen@cs.bu.edu

ABSTRACT

This paper describes a general compiler optimization technique that reduces communica­
tion over-head for FORTRAN-90 (and High Performance FORTRAN) implementations on
massively parallel machines.
The main sources of communication, or data motion, for the parallel implementation of a

FORTRAN-90 program are array assignments, array operators (e.g., CSHIFT, TRANSPOSE,

etc.), and array parameters passing to and from subroutines. Coupled with the variety of
ways arrays can be distributed, a FORTRAN-90 implementor faces a rich space of posibili­
ties by which data motion can be organized.
We propose a unified framework for optimizing intra- and inter-procedural data motion.

The central idea of this framework is algebraic analysis of data motion. We give an alge­
braic representation for each HPF's array intrinsics and data distribution specifications. An
array reference extracted from the source FORTRAN-90 program, given a particular data
distribution specification, is represented as a communication expression, which in turn can
be simplified according to a communication algebra. Fast communication is uncovered by
pattern matching with a set of communication idioms. Experimental results on the Connec­
tion Machine CM-5 demonstrating the effectiveness of this approach are reported.

1 INTRODUCTION

Massively parallel machines offer the potential teraflop
computing power. Such power cannot be fully utilized un­
til such machines are made easy to program. A major dif­
ficulty of this class of machines is the need to distribute
data and manage interprocessor communication explic­
itly. In recent years, much research effort has been de­
voted to providing suitable programming tools. One sub­
ject on which research focusses is the provision of appro­
priate high-level, data-parallel programming languages
to easy parallel programming. In 1992, a coalition of

© 1997 lOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 297-325 (1997)

researchers from academies, industry and governmental
labs formed the High Performance Fortran Forum to de­
velop a standard set of language extensions to Fortran 90.
The forum has produced a proposal for a language, called
High Performance Fortran (HPF) [24], which extends the
Fortran 90 standard with data distribution directives for
high performance target machines such as massively par­
allel machines and workstation clusters.

One of the main factors in achieving high performance
for parallel programs on massively parallel machines is
the reduction of communication overhead. While the de­
velopment of optimizing compilers for super-scalar archi­
tectures is becoming commonplace in the industry, work
on optimization for data movement and node code per­
formance is mostly done in the context of specialized,
hand-crafted code written in assembly code, if not mi-

298 WU AND CHEN

crocode, for specific target machines (e.g TMC's Convo­
lution Compiler for stencil computation [7]). Automatic
transformations to reduce data movement have become
an important issue for HPC architectures, where the time
spent communicating can easily outweigh the time spent
performing actual arithmetic.

In this paper, we describe a general compiler opti­
mization technique that reduces communication overhead
for Fortran-90/HPF implementations on massively paral­
lel machines. Movement of distributed data in HPF can
occur in two ways:

(1) passing of distributed arrays in procedure calls.
Note that the actual and dummy arguments may
have different data distribution;

(2) assignments on distributed arrays within a
procedure body. Again, the LHS (left-hand side)
and the RHS (right-hand side) of an assignment
statement may have different data distribution.

So there are short-range (between LHS and RHS),
medium-range (between a LHS or RHS and the align­
ment and distribution that are in force in the current scop­
ing block), and long-range (actual to dummy across the
procedure calling sequence) effects of data layout to con­
sider. This makes compilation of HPF to efficient target
code a complex task.

We propose an algebraic transformation and runtime
support technique for reducing intra- and inter-procedural
data movement in HPF programs. The theoretical frame­
work within which we designed program transformations
is algebraic analysis of data movement. We give each of
HPF's array operations and data distribution directives an
algebraic representation. We then formalize data distri­
bution, intra-procedural and inter-procedural data move­
ment using communication expressions. We have devel­
oped a communication algebra and its associated heuris­
tics to simplify communication expressions, and a hand­
coded, optimized runtime communication library to carry
out aggregate communication. Fast communication is un­
covered by pattern-matching with a set of communication
idioms. Calls to fast communication is generated if pat­
tern matching is successful; otherwise, a general commu­
nication routine using direct send/receive is used.

The algebraic transformations are done abstractly in
the logical, global space defined in the program. It does
not require the notion of processor IDs and local mem­
ory offsets. As a result, although being demonstrated
in the context of an HPF compiler for the Connection
Machine CM-5, the optimization technique is applica­
ble to other data-parallel languages and other massively
parallel-machines.

We have conducted experiments on the Connection
Machine CM-5 to evaluate the effectiveness of this op­
timization. Our experimental results demonstrate signifi­
cant performance improvement over benchmark codes.

The rest of the paper is organized as follows. Sec­
tion 2 reviews the data mapping model of HPF and the
associated data movement problem. Section 3 gives an
overview of the algebraic transformation framework. Sec­
tion 4 presents in more detail the communication algebra.
Section 5 reports our experimental results on the Con­
nection Machine CM-5. Finally, Section 6 reviews related
work and Section 7 gives the conclusions.

2 HIGH PERFORMANCE FORTRAN

2.1 Data Mapping

There is a two-level mapping of array elements to log­
ical processors. An HPF user can align array elements
to a template, which is then partitioned and distributed
onto an array of logical processors. The mapping of logi­
cal processors to physical processors is implementation
dependent and may be specified by optional physical­
mapping directives. We will use the term "data layout" as
a generic term for the composition of the alignment and
distribution (and physical mapping, if given explicitly).

Figure 1 shows an HPF program segment and a
corresponding graphical representation of the effect of
data mapping. Two arrays A and B are related by the
FORTRAN-90 array intrinsic CSHIFT which shifts array
A toward the negative direction by one element in wrap­
around fashion. Assuming the number of processors is
two and the logical processors are mapped in an obvious
way to the physical processors (that is, the first block is
assigned to processor Pl and the second block to pro­
cessor P2), the alignment of the two arrays is intended
for the eventual reduction of the interprocessor commu­
nication (only one element out of four references in the
statement

B = CSHIFT(A,dim=l,shift=l)

requires communication).

2.2 Procedure Interfaces

HPF provides a rich set of procedure interface specifica­
tions for distributed array arguments. A dummy argument
has a data layout that is either explicitly specified via user
directives, or implicitly inherited from the caller's actual
argument. Similarly, an actual argument may have an ex­
plicitly prescriptive data layout, or inherits itself a data
layout from yet another calling context. Consider the pos­
sibility of extended calling chains ('A' calls 'B' calls 'C',
and fo forth, each of which may add additional directives
to the data layout specification and inherits the rest). This
makes compilation of efficient data movement a complex
task.

OPTIMIZING DATA MOTION FOR HPF 299

! ! ! HPF code
REAL, DIMENSION(4): :A,B
TEMPLATE T(S) !HPF$

!HPF$
!HPF$
!HPF$

DISTRIBUTE T BLOCK
ALIGN A(I) WITH T(I)
ALIGN B(I) WITH T(I+l)
B = CSHIFT (A, dim=l, shift=l)

A9
B~

T j ·I

I···· I

j l

, ... I .. I

, ... 1·1

, .. , .. 1

array reference
real, dimension(4): :A,B
B=CSHIFT (A, 1)

alignment distribution
HPF$ distribute T block

processor map communication

!HPF$ template T(5)
!HPF$ align A(i) with T(i)
!HPF$ align B(i) with T(i+l)

FIGURE 1 An example of data mapping and data movement in HPF. The alignment of the two arrays is intended for the eventual
reduction of the communication in the CSHIFT array intrinsic.

Figure 2 shows three levels of procedure calls (ALPHA
calls BETA calls FOO calls BAR). For the procedure call
statement in ALPHA, both the actual (array A) and the
dummy (array B) have explicit alignments. Array A is
aligned to the template T by offseting one element. The
template T, by default, is partitioned into contiguous
blocks. In procedure BETA, array B (the dummy argu­
ment of BETA) is aligned toT by offseting two data ele­
ments. Therefore, data realignment is required for passing
array A between ALPHA and BETA. In procedure FOO,
the dummy argument (array C) inherits the alignment di­
rective of the actual argument (array B). By aligning to
the dummy argument C, the local array D defined in pro­
cedure FOO also inherits the actual argument's alignment
specification, resulting in totally offseting five data ele­
ments with respective to template T. This layout effect
will be propagated to the procedure interface when call­
ing procedure BAR. In the procedure body of BAR, the
dummy argument E inherits its actual argument's (array
D) alignment, which differs from the local array L's align­
ment specification. When the calling chain is long, a sys­
tematic approach is desirable to automate the process of
optimizing data movement for passing array arguments
across procedure boundaries, as well as moving data ele­
ments in array assignment statements within a procedure
body.

2.3 Optimization for Data Movement

Consider the case where both the actual and dummy ar­
guments of a single-level procedure call. have explicit

! ! ! explicit
ALPHA (A)
real A(lOO)

explicit
BETA (B)
real B(lOO)

align A(i) with T(i+l) align B(i) with T(i+2)
call BETA(A) call FOO(B)

! ! ! inherited
FOO(C)
real C(lOO)
align c *
real D(lOO)

inherited
BAR(E)
real E(lOO)
align E *
real L(lOO)

align D(i) with C(i+3) align L(i) with T(i)
call BAR(D) D = L

FIGURE 2 Examples of HPF procedure interfaces.

data layouts (Figure 3). Array A is cyclically partitioned
in procedure ALPHA , and should be redistributed using
block partition within procedure BETA. Layout conver­
sion for array B is a complex one due to change of both
alignment (changing between offseting two elements and
offseting one element) and distribution (changing be­
tween cyclic partition and block partition). In the proce­
dure body of BETA, the assignment statement shifts array
C toward the negative direction by one element and as­
signs the result to array D (i.e., C (i + 1) is assigned to
D (i)). We call this logical data movement defined by
the program. Due to the effect of the alignment directives,
actual data movement for executing the assignment state­
ment may be different from the logical data movement as
it appears. In order to satisfy the directives as given by the
user, the compiler must combine all the layout requests
that are in force.

300 WU AND CHEN

! ! ! actual explicit I
ALPHA

dummy explicit
BETA(C,D)

real A(lOO),B(lOO) real C(lOO) ,D(lOO)
distribute T cyclic distribute T block
align A(i) with T(i) align C(i) with T(i)
align B(i) with T(i+2) align D(i) with T(i+l)
call BETA(A,B) D = EOSHIFT(C,dim=l,shift=l)

FIGURE 3 An example for data movement optimization where both the actual and dummy arguments have explicit data layouts.

Assuming "owner-compute" rule for the compilation
of data movement, the compiler has two roles. First, the
compiler should minimize time spent in moving A and B
to C and D's preferred layouts, and moving them back
when returning from the call. For instance, the com­
piler should optimize communication for BLOCK and
CYCLIC data redistribution. It should also determine the
order in moving data for complex data movement. For
instance, layout conversion for passing array B to proce­
dure BETA involves an offseting alignment change and
a conversion from CYCLIC distribution to BLOCK dis­
tribution. There are two alternatives in arranging data
movement: offsetting realignment under CYCLIC distri­
bution followed by CYCLIC-to-BLOCK redistribution,
or CYCLIC-to-BLOCK redistribution followed by off­
setting realignment under BLOCK distribution. The lat­
ter is more efficient because offsetting realignment re­
quires much less communication under BLOCK distribu­
tion. Secondly, the compiler should minimize time spent
in moving data array D for the execution of the assign­
ment statement. For instance, with compiler optimization,
the logical data movement specified by the EOSHIFT op­
eration can be turned into local memory accesses as are­
sult of the alignment directives for arrays C and D.

A simple but naive approach is to use general com­
munication or array copying through temporary storage
whenever non-canonical* data layouts is in force. This
approach not only causes excessive data copying but
also ignores many opportunities for fast communication.
A better approach is to analyze data movement systemat­
ically. This can be achieved if we capture and manipulate
data movement algebraically.

In this paper, we propose an algebraic analysis frame­
work for optimizing data movement. Data layouts and
data movement caused by passing distributed arrays be­
tween procedure boundaries, and array intrinsic fraffic

*By "canonical" we mean an array is only aligned to itself identi­
cally, and is distributed to the processors using the default distribution
strategy. For instance, if the array size is 8 x 8 and the number of pro­
cessors is four, CM-Fortran compiler partitions the array contiguously
into four equal-sized (4 x 4) subarrays, and assign one subarray to one
processor distinctly.

within procedure bodies can all be captured algebraically.
Data movement can be reduced by simplifying corre­
sponding algebraic expressions according to a set of
rules. The manipulation of algebraic expressions can be
carried out in the global, logical space defined in the
program. Detailed, machine-dependent aspects of data
movement can be postponed to runtime through a set of
communication library routines.

3 ALGEBRAIC ANALYSIS FRAMEWORK

Figure 4 gives an overview of the framework. Data lay­
outs and data movement in HPF codes are extracted and
formalized as communication expressions. Reducing the
terms in such an expression one by one from right to left
does not eliminate unnecessary communication. Under
the "owner compute" rule, the amount of communica­
tion is determined by the number of operators in a com­
munication expression; i.e., a communication expression
is simplified if its operator count is decreased. Our goal
is to minimize the operator count. We design an alge­
braic engine which contains a set of rules for simplifying
communication expressions and the associated heuristics
which guide the engine in applying the rules. A commu­
nication expression is reduced to an expression that no
further rules will be applied under the particular set of
heuristics.

In the following, we describe the algebraic framework
in more detail. We first describe the algebraic represen­
tations of data layout and array intrinsics. We then show
what a communication expression might look like. Next,
we give an overview of the communication algebra and
outline the set of communication idioms we have col­
lected.

3.1 Algebraic Representations

General integer matrix notations are commonly used
for affine alignment functions, which lead to a general
transformation technique called affine transformation for
optimizing data-parallel programs [3, 46]. General ma­
trix notations and affine transformations are insufficient

OPTIMIZING DATA MOTION FOR HPF 301

Idiom

matching

Call to fast

FIGURE 4 Overview of the algebraic analysis framework.

for transforming non-linear alignment operators such as
CSHIFT (cyclic shift), CSKEW (cyclic skew), and repli­
cation. A solution is to separate boundary array elements
from interior elements using explicit loop structures fol­
lowed by index function transformation within the loop
bodies. However, this approach may increase program
size rapidly when large number of non-linear operations
occur in the source program.

Our approach is to associate each HPF alignment/dis­
tribution operation with a special algebraic representa­
tion. Each representation has a name and a matrix/vector/
integer parameter as appropriate. The name characterizes
the value of the parameter, and facilitates the design of the
algebraic rules as well as efficient pattern matching for
communication idioms. Formally speaking, these alge­
braic representations are functions with dependent types,
which will become clear later.

We divided these algebraic representations into several
classes according to the dimensionalities of their argu­
ments and results. ALIGN I operators capture alignments
within a single dimension, including offsetting, strided,
and reflection alignments. ALIGN2 and ALIGN3 opera­
tors capture alignments across multiple dimensions. The
argument and result of an ALIGN2 operator have identi­
cal dimensionality. Typical examples are transposing an
array (i.e. dimension permutation) and skewing an ar­
ray dimension with respect to others. An ALIGN3 op­
erator has different shapes for its argument and result.
Array reshaping, replication, and embedding into higher­
dimensional space all belong to ALIGN3. Figure 5 gives
graphical representations of these operators. Table 1 out­
lines these classes, the HPF operators, and the corre­
sponding algebraic representations and their definitions.
In the following, we explain some of the definitions.

In ALIGN I, both the array intrinsic

EOSHIFT(A,dirn,shift=-c)

and the alignment directive

ALIGN A(i) with T(i+c)

offsets array A at the positive direction by distance c,
therefore both are denoted by EOSHIFT(c), which, when

given an index domain D with lower bound lb(D) and
upper bound ub(D), maps D to anew index domain with
lower bound lb(D) + c and upper bound ub(D) + c.
The CSHIFT operator performs offseting operations in a
wrap-around fashion.

In ALIGN2, both the TRANSPOSE array intrinsics
(e.g., TRANSPOSE (A, (1 , 3 , 2)) , which exchanges the
second and the third dimensions of array A) and the
"transpose" alignment directives (e.g.,

ALIGN A(i,j,k) WITH T(i,k,j))

are denoted by TRANS(dl(M), which, when given d­
dimensional index domain D, permutes dimensions of D
according to M (which is the matrix representation for
the permutation vector and the alignment index expres­
sion) and results in another index domain M(D). The
SKEW(dl(M) operator, when given d-dimensional index
domain D, skews D (i.e., performs affine mapping on
domain D) according to the coefficient matrix M. For in­
stance, the operator

SKEWC
2
l (~ ~)

skews the second dimension of a two-dimensional do­
main (i.e. it maps index (i, j) to (i, i + j)). The

CSKEW(d)(M)

operator performs skewing operations in a wrap-around
fashion.

In ALIGN3, both the array intrinsic

SPREAD(A,dirn=2,ncopies=n)

and the alignment directive

ALIGN A(i) WITH T(i,*)

302 WU AND CHEN

CLASSES OPERATORS

I 1 2 3 41 12 341
ALIGN!

I 4 3 2 1 I
EOSHIFT(A,shift=-1)
end-of-shift

I 4 1 2 31
CSHIFT(A,shift=-1)
cyclic shift

ALIGN A(i) WITH T(5-i)
reflection alignment

ALIGN A(i) WITH T(2i)
strided alignment

ALIGN2

ALIGN3

MULTID
ALIGNMENT

MULTID
DISTRIBUTION

TRANSPOSE(A)
transposition

A CJ
B EJ

ALIGN A(i) WITH B(1,i)
embedded alignment

EOSHIFT(EOSHIFT(A,dirn=1,
shift=1),dirn=2,shift=-1)
two-dimensional shift

P1 P2 P3 P4

1 2 3 4

5 6 7 8
9 10 1112

13 14 15 16

DISTRIBUTE T(*,BLOCK)
column partition

D
u

SKEW (A, (: n)
skewing along the second dimension

fi35l
~

II 2 3 4 5 61
B=RESHAPE(A,s1=(2,3) ,s2=6)
reshape alignment with default ordering
(column-major)

CSHIFT(CSHIFT(A,dirn=1,
shift=1) ,dirn=2,shift=-1)
two-dimensional cyclic shift

P1 P2

1 2 3 4
5 6 7 8

9 10 1112
13 14 15 16

P3 P4
DISTRIBUTE T(BLOCK,BLOCK)
20 block partition

CSKEW (A,(: n)
cyclic (wrap-around) skewing
along the second dimension

SPREAD(A,dirn=2,ncopies=3)
replication

A T

rt234l
~ D

lUllJ
ALIGN A(i,j) WITH T(i+2,5-j)
offsetting alignment at the first dimension
and reflection alignment at the second

PI P2 P1 P2
1 2 3 4

5 6 7 8
9 10 1112

13 14 15 16
P3 P4 P3 P4

DISTRIBUTE T(BLOCK,CYCLIC(1))
block partition at the first dimension and
cyclic partition at the second

FIGURE 5 Graphical illustration of some alignment operators and MULTID operators.

OPTIMIZING DATA MOTION FOR HPF 303

Table 1. Algebraic Notations and Definitions of Array Intrinsics and Layout Operators

Class

ALIGN!

ALIGN2

ALIGN3

DIST

MULTID

HPF Intrinsics/directives

EOSHIFT(A,dim,shift=-c)
ALIGN A(i) WITH T(i+c)
CSHIFT(A,dim,shift=-c)
ALIGN A(i) WITH T(n-i+l)
ALIGN A(i) WITH T(a*i+c)

TRANSPOSE(A)

ALIGN A(i,j) WITH T(j,i)

TRANSPOSE(A, permute_vector)

ALIGN A(i,j) WITH T(i,i+j)

ALIGN A(I) WITH T(M * I)

CSHIFT(A,dim=2,shift=l:n)

RESHAPE(A,sl,s2, [,ol) [,o2))
SPREAD(A,dim=k,ncopies=n)

ALIGN A(I) WITH T(I,*)

ALIGN A(I) WITH T(I,l)

DISTRIBUTE A BLOCK [(b)) onto P
DISTRIBUTE A CYCLIC [(b)) onto P

*
multi-dimensional shift, reflection, etc.,
and distribution of multi-dimensional arrays.

Internal representations

EOSHIFT(c)

CSHIFT(c)
REFLECT
STRIDE(a, c)

TRANS(2) (~ ~)

TRANS(d) (M), where M is the matrix representation for permute_vector

SKEW(Z) (: ~)
SKEW(d)(M)

CSKEW(Z) (: ~I)
RESHAPE(DJ, OJ, Dz, oz), where D; is the index domain representing s;
REPLICATE(rank(Dl(V, Interval(!, n)), where V(k) =I

REPLICATE(Z) ((~) , Domain(T(l,:)))

EMBED(ZJ) ((~) , Domain(T))

BLOCK(h), where h = nfp
CYCLIC(b, p)

SEQ
Product of ID Operators
(ALIGN!, DIST)

Tis the template that array A is aligned to. V denotes an integer vector oflength rank (T) and V (k) denotes the kth element of V. g<d) (M) denotes
an operator which takes ad-dimensional integer matrix M as argument, and M * l denotes the multiplication of matrix M with the index vector !.
DJ and Dz are the index domains representations for shape specifications SJ and sz, and OJ and oz are permutation matrices representing the storage
ordering in reshaping.

Class Operator Domain Codomain Definition

ALIGN! EOSHIFT(c) D D+c (i) t-----+ (i +c)
CSHIFT(c) D D (i) t-----+ lb(D) + (i- lb(D) +c) mod IDI
REFLECT D D (i) t-----+ lb(D) + ub(D) - i)
STRIDE(a, c) D aD+c (i) t-----+ (a* i +c)

ALIGN2 TRANS(n)(M) D M(D) (iJ, ... , in) t-----+ M(iJ, ... , in)
SKEW(n)(M) D M(D) (iJ, ... , in) t-----+ M(iJ, ... , in)
CSKEW(n) (M) D Mod(M(D), IDI) (iJ, ... , in) t-----+ ((MJ -l)modmJ, .. . , (MJ · /) modmn).

where mk are the sizes of Dk
ALIGN3 REPLICATE(nl(V, Dk) DJ X ... X Dk-J DJ X ... X Dk-J (iJ, ... , ik-J· ik+J, ... , in) t-----+

xDk+J'·. X Dn xDk x Dk+J · · · x Dn UJ, ... , ik-J, lb(Dk) : ub(Dk), ik+J, ... , in).
where V(k) i- 0

EMBED(m,n)(M, E) D E UJ. - .,in)t-----+M(iJ, ... ,in)
DIST BLOCK(b) D PxL (i) t-----+ (i div h, i mod h)

CYCLIC(h, p) D PxL (i) t-----+ ((i div h) mod p, (i di~·(p *b))* b + i mod h)
SEQ D [OJ X D (i) t-----+ (0, i)

lb(D) and ub(D) denote the lower and upper bound of interval domain D, aD+ c denotes an interval domain of range [(a* lb(D) +c) ... (a*
ub(D) +c)], IDI denotes the size of interval domain D, M(D) constructs a multi-dimensional domain by permuting or skewing domain D according
to the integer matrix M, and Mod(M(D), IDil constructs a multi-dimensional domain where each dimension of M(D) is modulus by the size of D at
that dimension.

304 WU AND CHEN

(assuming the size of template Tat the second dimension
is n)t duplicate n copies of A at the second dimension.
Both are denoted by

REPLICATEC2l ((~),Interval(!, n)).
where the nonzero element (the second element) in the
vector argument indicates that the replication takes place
at the second dimension. The directive ALIGN A (i)
with T (i, 1) aligns A to the first column ofT, denoted
by

EMBEd2·1l ((~). Domain(T)).

which, when given index domain D, maps D to

Domain(T)

according to the coefficient matrix (b). The

operator maps index domain D1 to D2, according to the
mapping orderings given in permutation matrices OJ and
02, respectively. For instance,

RESHAPE (Interval(!, 2) x Interval(!, 6),

(~ ~)'
Interval(!, 3) x Interval(!, 4),

(~ ~))
reshapes a 2 by 6 domain into a 3 by 4 domain, where
the argument is enumerated in a column-major fashion
(denoted by the first matrix) and the result is enumerated
in a row-major fashion (denoted by the second matrix).

The standard distribution directives in HPF are BLOCK,
CYCLIC and generic BLOCK_ CYCLIC partitioning strate­
gies. We collect them in the class DIST. MULTID op­
erations capture multi-dimensional array intrinsics and
data layouts that can be formulated as "product" of one­
dimensional operators. For instance, a two-dimensional
shift operation

CSHIFT(CSHIFT(A,dim=l,shift=-cl),

dim=2,shift=-c2)

is denoted by the product of the two ALIGN! operators
CSHIFT(CJ) and CSHIFT(c2).

tu template T is partitioned at the second dimension, the effect of
the directive ALIGN A (i) WITH T (i, *) is to duplicate the same
data of A onto all processors.

The five classes of algebraic representations capture
most of HPF's array intrinsics and alignment/distribu­
tion directives which can be formalized as index domain
morphisms (functions that map an index domain to an­
other). General array references using index expressions
are transformed to corresponding algebraic representa­
tions (or composition of algebraic representations) when­
ever possible, according to a set of simple transformation
rules.

3.2 Communication Expressions

We can formalize data layout and data movement as
communication expressions using "product" and "com­
position" operators. The product of f : D1 -+ E 1 and
g : D2 -+ E2 is defined as

f X g =)..(i, j): DJ X D2-+ EJ X El-(f(i), g(i)).

The composition of two functions g : D2 -+ D3 and
f: D1 -+ D2 is defined as

In order to formalize to relationship between a data el­
ement and a concrete store within a processor, it is neces­
sary to formalize the three stages of data mapping (align­
ment to template, partitioning template to logical pro­
cessors, and the mapping logical processors to physical
processors). Let a denote the alignment operator which
aligns array D to template E, f3 denote the partition op­
erator which partitions template E into a pair of logical
processors L and local index domain M, and y denote
the operator which maps logical processor-memory pairs
(L x M) to physical processor-memory pairs (P x M).

Data Layout

Data layout is simply the composition of the three stages
of data mapping (a, {3, and y). The layout of an array
D can be defined as a communication expression g =
yo f3 oa, as shown in the commuting diagram of Figure 6a.

The formalization of data layout is used to derive
communication expression for data movement. Intra­
procedural data movement refers to array references
within a procedure body. Inter-procedural data move­
ment, also called layout conversion, refers to array copy­
ing due to change of data layouts between the actual and
dummy arguments in procedure calls, which is a special
case of intra-procedural data movement with array refer­
ence being identity.

D~t9

alignm:nt! ------...

E- LxM- PxM
p 'Y

distribution physical mapping

(a) data layout

91

ar~ay T --; p XI :~a motion
reference~ ~

D2- PxM2
92

(b) intra-procedural data movement

layout
convenion

(c) layout conversion

FIGURE 6 Commuting diagrams for data layout (a), intra­
procedural data movement (b), and inter-procedurallayout con­
version (c).

Intra-Procedural Data Movement

Consider an assignment statement where the left-hand­
side array D2 and the right-hand-side array D1 are re­
lated by an array reference a. Let the data layouts of D 1

and D2 be g1 and g2, respectively. The data movement
induced by the reference a can be formalized by the com-

. . . I
mum catron expressiOn e = g2 o a o g 1 , as shown in the
commuting diagram of Figure 6b.

Inter-Procedural Data Movement

Let the data layout of array D in procedure B1 and pro­
cedure B2 be g1 and g2, respectively. The data movement
required to move array D from B1 to B2 is given by the
communication expression e = g2 o g 11

, as shown in
Figure 6c.

Most of the HPF alignment operators are reshape mor­
phisms [13], which essentially are bijective functions de­
fined over index domains. For an operator f : D ~ E
which is injective but not bijective, a reshape morphism
f': D ~ irnage(D, f) can be derived from f where
irnage(D, f) is the image of D under f which is a sub­
set of E (i.e., f': D ~ irnage(D, f) c E). Since f
is bijective, let f- 1 denote the inverse of f. Let g be the
composition of n bijective functions fi, i = 1, n (defined
as g = fn o · · · o /J). The inverse of g can be denoted by
g-1, and

-1 (f, f)-1 -1 . -1 g = n o ... o I = Jl o ... o fn .

OPTIMIZING DATA MOTION FOR HPF 305

One exception is replication operations, which are re­
lations. For instance, the operator

maps (i) E D1 to

((i, j), j = lb(D2), ub(D2)) E D1 x D2.

We abuse the notation

for its inverse, which is a relation that maps (i, j) E D1 x
D2 to (i) E DJ. The composition of two relations A and
B is denoted as C = A o B such that (a, c) is in C iff
there exists a b such that (a, b) is in A and (b, c) is in B.
If both A and B are functions, this definition is the same
as function composition.

Examples

Figure 7 shows a communication expression for inter­
procedural layout conversion. In order to formalize the
data movement between procedures ALPHA and BETA,
is is necessary to construct the layouts of the actual and
dummy arguments and to use these constructions in the
application of the Inter-Procedural Rule (Figure 6c). We
explicitly indicate the domain D and codomain E of each
operator g (written as g D-+ E) because now the operators
are bound to the index domain of array A. The actual ar­
gument A is aligned with the template Tl, which is parti­
tioned into columns of blocks (denoted by

by offsetting one element at the first dimension and two
elements at the second dimension (denoted by

(refer to Figure 6a). The dummy argument B is aligned
with template T2 by a transposition followed by an off­
setting alignment with distance two at the first dimension
and with distance 1 at the second dimension (denoted by

(EOSHIFT(2)n2-+Dz+2 X EOSHIFT(l)n,-+D,+i)

o TRANS(2) (O
1

))
1 O D1 xDz-+Dz xD1

The communication expression for changing from A's
layout to B's can be constructed by composing B's lay­
out and the inverse of A's layout. A communication ex­
pression for intra-procedural data movement is shown in
Figure 11 of Appendix A.

306 WU AND CHEN

Pl
ALPHA
real A(2,4)

Pl P2
P2

BETA(B)
real B(2,4)
template T2(6,3) template T1(3,6)

distribute Tl(*,block) actual distribute T2 (*,block)
align B(i,j) with T2(j+2,i+l) align A(i,j) with Tl(i+l,j+2)

call BETA(A)
data layout of A in ALPHA . data layout of A in BETA

Index domains:
D1 =Interval(!, 2), D2 =Interval(!, 4).

Actual's layout:

Dummy's layout:

g2 = (SEQo2+2-+[0]x(Dz+2) X BLOCK(b)o1+1-+PxV2)

o (EOSHIFT(2)v2-+Dz+2 X EOSHIFT(l)v1_.v1+1) oTRANS(
2
) (~ ~)

DtxDz-+DzxDl

Communication expression for changing from actual's layout to dummy's:
"

e -1
= g2 0 gl

(SEQo2+2-+(0]x(Dz+2) X BLOCK(b)D1+1-+PxV2)

o (EOSHIFT(2)o2-+Dz+2 X EOSHIFT(l)o1-+Dt+l) o TRANS(
2
) (~ ~)

DtxDz-+DzxDt

o (EOSHIFT(l)l):_.D1+l X EOSHIFT(2)1)~-+Dz+2) o (SEQD:+l-+(O]x(Dt+l) X BLOCK(b)D~+2-+PxVJ

FIGURE 7 A communication expression for inter-procedurallayout conversion. In order to formalize the data movement between
procedures AlPHA and BETA, it is necessary to construct the layouts of the actual and dummy arguments and to use these constructions
in the application of the inter-procedural rule.

3.3 Algebraic Simplification

A generic method for simplifying a communication ex­
pression is using functional transformation [6, 47]. Since
we only deal with the set of standard HPF data distribu­
tion directives (instead of general functions) in the con­
text of optimizing data movement, we look for a simpler
and more efficient solution. We have designed a commu­
nication algebra to serve this purpose. The communica­
tion algebra manipulates communication expressions at
the algebraic representation level only.

Recal that we divide HPF's array operators and layout
operators into several classes according to the dimension­
ality of their domains and ranges. A communication ex­
pression may be the composition of operators from any
or all of the classes. Based on the classification, we de­
sign sub-algebras for each class to manipulate the inter­
action of operators within that class, as well as bridging

sub-algebras for manipulating the interaction of operators

from different classes.

Each sub-algebra con taints three kinds of rules:

(1) the inverse rules that computes the inverse of an

operator;

(2) the reduction rules that reduce two adjacent

operators to one or zero new operator; and

(3) the exchange rules that make two operators

adjacent to each other by exchanging with other

operators between them, so that the reduction

rules may be applied later to simplify them.

The communication algebra will be presented in more

detail in Section 4.

Example

Consider the communication expression e in Figure 7.
By exchanging the TRANS operator with one of the two­
dimensional EOSHIFT operators (using one of exchange
rules in the bridging sub-algebra for ALIGN2 and MDL­
TID), the two EOSHIFT operators become adjacent and
can be canceled with each other (using one of the re­
duction rules in ALIGN1 sub-algebra). This results in a
TRANSPOSE operation on a two-dimensional index do­
main which is partitioned at the second dimension as
show below:

8 = (SEQD2+2---+[0]x(Dz+2) X BLOCK(b)D1+I---+Pxv2)

o (EOSHIFT(2)Dz---+D2+2 X EOSHIFT(l)D1---+D1+I)

o TRANS(2) (O
1)

1 0 D, X D2---+ Dz X D,

o (EOSHIFT(1)D~---+D,+I X EOSHIFT(2)D~---+D2+2)
o (SEQD~+h[O]x(D,+I) X BLOCK(b)D~+2---+PxVJ

(SEQD2+2---+[0]x(D2+2) X BLOCK(b)D1+I---+Pxvz)

o TRANS(2) (O
1

)
1 0 (D1+I)x(D2+2)---+(D2+2)x(D,+I)

o (SEQD~+I---+[O]x(D,+I) X BLOCK(b)D~+2---+PxVJ

3.4 Communication Idiom Matching

A simplified communication expression contains the ac­
tual data movement that needs be performed. A naive
approach is to use general communication for all cases.
This approach ignores any opportunity for fast commu­
nication. A better approach is to uncover frequently oc­
curring data movement and use specialized, fast commu­
nication whenever possible. For instance, the simplified
communication expression e shown in the example in
Section 3.3 is a transposition of a two-dimensional ma­
trix which is partitioned one-dimensionally, resulting in
so-called all-to-all personalized communication [21], in
which every processor exchanges distinct data with every
other processor. Due to the uniform communication pat­
terns, communication overhead may be reduced be care­
fully scheduling messages to avoid contention in the net­
work.

Since the advent of massively parallel machines, many
researchers have developed specialized communication
routines to facilitate direct programming of distributed­
memory machines (e.g. [5, 21-23, 26, 36, 37, 39, 42]).
In building compilers, we might take advantage of these
hand-crafted, highly optimized routines which become

OPTIMIZING DATA MOTION FOR HPF 307

part of the runtime system for the language. In the Crys­
tal compiler developed at Yale University [30-32], this
approach is used to generate intra-procedural communi­
cation. We extend that work further to include those com­
munication routines for converting data layouts between
subprograms.

We have collected a set of frequently occurring com­
munication patterns, and extracted the contents of their
communication expressions into communication idioms.
They include most of the array intrinsics and frequently
occurring layout conversions such as conversion between
BLOCK and CYCLIC partitioning and conversion be­
tween column partition (*, BLOCK) and row partition
(BLOCK, *). These idioms may or may not have special­
ized, fast communication, perhaps microcoded or other­
wise hand-optimized, depending on the target machine.
A list of communication idioms is shown in Table 2. The
optimization procedure simply goes through this list of
idioms and pattern matches with the communication ex­
pression. If a simplified communication expression con­
tains more than one alignment operators, the compiler
will either expand the expression to match multiple id­
ioms or unfold and collapse the expression into a general
communication, depending on the characteristics of the
target machine.

Example

The expression YI o y2-I in the first row of Table 2 indi­
cates change of physical mapping strategy (e.g. change
from Gray code encoding to Binary code encoding on
hypercube architectures) because alignment and partition
operators have all been reduced away. The expression
x d (y; I o {3; I o f3i2 I o Y;2. I) in the second row of the table
indicates change of data partition. For instance, the idiom
CYCLIC(1, p) o BLOCK(b)-I indicates conversion from
BLOCK partition to CYCLIC partition. The idiom

indicates conversion from column partition to row parti­
tion.

4 COMMUNICATION ALGEBRA

In this section we present in more detail the communica­
tion algebra. Recall that the alignment/distribution oper­
ators are functions with matrix/vector/integer parameters.
Although the simplification structure is not closed under
composition, we abuse the name "algebra" to reflect that
the algebraic properties are preserved in combining the
matrix/vector/integer parameters between composition of
operators.

308 WU AND CHEN

Table 2. Communication Idioms

Idioms

-1
Y1 ° Y2
"(f3 {3-1 -1)

X Yi 1 ° i 1 ° i2 ° yi2

() {3 -1 -1 Y1 o fJ1 o EOSHIFT c o 2 o y2
() {3 -1 -1

YI o f3J o CSHIFT c o 2 o y2

{3 -1 -1
YI o f31 o REFLECT o 2 o y2
xd (Yil o f3il o EOSHIFT(ci) o {3j2 1

o Yi2_ 1
)

xd (Yil o f3il o CSHIFT(ci) o f3i2. 1
o Yi2_ 1

)

xd (Yil o f3il o REFLECT o {Jill o Yi2_ 1
)

xd(YiJ o f3i!) o TRANS(d)(M) o xd (f3ill o Yi2_ 1)

xd (YiJ o f3i!) o SKEW(d) (M) o xd (f3il1 o Yi2 1)

xd (YiJ o f3i!) o CSKEW(d) (M) o xd (f3f2 1 o Yi2 1)

xd(Yi o f3i) o REPLICATE(d)(V, D) o xm(f3j 1 o Yj 1)

Data Movement

change physical mapping

change partition

end-of-shift

cyclic shift

reversal permutation

multi-dimensional end-of-shift

multi-dimensional cyclic shift

multi-dimensional reflection

matrix transpose

skewing

cyclic skewing

replication

YI o fJJ o RESHAPE(d.I)(D, M, interval(!, n), I) o x"(f3ill o Yi2 1
)

x"(Yil o f3i!) o RESHAPE(l,d)(interval(l, n), I, D, M) o f32 1 o y2-I

axis combining

axis spliting

where a denotes alignment operators or array references, f3 denotes distribution operators, y denotes physical
mapping operators, and x" (ai o hi) denotes (at o h1) x · · · x (ad o bc~).

FIGURE 8 Organization of the communication algebra.

Based on our classification of array operators and lay­
out operators, we design subalgebras for each class to ma­
nipulate the interaction of operators within that class, as
well as bridging subalgebras for manipulating the inter­
action of operators from different classes. Figure 8 shows
the organization of these subalgebras. Each subalgebra
contains three kinds of rules:

(1) the inverse rules that compute the inverse of an
operator;

(2) the reduction rules that reduce two adjacent
operators to one or zero new operator; and

(3) the exchange rules that make two operators
adjacent to each other by exchanging positions
with the operators in between.

Given a communication expression, the algebraic en­
gine applies these rules according to a simple heuristic
until no rules can be applied. ·

In the following, we present the subalgebras, the
bridging subalgebras and the simplification procedure for
communication expressions. Each subalgebra is denoted
by a triple (S, Q, R), where Sis the sorts, Q is the opera­
tors and R is the set of rules. The sorts of each subalgebra
define the appropriate set of index domains in which the
operators in the particular classes are defined. The set R
outlines the rules that either directly or indirectly reduce
the length for a communication expression. Proofs of the
rules are included in Appendix B.

4.1 Subalgebra for ALIGN1

The sorts of subalgebra for ALIGNl contains the integer
set N and the set of interval domains Dom. The opera­
tors include the four ALIGNl operators and one com­
position operation (o). The composition operator is a
higher-order function that takes two ALIGNl operators
(D 1 --+ D2, D2 --+ D3) as arguments. For convience, we
use the notation a * D + c for an index domain with lower
bound a * lb(D) + c and upper bound a * ub(D) +c.
Rule 1 computers the inverse of an ALIGN] operator,
Rule 2 reduces two adjacent ALIGNl operators into one
simply by integer addition and multiplication on their ar­
guments. Rule 3 exchanges the positions of two adjacent
ALIGNl operators that cannot be directly reduced. Non­
adjacent operators are reduced by applying a sequence of
Rule 3 and Rule 2.

Rule 1 Inverse of ALIGNl Operators

(I) EOSHIFT(c)D:....D+c = EOSHIFT(-c)D+c---+D

(2) CSHIFT(c)D:....D = CSHIFT(-c)D---+D

-r
(3) REFLECTD---+D = REFLECTD---+D

OPTIMIZING DATA MOTION FOR HPF 309

(4) STRIDE(a, c)D:....a*D+c =STRIDE(~. -l~J)
a a a*D+c---+D

Rule 2 Reduction of Adjacent ALIGNl Operators

(1) EOSHIFT(cl)D+c2---+D+c2+cr o EOSHIFT(c2)D---+D+c2 = EOSHIFT(cl + c2)D---+D+c2+cl

(2) CSHIFT(cl)D---+D o CSHIFT(c2)D---+D = CSHIFT(cl + c2)D---+D

(3) REFLECTD---+D o REFLECTD---+D = idv

(4) STRIDE(al, cl)a2*D+c2---+aha2*D+ar*c2+cl o STRIDE(a2, c2)D---+a2*D+c2

= STRIDE(al * a2, al * c2 + cl)D---+ar*a2*D+ar*c2+cl

(5) STRIDE(a, b)D+c---+a*D+{I*C+b o EOSHIFT(c)D---+D+c = STRIDE(a, a* c + b)D---+a*D+a*c+b

(6) EOSHIFT(c)a*D+h---+a*D+b+c o STRIDE(a, b)D---+a*D+b = STRIDE(a, b + c)D---+a*D+h+c

Rule 3 Exchange of ALIGNl Operators

(I) CSHIFT(c2)D+cl---+D+cl o EOSHIFT(cl)D---+D+cl = EOSHIFT(cl)D---+D+cl o CSHIFT(c2)D---+D

(2) CSHIFT(c)D---+D o REFLECTD---+D = REFLECTD---+D o CSHIFT(c)D---+D

(3) EOSHIFT(c)D---+D+c o REFLECTD---+D = REFLECTD+c---+D+c o EOSHIFT(c)D---+D+c

(4) STRIDE(a, c)D---+a*D+c o REFLECTD---+D = REFLECTa*D+c---+a*D+c o STRIDE(a, c)D---+MD+c

(5) STRIDE(a, c2)D---+a*D+c2 o EOSHIFT(cl)D---+D = CSHIFT(a, cl)a*D+c2---+a*D+c2 o STRIDE(a, c2)D---+a*D+c2

r2r = {EOSHIFT(c E N)(D E Dom): D--+ D + c,

CSHIFT(c E N)(D E Dom): D --+ D,

REFLECT(D E Dom): D--+ D,

STRIDE(a E N, c E N)(D E Dom):

D--+a*D+c,

o: (Dr --+ D2) --+ (D2 --+ D3) --+ (Dr --+ D3),

where Dr, D2, D3 E Dom}

Rr = {Rule 1, Rule 2, Rule 3}

Example

CSHIFT(2)D+r---+D+r o EOSHIFT(1)D---+D+r

o CSHIFT(-2)D---+D

By Rule 3(1)

EOSHIFT(l)D---+D+r o CSHIFT(2)D---+D

o CSHIFT(-2)D---+D

By Rule 2(2)

EOSHIFT(1)D---+D+r

4.2 Subalgebra for ALIGN2

The sorts of subalgebra for ALIGN2 contains the in­
teger set N, the set of d x d integer matrices Matd and
the set of interval domains Dom. Let Domd denote the set
of d-dimensional index domains, and M(D) denote an
affine transformation on index domain D with coefficient
matrix M. The operators include the three ALIGN2 op­
erators and one composition operation (o). The compo­
sition operator is a higher-order function that takes two
ALIGN2 operators (Dr --+ D2, D2 --+ D3) as argu­
ments. Rule 1 computes the inverse of an ALIGN2 op­
erator by deriving the inverse of its coefficient matrix.
Rules 5-7 reduce two adjacent ALIGN2 operators into
one by multiplying their coefficient matrices.

A2 = ({N,Matd,Dom},r22,R2)

R2 = {Rule 4, Rule 5, Rule 6, Rule 7}

Example

CSKEW(2) (
1 O) o CSKEW(2) (

1 1
)

1 1 D---+D 0 1 D---+D

310 WU AND CHEN

Rule 4 Inverse of ALIGN2 Operators

(1) TRANS(d)(M)- 1 = TRANS(d)(M- 1)
D~E E~D

(2) SKEW(d)(M)- 1 = SKEW(dl(M- 1)
D~E E~D

(3) CSKEW(d)(M)- 1 = CSKEW(d)(M- 1)
D~E E~D

Rule 5 Reduction of ALIGN2 Operators

(1) TRANS(d)(M2)v2~v3 o TRANS(d)(M1)v 1 ~v2 = TRANS(d)(M2 * M1)v1 ~v3
(2) SKEW(d)(M2)v2~v3 o SKEW(d)(M1)v 1 ~v2 = SKEW(d)(M2 * Ml)v1 ~v3
(3) CSKEW(d)(M2)v~D o CSKEW(d)(Ml)v~D = CSKEW(d)(M2 * M1)D~D

Rule 6 Left-Trans Reduction

(1) TRANS(d)(M2)v2~v3 o SKEW(d)(M1)v 1 ~v2 = SKEW(d)(M2* M1)v1 ~v3
(2) TRANS(d)(M2)v1 ~v2 o CSKEW(d)(M1)v 1 ~v1 = CSKEW(d)(M2* M1)v1 ~v2

Rule 7 Right-Trans Reduction

(1) SKEW(d)(M2)v2~v3 o TRANS(d)(M1)v 1 ~v2 = SKEW(d)(M2 * M1)v 1 ~v3
(2) CSKEW(d)(M2)v2~v2 o TRANS(d)(M1)v

1
~Dz = CSKEW(d)(M2 * M1)v 1~v2

S12 = {TRANS(d E N)(M E Matd){D E Domd): D-+ M(D),

SKEW(d E N){M E Matd){D E Domd): D-+ M(D),

CSKEW(d E N){M E Matd){D E Domd): D-+ D,

o : (D1 -+ D2) -+ (D2 -+ D3) -+ (D1 -+ D3),

where D1, D2, D3 E Domd}

By Rule 5(3)

(2) ((1 0) (1 1))
CSKEW 1 1 * 0 1 D~D

= CSKEW(2l (
2 1

)
1 1 D~D

The result is to skew index domain D at both dimen­
sions in wrap-around fashion according to the coeficient

matrix {i D-

4.3 Subalgebra for ALIGN3

The sorts of subalgebra for ALIGN3 contains the in­
teger set N, the set of interval domains Dom, the set of
m x n integer matrices Ma tm,n, the set of.length-d inte-

ger vectors Vecd (we define V E Vecd,

V{D1 X ... X Dk-1 X Dk+1 X ... X DJ, Dk)

= D1 X ... X Dk-1 X Dk X Dk+1 X ... X Dd,

where V(k) =J 0 (kth element of V is nonzero), to
be a length-d vector). The operators include the three
ALIGN3 operators and one composition operation (o).
The composition operator is a higher-order function that
takes two ALIGN3 operators as arguments.

Inverses of ALIGN3 operators can be devised with­
out appeal to standard matrix/vector/integer algebra (for
discussion on inverses of ALIGN3 operators, please refer
to Section 3.2). Therefore, no algebraic rules are needed
for finding their inverses. We abuse the notation a - 1 to
denote the inverse of an ALIGN3 operator. The inverse-

OPTIMIZING DATA MOTION FOR HPF 311

Rule 8 Inverse Cancellation of ALIGN3 Operators

For all av---+E in ALIGN3,

Rule 9 Reduction of Adjacent ALIGN3 Operators

(1) EMBED(m,k)(M2)v
2

---+D
3

o EMBED(k,l)(Ml)v
1

---+Dz = EMBEo(m.I)(M2 * Ml)Dt---+D
3

(2) REPLICATE(k)(V2, E2)Dz---+D3 o REPLICATE(k)(Vl, EI)Dt---+Dz = REPLICATE(k)(V2 + Vl, E1 x E2)Dt---+D
3

(3) RESHAPE(l,m)(D2, M3, D3, M4)Dz---+D
3

o RESHAPE(k,l)(DJ, Ml, D2, M2)Dt---+Dz

= RESHAPE(k,m)(DJ, Ml, D3, M4)v
1

---+v
3

, if M2 = M3

Q3 = {EMBED(m E N)(n E N)(m E Mat(m,nl)(D E Domn): D---+ M(D),

REPLICATE(n E N)(V E Vecn)(E E Dom)(D E Dom): D---+ V(D, E),

RESHAPE(m E N)(n E N)(D1 E Domn)(M1 E Mat(m,m))CD2 E Domn)(M2 E Mat(n,n)): D1 ---+ D2,

o: (DI ---+ D2) ---+ (D2 ---+ D3) ---+ (DI ---+ D3)},

ns = { xd: (DJ ---+ E2)---+ ... ---+ (Dd---+ Ed)---+ (DI X' .. X Dd---+ EI X ... X Ed).

where D1, ... , Dd E Dom, E1, ... , Ed E Dom,

o: (DI ---+ D2) ---+ (D2 ---+ D3) ---+ (D1 ---+ D3),

where D1, D2, D3 E Domd}

cancellation rule (Rule 8) cancels out an ALIGN3 opera­
tor with its inverse. Rule 9 reduces two adjacent ALIGN3
operators into one simply by standard matrix-vector al­
gebra. The purpose of this rule is to simplify a chain of
compositions of ALIGN3 operators, which may be a re­
sult of propagating inherited alignments across multiple
levels of procedure calls.

A3 = {{N, Mat(m,n),Vecd,Dom}, Q3, R3)

R3 = {Rule 8, Rule 9}

Example

A replication along the second dimension followed by
a replication of the new index domain along the third di­
mension can be combined into a multi-dimensional repli­
cation of the original domain.

4.4 Subalgebra for MULTID

The purpose of this subalgebra is to distribute composi­
tion operations through product operations so that com­
position of MULTID operators can be simplified.

As = ({N, Dom}, QI U Qs, Rs)
Rs = {Rule 10}

·Example

{EOSHIFT(l) x CSHIFT(2))

o {EOSHIFT(3) x CSHIFT(4))

= By Rule 10

{EOSHIFT(1) o EOSHIFT(3))

x(CSHIFT(2) o CSHIFT(4))

= By Rules 2(1) and 2(2)

EO SHIFT(4) x CSHIFT(6)

312 WU AND CHEN

Rule 10 Product-Composition Exchange

For all cdi(ci, di)Ei-+Fi and a2i(ai, bi)Dj-+Ej in ALIGN!,

xdali(ci,di)Ei-+Fi o xda2i(ai,bi)Di-+Ei = xd(ali(Ci,di)Ei-+Fi o a2i(Ui,bi)Di-+Ei).

Rule 11 Exchange of ALIGN2 and MULTID Operators

(1) Let K(n) (V) D-+E = av(i)o E x · · · x av(n)v E where ai, i = 1, n are ALIGN I operators,
V(l)-> V(l) V(n)--> V(n)

SKEW(n) (M)(D1+q)x .. ·x(Dn+cn)-+E1 x .. ·XEn ° SH(n) (V)(DJ x .. ·XDn-+(DJ +q)x .. ·x(Dn+cn)

= SH(n)(M * V)M(D1 x .. ·XDn)-+E] x .. ·XEn 0 SKEW(n) (M)vl x .. ·XDn-+M(D] x .. ·XDn)·

(4) LetCSH(n)(V)v1x ... xDn-+D1x .. ·XDn = (CSHIFT(V(l))D1-->DJ X··· X CSHIFT(V(n))Dn-+Dn)

where IDJI = D2l = · · · = IDnl.

CSKEW(n) (M)v1 X"·XDn-->D] x .. ·XDn 0 CSH(n)(V)v1 x .. ·XDn-->D] X .. ·XDn

= CSH(n)(M * V)v1 x .. ·XDn-+D] x .. ·XDn 0 CSKEW(n)(M)D1 x .. ·XDn-+D] X .. ·XDn •

4.5 Bridging Subalgebra for ALIGN2 and
MULTID

This subalgebra exchanges the positions of adjacent
ALIGN! and MULTID operators, so that either one of
them may be reduced with other operators in the commu­
nication expression.

A6 = ({N, Matd, Dam}, Q2 U ns, R2 U Rs, UR6)

R6 = {Rule 11}

Example

The expression

TRANS(2) ((0 1))
l O D2 xDJ-+D1xD2

o (CSHIFT(l) x REFLECT)D D D D zx J-+ zx I

o TRANs<2l ((O l))
l O D1xDz-+DzxDI .

can be reduced to a MULTID operation

by first exchanging the position of the left-most TRANS

operator with the MULTID operator using Rule 11(1),
and then cancelling out the two TRANS operators by ap­
plying Rule 5(1).

4.6 Bridging Subalgebra for ALIGN3 and
MULTID

This subalgebra exchanges the positions of adjacent
ALIGN3 and MULTID operators, so that either one of
them may be reduced with other operators in the commu­
nication expression. Let V1 II V2 denote the concatenation
of two vectors, Od denote a vector of d zeros.

A7 = ({N,Matd,Dom},Q3UQs,R3URs,UR7)

R7 = {Rule 12}

OPTIMIZING DATA MOTION FOR HPF 313

Rule 12 Exchange of Adjacent ALIGN3 and MULTID Operators

Let SH(n)(V)v1 X···xDn->-(DJ+ct)X···x(Dn+cn) = (EOSHIFT(V(l))v1_,.D,+CJ X··· X EOSHIFT(V(n))Dn->-Dn+cn) and
CSH(n)(V)v1 X···XDn->-(D,+ci)x···x(Dn+cn) = (CSHIFT(V(l))v1_,.D1 X··· X CSHIFT(V(n))Dn->-Dn).

(1) EMBED(m,n)(M)v
2
_,.v

3
o SH(m)(V)v

1
_,.v

2
= SH(n)(M * V)M(DI)->-D

3
o EMBED(m,n)(M)v

1
_,.M(DI)

(2) EMBED(m,n) (M) Dz->-D3 o CSH(m) (V) v
1
->-Dz = CSH(n) (M * V) M(DI}->-D

3
o EMBED(m,n) (M) v

1
->-M(DI)

(3) REPLICATE(m)(V2, E)v
2
_,.v

3
o SH(n)(VJ)D

1
->-Dz

= SH(m)(Vl II om-n)v
2

(D
1
,£)->-D

3
o REPLICATE(m)(V2, E)v

1
_,.y

2
(D

1
,£)

(4) REPLICATE(n)(V2, E)v
2
_,.v

3
o CSH(m)(VJ)D

1
_,.v

2

= CSH(m)(VJ II om-n)v2 (D,,£)->-D3 o REPLICATE(m)(V2, E)D1->-Vz(D1,E)·

Rule 13 Reduction of ALIGN2 and ALIGN3 Operators

(1) TRANS(m)(MJ)D
2
_,.v

3
o EMBED(m,n)(M2)v

1
_,.v

2
= EMBED(m,n)(M! * M2)D

1
_,.v

3

(2) SKEW(m)(MJ)v
2
_,.v

3
o EMBEo(m,n)(M2)D

1
->-Dz = EMBED(m,n)(MJ * M2)v

1
_,.D

3

(3) TRANS(n)(M3)D
2
_,.v

3
o RESHAPE(m,n)(DJ, MJ, D2, M2)D,->-Dz = RESHAPE(m,n)(DJ, MJ, M3(DJ), M3 * M2)D

1
_,.v

3

(4) RESHAPE(m,n)(D2, MJ, D3, M2)Dz->-D
3

o TRANS(m)(M3)D,_,.D2 = RESHAPE(m,n)(M2(D2), M3 * MJ, D3, M2)D1_,.v3

4.7 Bridging Subalgebra for ALIGN2 and
ALIGN3

The reduction rules in this subalgebra collapse adjacent
ALIGN2 and ALIGN3 operators into an ALIGN3 opera­
tor.

As = ({N, Matd, Dom}, !:22 U !:23, R2 U R3, URs)

Rs = {Rule 13}

4.8 Subalgebras for Distribution

Since change of data distribution and physical mapping
strategies is a task that is handed over to the runtime
system, the compiler's job is simply to detect whether
data movement is required and to identify the appropri­
ate communication routine for it. Applying the Product­
composition-exchange rule (in the subalgebra for MDL­
TID) followed by inverse-cancellation (g canceled out
with g- 1) for each product component is sufficient for
this purpose.

4.9 Simplification Procedure

The compiler simplifies a communication expression by
applying a sequence of the algebraic rules. Although the
length of a communication expression (and.therefore the

complexity of the algebraic simplification) only depends
on the number of levels in nested procedure calls, which
usually is a small constant (less than four or five in most
application programs). For efficiency of the compiler, it
is desirable to minimize the execution time of the simpli­
fication procedure. We use a simple heuristic to solve this
problem. Before describing the heuristic, we first define
some relevant terminology.

Definition. The composition of two operators e = g1 o g2
is immediately reducible if e can be reduced to a basic
operator by the reduction rules. A basic operator is either
an identify function or a single alignment operator.

For example, the composition

CSHIFT(c2) o CSHIFT(CJ)

is immediately reducible (it can be reduced to a basic op­
erator CSHIFT(c2 + CJ)).

Definition. A redcom is a subexpression e = g, o [· · ·lg2
in a communication expression such that either e is im­
mediately reducible or the two operators g1 and g2 can
be reduced to a basic operator by applying a sequence of
exchange rules and reduction rules.

For example, the subexpression

CSHIFT(CJ) o CSHIFT(c2)

314 WU AND CHEN

is a redcom, and the subexpression

(CSHIFT(c 1) x CSHIFT(c2)) o TRANS(2l (~ ~)

o (CSHIFT(q) x CSHIFT(c4)) o CSKEW(2) (~ ~)

contains two redcoms: one is

(CSHIFT(q) x CSHIFT(c2)) o TRANS(2l (~ ~)
o (CSHIFT(C3) X CSHIFT(q))

and the other is

TRANS(2) (~ ~) o (CSHIFT(c3) x CSHIFT(q))

(2) (1 1) o CSKEW O l .

Definition. If a communication expression contains no
redcoms then the communication expression is said to be
in its final form.

The compiler simplifies a communication expression
by repeatedly reducing the redcoms in the expression un­
til the expression reaches its final form. A communication
expression may contain multiple redcoms, therefore there
exist multiple choices in simplification order.

Compiler execution time may vary depending on the
order of simplification. We use a simple heuristic to
minimize simplification time. Under "owner-compute"
model, the amount of communication is determined by
the number of operators in a communication expression;
i.e., a communication expression is simplified if its op­
erator count is decreased. Our current heuristic employs
a greedy algorithm which reduces immediately reducible
operators as early as possible because that always reduces
operator count. The algorithm also avoids infinite looping
by adjusting the starting pointer after application of each
exchange rule. Note that MULTID operators are denoted
by the product of one-dimensional operators (e.g. product
of ALIGN!, DIST, etc.). The simplification of the com­
position of MULTID operators proceeds by simplifying
each product terms independently.

Recall that a communication expression is in the form

where ai are alignment operators, f3i are distribution op­
erators, and Yi physical mapping operators (please re­
fer to Figure 6). Following elaboration, we simplify a
communication expression according to the order: align­
ment a1 o a o a;- 1 first (which is machine independent),

then distribution f31 o f32 1 (which is somewhat machine
dependent), and then physical mapping Yt o Y2 (which

is completely machine dependent), as shown in Proce­
dure simplify-communication (Figure 9). Since in most
cases, the length of a communication expression is dom­
inated by the number of alignment operators and array
intrinsics in the expression, our heuristic is mainly ap­
plied to the simplification of alignment subexpressions, as
shown in Procedure simplify-alignment (Figure 9). The
procedure for simplifying distribution and physical map­
ping is just to cancel out g with g- 1 in each dimension.

4.10 Discussion on Algebraic Simplification

In the communication algebra, each reduction rule results
in a basic operator, decreasing the length of the commu­
nication expression. The inverse rules and the exchange
rules do not increase the number of operators in the ex­
pression. Consequently, the algebraic simplification pro­
cedure converges.

The simplification procedure can be carried out effi­
ciently. The length of a communication expression only
depends on the number of levels in nested procedure
calls, which usually is a small constant (less than 4 in
most application programs). Let the length of a communi­
cation expression be l and the number of array references
in the program be N. It requires i l (l - 1) N time steps
to simplify the communication expressions for the entire
program.

4.11 Optimization of Composition Order

The simplification procedure reduces a communication
expression to its final form. The compiler then pattern
matches the final form with the set of communication id­
ioms. If the final form contains more than one alignment
operators (i.e., which cannot be further simplified by cur­
rent set of rules), it will either be pattern matched with
multiple communication idioms or be unfolded and col­
lapsed into a general communication function, depending
on the characteristics of the target machine.

Note that the ordering of the operators in the compo­
sition in the final form does not affect the correctness of
the target program. However, it does affect the cost of
communication. For example, suppose a communication
expression is reduced to a final form which contains a
shift operation and a replication operation. There are two
alternative order of composition:

(1) (EOSHIFT(l) X id)D1xDr+(D!+l)xDz

o SPREAD((~), ub(D2)) ;
D1--+D1xDz

(2) SPREAD((~), ub(D2))
D1+l--+(Dl+l)xDz

o EOSHIFT(l)D1--+D1 +l·

OPTIMIZING DATA MOTION FOR HPF 315

Procedure simplify-communication
Input: a communication expression Y1 ofh oa1 oa:2 1 ofJ:2 1 oy2-

1, where fJ1, fJ2, Y1, Y2 are d-dimensional operators denoted
by the product of d one-dimensional operators. We use g; to refer to the ith product component of multi-dimensional
operator g (i.e. g; is the one-dimensional operator in dimension i).
Output: a simplified communication expression

I. Call Procedure simplify-alignment to simplify the alignment subexpression a1 o a;- 1
.

2. If the alignment subexpression is reduced to an identity operator, then simplify the distribution subexpression
fJ 1 o fJ2 1 by reducing the composition of fJ 1i and fJ~ 1 in each dimension i. Otherwise, return the simplified
expression (It will then be pattern matched with the communication idioms).

3. If the distribution subexpression is reduced to an identity operator, then simplify the physical mapping subexpression
Yl o y2-

1 by reducing the composition of Y1i, and y2~ 1 in each dimension i. Otherwise, return the simplified
expression (It will then be pattern matched with the communication idioms for layout conversion).

4. If the physical mapping subexpression is reduced to an identity operator, then no data movement is required.
Otherwise, return the simplified expression for pattern matching with the communication idioms for changing
physical mapping.

Procedure simplify -alignment
Input: an alignment subexpression
Output: a simplified alignment subexpression
Repeat step 1 to step 4 until no rules can be applied.

1. Reduce immediately reducible operators, except adjacent MULTID operators, in the expression by the inverse rules
and reduction rules.

2. Apply the appropriate exchange rule to the first pair of operators in the expression that cannot be reduced
immediately. Then move the starting pointer to right by one operator.

3. Perform Product-composition-exchange on adjacent MULTID operators in the expression, so tat composition of
MULTID operators becomes a product form whose components are composition of ALIGN I operators.

4. Simplify each of the product components produced from step 3 using the rules in ALIGN I subalgebra.

FIGURE 9 Algebraic simplification procedure.

Expression (1), which contains replication in dimen­
sion two followed by end-of-shift in dimension one, costs
more than expression (2), which contains shift in dimen­
sion one followed by replication in dimension two, since
the communication volume for replication is the same
in both expression, but expression (1) requires commu­
nicating sizeof(DJ) · sizeof(Dz) elements in the
EOSHIFT operation, while expression (2) only requires
communicating sizeof(D1) data elements.

To further optimize communication volume, we have
communication idioms in the final form appear in the fol­
lowing order from right to left: message reducing oper­
ators (e.g. reduction), then message-preserving operators
(e.g. shift, transpose, affine transform), and then finally
message-broadcasting operaotors (e.g. spread).

Example

Figure 10 shows the transformation result for the inter­
procedural layout conversion given in Figure 7. The sim­
plified communication expression matches with the idiom

for matrix transposition where the matrix is partitioned
one-dimensionally. In the transformed program, the size
of array A is expanded to match template size accord­
ing to the alignment directives. Calls to a communica­
tion routine matrix-transpose-ld-parti tion
are inserted to move array A to the proper layout before
calling BETA and restore array A's layout after returning
from BETA.

Figure 12 of Appendix A illustrates the transformation
for intra-procedural data movement.

5 EXPERIMENTAL STUDIES

Experiments were conducted to evaluate the effectiveness
of the optimizations. Three synthetic codes (ALIGN!,
ALIGN2, ALIGN3) were used to evaluate the benefit of
algebraic simplification, and two benchmark codes (ADI:
a PDE solver using Alternate Direction Method, and FFf:
Fast Fourier Transform using hybrid block and cyclic dis-

316 WU AND CHEN

procedure ALPHA in Figure 7

source program
real A(2,4)
template T1(3,6)

transformed program
real A1(2 : 3, 3 : 6) TEMP(3 : 6, 2 : 3)

align A(i,j) with Tl(i+l,j+2)

call BETA(A)
call matrix-transpose-ld-partition(TEMP,A')
call BETA(TEMP)
call matrix-transpose-ld-partition(A' ,TEMP)

Simplification procedure

e = (SEQo2+2---+[0]x(D2+2) x BLOCK(v)o1+1---+PxV1) o (EOSHIFT(2)o2---+D2+2 X EOSHIFT(l)o1---+D!+J)

o TRANS(Z) (O I)
I O D1 xD2---+D2xD1

o (EOSHIFT(-1) 01 +!---+Dl X EOSHIFT(-2)o2+2---+D2)

o (sEQD:+I---+[O]x(DI+I) x BLOCK(v)D~+Z---+PxVJ
By Rule 11: exchange of MULTID and ALIGN2

(SEQo2+2---+[0]x(D2+2) X BLOCK(v)o1+1---+PxV1) o TRANS(Z) (~ ~)
D1 +I xD2+2---+D2+2xD1 +I

o (E,0SHIFT(l) 01 ---+D1+J x EOSHIFT(2)o2---+D2+ 2) o (EOSHIFT(-l)o1+t---+Dl x EOSHIFT(-2)o2+Z---+D2)

o ((sEQ[): +I---+[O]x(D! +I) X BLOCK(v)D~+Z---+PxVJ
By Rule 10: product composition exchange

(SEQo2+2---+[0]x(D2+2) x BLOCK(v)o1 +1---+PxV!) o TRANS(Z) (~ ~)
D1 +lxD2+2---+D2+2xD1 +I

o (EOSHIFT(1)o1---+DI+I OJ EOSHIFT(-l)o1+l---+Dl) X (EOSHIFT(2)o2---+D2+ 2 OJ EOSHIFT(-2)o2+Z---+D2)

o (sEQD:+I---+[O]x(DI+I) x BLOCK(v)D~+2---+Pxv2)
By Rule 2: reduction of ALIGN! operators

(SEQo2+2---+[0]x(D2+2) x BLOCK(v)o1+1---+PxV1) o TRANS(Z) (~ ~)
D1 +I xD2+2---+D2+ZxD1 +I

o(SEQ[): +I---+[O]x(D! +I) x BLOCK(v)D;+Z---+ Px vJ

Match Idiom: matrix transposition

FIGURE 10 Algebraic simplification for inter-procedurallayout conversion.

tribution) were used to demonstrate the impact of idiom
matching for fast data layout conversion. The benchmark
codes were listed in Appendix C.

We report our experimental results on the Connection
Machines CM-5 located at AHPCRC of Minnesota Uni­
versity. The CM-5 has totally 896 processing nodes (PN),
configured as various-sized partitions. Each processing
node is a SPARC with four optional vector units that to­
tally can deliver peak rate of 128Mftops [14].

In our experiments, we wrote the five benchmark
codes in CM-Fortran syntax. Two versions of codes were
generated for each benchmark code: a CM-Fortran ver­
sion without any of the algebraic optimizations (called
unoptimized version), and a CM-Fortran version which
was the transformed result from algebraic .optimization.

We then compiled the CM-Fortran codes with vector-unit
option on.

5.1 Algebraic Simplification

Table 3 shows the performance of the three synthetic
codes on 64 processors. In ALIGN I, without optimiza­
tion, array a was copied to a canonical heap temporary
using shift communication, and then the two-dimensional
EOSHIFT was carried out on the temporary. With al­
gebraic simplification, the EOSHIFT intrinsic traffic in
the assignment statement was cancelled out with the
data alignment and therefore all data movement be­
came local memory accesses. This optimization improves

OPTIMIZING DATA MOTION FOR HPF 317

Table 3. Execution Time in Seconds on 64 Processors

Program Problem size unoptimized optimized speedup

ALIGN I 256 X 256 0.005 0.002 2.50
512 X 512 0.010 0.006 1.67

Jk X Jk 0.027 0.021 1.29
2k X 2k 1.105 O.D78 1.35
4k X 4k 0.477 0.305 1.56

ALIGN2 256 X 256 0.019 0.002 9.5
512 X 512 0.062 0.005 12.4

Jk X Jk 0.208 0.016 13.0
2k X 2k 0.959 0.054 17.8
4k X 4k 4.061 0.203 20.0

ALIGN3 32 X 32 X 32 0.009 0.002 4.5
64x64x64 0.017 0.004 4.3

128 X 128 X 128 0.056 0.013 4.3
256 X 256 X 256 0.277 0.063 4.4
512 X 512 X 512 1.270 0.261 4.9

Table 4. Execution Time in Seconds on 64 Processors (ADI: 10 iterations, double precision floating points, FFT: double
precision complex, with block-cyclic layout conversion)

Unoptimized Optimized Speedup
Program Problem size total(comm) tota1(comm) total(comm)

ADI 128 X 128 0.159 (0.127) 0.112 (0.081) 1.42 (1.57)
256 X 256 0.331 (0.270) 0.219 (0.161) 1.51 (1.68)
512 X 512 0.678 (0.562) 0.432 (0.319) 1.57 (1.76)

Jk X Jk 1.511 (1.279) 0.863 (0.641) 1.75 (1.99)
2k X 2k 3.658 (3.191) 1.723 (1.275) 2.12 (2.50)

FFT 128k 0.137 (0.107) 0.074 (0.043) 1.85 (2.48)
256k 0.201 (0.143) 0.109 (0.055) 1.84 (2.66)
512k 0.337 (0.231) 0.186 (0.083) 1.80 (2.78)
1M 0.635 (0.428) 0.357 (0.152) 1.78 (2.82)
2M 1.262 (1.835) 0.701 (0.278) 1.80 (3.01)
4M 2.692 (1.746) 1.369 (0.499) 1.92 (3.50)

program performance of ALIGN! by a factor of 1.29
to 2.50. In ALIGN2, without optimization, array a was
moved to array b using general communication. With

algebraic simplification, the TRANSPOSE intrinsic traf­
fic was cancelled out with the effect of data alignment

and therefore actual data movement becomes a two­
dimensional EOSHIFT operation, which involves only

nearest-neighbor communication. This optimization im­

proved program performance of ALIGN2 by a factor of
9.5 to 20.0. Speedup factors increase with problem sizes.
In ALIGN3, again, without optimization, the assignment

statement was carried out via copying through a canon­
ical heap temporary. With algebraic simplification, the
actual data movement become local copy on array sec­
tion. Program performance was improved by a factor of 4

to 5.

5.2 Data Layout Conversion

Table 4 shows performance of ADI and FFT on 64 pro­
cessors. The computation time in different versions is
almost identical. The unoptimized versions use general
communication for layout conversion. With optimized
transposition operations, communication time of ADI
was improved by a factor of 1.6 to 2.5 and the total execu­
tion time of ADI was improved by a factor of 1.4 to 2.1.
Speedup factors increase with problem sized. A possible
explanation is that on CM-5 a long message is sent in
patches; larger problem sizes produce longer messages,
and therefore heavier traffic in the network and higher
speedup factors due to optimized communication. With
optimized block-cyclic layout conversions, communica­
tion time of FFT was improved by a factor of 1.4 to 3.5
and the total execution time was improved by a factor of

318 WU AND CHEN

Table 5. Execution Time in Seconds on Different Number of Processors with Fixed Per-Processor Problem Size (ADI: double
precision, 128 x 128 per-processor problem size, FFT: double precision complex, 8k per-processor problem size)

Problem
Program nproc size

ADI 32 lk X 2k
64 2k X 2k
128 2k X 4k
256 4k X 4k
512 4k X 8k

FFf 32 256k
64 512k
128 1M
256 2M
512 4M

1.3 to 1.9. The speedup factors in FFT are consistent with
the results of ADI.

Table 5 shows the scaled speedups (by fixing per­
processor problem size and changing number of proces­
sors) of ADI and FFT. When per-processor size is fixed,
speedup factors for ADI increase with number of proces­
sors (by a factor of 2.15 on 32 processors to a factor of
2.86 on 515 processors), because number of messages
increases linearly with machine size and message con­
tention becomes a more serious problem on larger ma­
chines. For larger machine sizes, speedup factors for FFT
also increase with machine sizes.

5.3 Summary

The results from the three synthetic codes all show posi­
tive impact of algebraic simplification on program perfor­
mance, because it is always beneficial to reduce away re­
dundant layout conversions between procedure calls and
unnecessary local copying through canonical temporary
storage.

The results from the two benchmark codes ADI and
FFT show that optimized layout conversion (compile­
time idiom matching + specialized runtime communi­
cation routine) can reduce communication time signifi­
cantly. The reason is that even on a regular communi­
cation architecture like CM-5, message contention may
cause inefficiency. Both of the two benchmark codes in­
volve all-to-all communication, which produces heavy
message traffic in the network. By carefully scheduling
these messages, contention can be reduced greatly. Re­
search has shown that message contention problem is
present on many massively parallel machines [4, 5, 36,
37, 39]. Consequently, those machines will also profit
from this optimization (perhaps with different implemen­
tation of the runtime communication routines).

Unoptimized Optimized Speedup
total(comm) total(comm) total(comm)

3.07 (2.73) 1.61 (1.26) 1.90 (2.15)
3.66 (3.19) 1.72 (1.27) 2.12 (2.50)
5.28 (4.78) 2.33 (1.83) 2.27 (2.61)
8.17 (7.23) 3.52 (2.61) 2.32 (2.76)

11.59 (10.63) 4.65 (3.72) 2.49 (2.86)
0.313 (0.208) 0.178 (0.073) 1.75 (2.85)
0.336 (0.231) 0.185 (0.083) 1.80 (2.78)
0.416 (0.311) 0.221 (0.114) 1.88 (2.73)
0.648 (0.538) 0.282 (0.173) 2.29 (3.10)
1.027 (0.924) 0.394 (0.284) 2.61 (3.25)

6 RELATED WORK

A number of prototype compilers for Fortran 90/HPF
have been developed in the past few years. We first briefly
review the communication optimization techniques used
in some of these compilers. The Fortran D compiler [20,
44] performs various optimizations (message vectoriza­
tion, message pipelining) to reduce communication over­
head. However, the Fortran D compiler currently only
handle a small subset of HPF's data layouts: canonical
alignment and one-dimensional data partitioning, while
our framework is applicable to more general cases. The
Fortran 90D compiler [6) optimizes data movement for
subscripted array references in parallel loops using lin­
ear index-function transformation and pattern matching
for collective communication. By formulating data move­
ment using linear transformations, optimization for non­
linear alignment, such as CSHIFT and replication, and
data redistribution are not possible. Vienna Fortran and
Vienna Fortran-90, based upon the parallelizing system
SUPERB, extends Fortran/Fortran-90 by providing align­
ment and distribution specifications. The Vienna Fortran
compiler [8, 48] currently only supports arbitrary rec­
tilinear block distributions. The ADAPT system [35],
developed at University of Southampton, compiles For­
tran 90 for execution on MIMD distributed-memory ma­
chines. The ADAPT system also simplifies data move­
ment problem by restricting itself to a universal commu­
nication model. The SUIF compilation system [3, 46] de­
veloped at Stanford University uses integer matrix nota­
tions and affine transformation for optimizing data move­
ment in data-parallel programs. This approach is insuffi­
cient for handling HPF's non-linear alignment operations
(e.g. CSHIFT (cyclic shift), CSKEW (cyclic skew), and
SPREAD (replication)) and data redistribution.

Of the part of industry, the CM Fortran compiler [15]
uses simple but naive copy-in, copy-out strategy for inter­
procedural data movement, and copying via canonical

temporary for intra-procedural data movement. To our
knowledge, many commercial compilers either only sup­
port a subset of HPF standard alignment and distribution
specifications or, although they support full HPF data dis­
tributions, do not tackle complex data movement opti­
mization issues like we do (e.g. APR's Forge90 compiler
and the IBM x!HPF compiler).

Our algebraic transformative framework also relates
to other more specific research efforts. The technique
for generating collective communication, pioneered by
the Crystal compiler [32, 33], has great influence on our
work. The major differences are:

(I) the Crystal compiler finds optimal (or near
optimal) data alignment automatically, while our
framework optimizes data movement in the
presence of user-provided data layout
specifications; and

(2) the Crystal compiler does not optimize
inter-procedural data movement as we do.

The array synthesis scheme proposed by Hwang [25]
employs index function transformation for HPF's align­
ment directives and array intrinsics. Array operations are
translated to nested loops with explicit index subscript
expressions. Non-linear array operations are handled by
duplicating multiple copies of the loop nest, each corre­
sponding to a particular boundary condition. Our concern
with this approach is that the program size may increase
rapidly with the number of non-linear operations.

Another important research area is generating com­
munication sets for array section movement Several ap­
proaches have addressed the efficient execution of ar­
ray statements involving block-cyclically distributed ar­
ray sections (e.g. Gupta et al.'s virtual processor ap­
proach [28, 38], Chatterjee et al.'s finite-state machine
approach [9], Stichnoth's [40, 41] array slice analy­
sis, Kenedy et al.'s [29] and Thirumalai and Ramanu­
jam 's [43] integer lattice approach, Venkatachar et al.'s
[45] row-column padding techniques, and Reeuwijk et
al.'s [1] address generation framework). We would like
to point out that the algebraic transformative framework
presented in this paper does not compete with that work.
The main focus of this paper is a framework for high­
level optimization of data movement (i.e. the optimiza­
tion, including algebraic simplification and idiom match­
ing for collective communication, is performed purely in
the global, logical space defined in the program, working
on the algebraic representation level only). A lower level
framework, which is not presented in this paper, handles
all the details of generating send/receive pairs. Internally,
the lower level framework employs similar techniques
borrowed from existing literatures listed ab0ve.

OPTIMIZING DATA MOTION FOR HPF 319

There are also work on global optimization for data
movement. Gilbert and Schreiber [10, 17] designed a dy­
namic programming algorithm for optimizing temporary
storage use for Fortran 90 array statements. Chatterjee et
al. [11, 12] extended that work to allow loop nests. Ju et
al. [27] (and later Hwang et al. [25]) proposed a synthe­
sis scheme for combining consecutive data reference pat­
terns to reduce communication. Another line of work on
global optimization of communication is based on data­
flow analysis, e.g. Amarasinghe and Lam's [2], Gong
et al.'s [18], and Gupta et al.'s [19] work. The current
implementation of our optimization framework assumes
owner-computer rule for compilation of data movement.
We plan to incorporate global optimization techniques in
the near future.

7 CONCLUSIONS

In this paper, we have described the theoretical aspect
and experimental results of the algebraic transformation
framework. We expect the effectiveness of this optimiza­
tion technique to be even more significant for larger ap­
plication programs which usually contain many program
modules and may involve abundant use of array opera­
tions.

Two major optimization primitives in our framework
are algebraic simplification of communication expres­
sions and idiom matching for fast communication. Most
of the communication idioms we have collected are not
architecture-specific. They may or may not have spe­
cialized, fast communication, depending on the target
machine. Specialized implementation of communication
routines may or may not have significant impact on more
regular communication architectures. As a result, idiom
matching may not be crucial to achieving high perfor­
mance on this kind of machines. On the other hand, al­
gebraic simplification is a high-level, abstract transfor­
mation technique that carries out data movement reduc­
tion within the purely logical, global space defined in the
program. Any redundant layout conversions between pro­
cedure calls and any unnecessary local copying through
canonical temporary storage will be reduced away ab­
stractly by algebraic simplification. Consequently, even
on a very balanced, regular communication architec­
ture, communication overhead can still be reduced by
high-level pattern matching and algebraically simplifying
them.

The algebraic transformation framework (including al­
gebraic representation of data movement, alignment and
distribution, an algebraic engine and associated heuris­
tics, and runtime layout conversion and communication
services) allows a compiler to reduce data movement at
the abstract level and leave machine-dependent details to

320 WU AND CHEN

the runtime system. Although presented in the context
of an optimizing compiler, the algebraic transformation
framework can also be used as part of a runtime system
for O!Jtimizing data movement that is dynamic or depen­
dent on runtime computed values. By modeling different
stages of data mapping (alignment, distribution, physical
mapping) and data movement using communication ex­
pressions and providing algebraic rules to simplify each
stage of data movement, the algebraic framework is con­
ceptually clean and portable to different target architec­
tures.

Recently, there has been some progress on the part
of industry toward applying some simple kinds of lay­
out optimizations in commercial HPF compilers. For ex­
ample, TMC's CM-Fortran compiler version 2.2 has in­
cluded some similar optimization techniques for a very
restricted subset of layout directives (shift/shift combina­
tion). We hope that eventually most commercial compiler
groups will adopt our algebraic trans formative strategy, or
something similar to it, to make sure that users can write
HPF code without worrying about compiler blind spots
(like "copy in- copy out" calling sequences, or redundant
sequences of copies through heap temporaries whenever
non-trivial alignments are in force).

ACKNOWLEDGEMENTS

The authors thank Young-il Choo and James Cowie for
helpful discussions on the presentation of this work. The
authors also thank the anonymous referees for many help­
ful comments on earlier versions of the manuscript.

Support for this work was provided by Cooperat­
ing Systems Corporation and Syracuse University un­
der ARPA contract DABT63-91-C-0031, the Army High
Performance Computing Research Center at Minnesota
University, and the Institute of Information Science at
Academia Sinica.

REFERENCES

[1] Reeuwijk et al., "An implementation framework for HDF
distributed arrays on message-passing parallel computer
systems", IEEE Transactions on Parallel and Distributed
Systems, vol. 7, no. 9, 1996.

[2] A. P. Amarasinghe and M.S. Lam, "Communication opti­
mization and code generation for distributed memory ma­
chines," in Proc. ACM SIGPLAN'93 Programming Lan­
guage Design and Implementation, Albuquergue, New
Mexico, June 1993.

[3] J. M. Anderson and M. S. Lam, "Global optimization for
parallelism and locality on scalable parallel machines," in
Proc. ACM SIGPLAN'93 Programming Language Design
and Implementation, Albuquergue, New Mexico, June
1993.

[4] S. H. Bokhari, "Complete Exchange on The iPSC-860,"
ICASE, NASA Langley Research Center, Tech. Rep.,
1991.

[5] S. H. Bokhari, "Multi phase Complete Exchange on A Cir­
cuit Switched Hypercube," ICASE, NASA Langley Re­
search Center, Tech. Rep., 1991.

[6] Z. Bozkus, A. Chaudhary, G. Fox, T. Haupt, S. Ranka,
and M. Wu, "Compiling Fortran 90/HPF for distributed
memory MIMD computers," Journal of Parallel and Dis­
tributed Computing, 1994.

[7] M. Bromley, S. Heller, T. McNerney, and G. L. Steele
Jr., "Fortran and Ten Gigaflops: The Connection Machine
Convolution Compiler," in ACM SIGPLAN'91 Conf Pro­
gramming Language Design and Implementation, June
1991, pp. 145-156.

[8] B. Chapman, H. Herbeck, and H. P. Zima, "Automatic
Support for Data Distribution," in Proc. 6th Distributed
Memory Computing Conference, Aprill991.

[9] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S.
Teng, "Generating local addresses and communication
sets for data-parallel programs," in Proc. Principles and
Practice of Parallel Programming, San Diego, CA, May
1993, pp. 149-158.

[10] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng, "Op­
timal evaluation of array expressions on massively paral­
lel machines," XEROX Palo Alto Research Center, Tech.
Rep. CSL-92-11, December 1992.

[11] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng, "Auto­
matic array alignment in data-parallel programs," in Proc.
20th Annual ACM Symp. Principles of Programming Lan­
guages, 1993.

[12] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng, "Opti­
mal Evaluation of Array Expressions on Massively Paral­
lel Machines," XEROX Corporation, Palo Alto Research
Center, Tech. Rep., December 1992.

[13] M. Chen, Y. Choo, and J. Li, "Theory and pragmatics
of generating efficient parallel code," in Parallel Func­
tional Languages and Compilers, chapter 7. ACM Press
and Addison-Wesley, 1991.

[14] The Connection Machine CM-5 Technical Summary,
Thinking Machines Corporation, Tech. Rep., 1991.

[15] CM Fortran Reference Manual. Cambridge, MA: Think­
ing Machines Corporation, July 1991.

[16] DECmpp 12000 Sx - High Performance Fortran Refer­
ence Manual. Maynard, MA: Digital Equipment Corpora­
tion, 1993.

[17] J. Gilbert and R. Schreiber, "Optimal Expression Evalu­
ation for Data Parallel Architectures," Journal of Paral­
lel and Distributed Computing, vol. 13, no. I, September
1991.

[18] C. Gong, R. Gupta, and R. Melhem, "Compilation tech­
niques for optimizing communication in distributed mem­
ory systems," in Proc. Int. Conf Parallel Processing,
St. Charles, IL, August 1993.

[19] M. Gupta, E. Schonberg, and H. Srinivasan, "An unified
data-flow framework for optimizing communication," in
Proc. 7th Workshop on Languages and Compilers for Par­
allel Computing, Ithaca, NY, August 1994.

[20] S. Hiranandani, K. Kennedy, and C. Tseng, "Compil­
ing Fortran D for MIMD distributed-memory machines,"
Comm. ACM, vol. 35, no. 8, pp. 66-80, August 1992.

[21] C. T. Ho, Optimal Communication Primitives and Graph
Embeddings on Hypercubes. PhD thesis, Department of
Computer Science, Yale University, 1990.

[22] C. T. Ho and S. L. Johnsson, "Optimal Algorithms for Sta­
ble Dimension Permutations on Boolean Cubes," in The
Third Conference on Hypercube Concurrent Computers
and Applications, ACM, 1988, pp. 725-736.

[23] C. T. Ho and S. L. Johnsson, "The Complexity of Reshap­
ing Arrays on Boolean Cubes," in Proc. 5th Distributed
Computing Conference, 1990.

[24] High Performance Fortran Language Specification, Rice
University, Houston Texas, Tech. Rep., May 1993.

[25] G. H. Hwang, J. K. Lee, and D. C. Ju, "An array synthesis
scheme to optimize Fortran 90 programs," in Proc. Prin­
ciples and Practice of Parallel Programming, April1995.

[26] S. L. Johnsson and C. T. Ho, "Matrix Transposition
on Boolean n-cube Configured Ensemble Architectures,"
SIAM J. Matrix Anal. Appl., vol. 9, no. 3, pp. 419-454,
July 1988.

[27] D. C. Ju, C. L. Wu, and P. Carin, "The synthesis of array
functions and its use in parallel computation," in Proc. Int.
Conf Parallel Processing, 1992.

[28] S. D. Kaushik, C. H. Huang, and P. Saydayappan, "Com­
piling array statements for efficient execution on dis­
tributed memory machines: two-level mappings," in Proc.
8th Workshop on Languages and Compilers for Parallel
Computing, August 1995.

[29] K. Kennedy, N. Nedeljkovic, and A. Sethi, "A linear-time
algorithm for computing the memory access sequence
in data-parallel programs," in Proc. 5th ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming,
Santa Barbara, CA, July 1995.

[30] J. Li, Compiling Crystal for Distributed Memory Ma­
chines. PhD thesis, Dept. of Computer Science, Yale Uni­
versity, 1991.

[31] J. Li and M. Chen, "Generating Explicit Communication
from Shared-Memory Program References," in Supercom­
puting, pp. 865-876, 1990.

[32] J. Li and M. Chen, Proc. the Workshop on Programming
Languages and Compilers for Parallel Computing, chap­
ter "Automating the Coordination of Interprocessor Com­
munication." MIT Press, 1990.

[33] J. Li and M. Chen, "The data alignment phase in compil­
ing programs for distributed-memory machines," Journal
of Parallel and Distributed Computing, 1991.

[34] D. Loveman, "High performance Fortran: Proposal," in
High Performance FORTRAN Forum, Houston, Texas,
January 1992.

[35] J. Merlin, "Techniques for the automatic parallelisation
of distributed Fortran 90," Department of Electronics
and Computer Science, University of Southampton, Tech.
Rep. SNARC 92-02, November 1991.

[36] R. Ponnusamy, R. Thakur, A. Choudhary, and G. Fox,
"Scheduling Regular and Irregular Communication Pat­
terns on the CM-5," in Proc. Supercomputing'92, 1992.

OPTIMIZING DATA MOTION FOR HPF 321

[37] R. Ponnusamy, A. Choudhary, and G. Fox, "Communi­
cation Overhead on CM5: An Experimental Performance
Evaluation," in Proc. Frontiers'92, 1992.

[38] K. S. Gupta, S. D. Kaushik, C. H. Huang, and P. Sadayap­
pan, "Compiling array statements for efficient execution
on distributed memory machines: two-level mappings,"
Journal of Parallel and Distributed Computing, vol. 32,
pp. 155-172, 1996.

[39] T. Schmiermund and S. R. Seidel, "A Communication
Model for the Intel iPSC/2," Michigan Technological Uni­
versity, Tech. Rep. , 1990.

[40] 1. M. Stichnoth, "Efficient compilation of array statements
for private memory multicomputers," School of Computer
Science, Carnegie Mellon University, Tech. Rep. CMU­
CS-93-109, February 1993.

[41] J. M. Stichnoth, D. O'Hallaron, and T. R. Gross, "Gener­
ating communication for array statements: Design, imple­
mentation, and evaluation," Journal of Parallel and Dis­
tributed Computing, vol. 21, no. l, pp. 150-158, April
1994.

[42] R. Thakur, A. Choudhary, and J. Ramanujam, "Efficient
algorithms for array redistribution," IEEE Trans. Parallel
and Distributed Systems, vol. 6, no. 7, pp. 587-594, June
1996.

[43] A. Thirumalai and J. Ramanujam, "Fast address sequence
generation for data-parallel programs using integer lat­
tices," in Proc. International Parallel Processing Sympo­
sium, 1995.

[44] C. W. Tseng, An Optimizing Fortran D Compilers for
MIMD Distributed-Memory Machines. PhD thesis, Rice
University, 1993.

[45] A. Venkatachar, J. Ramanujam, and A. Thirumalai, "Gen­
eralized overlap regions for communication optimization
in data-parallel programs," in Proc. 6th Int. Workshop on
Languages and Compilers for Parallel Computing, 1997.

[46] M. Wolf and M. Lam, "A data locality optimizing algo­
rithm," in Proc. ACM SIGPLAN'91 Conf. Programming
Language Design and Implementation, Toronto, Ontario,
Canada, June 1991, pp. 30-44.

[47] 1. A. Yang and Y. Choo, "Parallel-program transforma­
tion using a metalanguage," in Proc. 3rd ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming,
Williamsburg, Virginia, Aprill991, pp. 11-20.

[48] H. Zima and B. Chapman, "Compiling for distributed
memory systems," in Proc. IEEE Special Section on Lan­
guages and Compilers for Parallel Machines, February
1993, pp. 264-287.

Appendix A

Figure 11 shows some examples of communication ex­

pressions for intra-procedural data movement. In order to
formalize data movement for the assignment statements,

it is necessary to construct the layouts of the local data

and to use these constructions in the application of the

Intra-Procedural Rule (Figure 6b).

322 WU AND CHEN

!HPF$

!HPF$
!HPF$

!HPF$

!HPF$

REAL A(100,200), B(l00,200), C(lOO), D(lOO)

TEMPLATE, DISTRIBUTED (BLOCK, BLOCK) :: T(202,101)
ALIGN A(I,J) WITH T(J+2,I+l)

ALIGN B(I,J) WITH T(I,J)

ALIGN C(I) WITH T(l,J)

ALIGN D(I) WITH T(l,lOl-I)

Sl B EOSHIFT(EOSHIFT(TRANSPOSE{A),dim=l,shift=-l),dim=2,shift=-l)

S2 C = CSHIFT(D,dim=l,shift=-1)

Index domains :

D1 =Interval(!, 100), D2 = Interval(l, 200).

Data movement for statement Sl:

RHS layout (array A):

g,A = (EOSHIFT(2)D2-+D2+2 X EOSHIFT(1)D1-+D1+1) o TRANS(
2
) (~ ~)

D1 xD2-+Dz xD,
Array reference:

CYA = (EOSHIFT(1)D2-+D2+1 X EOSHIFT(1)D,-+D,+l) o TRANS(2) (O 1
)

1 O D1 xDz-+D2xD1

LHS layout (array A):

g[A = id(D2+l)x(D1+1)->(D2+l)x(D!+l)·

Actual data movement:

eA = g[A 0 CYA 0 g;1 (see Figure 6b)

= (EOSHIFT(1)Dz-+Dz+l X EOSHIFT(l)D1-+D1+1) o TRANS(
2
) (~ ~)

D1 xDz-+Dz xD1

o TRANS(
2
) (~ ~)-! o (EOSHIFT(2)0~-+Dz+l X EOSHIFT(l)0:-+DJ+l).

D, xD2-+D2 xD1
Data movement for statement S2 :

RHS layout (array D):

g,D = (id x REFLECTD,-+D,) o EMBED(l, 2) (~) ;
D1-+([l]xD,)

array reference:

aD = CSHIFT(l)D1-+D1;

LHS layout (array D):

gw = EMBEd
1
·
2
) (~) ,

D1-+([l]xDJ)
actual data movement:

8D = gw o CYD o g;ri (see Figure 6b)

= EMBEd1·2) (~) o CSHIFT(1)D1-+D1 o EMBEd1·2) (~)-! o (id x REFLECT[):-+D).
D1-+([l]xD1) DJ-+([l]xDI)

FIGURE 11 Communication expressions for intra-procedural data movement. For simplicity, we only show the alignment subex­
pressions.

procedure ALPHA in Figure II
source program
real A(100,200), 8(100,200), C(lOO), D(lOO)
template T(202,101)
align A(i,j) with T(j+2,i+l)
align C(i) with T(l,i)
align D(i) with T(l,lOl-i)

OPTIMIZING DATA MOTION FOR HPF 323

transformed program
real A' (3:202, 2:101), B' (100,200)
real C' (1, 100), D' (1, 100)

Sl B = EOSHIFT(EOSHIFT(TRANSPOSE(A),
dim=l,shift=-l),dim=2,shift=-1)

S2 C = CSHIFT(D,dim=l,shift=-1)

Sl B' EOSHIFT(A' ,dim=l,shift=l)

S2 C' CSHIFT(REFLECT(D' ,dim=2)dim=2,shift=l)

Simplification procedure:

Data movement for statement Sl:

(EOSHIFT(l)D2---+D2+1 x CSHIFT(l)D1---+D1+1) o TRANS(~~) o
D1 xD2---+D2xD1

o (EOSHIFT(-2)D2+2---+D2 x EOSHIFT(-l)D1+1---+D1)

By Rule 5: Reduction of ALIGN2 operators

(EOSHIFT(l)D2---+D2+1 x EOSHIFT(l)D1---+DI+I) o (EOSHIFT(-2)D2+2--->D2 x EOSHIFT(-l)D1+1---+D1)

By Rule 10: Product-Composition Exchange

(EOSHIFT(l)D2---+D2+1 o EOSHIFT(-2)D2+2---+D2) x (EOSHIFT(l)D1---+D1+1 o EOSHIFT(-l)D1+1---+D1)

By Rule 2: Reduction of ALIGN! operators

EOSHIFT(-l)D2+2---+D2+1 X idD1+1---+D1+1

Data movement for statement S2:

eD = EMBED2 (~) o csH(I)D1---+D1 o EMBED2 (~)-
1

o (id x REFLEcT:;:---+DJ
D1---+([l]xDJ) D1---+([l]xDJ)

By Rule 12: Exchange of ALIGN! and ALIGN3

CSH(O) oEMBED2 (
0

) oEMBED2 (
0
)-I o(idxREFLECTDI---+D)

l [l]xD1--->[l]xD1 l D1---+([l]xD1) l D1---+([l]xDJ) 1 1

By Rule 8: Inverse cancellation of ALIGN3

CSH(~) o(id[I]---+[1] xREFLECTD1---+D1)
[l]xD1---+[I]xD1

By definition of CSH

(id[J]---+[1] x CSHIFTD1---+D1) o (id[I]---+[1] x REFLECTD1---+D1)

By Rule 10: Product-composition exchange

id[I]---+[1] x (CSHIFTD1---+D1 o REFLECTD1---+D1).

FIGURE 12 Algebraic simplification for intra-procedural data movement.

Figure 12 illustrates the algebraic transformations for

these expressions. Data movement in the first statement is

reduced to an one-dimensional CSHIFT operation, while

the second statement requires an additional reflection op­

eration (REFLECT) due to the effect of the data alignment

directives.

Appendix B

This appendix gives proofs of some of the rules in each

communication subalgebra. The inverse rules (Rules 1, 4,
and 8) are obvious. Proofs of Rules 2(1), 5(3), and 9(2)
are give below. Proofs of other rules are analogous.

324 WU AND CHEN

Rule 2(1) CSHIFT(cz)D+q---+D+CJ o EOSHIFT(C!)D---+D+q = EOSHIFT(CJ)D---+D+q o CSHIFT(cz)D---+D·

Proof.

(CSHIFT(cz)D+q---+D+CJ o EOSHIFT(C!)D---+D+q)(i ED)

By definition of EO SHIFT

(CSHIFT(cz)D+c1---+D+q)((i + q) ED+ c1)

By definition of CSHIFT

lb(D + CJ) + (i + CJ- lb(D + q) + cz) mod (ub(D + CJ)- lb(D + q))

= lb(D) + c, + (i + CJ- lb(D)- c, + cz) mod (ub(D)- lb(D))

= lb(D) + (i- lb(D) + cz) mod IDI + CJ.

(EOSHIFT(CJ)D---+D+CJ o CSHIFT(cz)D---+D)(i ED)

By definition of CSHIFT

EOSHIFT(C!)D---+D+CJ (lb(D) + (i- lb(D) + cz) mod IDI

= lb(D) + (i- lb(D) + cz) mod IDI + CJ. D

Rule 5(3) CSKEW(dl(Mz)D---+D o CSKEW(dl(MJ)D---+D = CSKEW(dl(Mz * MJ)D---+D·

Proof. Let I= (i,, ... , id), D = D1 x · · · x Dd, Mod(!, IDI) = (i, mod ID1I, ... , id mod IDJI).

(cSKEW(d)(Mz)D---+D o CKEW(d)(MJ)D---+D)(l ED)

By definition of CSKEW

(csKEw<dl(M2)v---+v)(Mod(MJ *I, ID11))

By definition of CSKEW

Mod(Mz * (Mod(M, *I, IDD))
By property of modulus

Mod((Mz * M,) *I, IDI).

CSKEW(d)(Mz * MJ)D---+D)(l ED)

By definition of CSKEW

Mod((Mz * M,) *I, IDI). D

Rule 9(2)

Proof. Let v, (k) -I- 0, Vz(l) -I- 0.

(REPLICATE(n)(Vz, Ez)D2 ---+D3

oREPLICATE<nJcv,, EJ)D1---+Dz)((iJ, ... , ik-J, ik+J, ... , iz-J, it+J, ... , in) ED,)

By definition of REPLICATE

(REPLICATE(n)(Vz, Ez)Dz---+D3)(i,, ... , ik-J, ik, ik+J, ... , iz-J, it+!, ... , in)

By definition of REPLICATE

(iJ, ... , ik-J, ik, ik+J, ... , it-1, it+J, ... , in)·

(REPLICATE(n)(Vz + V1, £1 x Ez)D1---+v3)((iJ, ... , ik-1, ik+J, ... , it-1, it+l, ... , in) E D1)

for V(k) -I- 0, V(l) -I- 0

(REPLICATE(n)(V, £1 X Ez)v1---+D3)((iJ, ... , ik-J, ik+J, ... , it-1, it+J, ... , in) E D1)

By definition of REPLICATE

Appendix C: benchmark codes

program ALIGN1
cc test program for ALIGN1

subalgebra
integer m,n,ntimes

!HPF$ template T(m,n)
!HPF$ distribute T (block,block)

real a(m-1,n-1), b(m-1,n-1)
!HPF$ align a(i,j) with T(i+1,j+1)
!HPF$ align b(i,j) with T(i,j)

do n = 1, ntimes
b = eoshift(eoshift(a,dim=1,

shift=1,dim=2,shift=1)
end do

program ALIGN2
cc test program for ALIGN1

and ALIGN2 subalgebras
integer n,ntimes

!HPF$ template T(n,n)
!HPF$ distribute T (block,block)

real a(n-1,n-1), b(n-1,n-1)
!HPF$ align a(i,j) with T(j+1,i+1)
!HPF$ align b(i,j) with T(i,j)

do n = 1, ntimes
b = transpose (a)
end do

program ALIGN3
cc test program for ALIGN1

and ALIGN3 subalgebras
integer m,n,k,ntimes

!HPF$ template T(m,n,k)
!HPF$ distribute (block,block,block)

real a(m,n-2), b(m,n-2)
!HPF$ align a(i,j) with T(i,j+2,1)
!HPF$ align b(i,j) with T(i,j,1)

do n = 1, ntimes
a = eoshift (b,2,2)
enddo

program ADI
cc Alternate Direction Implicit

method
cc for PDE solver

OPTIMIZING DATA MOTION FOR HPF 325

real U(n,n), V(n,n)
!HPF$ distribute U (*,block)
!HPF$ align V(i,j) with U(i,j)

do i = 1, ntimes

call tridiag_solver(V)
!HPF$ realign V(i,j) with U(j,i)

call tridiag_solver(V)
!HPF$ realign V(i,j) with U(i,j)

U=V
enddo

program FFT
cc Fast Fourier Transform
cc using hybrid data distribution

complex x (n) , w
logical ones(n)
integer p

!hpf$ distribute cyclic :: x

p = nurnber_Of_processors()

cc butterfly stages using cyclic
distribution
do k = log2(n)-1, log2(p), -1
where (ones)

x = x + w * cshift(x,dim=1,
shift=2**k)

elsewhere
x = x * (-w) + cshift(x,dim=1,

shift=-2**k)
end where
end do

!hpf$ redistribute block :: x

cc butterfly stages using
block distribution
do k = log2{p)-1, 0, -1
where (ones)

x = x + w * cshift(x,dim=1,
shift=2**k)

elsewhere
x = x * (-w) + cshift(x,dim=1,

shift=-2**k)
end where
end do

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

