
How to Express C++ Concepts in Fortran90

VIKTOR K. DECYK 1,2, CHARLES D. NORTON 2, and BOLESLAW K. SZYMANSKI 3

1 Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;
e-mail: decyk@physics.ucla.edu
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA;
e-mail: nortonc@olympic.jpl.nasa.gov
3 Department of Computer Science and Scientific Computation Research Center (SCOREC), Rensselaer Polytechnic Institute, Troy,
NY 12180-3590, USA; e-mail: szymansk@cs.rpi.edu

ABSTRACT

This paper summarizes techniques for emulating in Fortran90 the most important object-
oriented concepts of C++: classes (including abstract data types, encapsulation and func-
tion overloading), inheritance and dynamic dispatching.

1 INTRODUCTION

Object-Oriented Programming (OOP) has proven to be
a useful programming paradigm for complex programs,
especially those modeling “real world problems.” The
scientific community has been slower to adopt this
paradigm, but even here OOP is beginning to draw a fol-
lowing and even more curious interest. There are a num-
ber of reasons for this reticence in the scientific commu-
nity. One reason is that many scientists who write modest-
sized programs for their own needs, are comfortable us-
ing Fortran77 and C, and see no reason to change. Others
with more complex programs written in Fortran have a
great deal invested in their legacy codes and do not want
to switch to a new programming language because of the
threat to this investment. Adopting OOP means not only
learning a whole programming style, but learning a new
and unfamiliar language as well. The dominant OO lan-
guage in the scientific community, C++, is very complex
and requires a substantial investment of time to learn how
to use effectively. In using C++, there are also concerns
about reported poor performance, lack of language and
compiler standardization, and lack of standard class li-
braries for scientific computing. Although many of these

 1997 IOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 363–390 (1997)

concerns are being addressed by the C++ community, the
scientific programmer may not know how to evaluate the
current situation. Finally, many people have no clear idea
of how their scientific productivity will improve by using
OOP.

Fortran90 is a modern programming language with
many new features which appear to be useful for OOP.
Since it is known that OOP is possible in non-OOP lan-
guages [1], we decided to test the capabilities of For-
tran90 by translating published examples of C++ code
from textbooks and journal articles. We discovered that
almost all the features of C++ could either be translated
directly or emulated without great effort. The major ex-
ception was dynamic binding, emulation of which re-
quired more effort. As a result, we feel that it is practical
to adopt OOP principles in Fortran90. Since Fortran90 is
backward compatible with Fortran77, this gives a migra-
tion path for evolving toward a new programming style in
an incremental fashion. OOP in both Fortran90 and C++
requires applying a methodology and non-OOP programs
are possible in either language. However, OOP in For-
tran90 requires more self-discipline.

These techniques are useful even if the ultimate goal
is to convert a Fortran legacy code to C++. Experience
has shown that it takes a year or more to convert a typical
scientific code to C++. This is a long time for a scientist
to be non-productive. Converting to an OO-style in For-
tran90 is much faster and the code can be in continual

364 DECYK, NORTON, AND SZYMANSKI

productive use in the meanwhile. The final step in mov-
ing from Fortran90 to C++ is much easier if the classes
and objects are already clearly understood.

This paper is also of interest to those who need to work
in an environment where Fortran90 and C++ are both
used. Knowing how to translate concepts between the
languages has proved useful to us in merging Fortran90-
based scientific codes with graphics libraries and utility
libraries for adaptive mesh refinement written in C++.
If advanced features of Fortran90 are used, it is much
more challenging to merge Fortran90 and C++ than it is
to merge Fortran77 and C. Understanding which features
of C++ are difficult to emulate and which are not is also
useful in determining which language should be used for
which part of a complex project.

Finally, it has been determined that Fortran2000 will
be fully object-oriented. New language features will be
added for inheritance and run-time polymorphism, while
retaining existing language mechanisms for other OO
concepts. The techniques described here can be useful
as temporary bridges between the non-OO Fortran77 and
the fully-OO Fortran2000.

This paper summarizes the techniques we have devel-
oped for implementing C++ concepts in Fortran90. It is
assumed that the reader has at least a passing familiarity
with the concepts of C++, but not necessarily with For-
tran90. For readers unfamiliar with C++, there are many
textbooks available. One that we have found useful is
Lippman’s [2]. For a more extensive explanation of For-
tran90, we recommend the book by Ellis et al. [3] For
those who are not familiar with either C++ or Fortran90,
we recommend our earlier introductory article [4]. We
shall illustrate many of our ideas by using the extended
example of a database application which is described by
Henderson and Zorn [5] and is used as a benchmark for
object-oriented languages. For pedagogical reasons, we
have simplified and slightly modified their original code.
The reader may wonder why a non-scientific example
was chosen to illustrate programming principles of in-
terest to scientists. First, by picking a standard object-
oriented benchmark, experts in OOP would not have dif-
ficulty recognizing that OOP was possible in Fortran90.
The second reason was to keep the example as simple and
general as possible.

For the scientific programmer, the personnel database
discussed here serves as a model or paradigm for a col-
lection of more complex objects relevant to some scien-
tific problem. For example, instead of students and teach-
ers, plasma physicists could think of collections of differ-
ent kinds of particles which require different integration
schemes, such as electrons with full dynamics, unmag-
netized ions, or gyro-kinetic particles integrated with a
drift approximation. If the particles share some common
code, along with additional code specific to each particle

type, than the personnel database corresponds to manag-
ing collections of such particles in a multi-species plasma
simulation. For electrical engineers, instead of students
and teachers, one could imagine managing collections
of adaptive mesh types for electromagnetic calculations,
where different mesh types are used in different regions
of the calculation. Since we are focussing on program-
ming techniques here, we thought that picking a complex
example from plasma physics or electromagnetics would
have distracted the reader and made the paper more diffi-
cult for those unfamiliar with the specific scientific area.

2 CLASSES

The most fundamental concept in C++ which must be
modeled is the idea of classes. Classes contain a new
data type and the procedures that can be performed by the
class. The elements (or components) of the data type are
the class data members, and the procedures are the class
member functions (or methods). We define a class in For-
tran90 as a module which contains exactly one abstract
data type definition (called a derived type in Fortran90)
and the procedures which work exclusively on that type.
In addition, a module can also contain data which corre-
sponds to static class members in C++. As an example,
consider the Personnel class from Henderson and Zorn’s
application. A primitive Personnel class can be defined as
follows:

module Personnel_class
type Personnel

integer :: ssn
character*12 :: firstname, lastname

end type Personnel
contains

subroutine null_Personnel(this)
! Personnel constructor

type (Personnel), intent (out) :: this
this%ssn = 0
this%firstname = ‘ ‘ ! blank name
this%lastname = ‘ ‘
end subroutine null_Personnel

end module Personnel_class

The class data type contains three data members, an in-
teger identifier calledssn and two character variables
called firstname and lastname . In addition, this
class contains one procedure, a simple constructor, which
initializes the component ssn to zero and sets the char-
acter variables to blank. Since a module name cannot
be the same as the derived type name in Fortran90, by
convention we append the string “_class ” to the type
name to obtain the module name. Fortran90 is not case
sensitive as is C++, but we will use mixed case for tex-
tual clarity. Comments are preceded by the ‘! ’ character
rather than the ‘// ’ string used in C++. Fortran90 also al-
lows free format, but we will continue to use fixed format

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 365

here. A simple main program which uses thisPerson-
nel_class is shown below:

program personnel_test
use Personnel_class
type (Personnel) :: person
call null_Personnel(person)
end program personnel_test

The USE statement is a scope operator which brings the
class into the scope of the main program. Forward decla-
rations are not needed for procedures in modules in For-
tran90 (they are generated automatically), and there is no
notion of file scope. (An INTERFACE statement is avail-
able to provide the functionality of forward declarations
for procedures not in modules.) An object of this class
(person) is created in two steps. First a variable of this
type is declared and created (but not initialized), then a
constructor procedure is applied to initialize the object:

type (Personnel) :: person
call null_Personnel(person)

This is different than in C++, where both creation and
initialization can be combined into one statement with
the new operator. (Fortran90 also requires that all dec-
larations appear before any executable statements.) In the
procedurenull_Personnel , note that a reference to
the class object always appears explicitly as an argument
in Fortran90, and by convention we make it the first argu-
ment and call it ‘this .’ In C++, a reference to the object
is available, but is not explicitly declared. Furthermore,
the class data members are accessed as components of
the dummy ‘this ’ argument. Fortran90 uses the ‘%’ no-
tation to refer to components of a type where C++ uses
the ‘. ’ notation to refer to components of a structure.
Thus in a Fortran90 procedure one writes:

this%ssn = 0

whereas in C++, one would merely write:

ssn = 0;

Fortran90 has two ways to represent strings. The most
common way is to use variables of type CHARACTER,
which are declared as follows:

character*12 :: firstname

Here the variablefirstname is declared to be 12 bytes
in length. Character variables are actually encapsulated
objects which know their own length. They are not null-
terminated as in C++. The length cannot be set dynami-
cally, but must be known at compile time. A substantial
number of intrinsic operators are available for character
manipulations in Fortran90.

Let us now enhance this primitivePersonnel class
so that it actually does something useful. We begin by cre-
ating a new constructorinit_Personnel to initialize
the object with actual information, as follows:

subroutine init_Personnel(this,s,fn,ln)
type (Personnel), intent (out) :: this
integer, intent (in) :: s
character*(*), intent (in) :: fn, ln
this%ssn = s
this%firstname = fn
this%lastname = ln
end subroutine init_Personnel

Later we will show how to overload functions so that both
constructors have a common name. In this new construc-
tor, the INTENT(IN) attribute on the arguments means
that it will not be modified, and therefore corresponds to
theconst keyword used in dummy arguments in C++.
There appears to be no counterpart in C++ to the IN-
TENT(OUT) attribute except for the return value of a
function. When passed as a dummy argument to a pro-
cedure, the length of a character variable does not have
to be declared (but can be determined with the LEN in-
trinsic, similar to thestrlen library function in C++).
Now, one can initializeperson as follows:

type (Personnel) :: person
call init_Personnel

(person,1,’PAUL’,’JONES’)

Fortran character variables function as a built-in string
class and are widely used for this purpose. They have a
disadvantage, however, in that the strings are always of
fixed length, so that memory can be wasted. As an al-
ternative, it is possible to construct C-style strings as an
allocatable array of characters, such as:

character*1, dimension(:),
allocatable :: firstname

The memory for such an array can be dynamically allo-
cated using the ALLOCATE statement (rather than the
new statement used in C++), as follows:

allocate(firstname(len(‘PAUL’)))

where we have allocated an array of 1 byte characters
equal in size to the length of the string‘PAUL’ . (Ar-
rays of n byte characters can also be allocated in a sim-
ilar way.) The memory for such arrays is freed with the
DEALLOCATE statement (rather thandelete), as fol-
lows:

deallocate(firstname)

C-style strings are not commonly used in Fortran90 be-
cause not all of the Fortran string manipulation intrin-
sics are available. For example, string assignment with
C-style strings must be done using array constructors:

firstname = (/‘P’,‘A’,‘U’,‘L’/)

instead of what one would normally do with character
variables:

firstname = ‘PAUL’

366 DECYK, NORTON, AND SZYMANSKI

Since Henderson and Zorn use C-style strings in their
example, however, we will do so here as well. In order
to make string assignment simpler, we will write a copy
procedure (which we shall callstrcpy) which will con-
vert a character variable of fixed size to a C-style array of
1 byte characters:

subroutine strcpy(s,c)
character, dimension (:),

intent (out) :: s
character*(*), intent (in) :: c
do i = 1, max(size(s),len(c))

s(i) = c(i:i)
enddo
end subroutine strcpy

Here we have used the SIZE intrinsic to determine the
length of the character arrays and the LEN intrinsic to
determine the length of the character variablec .

With this procedure, one can use dynamically allo-
cated arrays of characters while still retaining a simple
assignment syntax:

call strcpy(firstname,‘PAUL’)

Allocatable arrays cannot be used in derived type defini-
tions (i.e., as class data members), so pointers to arrays
must be used instead. Pointers in Fortran90 are objects
whose internal state is private. Arrays and pointers to ar-
rays have the same syntax and a pointer to an array can
be used whenever an array is expected, including passing
it to a procedure. This is quite natural in Fortran90, since
arrays are always passed by reference. Thus the expres-
sion:

ptr(3) = 4

will either set the third word of the arrayptr to 4, if ptr
is an array, or else it will dereference the corresponding
location in memory, ifptr is a pointer to an array. In
C++ this will also work, but it is common practice to use
different syntax for these two cases, where elements of an
array are set with the bracket notation:

ptr[2] = 4;

while the following expression:

*(ptr + 2) = 4;

will dereference a pointer to an array. Note the differ-
ence in subscripting arrays elements in Fortran90 and
C++, which is caused by using the Fortran90 default of
array referencing from 1 rather than 0. This default can
be changed.

Adding a constructor and destructor to our class, we
can extend our class definition as shown in Program
Code 1.

For convenience, we have put thestrcpy function in
this module. If we were going to do a lot of string manip-
ulations using C-style strings, one would create a string

class to do so. To keep the example simple, however, we
will not do so here.

One can also overload procedure names for func-
tions in modules with the INTERFACE statement. This
allows one to use the same name for different proce-
dures. For example, we can overload the namenew and
equate it to the constructor namesnull_Personnel
and init_Personnel , with the following statements
in the module before the CONTAINS statement:

interface new
module procedure null_Personnel,

init_Personnel
end interface

In Fortran90 overloading procedure names requires two
steps, whereas in C++ this can be done with one step by
merely reusing a procedure name with different argument
types. Similarly, one can overload the namedelete and
equate it toterm_Personnel . As in C++, overload-
ing is possible only if the arguments of the procedure
are distinct. In Fortran90, however, the object is an ar-
gument and is therefore also taken into account in re-
solving overloaded functions, whereas in C++, a differ-
ent mechanism (polymorphism) is used to overload pro-
cedure names which refer to objects in different classes.
Constructors and destructors must always be called ex-
plicitly in Fortran90, but they are not needed as often as
in C++ because Fortran90 always passes arguments by
reference, not by value. Destructors are generally needed
only if the class contains pointers which must be deal-
located. With the current definition of thePersonnel
class, initializing and deleting an object looks like:

type (Personnel) :: person
call new(person,1,’PAUL’,’JONES’)
call delete(person)

This basicPersonnel class can be further enhanced
with additional features similar to those available in C++.
First of all, one can add the PRIVATE attribute to the type
definition as follows:

type Personnel
private
integer :: ssn
character, dimension(:),
pointer :: firstname, lastname

end type Personnel

This functions just like theprivate keyword in C++
and makes the components of typePersonnel avail-
able only to member functions in the module (class). The
default is PUBLIC. Theprotected keyword is not
available in Fortran90. It is also not possible in Fortran90
to make some data members ofPersonnel PUBLIC
while keeping others PRIVATE.

Procedure names and type definitions in modules can
also be made PUBLIC or PRIVATE. By default, they are
PUBLIC. For example, the following statement will make

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 367

module Personnel_class
! define Personnel type

type Personnel
integer :: ssn
character, dimension(:), pointer :: firstname, lastname

end type Personnel
contains

subroutine init_Personnel(this,s,fn,ln)
! Personnel constructor

type (Personnel), intent (out) :: this
integer, intent (in) :: s
character*(*), intent (in) :: fn, ln
this%ssn = s
allocate(this%firstname(len(fn)),this%lastname(len(ln)))
call strcpy(this%firstname,fn)
call strcpy(this%lastname,ln)
end subroutine init_Personnel

!
subroutine term_Personnel(this)

! Personnel destructor
type (Personnel), intent (inout) :: this
deallocate(this%firstname,this%lastname)
end subroutine term_Personnel

!
subroutine strcpy(s,c)
character, dimension (:), intent (out) :: s
character*(*), intent (in) :: c
do i = 1, max(size(s),len(c))

s(i) = c(i:i)
enddo
end subroutine strcpy

end module Personnel_class

PROGRAM CODE 1

the namesinit_Personnel andterm_Personnel
PRIVATE.

private :: init_Personnel, term_Personnel

Fortran has default declarations for variables. One can re-
quire all variables to be declared as in C++ with the IM-
PLICIT NONE statement.

Let us add a procedure to this class to print a copy
of the Personnel record, omitting the identifierssn
by default. Such a procedure might look like Program
Code 2.

Fortran90 does not have default values for arguments,
but OPTIONAL arguments can be used for this purpose.
The OPTIONAL variableprintssn here is of type
LOGICAL which is an object whose internal represen-
tation is private. There is no automatic conversion be-
tween logical types and other types in Fortran90. (In fact,
there are no automatic casts permitted across procedures
in Fortran90 at all.) The identifierssn will be printed if

the LOGICAL printssn is both PRESENT as an ac-
tual argument and true. Fortran90 uses the logical oper-
ator .AND. where C++ uses&&. The PRINT∗ statement
will print on the default output device with default for-
matting. Note that the PRINT statement is dereferencing
the entire arrays pointed to bythis%firstname and
this%lastname . The PRINT∗ statement will always
append a newline character to the output. To suppress
this, one must use the ADVANCE=‘NO’ specifier in a
WRITE statement, which also requires a format specifi-
cation. This is the opposite situation to C++, where the
iostreamcout requires the manipulatorendl in order
to insert a newline character.

Another useful procedure one can add to this class is
extracting thePersonnel identifierssn :

function getssn_Personnel(this)
result(ssn)

type (Personnel), intent (in) :: this
integer :: ssn

368 DECYK, NORTON, AND SZYMANSKI

subroutine print_Personnel(this,printssn)
type (Personnel), intent (in) :: this
logical, optional, intent (in) :: printssn
if (present(printssn)) then

if (printssn) write (*,’(i2,a2)’,advance=’no’)
& this%ssn,’: ’

endif
Print *, this%firstname, ’ ’, this%lastname
end subroutine print_Personnel

PROGRAM CODE 2

ssn = this%ssn
end function getssn_Personnel

In Fortran90, the specification RESULT can be used to
identify the name of the function result variable, while
C++ uses the keywordreturn to identify a result ex-
pression. If we overload the nameprint to refer to
print_Personnel , then the following code extract
will initialize a Personnel record and print it along
with the identifier:

type (Personnel) :: person
call new(person,1,’PAUL’,’JONES’)
call print(person,.true.)

Note that in Fortran90, we invoke a method on an object
with the syntax:

call print(person,.true.)

whereas in C++, the ‘. ’ syntax would have been used:

person.print(1);

Another useful addition to this class is the ability to de-
termine how manyPersonnel records have been cre-
ated. One way to accomplish this is to add a static class
member calledNUM_FILESto keep track of the number
of records. This can be done in Fortran90 by placing the
declaration:

integer, save :: NUM_FILES = 0

anywhere before the CONTAINS statement. Variables in-
side modules function as global variables for the module.
They are in scope whenever the class is in scope (that
is, when the module name is declared in a USE state-
ment). Here the SAVE attribute is equivalent to the key-
word static in C++. Static class members can be ini-
tialized inside the class definition, which is not gener-
ally allowed in C++. One can keep track of the current
number of records by incrementing the global variable
NUM_FILESinside the procedurenew, and decrement-
ing it in the proceduredelete .

There is no notion of a class scope operator in For-
tran90. Scope is controlled by the USE statement, and

procedure names either must be unique, or overloaded
with the INTERFACE statement. If there is a variable
name conflict, one can rename the variable when the
Personnel class is “used .” In the following example:

use Personnel_class,
local_NUM_FILES_name => NUM_FILES

Print *,local_NUM_FILES_name

the namelocal_NUM_FILES_name is now used to
refer to the static class memberNUM_FILES. Alterna-
tively, it is possible to make static class members PRI-
VATE by adding the PRIVATE attribute to the declara-
tion.

integer, save, private :: NUM_FILES = 0

In that case one must provide a static member func-
tion without a ‘this ’ reference to read the value of
NUM_FILES, for example:

integer function get_num_files()
get_num_files = NUM_FILES
end function get_num_files

Here no RESULT specification is used and therefore the
function name is used as the result variable.

The final version of thePersonnel class is listed in
Appendix A. Both the Fortran90 and C++ versions are
shown for comparison. The following program will cre-
ate a record, print out a copy without the identifier, delete
it, and finally print out the number of existing records
(which should be 0 at this point of execution).

program personnel_test
use Personnel_class
type (Personnel) :: person
call new(person,1,’PAUL’,’JONES’)
call print(person)
call delete(person)
Print *,’NUM_FILES=’,get_num_files()
end program personnel_test

3 INHERITANCE

Another important concept in C++ which must be mod-
eled to support object-orientedness is the idea of inher-

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 369

itance. Inheritance allows one to create a hierarchy of
classes in which the base class contains the common
properties of the hierarchy and the derived classes can
modify and specialize these properties. Specifically, a de-
rived class contains all the class data members of the base
class and can add new ones. Further, a derived class con-
tains all the class member functions of the base class, and
can modify them or add new ones. The value in using
inheritance is to avoid duplicating code when creating
classes which are similar to one another. As an exam-
ple, Henderson and Zorn define student records as a type
of personnel record through inheritance from personnel.
Fortran90 does not directly support this kind of inheri-
tance, but an equivalent relationship can be constructed.
Inheritance of class data members is constructed by ex-
plicitly including a base class data type in the definition
of the derived class data type. For example, ifStudent
is derived fromPersonnel , theStudent type can be
expressed as follows:

type Student
type (Personnel) :: personnel
integer :: nclasses
character*12, dimension (10) :: classes

end type Student

The Student type here contains exactly one compo-
nent of typePersonnel , as well as two additional
members needed to describe student records, an integer
nclasses which contains the number of classes a stu-
dent is enrolled in, and an array of 10 fixed length char-
acters calledclasses for the names of those classes. In
C++, the component corresponding to typePersonnel
is implicit and would not be declared.

To initialize theStudent type, one can call the con-
structor forPersonnel to initialize thePersonnel
component ofStudent and initialize the other compo-
nents by direct assignment, as follows:

type (Student) :: studentA
call new(studentA%personnel,0,

’PAT’,’SMITH’)
studentA%nclasses = 0

These operations can be incorporated into aStudent
constructor procedure:

subroutine init_Student(this,s,fn,ln)
! Student class constructor

type (Student), intent (out) :: this
integer, intent (in) :: s
character*(*), intent (in) :: fn, ln
call new(this%personnel,s,fn,ln)
this%nclasses = 0
end subroutine init_Student

which emulates the initialization list which occurs in
C++. In a similar fashion, thePersonnel component
of Student can be deleted by applying thePerson-
nel destructor:

call delete(this%personnel)

A Student destructor can be written to execute this op-
eration. In C++, a destructor which deletes only the in-
herited data member of a derived class does not have to
be explicitly created.

Thus a primitiveStudent class which builds upon
the Personnel class can be constructed as shown in
Program Code 3.

Here theUSE PERSONNEL_CLASSstatement plays
the role of the class derivation list in C++. We have also
overloaded the namesnew anddelete so that they ex-
ecute theStudent constructor and destructor if the ar-
gument is of typeStudent . With this incomplete class
one can create and destroy aStudent record as follows:

program student_test
use Student_class
type (Student) :: studentA
call new(studentA,0,’PAT’,’SMITH’)
call delete(studentA)
end program student_test

Inheritance of methods is constructed by having the
derived class procedure delegate to the base class. This
is a common approach in C++ when methods have to be
modified, but in Fortran90 it is required even when meth-
ods are not modified. For example, to print aStudent
record, one would delegate to thePersonnel class the
responsibility for printing out thePersonnel compo-
nent ofStudent , as follows:

call print(studentA%personnel)

In C++, one would have to use the scope operator:

Personnel::studentA.print();

If the print procedure for aStudent is modified
to also print out the enrollment record, this delega-
tion is incorporated into the modified procedure, just
as in C++. Program Code 4 is an example of such a
modified procedure. Finally, if we overload the name
print with the INTERFACE statement to include the
print_Student procedure, the nameprint will ex-
ecute the correct procedure forStudent objects.

Since theprint function in the base class was mod-
ified for the derived class, the process of creating the
modified version is similar to what one might do in C++.
However, for functions not modified in the derived class,
nothing needs to be done in C++, whereas in Fortran90
one needs to write a procedure which delegates to the
base class the responsibility for carrying out the proce-
dure on behalf of the derived class. For example, the pro-
ceduregetssn_Student needs to be created in For-
tran90 which would not have to be created in C++:

integer function getssn_Student(this)
type (Student), intent (in) :: this
getssn_Student = getssn_Personnel

(this%personnel)
end function getssn_Student

370 DECYK, NORTON, AND SZYMANSKI

module Student_class
! bring Personnel_class into scope

use Personnel_class
private :: init_Student, term_Student

! define Student type
type Student

private
type (Personnel) :: personnel
integer :: nclasses
character*12, dimension (10) :: classes

end type Student
interface new

module procedure init_Student
end interface
interface delete

module procedure term_Student
end interface
contains

subroutine init_Student(this,s,fn,ln)
! Student class constructor

type (Student), intent (out) :: this
integer, intent (in) :: s
character*(*), intent (in) :: fn, ln
call new(this%personnel,s,fn,ln)
this%nclasses = 0
end subroutine init_Student

!
subroutine term_Student(this)

! Student class destructor
type (Student), intent (inout) :: this
call delete(this%personnel)
end subroutine term_Student

end module Student_class

PROGRAM CODE 3

subroutine print_Student(this,printssn)
type (Student), intent (in) :: this
logical, optional, intent (in) :: printssn
integer :: i, j

! delegate printing of personnel component
call print(this%personnel,printssn)

! print enrollment record
if (this%nclasses==0) then

Print *,’-- Not Enrolled’
else

Print *,’-- Enrolled’
do i = 1, this%nclasses

do j = 1, size(this%classes(i)%stringptr)
write (*,’(a)’,advance=’no’)

& this%classes(i)%stringptr(j)
enddo

enddo
Print *

endif
end subroutine print_Student

PROGRAM CODE 4

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 371

If the components ofPersonnel had been PUBLIC,
one could have accessed the identifier directly instead of
using thegetssn_Personnel procedure, as follows:

getssn_Student = this%personnel%ssn

In order for theStudent class to be useful, we create a
procedure to add a class to the student’s file:

subroutine addclass(this,c)
! Add a class to a student file

type (Student), intent (inout) :: this
character*(*), intent (in) :: c
this%nclasses = this%nclasses + 1
this%classes(this%nclasses) = c
end subroutine addclass

In this procedure, the class data membernclasses is
incremented, and the name of the class (contained in the
argumentc) is added to the next element of the array
classes . The following main program tests this class:

program student_test
use Student_class

! create a record
type (Student) :: studentA
call new(studentA,0,’PAT’,’SMITH’)
call addclass(studentA,’MATH’)

! print a record
call print(studentA,.true.)
end program student_test

and produces the following output:

0 : PAT SMITH
-- Enrolled

MATH

What we have constructed here is an inheritance hier-
archy which does not contain virtual functions. We have
a written a new class which contains the data of the base
class and all the procedures of the base class have been
extended to work with the new derived class. INTER-
FACE statements have to be used to give the procedure
uniform names. Note that the derived class did not need
to know how the base class was implemented. What is
missing here is dynamic dispatching (or run-time poly-
morphism), which will be discussed in the next section.

As before, it is simpler to make theStudent data
memberclasses an array of character variables of
fixed size. It is possible, however, to make this an allo-
catable array of pointers to C-style character arrays as
Henderson and Zorn do, but one must do so indirectly. In
Fortran90, a pointer is actually an attribute and not a data
type, so it is impossible to create an array of pointers di-
rectly. Instead, one creates a derived type which contains
a pointer and then creates an array of that derived type.
Thus we can create a type calledString as follows:

type, private :: String
character*1, dimension(:),
pointer :: stringptr

end type String

And then redefine theStudent type to contain an array
of Strings :

type Student
type (Personnel) :: personnel
integer :: nclasses
type (String),
dimension (10) :: classes

end type Student

If studentA ’s first class is math, one can allocate mem-
ory and assign theclasses data member, as follows:

allocate(studentA%classes(1)
%stringptr(len(‘MATH’)))

call strcpy(studentA%classes(1)
%stringptr,‘MATH’)

To use such an array of pointers, a similar allocation and
assignment must be added to theaddclass procedure.
Similarly, a do loop must be added to the destructor for
the class to allow deallocation of memory:

do i = 1, studentA%nclasses
deallocate(studentA%classes(i)

%stringptr)
enddo

As in C++, it is possible to hide some of the grungy de-
tails of C-style string manipulation by creating a special
string class in Fortran90. The final version of theStu-
dent class which uses an array of pointers is listed in
Appendix B.

Objects of thePersonnel class were not intended
to be created. The usual way to enforce this in C++ is
to makePersonnel an abstract base class. Hender-
son and Zorn did not do so because they wanted to im-
plement methods common to the hierarchy in this class.
An alternative way to enforce this in C++ is to make
the Personnel constructorprotected . The pro-
tected keyword is not available in Fortran90, but its
effect can be partially emulated by declaring PUBLIC
the namePersonnel (rather than the constructor) in
the Personnel class, but then declaring it PRIVATE
in a derived class such asStudent . Then any program
which “uses ” the Student class will not have access
to thePersonnel type. However, the emulation is in-
complete, since a program unit which “uses ” the Per-
sonnel class directly will have access to thePerson-
nel type.

In a similar manner to theStudent class, one can de-
rive another class fromPersonnel , calledTeacher .
The Teacher type will contain a new member called
salary :

type Teacher
private
type (Personnel) :: personnel
integer :: salary

end type Teacher

372 DECYK, NORTON, AND SZYMANSKI

We will add to this class a new procedure calledup-
datesalary to update thesalary data member. The
print procedure forTeacher is also modified to print
the salary. The final version of theTeacher class is
listed in Appendix C. A following program testsStu-
dent andTeacher objects:

program records_test
use Student_class
use Teacher_class

! create records
type (Student) :: studentA
type (Teacher) :: teacherA
call new(studentA,0,’PAT’,’SMITH’)
call new(teacherA,2,’JOHN’,’WHITE’,1000)
call addclass(studentA,’MATH’)
call updatesalary(teacherA,2000)

! print records
call print(studentA,.true.)
call print(teacherA,.false.)
Print *,’NUM_FILES=’,get_num_files()

! delete records
call delete(teacherA)
call delete(studentA)
end program records_test

and produces the following result:

0 : PAT SMITH
-- Enrolled

MATH
JOHN WHITE
-- Salary: 2000
NUM_FILES= 2

4 DYNAMIC DISPATCHING

A third important concept in C++ which must be modeled
is the idea of dynamic dispatching or run-time polymor-
phism. In the previous section on inheritance, we showed
how a single method name could respond differently to
different objects in an inheritance hierarchy. Dynamic
dispatching allows a single object name to refer to any
member of an inheritance hierarchy and permits a proce-
dure to resolve at run-time which actual object is being
referred to. This ability is useful because it allows one to
write a generic program for a whole class of related ob-
jects, yet have the program behave differently depending
on the object being used.

To implement dynamic dispatching in Fortran90, two
features must be constructed: first, a pointer object which
can point to any member in an inheritance hierarchy, and
second, a dispatch mechanism (or method lookup) which
can select the appropriate procedure (method) to execute
based on the actual class referenced in the pointer object.
In C++ these features are present automatically through
the use of virtual functions. In Fortran90 they will be

constructed by implementing a polymorphic class. Al-
though the details of dynamic dispatching are exposed to
the writer of this class, they can be hidden from the pro-
cedures which make use of this class, as we will show in
the next section.

A pointer object can be created for ourPersonnel
class by defining apoly_Personnel type, as follows:

type poly_Personnel
type (Student), pointer :: ps
type (Teacher), pointer :: pt

end type poly_Personnel

This type definition contains pointers to all the possible
types in the inheritance hierarchy. We have omitted the
Personnel type from this list because it was intended
to be an abstract type without concrete objects. At any
given time, we will associate one of the pointers in this
list with an actual object, and the other pointers will be set
to null objects. To illustrate how this works, the following
program fragment will create an object calledperson of
type poly_Personnel , and then assign aStudent
object toperson as follows:

type (Student), target :: studentA
type (poly_Personnel) :: person
call new(studentA,0,’PAT’,’SMITH’)

! assign student object
! to polymorphic object

person%ps => studentA
! nullify other possibilities

nullify(person%pt)

Fortran90 uses the ‘=>’ operator to assign pointers to ob-
jects, and objects being pointed at must have the TAR-
GET attribute. Since the internal state of a pointer in For-
tran90 is private, the NULLIFY intrinsic is needed to set
it to a null object. This assignment operation can be en-
capsulated into a procedure as follows:

function assign_student(ps) result(pps)
type (poly_Personnel) :: pps
type (Student), target, intent(in) :: ps
pps%ps => ps
nullify(pps%pt)
end function assign_student

Thus, one can create aStudent object and assign it to
person as follows:

call new(studentA,0,’PAT’,’SMITH’)
person = assign_student(studentA)

In a similar fashion one can create an assignment proce-
dure for aTeacher .

The second feature that we must construct is a dispatch
mechanism to select the appropriate procedure to execute.
This is done by checking which of the possible pointers
actually points to an object and then passing the associ-
ated pointer to the appropriate procedure. In Fortran90,
the ASSOCIATED intrinsic is used for this purpose as
follows:

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 373

subroutine poly_print(this)
type (poly_Personnel), intent (in) :: this

! check if pointer is associated with student type
if (associated(this%ps)) then

call print(this%ps)
! check if pointer is associated with teacher type

elseif (associated(this%pt)) then
call print(this%pt)

endif
end subroutine poly_print

PROGRAM CODE 5

if (associated(person%ps))
Print *,‘We have a Student!’

Thus one can write aprint procedure for objects
of type poly_Personnel which checks which type
has been associated and executes the appropriate proce-
dure, see Program Code 5. Finally, we can overload the
namepoly to refer to theassign_student andas-
sign_teacher procedures, and the nameprint to
refer to poly_print . All these features can be com-
bined into a simplepoly_ Personnel class, see Pro-
gram Code 6.

In the following sample program, the objectperson
functions as a pointer to base class objects which can be
assigned either to aStudent or aTeacher object and
be passed to the appropriateprint procedure, see Pro-
gram Code 7. This program produces the following out-
put:

0 : PAT SMITH
-- Not Enrolled
JOHN WHITE

-- Salary: 1000

A more complete version of this polymorphic class
is listed in Appendix D, where a constructor as well as
dynamically dispatched versions of the remaining pro-
cedures in thePersonnel hierarchy have been imple-
mented (getssn , addclass , andupdatesalary).
The polymorphic class emulates the virtual function
mechanism in C++. Note that the polymorphic class
knows only about the types and interfaces in the hierarchy
and nothing about their implementation. This makes writ-
ing a polymorphic class rather mechanical and it could in
principle be done by a software tool.

5 DATABASE APPLICATION WITH DYNAMIC
DISPATCHING

Henderson and Zorn make use of thePersonnel class
hierarchy to write aDatabase class which manages a

linked list of Personnel objects. The class data mem-
bers for this class contain a pointer to the base class object
and a pointer to theDatabase object. This is expressed
by the following Fortran90 type:

type Database
type (poly_Personnel) :: file
type (Database), pointer :: next

end type Database

where thepoly_Personnel component is used in-
stead of the pointer toPersonnel . The Database
class contains methods to add, remove, locate and print
records in the database. These methods are written much
the same as one would write them in C++, except for the
use ofpoly_Personnel . For example, a method to
add a file to the database looks like Program Code 8. This
procedure traverses theDatabase pointers until a null
next pointer is found, and then it stores the file record
f in the current location and allocates thenext loca-
tion. In Fortran90 the ‘%’ syntax is used both for pointer
as well as object components, whereas in C++ the ‘-> ’
syntax is used for pointers and the ‘. ’ for objects. Note
that theDatabase argument ‘this ’ requires a TAR-
GET attribute in Fortran90 to allow it to be pointed at.
To print a database, one traverses it in a similar manner,
printing each valid record. To remove or locate a record
from the database, one searches the database for a partic-
ular identifier, then deletes or returns it. For example, the
procedure for returning a record from the database looks
like Program Code 9. The remaining procedures in the
Database class are listed in Appendix E. The test pro-
gram (see Program Code 10) will first create a database
and add a student and teacher record to it. Then it will
retrieve a student file from the database and add a physics
class, and retrieve a teacher file and update the salary. Fi-
nally, it will print the entire database (without identifiers)
and purge it. The C++ version of the test program is listed
in Appendix F.

374 DECYK, NORTON, AND SZYMANSKI

module poly_Personnel_class
! bring Student_class into scope

use Student_class
! bring Teacher_class into scope

use Teacher_class
private :: assign_student, assign_teacher, poly_print

! define poly_Personnel type
type poly_Personnel

private
type (Student), pointer :: ps
type (Teacher), pointer :: pt

end type poly_Personnel
interface poly

module procedure assign_student, assign_teacher
end interface
interface print

module procedure poly_print
end interface
contains

function assign_student(ps) result(pps)
! assign Student to poly_Personnel

type (poly_Personnel) :: pps
type (Student), target, intent(in) :: ps
pps%ps => ps
nullify(pps%pt)
end function assign_student

!
function assign_teacher(pt) result(pps)

! assign Teacher to poly_Personnel
type (poly_Personnel) :: pps
type (Teacher), target, intent(in) :: pt
nullify(pps%ps)
pps%pt => pt
end function assign_teacher

!
subroutine poly_print(this,printssn)

! Print poly_Personnel
type (poly_Personnel), intent (in) :: this
logical, optional, intent (in) :: printssn
if (associated(this%ps)) then

call print(this%ps,printssn)
elseif (associated(this%pt)) then

call print(this%pt,printssn)
endif
end subroutine poly_print

end module poly_Personnel_class

PROGRAM CODE 6

The output of this program is:

PAUL JONES
-- Enrolled

PHYSICS
JOHN WHITE

-- Salary: 2000

6 MULTIPLE INHERITANCE, TEMPLATES, AND

OPERATORS

Multiple inheritance in C++ allows one to create compos-
ite classes that have the properties of its base classes. An
example of such a class might be aStudentTeacher ,
which inherits from bothStudent and Teacher . In

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 375

program poly_test
! bring in poly_Personnel_class into scope

use poly_Personnel_class
type (Student), target :: studentA
type (Teacher), target :: teacherA
type (poly_Personnel) :: person

! initialize student and teacher
call new(studentA,0,’PAT’,’SMITH’)
call new(teacherA,2,’JOHN’,’WHITE’,1000)

! assign a student to person and print record
person = poly(studentA)
call print(person,.true.)

! assign a teacher to person and print record
person = poly(teacherA)
call print(person,.false.)
end program poly_test

PROGRAM CODE 7

subroutine add(this,f)
type (Database), target, intent (inout) :: this
type (poly_Personnel) :: f
type (Database), pointer :: tmp
tmp => this

! traverse database
do while (associated(tmp%next))

tmp => tmp%next
enddo

! store record in current location
tmp%file = f

! allocate next location
allocate(tmp%next)
call new(tmp%next)
end subroutine add

PROGRAM CODE 8

type (poly_Personnel) function locate(this,s)
type (Database), target, intent (in) :: this
integer, intent (in) :: s
type (Database), pointer :: tmp
tmp => this

! traverse database
do while (associated(tmp%next))

! check identifier
if (getssn(tmp%file)==s) then

! return record
locate = tmp%file
return

endif
tmp => tmp%next

enddo
end function locate

PROGRAM CODE 9

376 DECYK, NORTON, AND SZYMANSKI

program database_test
! bring Database_class into scope

use Database_class
implicit none
integer :: i
type (Database), target :: cs
type (poly_Personnel) :: person
type (Student), pointer :: pstudent
type (Teacher), pointer :: pteacher

! Initialize database
call new(cs)

! Add a student file
allocate(pstudent)
call new(pstudent,1,’PAUL’,’JONES’)
person = poly(pstudent)
call add(cs,person)

! Add a teacher file
allocate(pteacher)
call new(pteacher,2,’JOHN’,’WHITE’,1000)
person = poly(pteacher)
call add(cs,person)

! Locate item in the database with ssn = 1
person = locate(cs,1)

! Add a physics class
call addclass(person,’PHYSICS’)

! Locate item in the database with ssn = 2
person = locate(cs,2)

! Update the salary
call updatesalary(person,2000)

! Print the database
call print(cs)

! Delete each data file from database
do i = 1, get_num_files()

call remove(cs,i)
enddo
end program database_test

PROGRAM CODE 10

Fortran90, one might implement such a composite class
with the following composite type:

type StudentTeacher
type (Student) :: student
type (Teacher) :: teacher

end type StudentTeacher

which includes a component ofStudent and a compo-
nent ofTeacher . This type is included in a module and
the USE operator is used to bring the base classes into
scope (see Program Code 11).

One also implements the class member functions in
the usual way, by delegating the operation on theStu-
dent component ofStudentTeacher to the Stu-
dent member function and similarly for theTeacher
component. Notice that bothStudent and Teacher
each contain a component ofPersonnel , which is now

multiply defined. Thus when theprint function is in-
voked, the name of theStudentTeacher object will
be printed twice. If theStudentTeacher is really only
one person (for example, a Teaching Assistant at a univer-
sity), this is not the desired behavior. C++ has the mech-
anism of a virtual base class to eliminate duplication of
inherited class data members. In Fortran90, since the base
class data members are declared explicitly, one can cre-
ate aStudentTeacher consisting of a singlePer-
sonnel component with all the additional components
which belong to aStudent and aTeacher , as follows:

type StudentTeacher
type (Personnel) :: personnel
integer :: nclasses
type (String),

dimension (10) :: classes

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 377

module StudentTeacher_class
! bring Student_class and Teacher_class into scope

use Student_class
use Teacher_class

! define StudentTeacher type
type StudentTeacher

type (Student) :: student
type (Teacher) :: teacher

end type Student
end module StudentTeacher_class

PROGRAM CODE 11

integer :: salary
end type StudentTeacher

Alternatively, aStudentTeacher could consist of a
singleStudent component with the additional compo-
nent which belongs to aTeacher , as follows:

type StudentTeacher
type (Student) :: student
integer :: salary

end type StudentTeacher

Thus emulating multiple inheritance in Fortran90
poses no more difficulty than implementing single inher-
itance.

Templates are an important new feature in C++ which
allows one to write procedures in terms of a parametrized
type which can be instantiated with multiple actual types.
This allows one to write generic functions that are in-
dependent of type. In contrast to inheritance, templates
avoid replication of source code, but not of executable
code.

Fortran90 has no mechanism for templates or parame-
trized types, and we know of no effective way to emulate
them directly. However, some of the functionality of tem-
plates can be achieved by use of the polymorphic class
described in section IV. Since the polymorphic type we
constructed can consist of any types, not just those re-
lated by inheritance, it is possible to write one function
which can be used with different actual types.

Fortran90 allows only a limited number of operators
to be overloaded. Notably missing are subscript[] and
call operators() . Fortran90 does allow one, however,
to create a generic user-defined operator of the form
.USER_OP_NAME. which can be used as either a binary
or unary operator. For example, the increment operator

a++

can be implemented as:

.increment.a

In Fortran90, none of these operators can appear on the
left hand side of an assignment.

7 CONCLUSIONS

Fortran90 is able to express many of the important con-
cepts of C++, such as abstract data types, encapsulation,
function overloading, and classes directly. Concepts such
as inheritance are not directly supported, but can be em-
ulated. For functions in a derived class which are mod-
ified, the procedure is similar to what one would do in
C++, except that INTERFACE statements are needed in
Fortran90 to allow procedures in different classes to have
the same names. In contrast to C++, procedures which
are not modified must also be created in Fortran90 to del-
egate the method to the base class. For classes without
virtual functions, this emulation is quite straightforward
and is tedious only if the inheritance hierarchy contains
many unmodified functions. The emulation of dynamic
dispatching is more involved and requires the creation of
a polymorphic class. This class contains an object which
can point to any member of the inheritance hierarchy and
a generic method for each class member function which
can dynamically determine which actual function to ex-
ecute. Writing the polymorphic class is straightforward,
but can be tedious, especially if the inheritance hierar-
chy is deep. The details of this class can be encapsulated,
however, so that it can be used by other classes without
concern for how dynamic dispatching is implemented,
just as in C++. Implementing multiple inheritance intro-
duces no new concepts. Templates or parametrized types
are not supported in Fortran90, and no effective way has
yet been found to emulate them. The Fortran90 program-
mer must provide explicitly many features which are au-
tomatically available in C++. This can be enlightening for
a beginner in OOP, but can be tedious for the advanced
practitioner.

The C++ language is very powerful, flexible and com-
plex. It is a language which is constantly evolving with
new ideas. It is relatively poor in standard libraries and

378 DECYK, NORTON, AND SZYMANSKI

intrinsics, although that may improve with the adoption
of the Standard Template Library. Fortran90 is a more
conservative, stable language, rich with many intrinsics
useful for scientific programming. Scientific program-
mers are caught in a bind. They often do not want to be
on the “bleeding edge” of programming languages. Yet
they want to adopt useful, proven programming meth-
ods. Does Fortran90 go far enough in introducing new
methodology to Fortran? The answer is a subject of de-
bate and is dependent on the problem being modeled.

In our own experience in implementing object-
oriented plasma simulation codes in both C++ and For-
tran90 [6], we found benefits and drawbacks in each lan-
guage. In the C++ version of the codes, we had to create
special classes to obtain the use of self-describing multi-
dimensional arrays, which were automatically available
in Fortran90. On the other hand, special polymorphic
classes had to be created in Fortran90 to emulate dynamic
dispatching, which was automatically available in C++.
Because type checking in Fortran90 was more strict, more
errors were caught by the compiler than in C++ and de-
bugging went more quickly. However, one had to write
more code. As expected for a mature language, the For-
tran90 environment was very stable and uniform across
platforms. And not surprising for an evolving language,
the environment of C++ varied across vendors and plat-
forms and some new features (such as templates) were
sometimes poorly implemented. The Fortran90 version of
the code executed about twice as fast as the C++ version.

There are many kinds of relationships between classes
which can occur in object-oriented programming [7]. In-
addition to inheritance (is-a), there are aggregations (is-
part-of, or has-a) and links (is-connected-to, or serves).
The relative importance of these various relationships de-
pends on the problem domain. For problems with many
objects which are almost identical, such as modeling
power supplies [8], the resulting deep inheritance hier-
archy would be very tedious to model in Fortran90, al-
though possible. For problems which are dominated by
aggregations and links, such as plasma simulation, For-
tran90 is as expressive as C++.

ACKNOWLEDGMENTS

The research of Viktor K. Decyk was carried out in part
at UCLA and was sponsored by USDOE and NSF. It
was also carried out in part at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Admin-
istration. The research of Charles D. Norton was sup-
ported by a National Research Council Associateship,
and that of Boleslaw K. Szymanski was sponsored un-
der grants CCR-9216053 andCCR-9527151. We would
like to thank R. Henderson and B. Zorn for making their
source code available and Chris Myers for helpful discus-
sions and suggestions about this manuscript.

REFERENCES

[1] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen,Object-Oriented Modeling and Design.Prentice-
Hall, Englewood Cliffs, NJ, 1991.

[2] S. B. Lippman,C++ Primer. Addison-Wesley, Reading,
MA, 1991.

[3] T. M. R. Ellis, I. R. Philips, and T. M. Lahey,Fortran 90
Programming.Addison-Wesley, Reading, MA, 1994.

[4] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “In-
troduction to object-oriented concepts using Fortran90,”
UCLA IPFR Report PPG-1560, July, 1996. See also the
web site: http://www.cs.rpi.edu/∼szymansk/oof90.html.

[5] R. Henderson and B. Zorn, “A comparison of object-
oriented programming in four modern languages,”Soft-
ware-Practice and Experience, vol. 24, no. 11, pp. 1077–
1095, 1994.

[6] C. D. Norton, V. K. Decyk, and B. K. Szymanski, “High
performance object oriented scientific programming in For-
tran 90,” inProc. Eighth SIAM Conf. on Parallel Processing
for Scientific Computing, Minneapolis, MN, 1997.

[7] G. Booch, Object-Oriented Analysis and Design.Ben-
jamin/Cummings, Redwood City, CA, 1994.

[8] J. J. Barton and L. R. Nackman,Scientific and Engineering

C++. Addison-Wesley, Reading, MA, 1994.

APPENDIX A: FINAL VERSION OF PERSONNEL CLASS

Fortran90 version
module Personnel_class
implicit none
private :: init_Personnel, term_Personnel, print_Personnel

! Define Personnel type
type Personnel

private
integer :: ssn
character, dimension(:), pointer :: firstname, lastname

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 379

end type Personnel
! Number of database records

integer, save, private :: NUM_FILES = 0
interface new

module procedure init_Personnel
end interface
interface delete

module procedure term_Personnel
end interface
interface print

module procedure print_Personnel
end interface
contains

subroutine init_Personnel(this,s,fn,ln)
! Constructor

type (Personnel), intent (out) :: this
integer, intent (in) :: s
character*(*), intent (in) :: fn, ln
this%ssn = s
allocate(this%firstname(len(fn)),this%lastname(len(ln)))
call strcpy(this%firstname,fn)
call strcpy(this%lastname,ln)
NUM_FILES = NUM_FILES + 1
end subroutine init_Personnel

!
subroutine term_Personnel(this)

! Destructor
type (Personnel), intent (inout) :: this
deallocate(this%firstname,this%lastname)
NUM_FILES = NUM_FILES - 1
end subroutine term_Personnel
subroutine print_Personnel(this,printssn)
type (Personnel), intent (in) :: this
logical, optional, intent (in) :: printssn
if (present(printssn)) then

if (printssn) write (*,’(i2,a2)’,advance=’no’)
& this%ssn,’: ’

endif
Print *, this%firstname, ’ ’, this%lastname
end subroutine print_Personnel

!
function getssn_Personnel(this) result(ssn)
type (Personnel), intent (in) :: this
integer :: ssn
ssn = this%ssn
end function getssn_Personnel

!
integer function get_num_files()
get_num_files = NUM_FILES
end function get_num_files

!
subroutine strcpy(s,c)
character, dimension (:), intent (out) :: s
character*(*), intent (in) :: c
integer :: i
do i = 1, max(size(s),len(c))

s(i) = c(i:i)
enddo

380 DECYK, NORTON, AND SZYMANSKI

end subroutine strcpy
end module Personnel_class

C++ version

// ***********************
// **** personnel.h ****
// ***********************

#include <stream.h>

class Personnel {
static int NUM_FILES;
char *firstname, *lastname;

protected:
int ssn;

public:
Personnel(const int s, const char *fn, const char *ln);
~Personnel();
virtual void print(const int printssn = 0);
virtual int getssn();
static int get_num_files();

};

//*****************************
//**** personnel.cc *******
//*****************************

#include <stream.h>
#include <string.h>
#include "personnel.h"

// Initialize static class member
// Number of database records
int Personnel::NUM_FILES = 0;

// Constructor
Personnel::Personnel(const int s, const char *fn, const char *ln)
{

ssn = s;
firstname = new char[strlen(fn)+1];
lastname = new char[strlen(ln)+1];
strcpy(firstname, fn);
strcpy(lastname, ln);
NUM_FILES++;

}
// Destructor
Personnel::~Personnel()
{

delete firstname;
delete lastname;
NUM_FILES--;

}

void Personnel::print(const int printssn)
{

if (printssn)

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 381

cout << ssn << ": " << firstname << ’ ’ << lastname << endl;
else

cout << firstname << ’ ’ << lastname << endl;
}

int Personnel::getssn() { return ssn; }

int Personnel::get_num_files() { return NUM_FILES; }

APPENDIX B: FINAL VERSION OF STUDENT CLASS

Fortran90 version
module Student_class

! bring Personnel_class into scope
use Personnel_class
implicit none
private :: Personnel,init_Student,term_Student,print_Student
private :: getssn_Personnel, getssn_Student

! define String type
type, private :: String

character*1, dimension(:), pointer :: stringptr
end type String

! define Student type
type Student

private
type (Personnel) :: personnel
integer :: nclasses
type (String), dimension (10) :: classes

end type Student
interface new

module procedure init_Student
end interface
interface delete

module procedure term_Student
end interface
interface print

module procedure print_Student
end interface
interface getssn

module procedure getssn_Student
end interface
contains

subroutine init_Student(this,s,fn,ln)
! Student class constructor

type (Student), intent (out) :: this
integer, intent (in) :: s
character*(*), intent (in) :: fn, ln
call new(this%personnel,s,fn,ln)
this%nclasses = 0
end subroutine init_Student

!
subroutine term_Student(this)

! Student class destructor
type (Student), intent (inout) :: this
integer :: i
call delete(this%personnel)

382 DECYK, NORTON, AND SZYMANSKI

do i = 1, this%nclasses
deallocate(this%classes(i)%stringptr)

enddo
end subroutine term_Student
subroutine print_Student(this,printssn)

! Print a student file
type (Student), intent (in) :: this
logical, optional, intent (in) :: printssn
integer :: i, j
call print(this%personnel,printssn)
if (this%nclasses==0) then

Print *,’-- Not Enrolled’
else

Print *,’-- Enrolled’
do i = 1, this%nclasses

do j = 1, size(this%classes(i)%stringptr)
write (*,’(a)’,advance=’no’)

& this%classes(i)%stringptr(j)
enddo

enddo
Print *

endif
end subroutine print_Student

!
integer function getssn_Student(this)
type (Student), intent (in) :: this
getssn_Student = getssn_Personnel(this%personnel)
end function getssn_Student

!
subroutine addclass(this,c)

! Add a class to a student file
type (Student), intent (inout) :: this
character*(*), intent (in) :: c
this%nclasses = this%nclasses + 1
allocate(this%classes(this%nclasses)%stringptr(len(c)))
call strcpy(this%classes(this%nclasses)%stringptr,c)
end subroutine addclass

end module Student_class

C++ version

// ***********************
// **** student.h ****
// ***********************

class Student : public Personnel {
int nclasses;
char *classes\cite{10};

public:
Student(const int ssn, const char *firstname, const char *lastname);
~Student();
void print(const int printssn = 0);
void addclass(const char *c);

};

//****************************
//**** student.cc **********
//****************************

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 383

#include <stream.h>
#include <string.h>

#include "personnel.h"
#include "student.h"

// Student class constructor
Student::Student(const int s, const char *fn, const char *ln) : Personnel(s,fn,ln)
{

nclasses=0;
}

// Student class destructor
Student::~Student()
{

for (int i=0; i<nclasses; ++i) delete classes[i];
}

// Add a class to a student file
void Student::addclass(const char *c)
{

classes[nclasses] = new char[strlen(c)+1];
strcpy(classes[nclasses], c);
nclasses += 1;

}

// Print a student file
void Student::print(const int printssn)
{

Personnel::print(printssn);
if (nclasses == 0)

cout << "-- Not Enrolled" << endl;
else {

cout << "-- Enrolled:" << endl;
for (int i=0; i < nclasses; ++i) cout << classes[i];
cout << endl;

}
}

APPENDIX C: FINAL VERSION OF TEACHER CLASS

Fortran90 version

module Teacher_class
! bring Personnel_class into scope

use Personnel_class
implicit none
private :: Personnel,init_Teacher,term_Teacher,print_Teacher
private :: getssn_Personnel, getssn_Teacher

! define Teacher type
type Teacher

private
type (Personnel) :: personnel
integer :: salary

end type Teacher
interface new

module procedure init_Teacher
end interface

384 DECYK, NORTON, AND SZYMANSKI

interface delete
module procedure term_Teacher

end interface
interface print

module procedure print_Teacher
end interface
interface getssn

module procedure getssn_Teacher
end interface
contains

subroutine init_Teacher(this,s,fn,ln,sal)
! Teacher constructor

type (Teacher), intent (out) :: this
integer, intent (in) :: s, sal
character*(*), intent (in) :: fn, ln
call new(this%personnel,s,fn,ln)
this%salary = sal
end subroutine init_Teacher

!
subroutine term_Teacher(this)

! Teacher class destructor
type (Teacher), intent (inout) :: this
call delete(this%personnel)
end subroutine term_Teacher

!
subroutine print_Teacher(this,printssn)

! Print a teacher file
type (Teacher), intent (in) :: this
logical, optional, intent (in) :: printssn
call print(this%personnel,printssn)
Print *, ’-- Salary: ’, this%salary
end subroutine print_Teacher

integer function getssn_Teacher(this)
type (Teacher), intent (in) :: this
getssn_Teacher = getssn_Personnel(this%personnel)
end function getssn_Teacher

!
subroutine updatesalary(this,sal)
type (Teacher), intent (inout) :: this
integer, intent (in) :: sal
this%salary = sal
end subroutine updatesalary

end module Teacher_class

C++ version

// ***********************
// **** teacher.h ****
// ***********************

class Teacher : public Personnel {
int salary;

public:
Teacher(const int ssn, const char *firstname,

const char *lastname, const int salary);
void print(const int printssn = 0);
void updatesalary(const int sal);

};

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 385

//**************************
//**** teacher.cc *******
//**************************

#include <stream.h>

#include "personnel.h"
#include "teacher.h"

// Teacher constructor
Teacher::Teacher(const int s, const char *fn, const char* ln,

const int sal) : Personnel(s,fn,ln)
{

salary = sal;
}

// Print a teacher file
void Teacher::print(const int printssn)
{

Personnel::print(printssn);
cout << "-- Salary: " << salary << endl;

}

void Teacher::updatesalary(const int sal)
{

salary = sal;
}

APPENDIX D: FINAL VERSION OF POLY_PERSONNEL CLASS

Fortran90 version

module poly_Personnel_class
! bring Student_class into scope

use Student_class
! bring Teacher_class into scope

use Teacher_class
private :: poly_init, assign_student, assign_teacher
private :: poly_print, poly_getssn, poly_addclass
private :: poly_updatesalary

! define poly_Personnel type
type poly_Personnel

private
type (Student), pointer :: ps
type (Teacher), pointer :: pt

end type poly_Personnel
interface new

module procedure poly_init
end interface
interface poly

module procedure assign_student, assign_teacher
end interface
interface print

module procedure poly_print
end interface
interface getssn

module procedure poly_getssn

386 DECYK, NORTON, AND SZYMANSKI

end interface
interface addclass

module procedure addclass, poly_addclass
end interface
interface updatesalary

module procedure updatesalary, poly_updatesalary
end interface
contains

subroutine poly_init(this)
! Initialize poly_Personnel with null pointers

type (poly_Personnel), intent (out) :: this
nullify(this%ps)
nullify(this%pt)
end subroutine poly_init

!
function assign_student(ps) result(pps)

! assign Student to poly_Personnel
type (poly_Personnel) :: pps
type (Student), target, intent(in) :: ps
pps%ps => ps
nullify(pps%pt)
end function assign_student

function assign_teacher(pt) result(pps)
! assign Teacher to poly_Personnel

type (poly_Personnel) :: pps
type (Teacher), target, intent(in) :: pt
nullify(pps%ps)
pps%pt => pt
end function assign_teacher

!
subroutine poly_print(this,printssn)

! Print poly_Personnel
type (poly_Personnel), intent (in) :: this
logical, optional, intent (in) :: printssn
if (associated(this%ps)) then

call print(this%ps,printssn)
elseif (associated(this%pt)) then

call print(this%pt,printssn)
endif
end subroutine poly_print

!
integer function poly_getssn(this)
type (poly_Personnel), intent (in) :: this
if (associated(this%ps)) then

poly_getssn = getssn(this%ps)
elseif (associated(this%pt)) then

poly_getssn = getssn(this%pt)
endif
end function poly_getssn

!
subroutine poly_addclass(this,c)

! Add a class to a student poly_Personnel file
type (poly_Personnel), intent (inout) :: this
character*(*), intent (in) :: c
if (associated(this%ps)) call addclass(this%ps,c)
end subroutine poly_addclass

!

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 387

subroutine poly_updatesalary(this,sal)
type (poly_Personnel), intent (inout) :: this
integer, intent (in) :: sal
if (associated(this%pt)) call updatesalary(this%pt,sal)
end subroutine poly_updatesalary

end module poly_Personnel_class

APPENDIX E: FINAL VERSION OF DATABASE CLASS

Fortran90 version

module Database_class
! bring poly_Personnel_class into scope

use poly_Personnel_class
private :: init_Database, print_Database

! define Database type
type Database

private
type (poly_Personnel) :: file
type (Database), pointer :: next

end type Database
interface new

module procedure init_Database
end interface
interface print

module procedure print_Database
end interface
contains

subroutine init_Database(this)
! Constructor

type (Database), intent (out) :: this
! nullify pointers

call new(this%file)
nullify(this%next)
end subroutine init_Database

!
subroutine print_Database(this)

! Print the database
type (Database), target, intent (inout) :: this
type (Database), pointer :: tmp
tmp => this
do while (associated(tmp%next))

call print(tmp%file)
tmp => tmp%next

enddo
end subroutine print_Database
subroutine add(this,f)

! Add a file to the database
type (Database), target, intent (inout) :: this
type (poly_Personnel) :: f
type (Database), pointer :: tmp
tmp => this
do while (associated(tmp%next))

tmp => tmp%next
enddo
tmp%file = f
allocate(tmp%next)

388 DECYK, NORTON, AND SZYMANSKI

call new(tmp%next)
end subroutine add

!
subroutine remove(this,s)

! Remove a file from the database
type (Database), target, intent (inout) :: this
integer, intent (in) :: s
type (Database), pointer :: tmp
tmp => this
do while (associated(tmp%next))

if (getssn(tmp%file)==s) then
tmp%file = tmp%next%file
tmp%next => tmp%next%next
return

endif
tmp => tmp%next

enddo
Print *,’Database::remove: file not found’
end subroutine remove

!
type (poly_Personnel) function locate(this,s)

! Find a file in the database
type (Database), target, intent (in) :: this
integer, intent (in) :: s
type (Database), pointer :: tmp
tmp => this
do while (associated(tmp%next))

if (getssn(tmp%file)==s) then
locate = tmp%file
return

endif
tmp => tmp%next

enddo
Print *,’Database::locate: file not found’
call new(locate)
end function locate

end module Database_class

C++ version

// ***********************
// **** database.h ****
// ***********************

class Database {
Personnel *file;
Database *next;

public:
Database();
void print();
void add(Personnel *pf);
Personnel *locate(const int ssn);
void remove(const int ssn);

};

//************************
//**** database.cc ****
//************************

HOW TO EXPRESS C++ CONCEPTS IN FORTRAN90 389

#include <stream.h>
#include <string.h>

#include "personnel.h"
#include "database.h"

// Constructor
Database::Database()
{

file=NULL;
next=NULL;

}

// Print the database
void Database::print()
{

Database *tmp=this;
while (tmp->next != NULL) {

tmp->file->print();
tmp = tmp->next;

}
}

// Add a file to the database
void Database::add(Personnel *f)
{

Database *tmp=this;
while (tmp->next != NULL) {

tmp = tmp->next;
}
tmp->file = f;
tmp->next = new Database;

}

// Remove a file from the database
void Database::remove(const int s)
{

Database *tmp=this;

while (tmp->next != NULL) {
if (tmp->file->getssn() == s) {

tmp->file = tmp->next->file;
tmp->next = tmp->next->next;
return;

}
tmp = tmp->next;

}
cout << "Database::remove: file not found" << endl;

}

// Find a file in the database
Personnel *Database::locate(const int s)
{

Database *tmp=this;

390 DECYK, NORTON, AND SZYMANSKI

while (tmp->next != NULL) {
if (tmp->file->getssn() == s) {

return tmp->file;
}
tmp = tmp->next;

}
cout << "Database::locate: file not found" << endl;
return NULL;

}

APPENDIX F: DATABASE APPLICATION TEST PROGRAM

C++ version

// ******************************
// **** database_test.cc ******
// ******************************

#include "personnel.h"
#include "teacher.h"
#include "student.h"
#include "database.h"

main()
{

Database cs;
Personnel *person;
int i;

// Add a student file
cs.add(new Student(1, "PAUL", "JONES"));

// Add a teacher file
cs.add(new Teacher(2, "JOHN", "WHITE", 1000));

// Locate item in the database with ssn = 1
person = cs.locate(1);

// Add a physics class
((Student*)person)->addclass("PHYSICS");

// Locate item in the database with ssn = 2
person = cs.locate(2);

// Update the salary
((Teacher*)person)->updatesalary(2000);

// Print the database
cs.print();

// Delete each data file from database
for (i=0; i < Personnel::get_num_files(); i++) {

cs.remove(i+1);
}

}

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

