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ABSTRACT

Data parallel languages, such as High Performance Fortran, can be successfully applied to
a wide range of numerical applications. However, many advanced scientific and engineering
applications are multidisciplinary and heterogeneous in nature, and thus do not fit well into
the data parallel paradigm. In this paper we present Opus, a language designed to fill this
gap. The central concept of Opus is a mechanism called ShareD Abstractions (SDA). An
SDA can be used as a computation server, i.e., a locus of computational activity, or as
a data repository for sharing data between asynchronous tasks. SDAs can be internally
data parallel, providing support for the integration of data and task parallelism as well as
nested task parallelism. They can thus be used to express multidisciplinary applications in
a natural and efficient way. In this paper we describe the features of the language through
a series of examples and give an overview of the runtime support required to implement
these concepts in parallel and distributed environments.

1 INTRODUCTION

With the arrival of teraflop architectures, the complex-
ity of simulations being tackled by scientists and engi-
neers is increasing exponentially. Many of these simula-
tions are of a complex, “multidisciplinary” nature, con-
structed by pasting together modules from a variety of re-
lated scientific disciplines. This raises a host of new soft-
ware integration issues. While data parallel languages,
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like HPF [21], are well-suited to exploiting the paral-
lelism in each module [10], they offer little support for in-
tegration and also do not exploit the coarse grained paral-
lelism that multidisciplinary applications frequently pro-
vide.

One example of a multidisciplinary application is en-
vironmental simulation. One might, for example, have a
sequence of models, such as a) a swamp biology model
for the Everglades, b) a hydrothermal model for the Gulf
stream, c) a mesoscale climate model and d) a solar radia-
tion model. The goal is then to interconnect these models
into a multidisciplinary one subsuming the original mod-
els together with their various couplings.

Another example is multidisciplinary optimization
(MDO). Designing a modern aircraft, for example, re-
quires a wide variety of interacting disciplines: aerody-
namics, propulsion, structural analysis, controls, and so
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forth. An optimal engineering design is necessarily an
admixture of suboptimal designs in each discipline. The
essential goal is to correctly couple a set of complex
scientific and engineering programs from different disci-
plines, into a coherent whole capable of effective multi-
disciplinary optimization.

Implementing multidisciplinary applications raises a
number of complex programming issues. One is that the
constituent programs being glued together are typically
written by different groups, using different data structures
and approaches. Moreover, the mix of programs involved
typically changes over time. In the environmental simu-
lation, for example, one might find it necessary to add
a model of airborne particle transport to correctly predict
solar heating. Similarly, in MDO of an aircraft, one might
need to replace a simple linear flow solver by a more so-
phisticated Euler or Navier-Stokes code.

In such large-scale programming projects, statically
forming a “task graph” and coupling tasks via “message
plumbing” is virtually unworkable. A much more flex-
ible software environment appears to be critical. At the
same time, one wants to effectively exploit the parallelism
both within and across the separate discipline models.
Exploiting the coarse-grained parallelism in multidisci-
plinary applications requires facilities for spawning and
synchronizing collections of tasks, each of which might
contain internal data parallelism.

We have recently designed a coordination language,
calledOpus, targeted towards such applications. It pro-
vides a software layer on top of data parallel languages,
such as HPF, designed to address both the “programming
in the large” issues and the parallel performance issues
arising in complex multidisciplinary applications.

The heart of Opus is a new mechanism, calledShareD
Abstraction (SDA). SDAs borrow from object-oriented
systems in that they encapsulate data and the methods that
act on the data, and from monitors in shared memory lan-
guages in that an active method has exclusive access to
the data of an SDA.

Tasks, i.e., asynchronously executing autonomous ac-
tivities, are instantiated in Opus by creating instances
of SDAs and invoking the associated methods. Differ-
ent SDAs represent distinct address spaces, hence Opus
tasks do not directly share data. Instead, interaction be-
tween tasks is accomplished by invoking methods in other
SDAs. Thus, a set of tasks may share a pool of common
data by creating an SDA of the appropriate type and mak-
ing the data SDA available to all tasks in the set. Using
SDAs and their associated synchronization facilities also
allows the formulation of a range of coordination strate-
gies for these tasks. This set of concepts forms a powerful
tool which can be used for the hierarchical structuring of
a complex body of code and a concise formulation of the
associated coordination and control mechanisms.

The runtime system supporting Opus utilizes light-
weight, user-level threads that are capable of supporting
both intra- and inter-processor communication primitives
in the form of shared memory, message-passing, and re-
mote service requests [20]. This allows the independently
executing SDA tasks to freely share the underlying paral-
lel resources.

The remainder of the paper is organized as follows:
The next section discusses the language extensions de-
fined in Opus and their use. Section 3 presents a couple
of multidisciplinary applications, using the concepts in-
troduced in Section 2. Section 4 outlines the runtime sup-
port necessary for implementing these extensions. This is
followed by a section on related work and a brief set of
conclusions.

2 THE OPUS LANGUAGE

There are a number of constraints which must be satisfied
by any general framework which supports the coupling of
multiple programs into complex multidisciplinary codes.
In particular, we have identified the following require-
ments:

• The separate programs should be “encapsulated”
into modules in a way that respects their separate
name spaces.
• Coupling between modules should be at the highest

level (as opposed to having message-passing
constructs throughout the code).
• Both task-level parallelism between modules, and

data parallelism within each module should be
expressible.
• Flexible and general synchronization mechanisms

should be provided to allow the programmer
maximal freedom in exploitation of task-level
parallelism.

The first two of these requirements are motivated by
software-engineering considerations. Their purpose is to
simplify the combination of component modules, enable
the definition of clear interfaces between modules, and
allow modules to be intermixed without rewriting their
internal code. This is in contrast to message-passing mod-
els, which combine modules with no clear interface defi-
nition.

The other two requirements are needed for perfor-
mance. Multidisciplinary codes are among the largest and
most computationally intensive codes, so that any lan-
guage designed for such applications must have the po-
tential to fully exploit highly parallel architectures.

To fulfill these requirements, Opus introduces a new
construct called aShareD Abstraction (SDA). This con-
cept supports the development of MDO codes by provid-
ing data and method encapsulation. SDAs can be used as
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SDA TYPE buffer_type(size)
INTEGER :: size
REAL :: fifo(0:size-1) ! FIFO buffer
INTEGER, READ_ONLY :: count = 0 ! number of full elements in FIFO
INTEGER :: px=0 ! producer index
INTEGER :: cx=0 ! consumer index
· · ·

CONTAINS
! method part

END buffer_type

PROGRAM CODE 1

computation servers as well as shared data repositories.
We use the well-developed HPF facilities for data par-
allelism within each SDA, while borrowing ideas from
operating systems for inter-module communication and
task-level parallelism.

In this section, we describe the most important con-
structs of Opus and illustrate them by applying them to
the standardproducer-consumer problem. A simple me-
teorological coordination problem and a more challeng-
ing example – taken from the domain of aircraft design –
will be discussed in the next section.

2.1 The Features of Opus

Opus introduces a small set of features for defining
and using SDA objects and accessing SDA data. It pro-
vides language constructs to define SDA types, declare
SDA variables, create, initialize, terminate, and save
SDA objects, as well as activate SDA methods both
synchronously and asynchronously. The syntax borrows
heavily from Fortran 90.

We summarize the way in which these features are
used to build an Opus application below. A full descrip-
tion of the language features can be found in [24]. An
SDA type in Opus specifies an object structure, contain-
ing data along with themethods(procedures) which ma-
nipulate this data. AnSDA object(which we usually sim-
ply refer to as an SDA) is generated bycreating an in-
stanceof an SDA type. The creation of an SDA involves
allocation of resources on which the SDA will execute,
the allocation of data structures in memory and any ini-
tializations that are necessary to establish a well-defined
initial state. Thelifetime of an SDA is the time interval
between its creation and itstermination. During this in-
terval, the SDAexistsand can be accessed via method
calls. SDA variables are handles through which SDAs
are accessed from within a program.

There are two ways of invoking amethodof an SDA:
synchronously, where the caller is blocked until con-
trol returns, orasynchronously, by a non-blocking call.

An asynchronous method execution may be associated
with an event, which can be used for status inquiries
and synchronization. No two method executions belong-
ing to thesameSDA can execute in parallel; as a con-
sequence each method hasexclusive accessto the data
of its SDA. A method may have an associatedcondition
clause, specifying a logical expression, which guards the
method’s activations.

An SDA can besavedby copying it to external stor-
age, thus generating anexternal SDA, which is identified
by a unique external name. External SDAs arepersistent,
having an a priori unlimited lifetime. Saving an SDA thus
makes it accessible for later reuse, byloading an external
SDA into memory.

Each SDA is associated with a unique(SDA) task,
which is the locus of all control activity related to the
SDA. The SDA task operates on the resources allocated
to the SDA, provides an address space for the SDA’s data,
and manages the execution of calls to the SDA’s methods.
The execution of an Opus program can be thought of as
a system of SDA tasks in which a task executes a method
of its SDA in response to a request from another SDA.

2.2 The Producer-Consumer Problem

We introduce the syntax and semantics of the Opus lan-
guage by developing an Opus solution to the standard
producer-consumer problem. This simple problem, in
which a set of producers generate data which are pro-
cessed by a set of consumers, is also the basis for a num-
ber of real-world applications. Our version creates a sys-
tem in which each individual producer and consumer op-
erates independently. Synchronization between them is
provided by controlling their access to a bounded FIFO
buffer.

To do this, the first step is to define an SDA type which
encapsulates the data structures required to implement the
bounded buffer along with the access methods which per-
mit producers to write to the buffer and consumers to read
from it. The above fragment (see Program Code 1) shows
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SUBROUTINE put(x)WHEN (count.LT. size) ! condition tests assertion:buffer not full
REAL , INTENT(IN) :: x
fifo(px) = x ! Put x into first empty buffer element
px = MOD(px+1,size)
count = count + 1

END
SUBROUTINE get(x)WHEN (count.GT. 0) ! condition tests assertion:buffer not empty

REAL , INTENT(OUT) :: x
x = fifo(cx) ! Read next full buffer element
cx = MOD(cx+1,size)
count = count - 1

END
PROGRAM CODE 2

the data structure created to define a buffer which may
hold up tosizedata items of type REAL. Specification of
the value ofsizeis deferred until the actual creation of an
SDA (see below). The variablecountkeeps track of the
current number of elements in the buffer, whilepx and
cx point to the current index positions for producers and
consumers respectively.

In contrast to Fortran modules, the internal variables
of an SDA type are by default private, i.e., are accessi-
ble only from the methods associated with the SDA. The
keywordPUBLIC can be used to change this default for
the whole SDA or to control the accessibility of individ-
ual variables. Opus extends Fortran by supporting the at-
tributeREAD_ONLY , which allows SDA variables, such
ascountabove, to be accessed but not modified from out-
side.

Next, access methods for reading from and writing to
the buffer have to be defined. The producers may write
data to the buffer only if the buffer is not full, while con-
sumers may read data only if the buffer is not empty. Opus
enables conditional execution of a method by permitting a
condition clause, containing a side-effect free logical ex-
pression, to be associated with a method. The condition
is evaluated when the method is invoked, and the method
can only be activated if the result istrue. If it is false, the
method activation request is enqueued until the condition
evaluates totrue. This can happen as a result of another
method call that changes variables on which the condition
depends.

Our formulation defines two methods: subroutinesget
andput for reading from and writing to the buffer respec-
tively. These are shown in Program Code 2.

The condition clauses control access to the buffer, al-
lowingputmethods to be executed only when the buffer is
not full andgetmethods to executed only when the buffer
is not empty. If we combine these methods with the data
declarations defined above, the interface between the pro-
ducer and consumer tasks is fully specified.

One of the critical features of SDAs is theatomic-
ity of method executions. In order to avoid incoherent
states of the data associated with any given SDA, methods
are executed as atomic operations. That is, any executing
method has complete and sole access to all the internal
data structures of the SDA. Thus, theget andput meth-
ods above can access and modify shared variables, e.g.,
fifo andcount, without interference from other activations
of the methods.

The dummy arguments of an SDA type specification
are all of intent IN and therefore passed in by value.
Methods are arbitrary procedures, and may have argu-
ments of any intent, which are passed with copy-in/copy-
out semantics.

The producer and consumer tasks must now be asyn-
chronously activated and linked with the SDA in such a
way that they are able to write and read the buffer, re-
spectively. This is implemented as follows. First, an SDA
variable,buffer, of the SDA typebuffer_typeis declared
as shown below:

INTEGER buffersize
SDA(buffer_type) buffer

READ *, buffersize
CALL buffer%CREATE(buffersize)

CREATEis an implicit method which is called to cre-
ate the SDA object to be associated with the variable
buffer. The variablebuffersizeis passed in as the actual
argument which is associated with the formal argument
sizeand is used to allocate the internal data structures of
the SDA.CREATEallocates and initializes the SDA ob-
ject. The user may augment the system initialization by
defining anINIT method which is implicitly called after
the call toCREATE. Opus provides other methods which
are implicitly declared for all SDA types:SAVE, LOAD,
andTERMINATE.

SAVEpermits the saving of the internal state of an
SDA to a named external object, whileLOAD allows the
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creation of an SDA object based on an external object.
SAVEandLOADprovide the minimum language support
required for dealing with persistent SDAs. For convenient
use of this mechanism in real applications several exten-
sions are desirable. We are currently studying additional
language features focusing onpartial saving, the relax-
ation of the type conformity requirements in LOAD, and
input/output, in particular usingsmart files[18] for exter-
nal storage of the data.

In general, the lifetime of an SDA object extends from
the time it is created to the time that the execution leaves
the scoping unit in which the SDA declaration was orig-
inally processed. At this time the SDA is implicitly ter-
minated. TheTERMINATEmethod can be called to ex-
plicitly terminate an SDA and free its associated stor-
age.

Note also that the language provides facilities to spec-
ify system resources at the time of initialization of the
object either through theCREATEor LOADmethods (see
next section for some examples).

Once the SDA object has been created, its public data
can be accessed and the associated methods called us-
ing a syntax similar to that used for derived types in For-
tran. Thus, for example, the consumers can invoke theget
method for the SDAbufferas follows to access the next
data element.

CALL buffer%get(A)

The above statement designates asynchronous method
activation which will block the caller until the method
call returns.

In order to support concurrent activity, Opus also pro-
vides asynchronous method activationin which the
caller is not blocked by the method call. For example, in
the code below, aspawnstatement is used to invoke the
methodgetasynchronously.

EVENT E
· · ·
E = SPAWN buffer%get(A)
! Do other work.
WAIT (E)

Thespawnstatement returns aneventwhich is assigned
to theevent variable E. The calling unit can continue its
computation and use the event variable in await state-
ment, as shown above, to wait for the completion of the
associated method call. This allows the caller and the in-
voked method to execute in parallel, in this case overlap-
ping computation with “getting” data elements from the
buffer.

A nonblocking alternative to the wait statement,
TEST (E), allows the caller to test for the completion of
an asynchronous method invocation. It returns the current
completion state.

As with SDA methods, thespawnstatement can also
be used with generic Fortran subroutines to generate
concurrent activity. Thus, in the full producer-consumer
code, as shown in Figure 1,np copies of the subrou-
tine produceand nc copies of the subroutineconsume
are spawned as asynchronously executing tasks. Each is
passed the SDA variablebufferwhich they use as a shared
resource for communicating values. Note that we have
omitted the code for terminating these tasks.

3 MULTIDISCIPLINARY APPLICATIONS USING
OPUS

Multidisciplinary applications, including the important
subclass of multidisciplinary optimization (MDO) prob-
lems, are commonly formed by combining data parallel
units from various disciplines to create a single applica-
tion. With the increase in the size of computing systems
available and the improved access to them, development
of such applications, and the complexity of the coupling
between the individual components is steadily increas-
ing. Below we introduce two examples. The first of these,
taken from meteorology, has a simple and well-defined
interaction between its two component modules. The next
example is a simplification of an MDO application for
aircraft design with rather more complex interaction pat-
terns.

3.1 Opus for Data Parallel Applications

One situation in which the kind of interaction described in
the producer-consumer program might occur in practice
is the coupling of a global numerical weather prediction
(NWP) model with a limited area forecast model. In this
case, the boundary areas of the limited area model are
refreshed by the interpolation of results from the global
model at time steps corresponding to fixed intervals over
the time period of the prediction. We use this very simple
coupling example to consider the data parallel require-
ments of an Opus application.

We assume that the global NWP programglobal and
the local NWP programlocal have been independently
developed and that they are available as distinct HPF ap-
plications. A simple data interface is required for their
coupling.

The programglobalwill write the data set correspond-
ing to the boundary areas of the limited area model to an
SDA at the appropriate intervals, from which it will be
read in bylocal. In order to maintain accuracy in the lim-
ited area computation, it is important thatlocal receives
the data sets fromglobal in their chronological order and
that all of them be processed. The amount of data be-
ing transferred dictates that only a small number of data
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PROGRAM Consumer_Producer
INTEGER np, nc, buffersize
SDA(buffer_type) buffer

READ(np,nc,buffersize)
CALL buffer%CREATE (buffersize)

DO i= 1, np !Spawn producers
SPAWN produce(buffer, ...)

END DO
DO i= 1, nc !Spawn consumers

SPAWN consume(buffer, ...)
END DO
· · ·

END

SDA TYPE buffer_type(size)
INTEGER :: size
REAL :: fifo(0:size-1)
INTEGER, READ_ONLY :: count=0
INTEGER :: px=0, cx=0

CONTAINS

SUBROUTINE put(x) WHEN (count .LT . size)
REAL , INTENT (IN ) :: x
fifo(px) = x; px = MOD(px+1,size); count = count + 1

END

SUBROUTINE get(x)WHEN (count .GT. 0)
REAL , INTENT (OUT) :: x
x = fifo(cx); cx = MOD(cx+1,size); count = count - 1

END
END buffer_type

SUBROUTINE produce(b, ...)
SDA(buffer_type) b
· · ·
DO WHILE (.TRUE.)

! produce a data item A
CALL b%put(A)

END DO
END produce

SUBROUTINE consume(b, ...)
SDA(buffer_type) b
· · ·
DO WHILE (.TRUE.)
CALL b%get(A)
! consume A

END DO
END consume

FIGURE 1 Producer/Consumer problem using Opus.

sets be stored at any time; here, we assume that only one
such data set is to be saved in the SDA for reading by
local.

Program Code 3 shows part of the definition of the
SDA typeshared_metdatawhich is used with a series of
methods to read and write a number of different fields of
meteorological data. We show just a few variables here: in
practice, there are likely to be on the order of half a dozen

different quantities. HPF directives are used to distribute
the arrays by blocks to the processors on which the SDA
is executed.

The next step is to create an SDA of the above type and
spawn the local and global codes which would use the
SDA to transfer data. This is shown in Program Code 4.

In this coordination application, the two methods are
asynchronously invoked on two distinct sets of proces-
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SDA TYPE shared_metdata(size)
!HPF$PROCESSORSP(number_of_processors())!HPF directive specifing the processor set

INTEGER :: size
! data fields used to save boundary values:

REAL :: temp(size)
REAL :: xvelo (size)
· · ·

!HPF$DISTRIBUTE (BLOCK ) ONTO P:: temp, xvelo ! HPF directive to distribute
! data by blocks across the processors

LOGICAL :: tempmarker = .FALSE. ! variable used to indicate whether unread
! data is stored in the SDA

· · ·
CONTAINS

SUBROUTINE puttemp(restemp)WHEN (tempmarker .EQ. .FALSE.)
! puttemp stores global temperatures in the SDA array temp

REAL , INTENT(IN) :: restemp(size)
!HPF$ DISTRIBUTE (BLOCK ) :: restemp

temp = restemp
tempmarker = .TRUE.

END
· · ·

SUBROUTINE gettemp(boundtemp)WHEN (tempmarker .EQ. .TRUE.)
! gettemp reads global temperatures from the SDA array temp

REAL , INTENT(OUT) :: boundtemp(size)
!HPF$ DISTRIBUTE (BLOCK ) :: boundtemp

boundtemp = temp
tempmarker = .FALSE.

END
END shared_metdata

PROGRAM CODE 3

!HPF$PROCESSORSR(32)
SDA(shared_metdata) boundary
· · ·

CALL boundary%CREATE(insize)ON (PROCESSORSR(1:16) )

SPAWN global(boundary, ...)ON (PROCESSORSR(17:32) )
SPAWN local(boundary, ...)ON (PROCESSORSR(1:16) )
· · ·

PROGRAM CODE 4

sors of the available computing system to run the weather
codes (these may well be on different computers in prac-
tice). An HPF directive has been used to declare the pro-
cessors involved; it specifies both the number of proces-
sors and gives them a global name. This is then referred
to in the method calls which create the SDA and asyn-
chronously spawn the global and local codes. Thus the
user can ensure that the two applications run on differ-
ent sets of processors and that an appropriate set of pro-

cessors is allocated for each code. In the above code, a
decision has been made to locate the data produced by
global on the same processors as the code,local, which
will read them. HPF notation has also been used to dis-
tribute the data associated with the SDA. We may assume
that the specification of this distribution enables the read-
ing of data to be performed locally when the methodget-
tempis invoked.
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In practice, a non-trivial filter will be required to trans-
fer data between two such models: not only will the grid
points have different distances, the models may well use
different coordinate systems. We do not consider this as-
pect here.

3.2 MDO for Aircraft Design

In this subsection we present a short description of the
multidisciplinary design of an aircraft and then discuss
how one version could be encoded using the Opus lan-
guage constructs. The overall goal of the application is to
optimize the design of an aircraft relative to some goal
or “objective function,” such as minimization of gross
weight. This is done subject to constraints such as speci-
fied range and payload. The design cycle starts with these
constraints and goals, a base geometry and initial values
for a set of design variables, such as sweep angle of the
wing and thrust of the engines. Then, in each cycle, an
analysis phase analyzes the current configuration of the
aircraft, as specified by the design variables, to produce
a set of output variables, such as lift and drag. The opti-
mizer then evaluates the objective function for this con-
figuration to produce new values of the design variables.
Effective optimizers are Newton-like methods which re-
quire “sensitivity derivatives,” the derivatives of the out-
put variables with respect to the design variables. This
optimization cycle continues until the process converges
to a final “optimized” configuration of the aircraft.

The analysis phase consists of the various discipline
codes, such as aerodynamic analysis, structural analysis,
controls, etc., interacting with each other to analyze the
current definition of the aircraft. Some disciplines, such
as aerodynamic or structural analysis, exhibit a large de-
gree of internal parallelism and thus require substantial
physical resources for execution. However, other disci-
plines are generally simpler and should most likely be ex-
ecuted sequentially. The amount of data exchanged dur-
ing the analysis phase is dependent on the disciplines in-
volved and ranges from a few bytes to millions of bytes.
Sometimes, this data needs to be “massaged,” or filtered,
before it can be used. For example, pressures produced
at the aerodynamic grid points by the flow analysis code
have to be integrated to produce forces at the structural
grid points for structural analysis.

The interactions between the discipline codes can take
different forms depending on the problem at hand and the
target environment. In a sequential environment, the vari-
ous discipline codes are generally executed as a pipeline.
In a simple parallel variant, multiple versions of the anal-
ysis pipeline can be executed on slightly perturbed val-
ues of the design variables in order to obtain the required
derivatives using finite-differences. In more complex par-
allel versions, such as the one we describe here, the dis-
cipline codes execute asynchronously, with data being

FIGURE 2 Data flow in a simple MDO application for air-
craft design.

exchanged at various points in the code, such as at the
boundaries of the internal optimization cycles. For this
latter approach, the data exchanges must be synchronized
to ensure that consistency is maintained.

3.2.1 Opus Code

We now describe a version of the above application using
Opus in which the codes in the analysis phase execute
in parallel. The analysis phase has been simplified to the
simultaneous optimization of the aerodynamic and struc-
tural design of an aircraft configuration. Though a realis-
tic multidisciplinary optimization of a full aircraft config-
uration would require a number of other discipline codes,
such as controls, performance analysis, propulsion, etc.,
we present this version for the sake of brevity.

The structure of the program, as expressed in Opus,
is shown in Figure 2, where the SDAs representing com-
putational activities are represented by rectangles and the
SDAs representing data repositories are represented by
ovals. TheOptimizeris the main task and coordinates the
execution of the entire MDO application.

As shown in Figure 3, theOptimizercreates the fol-
lowing SDAs: the data repositoriesSurfaceGeomfor
sharing geometry and flow data between the two com-
putational tasks, andSensitivitiesfor storing the sensitiv-
ity derivatives, and the computational tasksFeSolverfor
structural analysis of the aircraft configuration, andFlow-
Solverfor aerodynamic analysis. Since the tasksFeSolver
andFlowSolveruse the other two SDAs to transfer data,
the latter are passed in as arguments as the former are
being created. Theon clausesassociated with the create
statements specify the resources to be used for the SDAs
as shown in the code fragment from Figure 3 reproduced
in Program Code 5.

All four SDAs are internally data parallel and use mul-
tiple processors for their executions. The two computa-
tion SDAs,FeSolverandFlowSolverare allocated on the
machine “XYZ” and use four and eight processors re-
spectively. On the other hand, the machine “ABC” is des-
ignated as the data server and the two SDAsSurface-
Geomand Sensitivitiesuse four processors each on it.
These processor allocations match up with HPF proces-
sor and distribution directives specified in the respective
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PROGRAM Optimizer
SDA(FeSolverSDA) FeSolver
SDA(FlowSolverSDA) FlowSolver
SDA(SGeomSDA) SurfaceGeom
SDA(SensSDA) Sensitivities

...
EVENT e
TYPE(surface) geom

! – read input arguments and create SDAs
CALL SurfaceGeom%CREATE (...) ON(MACHINE =“ABC”, PROCESSORS=4)
CALL Sensitivities%CREATE (...) ON(MACHINE =“ABC”, PROCESSORS=4)
CALL FeSolver%CREATE (SurfaceGeom, Sensitivities, ) &

ON(MACHINE =“XYZ”, PROCESSORS=4)
CALL FlowSolver%CREATE (SurfaceGeom, Sensitivities, ) &

ON(MACHINE =“XYZ”, PROCESSORS=8)
! – initialize geometry
geom = GenBaseGeom(...)

! – optimization loop
converged = .FALSE.
DO WHILE (.NOT. converged)

SPAWN SurfaceGeom%PutBase(geom)

e =SPAWN FeSolver%Analyze(...)
CALL FlowSolver%Analyze(...)
WAIT (e)

e =SPAWN FeSolver%Gradient(...)
CALL FlowSolver%Gradient(...)
WAIT (e)
converged = Sensitivities%converged(...)
IF ( .NOT converged) geom = ImproveGeom(geom)

END DO

! – save SDAs if necessary
! – kill all SDAs
END

FIGURE 3 Main program: Optimizer.

! – read input arguments and create SDAs
CALL SurfaceGeom%CREATE(...)ON (MACHINE =“ABC”, PROCESSORS= 4)
CALL Sensitivities%CREATE(...) ON (MACHINE =“ABC”, PROCESSORS= 4)
CALL FeSolver%CREATE(...)ON (MACHINE =“XYZ”, PROCESSORS= 4)
CALL FlowSolver%CREATE(...)ON (MACHINE =“XYZ”, PROCESSORS= 8)

PROGRAM CODE 5

SDA type definitions. For example, since the SDASur-
faceGeomis allocated on four processors, the processor
arrayP declared in its type definition (see SDA typeSGe-
omSDAas shown in Figure 4) will be instantiated as an
array of four processors. That is, for the SDA instance
SurfaceGeom, the HPF functionnumber_of_processors()

will return four. As indicated before, the data within the
SDA can now be distributed using the full power of the
HPF mapping directives.

The Optimizer controls the outer optimization loop
while theFlowSolverandFeSolverhandle the inner op-
timization cycle for a combined aeroelastic analysis of
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SDA TYPE SGeomSDA(...)
!HPF$PROCESSORSP(number_of_processors())

TYPE(surface) base, deflected
TYPE(flow) FlowSoln
TYPE(fe) FeModel

!HPF$DISTRIBUTE base ....

LOGICAL DeflectFull = .FALSE.
LOGICAL FeFull = .FALSE.

CONTAINS
SUBROUTINE PutBase(b)

TYPE(surface),INTENT (IN ) :: b
base = b; deflected = b
FeModel = GenFeModel(b, FeModel)
FlowSoln = InitSoln(b)
DeflectFull = .TRUE.
FeFull = .TRUE.

END

SUBROUTINE PutDeflected(d)WHEN (DeflectFull .EQ. .FALSE.)
TYPE(surface),INTENT (IN ) :: d
deflected = d
DeflectFull = .TRUE.

END

SUBROUTINE GetDeflected(d)WHEN (DeflectFull .EQ. .TRUE.)
TYPE(surface),INTENT (OUT) :: d
d = deflected
DeflectFull = .FALSE.

END

SUBROUTINE GetFeModel(f)WHEN (FeFull .EQ. .TRUE.)
...

SUBROUTINE GetSurfForces(f)
...

SUBROUTINE GetFlow(f)
...

SUBROUTINE PutFlow(f)
...

LOGICAL FUNCTION within_tol(...)
...

END SGeomSDA

FIGURE 4 Surface geometry SDA.

a given geometry. The Optimizer initiates execution of
the inner cycle by storing the initial geometry in theSur-
faceGeomSDA using thePutBasemethod.PutBase, as
shown in Figure 4, stores the geometry in the variable
base, initializes the variabledeflected, and sets the logi-
cal variableDeflectFullto true. Based on this geometry,
it also generates a finite element model,FeModel, to be
used by theFeSolvertask and an initial flow solution,
FlowSoln, for the FlowSolvertask. TheOptimizer then
calls the analysis methods in theFlowSolverandFeSolver

tasks. Note since the former is activated asynchronously,
the two analysis routines are executed in parallel.

The Analyzemethod of theFeSolvertask, shown in
Figure 5, uses theGetFeModelmethod to obtain the fi-
nite element model generated on the basis of the current
geometry. Similarly, it uses theGetSurfForcesmethod to
obtain the surface forces generated from the current flow
solution. These two data items are used to compute the
deflection of the aircraft configuration. The new deflected
geometry is then put back intoSurfaceGeom. Similarly,
theFlowSolvertask (not shown here) acquires the current
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SDA TYPE FeSolverSDA(Surf, Sens, ...)
SDA(SGeomSDA) Surf
SDA(SensSDA) Sens

!HPF$PROCESSORSP(number_of_processors())
...

CONTAINS
SUBROUTINE Analyze(...)

converged = .FALSE.
CALL Surf%GetFeModel(FeModel)

! – discipline optimization loop
DO WHILE (.NOT. converged)

CALL Surf%GetSurfForces(forces)
CALL fesolve(forces, FeModel, deflect, ...)
CALL Surf%PutDeflected(deflect)
converged = Surf%within_tol(...)

END DO

END

SUBROUTINE Gradient(...)
...
sens = ...
CALL Sens%PutFeSens(sens)

END
END FeSolverSDA

FIGURE 5 Finite element solver.

geometry (using theGetDeflectedmethod) and an initial
flow solution (using theGetFlowSolnmethod) and pro-
duces a new flow solution which it puts back intoSur-
faceGeom.

The inner aeroelastic optimization cycle continues un-
til the deflections are within a specified tolerance limit.
At each step of the cycle, theFeSolveruses forces based
on the current flow solution to produce new deformations,
while theFlowSolveruses the deflected geometry and the
previous flow solution to produce a new solution. Note
that the logical variables and the condition clauses in the
SurfaceGeomSDA are set up to synchronize the paral-
lel tasks. For example, the logical variableDeflectFull
is used so that the old deflected geometry cannot be re-
placed by a new one until the old one has been accessed.

After the inner cycle has converged, theOptimizerac-
tivates theGradient methods of the discipline tasks to
generate the sensitivity derivatives with respect to the dif-
ferent design variables. This data is stored in theSensitiv-
itiesSDA, not shown here, by the discipline tasks. Based
on this data and the objective function, theOptimizerde-
cides whether to terminate the program or to produce a
new base geometry which is then put inSurfaceGeomto
start a new round of the inner cycle. Once an optimal con-
figuration of the aircraft has been achieved, the SDA data
can be saved and the SDAs terminated.

4 OPUS RUNTIME SUPPORT

In the previous two sections we have presented features
of Opus and examples showing how these features can
be used to encode interacting asynchronous data paral-
lel tasks. In this section we describe the runtime system
required to support these features.

The Opus runtime system consist of two layers ( see
Figure 6):

• a language-specific layer, providing the
functionality for managing SDAs and their
interaction via method calls, and
• a language-independent layer, which provides

support for thread-based data parallelism in parallel
distributed environments.

We discuss first the thread-based layer and then de-
scribe the implementation of method invocation, includ-
ing the handling of distributed arguments in the Opus run-
time system.

4.1 Lightweight Threads

As described in the previous sections, SDAs can be con-
figured either as computation servers or as data servers.
In general, the computation server tasks and the data
servers will utilize the same (or overlapping) physical re-
sources. Thus, any given processor in the system might
be responsible for the simultaneous execution of multi-
ple, independent SDAs. Execution of these SDAs could
be implemented on Unix-based systems by mapping each
unit to a process. However, this process-based approach
has several drawbacks, including the inability to con-
trol scheduling decisions for the SDA methods, the in-
ability to share addressing spaces between SDAs, and
costly context switching between SDAs. In light of these
disadvantages, our runtime system utilizes lightweight,
user-level threads to represent the parallelism within and
among SDAs. This decision is consistent with most other

FIGURE 6 Runtime layers for SDA support.



356 CHAPMAN ET AL.

runtime systems supporting parallel or concurrent pro-
gramming languages [4, 7, 14].

A lightweight, user-level thread is a unit of compu-
tation with minimal context that executes within the do-
main of a kernel-level entity, such as a Unix process or
Mach kernel thread. Lightweight threads are becoming
increasingly useful in supporting language implementa-
tions for both parallel and sequential machines by provid-
ing a level of concurrency within a kernel-level process.

The language-independent layer of the OPUS run-
time system is based on Chant. Chant provides both a
standardized interface for thread operations (as speci-
fied by the POSIX thread standard [25]) and communica-
tion among threads using either point-to-point primitives
(such as those defined in the MPI standard [23]) or remote
service requests. Chant also supports data parallel groups
of threads (called ropes) for executing collective opera-
tions, such as broadcast and reductions. A description of
Chant, and its current status, can be found in [17, 19].

The Opus runtime system is primarily concerned
with the management of SDAs and their interaction via
method calls. The underlying HPF runtime system will
deal with issues of data parallelism and distribution. In
the initial design, we have concentrated on the interaction
of SDAs through method calls (namely method invoca-
tion and argument handling), and have taken a simplified
approach to resource management. We presume that all
the required resources are statically allocated and the ap-
propriate code is invoked where necessary. We will later
extend the design of the runtime system to support dy-
namic acquisition of new resources.

The interaction between SDAs requires runtime sup-
port for both method invocation and method argument
handling. We now explore these issues in further detail.

4.2 SDA Method Invocation

The semantics of SDAs places two restrictions on method
invocation:

• each method invocation hasexclusiveaccess to the
SDA data (i.e., only one method for a given SDA
can be active at any one time), and
• execution of each method is guarded by a condition

clause, which must evaluate totrue before the
method code can be executed.

An SDA method call can be either synchronous or
asynchronous. A synchronous method call will suspend
the calling program until the SDA method returns; an
asynchronous method invocation will allow the caller to
continue execution and test for method termination with
an event variable.

We can view an SDA as being comprised of two com-
ponents: acontrol structurewhich executes the SDA

methods in accordance with the stated restrictions, and
a set of SDAdata structures. To enable proper execution
of SDAs, each SDA method is compiled into three func-
tions:

1. Themethod code. This function embodies the
method code as specified by the programmer. It
uses a generic method call interface that permits
the invocation of all SDA method calls in a
uniform manner.

2. Thecondition function. This is a boolean function
that evaluates the condition clause that may be
associated with an SDA method. The condition
clause must be locally evaluated to ensure that
race conditions do not occur.

3. Themethod interface. This is a stub function that
provides the method’s public interface to the
calling units and is used to access the SDA method
code from another program unit.

Since all SDAs are servers, either for data or compu-
tation, each instance of an SDA is represented by a server
loop (as depicted in Figure 7), which waits for messages
from the method interfaces of other units and takes ap-
propriate action as specified by the message. The SDA
instance incorporates a data structure that includes point-
ers to theconditionandmethodfunctions for each method
along with a queue of outstanding method invocation re-
quests.

The algorithm in Figure 7 depicts the main loop of an
SDA server. On receiving a message from amethod in-
terfaceroutine, the SDA creates a new execution record
including a unique identification for the request. This
record is sent back to the caller as acknowledgment. The
SDA gathers any input arguments using non-blocking re-
ceives (so as not to impose an artificial ordering on the
incoming messages) and enqueues the execution record
in the appropriate list. The SDA then selects the next
method request which is ready for execution. A method
request is ready for execution if all its arguments have
been received and the associated condition istrue. After
execution of this method request, the results, if any, are
sent back to the caller. A completion signal is also sent
back to the caller and the execution record is dequeued
from the method request list. This reevaluation of condi-
tion functions is repeated until no further methods can be
executed, at which time the SDA continues waiting for
further method requests.

Figure 8 shows a generic method interface routine
used by the calling task to invoke a method. After the
method request is sent, the caller waits for an acknowl-
edgment and then sends the values of the input argu-
ments to the callee. If the method activation was syn-
chronous, the caller waits for the results and for the com-
pletion signal before returning. If the method activation
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Do forever {
Wait for method request for method m from caller
Create new execution record X
Send X to caller as acknowledgment
Post receives for input arguments from caller
Enqueue X in queue for method m
Repeat

Select next ready method request Y
Execute method Y
Send results to caller
Send completion signal to caller
Dequeue Y

Until no more method requests are ready
}

FIGURE 7 Pseudocode for an SDA main loop.

Send method request to SDA
Wait for execution record X as acknowledgment
Send actual arguments to callee
If activation_type = asynchronous

Post receives for results
Post receive for completion signal
Return X

Else
Wait for results
Wait for completion signal from callee

Endif

FIGURE 8 Pseudocode for a method call interface.

was asynchronous, it posts non-blocking receives for the
results and the completion signal. The execution record
is returned to be stored as the event associated with the
method activation. This allows the caller to continue ex-
ecution without the completion of the method call. The
event (i.e., the execution record) can be used later in a
wait or test statement to test for the completion of the
method call.

4.3 Distributed Argument Handling

In the previous subsection, we described the protocol
for invoking methods under the implicit assumption that
both the calling SDA and the called SDA run on a single
processor. However, the language allows both to be dis-
tributed; furthermore, the distributions of the actual and
the formal arguments of method calls may not match.
Thus, the Opus runtime system must have a mechanism
for redistributing data at method invocation time. To ex-
amine the details of our prototype implementation, let
us consider what happens when a distributed task calls
a method in a distributed SDA, referring to the pictorial
representation in Figure 9.

If an SDA type is internally distributed, an SDA in-
stance of this type is represented by arope, which is a
data parallel group of threads spread across the set of pro-
cessors. One of the threads is designated theleaderthread
while the other threads areworker threads. Method invo-
cation between distributed SDAs then works as follows
(the pseudocode for the main loop of the SDA leader and
the workers of a distributed SDA is shown in Figure 10):

1. The leader thread of the rope associated with the
caller (thecaller rope) sends a method request
message to the leader thread of the rope associated
with the called SDA (thecallee rope) (Figure 9.1).
Along with other information, this message also
contains the distribution specifications for the
actual method arguments.

2. The leader of the callee rope then creates an
execution record containing the distribution
specifications of the dummy method arguments
and sends it back to the leader of the caller rope. It
also notifies its workers of the method request
(Figure 9.2), along with the distribution
specifications of the actual arguments.
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FIGURE 9 Illustration of the method invocation process for distributed SDAs.

3. The leader of the caller rope then informs all its
workers of the dummy argument distribution
information it has received. At this point, all
threads involved in the method invocation have the
distributions of both the dummy and actual
arguments, and can create their own
communication schedules as discussed below
(Figure 9.3).

4. Once the communication schedules have been
computed, the threads of the caller rope send data
messages directly to the appropriate threads of the
callee rope (Figure 9.4). The data is received by
these threads through non-blocking receives.

5. The leader of an SDA rope chooses the next ready
method to execute and informs all its workers. The
method is executed and all threads of the callee
rope send any return messages back to the threads

of the caller rope using the previously computed
communication schedule (Figure 9.5). The leader
of the callee rope then sends a completion signal
to the leader of the caller rope.

The leader of the callee rope controls which method
request is to be executed next, and thus sends to its worker
threads messages for new method requests or for execu-
tion of already queued requests. In the former case, as
shown in Figure 10, the worker threads independently
compute their communication schedules and post their
receives. In the latter case, they execute the method and
send back the results. We currently assume that the con-
dition code is executed solely by the leader and only uses
information which is replicated across the rope and thus
can be accessed locally by the leader.
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SDA leader:
Do forever {

Wait for method request for method m from caller
including distributions of actual arguments

Create new execution record X
including distributions of formal arguments

Send X to leader thread of caller as acknowledgment
Send X to all workers
Compute communication schedule
Post receives for input arguments from caller
Enqueue X in queue for method m
Repeat

Select next ready execution record Y
Send Y to all workers
Execute method Y
Send results to caller
Send completion signal to leader thread of caller
Dequeue Y

Until no more method requests are ready
}

SDA Workers:
Do forever {

Wait for message from leader
If new method execution record X received

Compute communication schedule
Post receives for input arguments from caller
Enqueue X in queue for method m

Else
Execute method X
Send results to caller
Dequeue X

Endif
}

FIGURE 10 Main loops for leader and workers in a distributed SDA.

Determining the communication schedule, i.e., what
elements of an array are to be sent or received from which
thread, is a complex task. Several groups have been study-
ing algorithms and heuristics to determine the most effi-
cient schedule [2, 11, 16, 22, 26, 27, 31]. We have adopted
(and augmented) the finite state machine (FSM) method
for local address set calculation developed by Chatterjee
et al. [11] in our current prototype. The FSM method ex-
ploits the repeating patterns of local array indices to deter-
mine the elements of a distributed array that each thread
owns. Since all threads can do this calculation simul-
taneously, there is no gather/scatter operation required.
We have extended this work by creating a second FSM
such that, for each local element of the array yielded by
the original FSM, the thread can determine the destina-
tion thread it must communicate with. Each thread in

the sender creates a list of elements for each destination
thread which is then aggregated into a single message for
each other thread and transmitted. Thus, each destination
thread will receive at most one message from each send-
ing thread. In addition, each receiving thread can use the
same FSM method along with the sender’s distribution
information to determine from whom it should receive
messages and what the contents will be. Consequently,
the messages contain only raw data, eliminating the over-
head of transmitting indices.

We have developed a prototype implementation of the
Opus runtime system, which is currently running on a
cluster of workstations using p4 and the Intel Paragon
using NX. This implementation handles distributed argu-
ments in synchronous method calls. A complete descrip-
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tion of the system and some preliminary results can be
found in [20].

5 RELATED WORK

Task management has been a topic of research for several
decades, particularly in the operating systems research
community. A good survey of the issues can be found
in [3]. However, there has not been much attention given
to the mechanisms required for managing control paral-
lel tasks, which may themselves be data parallel. In this
section we discuss some of these approaches.

Fortran M [13] extends Fortran 77 with a set of fea-
tures that support message-passing, according to a strictly
enforced discipline.Processes– program modules en-
capsulating data and code that are executed concurrently
– can interact viachannels; each channel establishes a
one-to-one connection between typedports, essentially
representing a message queue∗. Communication is per-
formed by sending and receiving from ports. Processes
are activated by executing a process block – a PARBE-
GIN/PAREND like construct – or by creating multiple
instances in a process loop. The language has constructs
for controlling the location of process executions and
distributing data in an HPF-like manner. By imposing a
FIFO discipline on message queues and guaranteeing a
sequential semantics for output arguments, determinism
is enforced.

Fortran M can be used to create and coordinate pro-
cesses in a clean and structured way. However, the
relatively low level of abstraction associated with the
message-passing paradigm, together with the structure
imposed on the use of channels and ports for the sake
of achieving determinism sometimes leads to difficul-
ties expressing simple and useful communication struc-
tures. Such examples include producer-consumer prob-
lems with multiple producers and consumers accessing
a bounded buffer, or the variants of the readers-writers
problem.

Recent work at Argonne and Syracuse [15] integrates
HPF with the message passing standard MPI. In this ap-
proach, data parallel HPF tasks may exchange distributed
data structures by directly using calls to MPI communi-
cation functions.

The Fx Fortran language extensions developed at
CMU [28, 29] includeparallel sectionsthat allow the
concurrent activation of subroutines astasks. Tasks com-
municate through arguments. Arguments can be passed to
a task at the time of its activation, or received from a task
when it terminates. Each call that activates a task must be
accompanied byinput andoutputdirectives that specify

∗In addition, many-to-one communication can be expressed.

the shared objects. This provides the compiler with com-
plete information on the required communication.

Fx is well suited to an environment where tasks need
to communicate only at the time of spawning and termi-
nation, and where nested task-parallelism is not required.
If tasks must communicate during their execution, sub-
routines may have to be split at synchronization points
to obtain smaller program units that fit into this scheme.
Moreover, this would clearly induce task-spawning over-
head.

LINDA [1] provides a virtual sharedtuple space, to
which read and write operations can be applied. It rep-
resents a simple and easily usable parallel programming
paradigm. However, LINDA lacks the modularity that
is required for structuring multidisciplinary applications,
and does not allow sufficient control of task execution and
resource allocation.

Orca [5] provides an object model similar to SDAs
calledabstract data types(ADTs). Both ADTs and SDAs
represent abstract data types that can be distributed over
a set of processors using conventional data parallel map-
ping directives. Both apply operations to their elements
using the owner-computes rule. Aside from implementa-
tion issues, the main difference between ADTs and SDAs
is in the “server” nature of the SDA. All SDAs run im-
plicit server loops to handle incoming requests, and SDA
methods can be invoked both synchronously and asyn-
chronously, where the decision can be made at the call
site. This allows SDAs to behave as computation servers
as well as data servers. Orca objects deliberately lack
such a server, to allow concurrent read operations on dif-
ferent copies of an object.

SVM Fortran [6] is a set of extensions for Fortran
77 intended to program shared virtual memory systems.
Among a large number of features, it provides support
for fine-grained control parallelism in a shared memory
paradigm along with mechanisms to synchronize and co-
ordinate these tasks.

Other approaches which provide support for manag-
ing task parallelism at a high level include PVM [30],
CC++ [8] and Strand [12]. Most of these approaches do
not address the issue of integrating task and data paral-
lelism.

6 CONCLUSIONS AND FUTURE RESEARCH

Complex scientific applications, such as multidisciplinary
optimization, provide opportunities for exploiting mul-
tiple levels of parallelism, but also raise complex pro-
gramming issues. The coordination language Opus, pre-
sented in this paper, supports the multiple levels of paral-
lelism arising in multidisciplinary applications, and also
provides support for software engineering issues arising
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when integrating codes from individual disciplines into a
single working application.

A partial implementation of Opus has been built, us-
ing the Chant runtime system. Performance of a sim-
plified multidisciplinary application code has been stud-
ied using this implementation. The cost of a typical
SDA method call with distributed arguments appears
to be reasonable and our design scales with the num-
ber of processors. Given these preliminary results, a
full prototype implementation of Opus has begun. Since
Chant runs on a large number of multiprocessor plat-
forms, this prototype will be widely portable, and should
prove useful in a number of important applications.
We also plan to explore the research issues of sup-
porting parallel method calls within the same SDA and
condition evaluation based on distributed data struc-
tures.
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