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ABSTRACT 

Bulk Synchronous Parallelism (BSP) is a parallel programming model that abstracts from 
low-level program structures in favour of supersteps. A superstep consists of a set of in­
dependent local computations, followed by a global communication phase and a barrier 
synchronisation. Structuring programs in this way enables their costs to be accurately de­
termined from a few simple architectural parameters, namely the permeability of the com­
munication network to uniformly-random traffic and the time to synchronise. Although per­
mutation routing and barrier synchronisations are widely regarded as inherently expensive, 
this is not the case. As a result, the structure imposed by BSP does not reduce perfor­
mance, while bringing considerable benefits for application building. This paper answers 
the most common questions we are asked about BSP and justifies its claim to be a major 
step forward in parallel programming. 

1 Why Is Another Model Needed? 

In the 1980s, a large number of different types of parallel 
architectures were developed. This variety may have been 
necessary to thoroughly explore the design space but, in 
retrospect, it had a negative effect on the commercial de­
velopment of parallel applications software. To achieve 
acceptable performance, software had to be carefully tai­
lored to the specific architectural properties of each com­
puter, making portability almost impossible. Each new 
generation of processors appeared in strikingly-different 
parallel architectural frameworks, forcing performance­
driven software developers to redesign their applications 
from the ground up. Understandably, few were keen to 
join this process. 

Today, the number of parallel computation models and 
languages probably exceeds the number of different ar­
chitectures with which parallel programmers had to con­
tend ten years ago. Most make it hard to achieve portabil­
ity, hard to achieve performance, or both. 
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The two largest classes of models are based on 
message passing, and on shared memory. Those based 
on message passing are inadequate for three reasons. 
First, messages require paired actions at the sender and 
receiver, which it is difficult to ensure are correctly 
matched. Second, messages blend communication and 
synchronisation so that sender and receiver must be in 
appropriately-consistent states when the communication 
takes place. This is appallingly difficult to ensure in most 
models, and programs are prone to deadlock as a result. 
Third, the performance of such programs is impossible to 
predict because the interaction of large numbers of indi­
vidual messages in the interconnection mechanism makes 
the variance in their delivery times large. 

The argument for shared-memory models is that they 
are easier to program because they provide the abstrac­
tion of a single, shared address space. A whole class of 
placement decisions are avoided. This is true, but is only 
half of the issue. When memory is shared, simultaneous 
access to the same location must be prevented. This re­
quires either PRAM-style discipline by the programmer, 
or expensive lock management (and locks are expensive 
on today's parallel computers [16]). In both cases, the 
benefits are counterbalanced by quite serious drawbacks. 
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From an architectural point of view, shared-memory ab­
stractions limit the size of computer that can be built be­
cause a larger and larger fraction of the computer's re­
sources must be devoted to communication and the main­
tenance of coherence. Even worse, this part of the com­
puter is most likely to be highly customized, and hence to 
be proportionally more expensive. Thus even the propo­
nents of shared memory agree that, with our current un­
derstanding, such architectures can contain no more than, 
say, fifty processors. Whether this is sufficient for the ap­
plication demands of the next decade is debatable. 

The Bulk Synchronous Parallel (BSP) model [36] is 
a distributed-memory abstraction that treats communica­
tion as a bulk action of a program, rather than as the ag­
gregate of a set of individual, point-to-point messages. 
It provides software developers with an attractive escape 
route from the world of architecture-dependent parallel 
software. The emergence of the model has coincided with 
the convergence of commercial parallel machine designs 
to a standard architectural form with which it is com­
patible. These developments have been enthusiastically 
welcomed by a rapidly-growing community of software 
engineers who produce scalable and portable parallel ap­
plications. However, while the parallel-applications com­
munity has welcomed the approach, there is a degree 
of skepticism amongst parts of the computer science re­
search community. Some people seem to regard some of 
the claims made in support of the BSP approach as "too 
good to be true". We will make these claims, and back 
them up, in what follows. 

The only sensible way to evaluate an architecture­
independent model of parallel computation such as BSP 
is to consider it in terms of all of its properties, that is 

(a) its usefulness as a basis for the design and analysis 
of algorithms, 

(b) its applicability across the whole range of 
general-purpose architectures and its ability to 
provide efficient, scalable performance on them, 
and 

(c) its support for the design of fully-portable 
programs with analytically-predictable 
performance. 

To focus on only one of these at a time, is simply to re­
place the zoo of parallel architectures in the 1980s by a 
new zoo of parallel models in the 1990s. A fully-rounded 
viewpoint on the nature and role of models seems more 
appropriate as we move from the straightforward world 
of parallel algorithms to the much more complex world 
of parallel software systems. 

2 What Is Bulk Synchronous 
Parallelism? 

Bulk Synchronous Parallelism is a style of parallel pro­
gramming intended for parallelism across all application 
areas and a wide range of architectures [25]. Its goals are 
more ambitious than most parallel-programming systems 
which are aimed at particular kinds of applications, or 
work well only on particular classes of parallel architec­
tures [26]. 

BSP's most fundamental properties are that: 

1. It is simple to write. BSP imposes a high-level 
series-parallel structure on programs which 
makes them easy to write, and to read. Existing 
BSP languages are SPMD, making programs even 
simpler, since the parallelism is largely implicit. 

2. It is independent of target architectures. Unlike 
many parallel programming systems, BSP is 
designed to be architecture-independent, so that 
programs run unchanged when they are moved 
from one architecture to another. Thus BSP 
programs are portable in a strong sense. 

3. The performance of a program on a given 
architecture is predictable. The execution time of 
a BSP program can be computed from the text of 
the program and a few simple parameters of the 
target architecture. This makes engineering design 
possible, since the effect of a decision on 
performance can be determined at the time it is 
made. 

BSP achieves these properties by raising the level of 
abstraction at which programs are written and implemen­
tation decisions made. Rather than considering individ­
ual processes and individual communication actions, BSP 
considers computation and communication at the level 
of the entire program, and the entire executing computer 
and its interconnection mechanism. Determining the bulk 
properties of a program, and the bulk ability of a partic­
ular computer to satisfy them makes it possible to design 
with new clarity. 

One way in which BSP is able to achieve this abstrac­
tion is by renouncing locality as a performance optimisa­
tion. This simplifies many aspects of both program and 
implementation design, and in the end does not adversely 
affect performance for most application domains. There 
will always be some application domains for which lo­
cality is critical, for example low-level image processing, 
and for these BSP may not be the best choice. 
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3 What Does the BSP Programming Style Look 
Like? 

BSP programs have both a vertical structure and a hor­
izontal structure. The vertical structure arises from the 
progress of a computation through time. For BSP, this is a 
sequential composition of global supersteps, which con­
ceptually occupy the full width of the executing architec­
ture. A superstep is shown in Figure 1. 

Each superstep is further subdivided into three ordered 
phases consisting of: 

1. simultaneous local computation in each process, 
using only values stored in the memory of its 
processor; 

2. communication actions amongst the processes, 
causing transfers of data between processors; 

3. a barrier synchronisation, which waits for all of 
the communication actions to complete, and which 
then makes any data transferred visible in the local 
memories of the destination processes. 

The horizontal structure arises from concurrency, and 
consists of a fixed number of virtual processes. These pro­
cesses are not regarded as having a particular linear order, 
and may be mapped to processors in any way. Thus local­
ity plays no role in the placement of processes on proces­
sors. 

We will use p to denote the virtual parallelism of a pro­
gram, that is the number of processes it uses. If the target 
parallel computer has fewer processors than the virtual 
parallelism, an extension of Brent's theorem [5] can be 
used to transform any BSP program into a slimmer ver­
sion. 

4 How Does BSP Communication Work? 

Most parallel programming systems treat communica­
tion, both conceptually and in implementations, at the 
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level of individual actions: memory-to-memory transfers, 
sends and receives, or active messages. This level is diffi­
cult to work with because parallel programs contain many 
simultaneous communication actions, and their interac­
tions are complex. For example, congestion in the inter­
connection mechanism is typically very sensitive to the 
applied load. This makes it hard to discover much about 
the time any single communication action will take to 
complete, because it depends so much on what else is 
happening in the computer at the same time. 

Considering communication actions en masse both 
simplifies their treatment, and makes it possible to bound 
the time it takes to deliver a whole set of data. BSP does 
this by considering all of the communication actions of a 
superstep as a unit. For the time being, imagine that all 
messages have a fixed size. During a superstep, each pro­
cess has designated some set of outgoing messages and 
is expecting to receive some set of incoming messages. If 
the maximum number of incoming or outgoing messages 
per processor is h, then such a communication pattern is 
called an h-relation. The communication pattern in Fig­
ure 1 is a 2-relation. 

Many communication topologies deliver almost all 
message patterns well, but perform badly for a particular, 
small set of patterns. The patterns in this set are typically 
regular ones. In other words, a random message pattern 
is unlikely to be in this set of 'bad' patterns unless it has 
some regular structure. One of the attractions of adap­
tive routing techniques is that they reduce the likelihood 
of such 'bad' patterns. BSP randomises the placement 
of processes on processors so that regularities from the 
problem domain, which are often reflected in programs, 
are destroyed in the implementation. This tends to make 
the destination processor addresses of an h-relation ap­
proximate a random permutation. This, in turn, makes it 
unlikely that each h-relation will be a 'bad' pattern. The 
performance advantage of avoiding patterns that take the 
network a long time to deliver outweighs any advantage 
gained by exploiting locality in placement. 

The ability of a communication network to deliver data 
is captured by a BSP parameter, g, that measures the per­
meability of the network to continuous traffic addressed 
to uniformly-random destinations. As we have seen, BSP 
programs randomise to approximate such traffic. The pa­
rameter g is defined such that an h-relation will be de­
livered in time hg. Subject to some small provisos, dis­
cussed later, hg is an accurate measure of communica­
tion performance over a large range of architectures. The 
value of g is normalised with respect to the clock rate of 
each architecture so that it is in the same units as the time 
for executing sequences of instructions. 

Sending a message of length m clearly takes longer 
than sending a message of size 1. For reasons that will 
become clear later, BSP does not distinguish between a 
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message of length m and m messages of length 1 - the 
cost in either case is mhg. So messages of varying lengths 
may either be costed using the form mhg where h is 
the number of messages, or the message lengths can be 
folded into h, so that it becomes the number of units of 
data to be transferred. 

The parameter g is related to the bisection bandwidth 
of the communication network but they are not equivalent 
- g also depends on factors such as: 

1. the protocols used to interface with, and within, 
the communication network; 

2. buffer management by both the processors and the 
communication network; 

3. the routing strategy used in the communication 
network; and 

4. the BSP runtime system. 

So g is bounded below by the ratio of p to the bisection 
bandwidth, suitably normalised, but may be much larger 
because of these other factors. Only a very unusual net­
work would have a bisection bandwidth that grew faster 
than p, so g is a monotonically increasing function of p. 
The precise values of g is, in practice, determined em­
pirically for each parallel computer, by running suitable 
benchmarks. A BSP benchmarking protocol in given in 
Appendix B. 

Note that g is not the single-word delivery time, but the 
single-word delivery time under continuous traffic condi­
tions. This difference is subtle but crucial. 

5 Surely This Isn't a Very Precise Measure of 
How Long Communication Takes? Don't 
Hotspots and Congestion Make It Very 
Inaccurate? 

One of the most difficult problems of determining the per­
formance of conventional messaging systems is precisely 
that congestion makes upper bounds hard to determine 
and quite pessimistic. BSP largely avoids this difficulty. 

An apparently-balanced communication pattern may 
always generate hotspots in some region of the intercon­
nection network. BSP prevents this in several ways. First, 
the random allocation of processes to processors breaks 
up patterns arising from the problem domain. Second, the 
BSP runtime system uses routing techniques that avoid 
localized congestion. These include randomized routing 
[37], in which particular kinds of randomness are intro­
duced into the choice of route for each communication 
action, and adaptive routing [4], in which data are di­
verted from their normal route in a controlled way to 
avoid congestion. If congestion occurs, as when an archi­
tecture has only a limited range of deterministic routing 

techniques for the BSP runtime system to choose from, 
this limitation on continuous message traffic is reflected 
in the measured value of g. 

Notice also that the definition of an h-relation distin­
guishes the cost of a balanced communication pattern 
from one that is skewed. A communication pattern in 
which each processor sends a single message to some 
other (distinct) processor counts as a 1-relation. However, 
a communication pattern that transfers the same number 
of messages, but in the form of a broadcast from one pro­
cessor to all of the others, counts as a p-relation. Hence, 
unbalanced communication, which is the most likely to 
cause congestion, is charged a higher cost. Thus the cost 
model does take into account congestion phenomena aris­
ing from the limits on each processor's capacity to send 
and receive data, and from extra traffic that might occur 
on the communication links near a busy processor. 

Experiments have shown that g is an accurate measure 
of the cost of moving large amounts of data on a wide 
range of existing parallel computers. The reason that g 

works so well is that, while today's interconnection net­
works do have non-uniform latencies, these are quite flat. 
Once a message has entered the network, the latency to 
an immediate neighbour is not very much smaller than 
the latency to the other side of the network. Almost all 
of the end-to-end latency arises on the path from the pro­
cessor to the network itself, and is caused by operating 
system overheads, protocol overheads, and limited band­
width into the network. 

6 Isn't It Expensive to Give up Locality? 

There will always be application domains where exploit­
ing locality is the key to achieving good performance. 
However, there are not as many of them as a naive analy­
sis might suggest. 

There are two reasons why locality is oflimited impor­
tance. The first is that the communication networks of to­
day's parallel computers seldom have the regular topolo­
gies that are often assumed. They are far more likely to 
have a hierarchical, cluster-based topology (the important 
exceptions being the Cray T3D and T3E which have a 
torus topology). Hence each processor has a few neigh­
bours in its cluster, a lot more neighbours slightly further 
away, and then all of the other nodes at the same effective 
distance. Furthermore, these distances vary only slightly. 
So there is just not much advantage to locality in the ar­
chitecture, since it makes very little difference to latencies 
once in the network. 

The second reason why locality is of limited impor­
tance is that most performance-limited problems work 
with large amounts of data, and can therefore exploit large 
amounts of virtual parallelism. However, most existing 



parallel computers have only modest numbers of pro­
cessors. When highly-parallel programs are mapped to 
much less parallel architectures, many virtual processes 
must be multiplexed onto each physical processor by the 
programmer. Almost all of the locality is lost when this 
is done, unless the application domain is highly-regular 
and matches the structure of the communication topol­
ogy very closely. Most interesting applications have lo­
cality arising from the three-dimensional nature of the 
world, while most communication networks have two­
dimensional locality. For example, finite element appli­
cations typically triangulate a three-dimensional surface, 
and there is no obvious way to map such triangulations 
onto, say, a 2D torus, while preserving all of the local­
ity. So, while there are applications where locality can be 
exploited, they are, in practice, less frequent than is com­
monly supposed. 

7 Most Parallel Computers Have a Considerable 
Cost Associated with Starting up 
Communicaton. Doesn't This Mean that the 
Cost Model Is Inaccurate for Small Messages, 
Since g Doesn't Account for Start-up Costs? 

The cost model can be inaccurate, but only in rather spe­
cial circumstances. Recall that all of the communications 
in a superstep are regarded as taking place at the end of 
the superstep. This semantics makes it possible for imple­
mentations to wait until the end of the computation part 
of each superstep to begin the communication actions that 
have been requested. The implementation can then pack­
age the data to be transferred into larger message units. 
The cost of starting up a data transfer is thus only paid 
once per destination per superstep. 

However, if the total amount of communication in a 
superstep is small, then start-up effects may make a no­
ticeable difference to the performance. We address this 
quantitatively later. 

8 Aren't Barrier Synchronisations Expensive? 
How Are Their Costs Accounted for? 

Barriers are often expensive on today's architectures. The 
reasons can usually be traced back to naive implemen­
tations based on, say, trees of pairwise synchronisations, 
which are themselves expensive on most machines be­
cause of poor implementations of semaphores and locks 
[16]. There is nothing inherently expensive about barri­
ers, and there are signs that future architecture develop­
ments will make them much cheaper. 

The cost of a barrier synchronisation comes in two 
parts: 
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1. The cost caused by the variation in the completion 
times of the computation steps that participate. 
There is not much that an implementation can do 
about this, but it does suggest that balance in the 
computation parts of a superstep is a good thing. 

2. The cost of reaching a globally-consistent state in 
all of the processors. This depends, of course, on 
the communication network, but also on whether 
or not special-purpose hardware is available for 
synchronizing, and on the way in which interrupts 
are handled by processors. 

For each architecture, the cost of a barrier synchroni­
sation is captured by a parameter, l. The diameter of 
the communication network, or at least the length of the 
longest path that allows state to be moved from one pro­
cessor to another clearly imposes a lower bound on l. 
However, it is also affected by many other factors, so that, 
in practice, an accurate value of l for each parallel archi­
tecture is obtained empirically. 

Notice that barriers, although potentially costly, have 
a number of attractive features. They make it possible for 
communication and synchronisation to be logically sepa­
rated. Communication patterns can no longer accidentally 
introduce circular state dependencies, so there is no pos­
sibility of deadlock or livelock in a BSP program. This 
makes software easier to build and to understand, and 
completely avoids the complex debugging needed to find 
state errors in traditional parallel programs. Barriers also 
permit novel forms of fault tolerance. 

9 How Do These Parameters Allow the Cost of 
Programs to Be Determined? 

The cost of a single superstep is the sum of three terms: 
the (maximum) cost of the local computations on each 
processor, the cost of the global communication of an h­
relation, and the cost of the barrier synchronisation at the 
end of the superstep. Thus the cost is given by 

cost of a superstep = MAX w; + MAX h;g + l, 
processes processes 

where i ranges over processes, and w; is the time for the 
local computation in process i. Often the maxima are as­
sumed and BSP costs are expressed in the form w+hg+l. 
The cost of an entire BSP program is just the sum of 
the cost of each superstep. We call this the standard cost 
model. At this point we emphasize that the standard cost 
model is not simply a theoretical construct. It provides an 
accurate model for the cost of real programs of all sizes, 
across a wide range of real parallel computers. Hill et al. 
[ 18] illustrates the use of the cost model to predict the 
cost of a computational fluid dynamics code running on 
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one architecture when it is moved to another. In contrast, 
[33] uses the cost model to compare the predicted and 
actual speedup of an electromagnetics application. 

To make this summation of costs meaningful, and to 
allow comparisons between different parallel computers, 
the parameters w, g, and l are expressed in terms of the 
basic instruction execution rate, s, of the target architec­
ture. Since this will only vary by a constant factor across 
architectures, asymptotic complexities for programs are 
often given unless the constant factors are critically im­
portant. Note that we are assuming that the processors 
are homogeneous, although it is not hard to avoid that as­
sumption by expressing performance factors in any com­
mon unit. 

The existence of a cost model that is both tractable 
and accurate makes it possible to truly design BSP pro­
grams, that is to consciously and justifiably make choices 
between different implementations of a specification. For 
example, the cost model makes it clear that the follow­
ing strategies should be used to write efficient BSP pro­
grams: 

1. balance the computation in each superstep 
between processes, since w is a maximum over 
computation times, and the barrier synchronisation 
must wait for the slowest process; 

2. balance the communication between processes, 
since h is a maximum over fan-in and fan-out of 
data; and 

3. minimise the number of supersteps, since this 
determines the number of times l appears in the 
final cost. 

The cost model also shows how to predict performance 
across target architectures. The values of p, w, and h for 
each superstep, and the number of supersteps can be de­
termined by inspection of the program code, subject to 
the usual limits on determining the cost of sequential pro­
grams. Values of g and l can then be inserted into the cost 
formula to estimate execution time before the program is 
executed. The cost model can be used 

1. as part of the design process for BSP programs; 
2. to predict the performance of programs ported to 

new parallel computers; and 
3. to guide buying decisions for parallel computers if 

the BSP program characteristics of typical 
workloads are known. 

Other cost models for BSP have been proposed, in­
corporating finer detail. For example, communication and 
computation could conceivably be overlapped, giving a 
superstep cost of the form 

max(w, hg) + l, 

although this optimisation is not usually a good idea on 
today's architectures [ 17, 32]. It is also sometimes argued 
that the cost of an h-relation is limited by the time taken 
to send h messages and then receive h messages, so that 
the communication term should be of the form 

All of these variations alter costs by no more than small 
constant factors, so we will continue to use the standard 
cost model in the interests of simplicity and clarity. 

A more important omission from the standard cost 
model is any restriction on the amount of memory re­
quired at each processor. While the existing cost model 
encourages balance in communication and limited barrier 
synchronisation, it encourages profligate use of memory. 
An extension to the cost model to bound the memory as­
sociated with each processor is being investigated. 

The cost model also makes it possible to use BSP to 
design algorithms, not just programs. Here the goal is to 
build solutions that are optimal with respect to total com­
putation, total communication, and total number of su­
persteps over the widest possible range of values of p. 
Designing a particular program then becomes a matter 
of choosing among known algorithms for those that are 
optimal for the range of machine sizes envisaged for the 
application. 

For example two BSP algorithms for matrix multipli­
cation have been developed. The first, a block paralleliza­
tion of the standard n3 algorithm [26], has (asymptotic) 
BSP complexity 

Block MM cost= n3 1 p + (n 2 1 p 112)g + p 112z, 

requiring memory at each processor of size n2 I p. This is 
optimal in computation time and memory requirement. 

A more sophisticated algorithm (McColl and Valiant 
[23]) has BSP complexity 

Block and Broadcast MM cost = n3 1 p + (n 2 1 p213)g +l, 

requiring memory at each processor of size n2 1 p 213. This 
is optimal in time, communication, and supersteps, but 
requires more memory at each processor. Therefore the 
choice between these two algorithms in an implementa­
tion may well depend on the relationship between the size 
of problem instances and the memory available on pro­
cessors of the target architecture. 

10 Is BSP a Programming Discipline, or a 
Programming Language, or Something else? 

BSP is a model of parallel computation. It is concerned 
with high-level structure of computations. Therefore it 
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Table 1. Core BSP Operations 

Class Operation Meaning 

Initialisation bsp_ init Simulate dynamic processes 
bsp_begin Start of SPMD code 
bsp_end End of SPMD code 

Enquiry bsp_pid Find my process id 
bsp_nprocs Number of processes 
bsp_ time Local time 

Synchronisation bsp_sync Barrier synchronisation 

DRMA bsp_pushregister Make region globally visible 
bsp_popregister Remove global visibility 
bsp_put Push to remote memory 
bsp_get Pull from remote memory 

BSMP bsp_set_tag_size Choose tag size 
bsp_bsrnp_info 
bsp_ send 
bsp_get_tag 
bsp_rnove 

Halt bsp_abort 

High Performance bsp_hpput 
bsp_hpget 
bsp_hprnove 

does not prescribe the way in which local computations 
are carried out, nor how communication actions are ex­
pressed. All existing BSP languages are imperative, but 
there is no intrinsic reason why this need be so. 

BSP can be expressed in a wide variety of program­
ming languages and systems. For example, BSP programs 
could be written using existing communication libraries 
such as PVM [9], MPI [27], or Cray's SHMEM. All that 
is required is that they provide non-blocking communica­
tion mechanisms and a way to implement barrier synchro­
nisation. Indeed, experienced programmers may already 
find themselves writing in a style reminiscent ofBSP pre­
cisely to avoid the deadlock potential of the unrestricted 
message passing style. 

There are two advantages to explicitly adopting the 
BSP framework. First, the values of g and l depend not 
only on the hardware performance of the target architec­
ture but also on the amount of software overhead required 
to achieve the necessary behaviour. Systems not designed 
with BSP in mind may not deliver good values of g and l. 
Second, use of the cost model as a design tool can guide 
software development and increase confidence that good 
choices have been made. 

The most common approach to BSP programming is 
SPMD imperative programming using Fortran or C, with 
BSP functionality provided by library calls. Two BSP li­
braries have been in use for some years: the Oxford BSP 

Number of packets in queue 
Send to remote queue 
Get tag of I st message 
Fetch from queue 

One process halts all 

Unbuffered versions 
of communication 
primitives 

Library [26] and the Green BSP Library [11, 12]. A stan­
dard has recently been agreed for a library called BSPLib 
[13]. BSPLib contains operations for delimiting super­
steps, and two variants of communication, one based on 
direct memory transfer, and the other on buffered mes­
sage passmg. 

Other BSP languages have been developed. These in­
clude GPL [24] and Opal [21]. 

11 How Easy Is It to Program Using the BSPLib 
Library? 

The BSPLib library provides the operations shown in Ta­
ble 1. There are operations to: 

1. set up a BSP program; 
2. discover properties of the environment in which 

each process is executing; 
3. communicate, either directly into or out of a 

remote memory, or using a message queue; 
4. participate in a barrier synchronisation; 
5. abort a computation from anywhere inside it; and 
6. communicate in a high-performance unbuffered 

mode. 
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The BSPLib library is freely available in both Fortran 
and C from http: I IWW"N. bsp-wor ldwide. org I 
implmnts I oxtool. htm. A more complete descrip­
tion of the library can be found in Appendix A. 

Another higher-level library provides specialised col­
lective-communication operations. These are not consid­
ered as part of the core library, but they can be easily re­
alised in terms of the core. These include operations for 
broadcast, scatter, gather, and total exchange. 

12 In what Application Domains Has BSP Been 
Used? 

BSP has been used in a number of application areas, pri­
marily in scientific computing. Much of this work has 
been done as part of contracts involving Oxford Parallel 
(http: I IWW"N. comlab. ox. ac. ukl oxpara/). 

Computational fluid dynamics applications of BSP in­
clude: 

(a) an implementation of a BSP version of the OPlus 
library for solving 3D multigrid viscous flows, 
used for computation of flows around aircraft or 
complex parts of aircraft in a project with Rolls 
Royce [6]; 

(b) a BSP version of FLOW3D, a computational fluid 
dynamics code; 

(c) oil reservoir modelling in the presence of 
discontinuities and anisotropies in a project with 
Schlumberger Geoquest Ltd. 

Computational electromagnetics applications of BSP 
[30] include: 

(a) 3D modelling of electromagnetic interactions with 
complex bodies using unstructured 3D meshes, in 
a project with British Aerospace; 

(b) parallelisation of the TOSCA, SCALA, and 
ELEKTRA codes, and demonstrations on 
problems such as design of electric motors and 
permanent magnets for MRI imaging; 

(c) a parallel implementation of a time domain 
electromagnetic code ParEMC3d with absorbing 
boundary conditions; 

(d) parallelisation of the EMMA-T2 code for 
calculating electromagnetic properties of 
microstrips, wires and cables, and antennae [33]. 

BSP has been used to parallelise the MERLIN code 
in a project with Lloyds Register of Shipping and Ford 
Motor Company. It has been applied to plasma simulation 
at Rensselaer Polytechnic Institute in New York [31]. It 
is being used to build neural network systems for data 
mining at Queen's University in Kingston, Canada. 

13 What Do BSP Programs Look Like? 

Most BSP programs for real problems are large and it 
is impractical to include their source here. Instead we 
include some small example programs to show how the 
BSPLib interface can be used. We illustrate some differ­
ent possibilities using the standard parallel prefix or scan 
operation: given xo, ... , Xp-1 (with Xi stored on process 
i ), compute xo + · · · +Xi on each process i. 

All Sums: Version 1 

The function bsp_allsumsl calculates the partial 
sums of p integers stored on p processors. The algorithm 
uses the logarithmic technique that performs !log p l su­
persteps, such that during the kth superstep, the processes 
in the range 2k-i ::;; i < p each combine their local par­
tial sums with process i - 2k-l. Figure 2 shows the steps 
involved in summing the values bsp_pid () +1 using 4 
processors. 

int bsp_allsumsl(int x) { 
int i, left, right; 
bsp_pushregister(&left,sizeof(int)); 
bsp_sync(); 

right = x; 
for(i=l;i<bsp_nprocs();i*=2) 

if (bsp_pid()+i < bsp_nprocs()) 
bsp_put(bsp_pid()+i,&right,&left, 

O,sizeof(int)); 
bsp_sync(); 
if (bsp_pid()>=i)right=left+right; 

bsp_popregister(&left); 
return right; 

A process called registration is used to enable refer­
ences to a data structure on one processor to be correctly 
mapped to locations on other processors. BSPLib does 
not assume that processors are homogeneous. In any case, 
heap-allocated data structures need not have the same ad­
dresses on different processors, so some mechanism for 
associating names to addresses is required. The procedure 

FIGURE 2 All sums using the logarithmic technique. 



bsp_pushregister allows all processors to declare 
that the variable left is willing to have data put into it 
by a DRMA operation. 

When 

bsp_put(bsp_pid()+i,&right,&left, 
O,sizeof(int)) 

is executed on process bsp_pid (), then a single in­
teger right is copied into the memory of processor 
bsp_pid () +i at the address &left+O. 

The cost of the algorithm is llog p l ( 1 + g + /) + l as 
there are llog p l + 1 supersteps (including one for reg­
istration); during each superstep a local addition is per­
formed (which costs 1 flop), and at most one message of 
size 1 word enters and exits each process. 

All Sums: Version 2 

An alternative implementation of the prefix sums func­
tion can be achieved in a single superstep by using a tem­
porary data structure containing up to p integers. Each 
process i puts the data to be summed into the ith element 
of the temporary array on processes j (where 0 ~ j ~ i). 
After all communications have been completed, a local 
sum is then performed on the accumulated data. The cost 
of the algorithm is p + p g + 2!. 

int bsp_allsums2(int x) 
inti, result,*array = 

calloc(bsp_nprocs() ,sizeof(int)); 
if (array==NULL) 

bsp_abort("Unable to allocate %d 
element array",bsp_nprocs(}); 

bsp_pushregister(array,bsp_nprocs() 
*sizeof(int)); 

bsp_sync(); 

for(i=bsp_pid() ;i<bsp_nprocs();i++) 
bsp_put(i,&x,array,bsp_pid() 

*sizeof(int) ,sizeof(int)); 
bsp_sync(); 

result = array[O]; 
for(i=1;i<=bsp_pid() ;i++) 

result += array[i]; 
free (array); 
bsp_popregister(array); 
return result; 

The first algorithm performs a logarithmic number of 
additions and supersteps, while the second algorithm per­
forms a linear number of additions but a constant number 
of supersteps. If the operation being performed at each 
iteration of the algorithm were changed from addition to 
another, more costly, associative operator, then BSP cost 
analysis provides a simple mechanism for determining 
which is the better implementation. 
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All Sums on an Array 

Either of the routines defined above can be used to sum 
n values held in nl p blocks distributed among p proces­
sors. The algorithm proceeds in four phases: 

1. The running sum of each nIp block of integers is 
computed locally on each processor. 

2. As the last element of each nl p block contains the 
sum of each (nIp )-element segment, then either of 
the two simple algorithms can be used to calculate 
the running sums of the last element in each block 
(call this last). 

3. Each processor gets the value of last from its 
left neighbouring processor (we call this 
lefts_last). 

4. Adding lefts_last to each of the 
locally-summed nl p elements produces the 
desired effect of the running sums of all n 
elements. 

void bsp_allsums(int*array, 
int n_over_p) 

int i, last, lefts_last; 
bsp_pushregister(&last,sizeof(int)); 

for (i=1;i<n_over_p;i++) 
array[i] += array[i-1]; 

last = bsp_allsums2 
(array[n_over_p-1]); 

if (bsp_pid()==O) lefts_last=O; 
else 

bsp_get(bsp_pid()-1,&last,O, 
&lefts_last,sizeof(int)); 

bsp_sync(); 
for(i=O;i<n_over_p;i++) 

array[i] += lefts_last; 

bsp_popregister(&last); 

void main() { 
int i,j,n_over_p,*xs; 
bsp_begin(bsp_nprocs()); 

n_over_p = 100; 
xs = calloc(n_over_p,sizeof(int)); 
for (i=O;i<n_over_p;i++) xs[i]=1; 
bsp_allsums(xs,n_over_p); 

for(i=O;i<bsp_nprocs() ;i++) 
if (bsp_pid()==i) { 

printsf("On process %d: " 
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bsp_pid ( ) ) ; 
for(j=O;j<n_over_p;j++) 

printf("%d ",xs[j]); 
printf("\n"); 
fflush(stdout); 

bsp_sync(); 
} 

bsp_end(); 

14 What Are Typical Values of g and I for 
Common Parallel Computers? 

Values of the BSP cost model parameters are shown in 
Table 2. The values of the g and l parameters are nor­
malised by the instruction rate, s, of each processor (to aid 
comparisons between machines, raw rates are also given 
in microseconds). Because this instruction rate depends 
heavily upon the kind of computations being done, the 
average of two different measured values are used: 

Ls J measures the cost of an inner product, where O(n) 
operations are performed on a data structure of 
size n. The value of n is chosen to be far greater 
than the cache size on each processor. This bench­
mark therefore gives a lower-bound megaflop rate 
for the processor as each arithmetic operation in­
duces a cache miss. 

Is l measures the cost of a dense matrix multiplication, 
where O(n3) operations are performed on a data 
structures of size n2 . Because a large percentage of 
the computation can be kept in cache, this bench­
mark gives an upper-bound megaflop rate for the 
processor. 

As we have already mentioned, good BSP algorithm 
design is often based around balanced patterns of com­
munication. We illustrate the communication capacity, g, 
using two balanced communications. The first is a par­
ticularly easy !-relation, a local communication that per­
forms a cyclic shift of data between neighbouring proces­
sors. This benchmark provides an upper-bound rate for 
communication as there are only p messages injected into 
the communication network during a superstep. 

Parallel computers have far greater difficulty in achiev­
ing scalable communication for patterns of communica­
tion that move lots of data to many destinations. As an 
extreme example, we consider the total exchange global 
communication that injects p 2 messages into the network 
and realises a p-relation. As no scalable architecture can 
provide p 2 dedicated wires because it is too expensive, 
sparser interconnection networks are used in practice. For 

example, the Cray T3D uses a 3D Torus, while the IBM 
SP2 uses a hierarchy of 8-node fully-connected crossbar 
switches. The value of g for a total exchange therefore 
provides a good measure of the lower-bound rate of com­
munication of an architecture. 

Not very surprisingly, the two values of g, derived di­
rectly from a !-relation, and from the pg cost of a p­
relation total exchange can be quite different. This might 
mean that the !-relation performance of the network is 
not very good (for example, a ring takes time proportional 
top to deliver both a !-relation and a p-relation), but usu­
ally means that the network's effective capacity is not as 
large as the per-link bandwidth would suggest. When cost 
modelling algorithms, it is advisable to use the value of g 

produced by the global communication (total exchange) 
benchmark. 

Appendix B shows how these figures were obtained. 
The meaning of n 112 is explained in Section 16. 

15 How Can the BSPLib Be Implemented 
Efficiently on Today's Architectures? 

The semantics of supersteps separates local computation 
from communication, and the Oxford implementation of 
BSPLib keeps these two phases separate in the imple­
mentation also. Thus while the semantics of calls to put 
and get permits them to begin executing concurrently 
with the local process's computation, calls to these func­
tions in fact buffer the data for later transfer. Not over­
lapping computation and communication contradicts con­
ventional wisdom, but it turns out that the performance 
advantages of postponing communication are larger than 
of exploiting the potential overlap [ 17]. 

We begin by noting that overlapping computation and 
communication can give at best a factor of two perfor­
mance improvement, and then only when the computa­
tion and communication times are precisely equal. This 
equality is neither a scalable nor portable property, so we 
must expect an appropriate balance to be quite rare. Thus 
the performance improvement factor due to overlapping 
is likely to be much less than two in practice. 

On the other hand, postponing communication is a big 
performance win because it permits two major optimisa­
tions: 

1. Combining all of the transfers between a pair of 
processors into a single messages, so that the 
overhead of message startup is paid only once. 
The benefits of doing this are discussed in the next 
section. 

2. Reordering communications so that the load they 
generate is applied to the communication network 
effectively, rather than in the order in which the 
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Table 2. BSP Machine Parameters 

computation barrier local comm. global comm. 

LsJ lsl s p g g/s f? R/S n 1/2 

Machine Mflops flops /LS flop/word tLS!word flop/word tLS!word words 

SGI PowerChallenge 53 94 74 226 3.1 0.5 0.007 0.5 0.007 80 
2 1132 15.3 9.8 0.13 10.2 0.14 12 
3 1496 20.2 8.9 0.12 9.5 0.13 12 
4 1902 25.7 9.8 0.13 9.3 0.13 12 

Cray T3E 4.3 89.2 46.7 86 1.8 2.12 0.05 2.14 0.05 9 
2 269 5.7 0.87 0.02 2.61 0.07 33 
3 296 6.3 0.86 0.02 2.11 0.04 35 
4 357 7.6 0.87 0.02 1.77 0.04 40 
8 506 10.8 0.81 0.02 1.64 0.03 40 

9 552 11.7 0.82 0.02 1.57 0.03 42 
16 751 16.0 1.04 0.02 1.66 0.04 38 
20 880 18.7 0.96 0.02 1.63 0.03 38 
24 1013 21.6 1.39 0.03 1.70 0.04 36 

Cray T3D 5 19 12 68 5.6 0.3 0.02 0.3 0.02 94 
2 164 13.5 0.7 0.06 1.0 0.08 71 
4 168 13.9 0.7 0.06 0.8 0.65 66 
8 175 14.4 0.8 0.07 0.8 0.65 59 
9 383 31.7 0.9 0.07 1.2 0.10 39 

16 181 14.9 0.9 0.07 1.0 0.08 61 
25 486 40.2 1.1 0.09 1.5 0.13 26 
32 201 16.6 1.1 0.09 1.4 0.12 28 

64 148 12.3 1.0 0.09 1.7 0.14 27 
128 301 24.9 1.1 0.09 1.8 0.15 20 
256 387 32.1 1.2 0.11 2.4 0.19 15 

IBM SP2 (switch) 25 27 26 1 244 9.4 1.3 0.05 1.3 0.05 7 
2 1903 73.2 6.3 0.24 7.8 0.30 6 
4 3583 137.8 6.4 0.25 8.0 0.31 7 
8 5412 208.2 6.9 0.27 11.4 0.43 6 

Multiprocessor Sun 3.8 16.4 10.1 1 24 2.4 0.4 0.04 0.4 0.04 7 
2 54 5.3 3.0 0.29 3.4 0.34 7 
3 74 7.4 2.9 0.29 4.1 0.41 8 
4 118 11.7 3.3 0.32 4.1 0.41 11 

Parsytec GC 19.3 98 5.1 1.0 0.05 1.0 0.05 16 
2 6309 325 109 5.6 113 5.9 3 
4 23538 1219 190 9.9 143 7.4 3 
8 29080 1506 252 13.1 254 13.2 3 

16 224977 11600 253 13.1 342 17.7 3 
32 130527 6700 272 14.1 658 34.1 3 

IBM SP2 (ethernet) 25 27 26 I 241 9.3 1.3 0.05 1.3 0.05 8 
2 18759 721.5 182.1 7.0 183.6 7.1 3 
4 39025 1500.9 388.2 14.9 628.2 24.2 5 
8 88795 3415.2 1246.6 47.3 1224.1 47.1 2 

(1) All values for g are for communications of 32-bit words; (2) benchmarks were performed at the- 03 optimisation level; (3) the 
Cray T3D, SGI PowerChallenge, IBM SP2, and Parsytec GC used native implementations of the toolset; (4) the toolset used on the 
multiprocessor Sun was built using generic System V shared-memory facilities 
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particular puts and gets appears in the 
program. Patterns guaranteed to avoid congestion 
can be set up in software, rather than requiring 
expensive hardware solutions operating during the 
data transfers. 

These results are counter-intuitive, since they appear to 
increase congestion in the network that could be avoided 
by allowing some messages to begin transmission early. 
This effect is undoubtedly present, but it it dwarfed by 
the size of the improvements which postponement makes 
possible. Reordering communication, for example, gives 
performance improvements of a factor between about 2 
and p, while combining multiple transfers into single 
messages can give improvements of several orders of 
magnitude. One reason why this tradeoff has not been 
noted previously is that message-passing interfaces that 
operate at the level of single messages cannot naturally 
conceive of postponing transmission since there is no 
clear moment to postpone transmission to. 

The performance gains of delaying communication are 
so large that even.,the high-performance versions of the 
put and get operations, which are designed so that 
computation and communication can be overlapped with­
out buffering, postpone transmissions until the end of the 
computation phase of each superstep. Congestion within 
the network is much less important, in practice, than con­
gestion at the network boundaries. A processor that si­
multaneously receives messages from several other pro­
cessors has no choice but to sequentialise their removal 
from the network. 

Regardless of the type of parallel architecture, the abil­
ity to reorder messages before transmission is crucial 
to creating a consistent bulk-communication behaviour 
without increasing the value of g. Two mechanisms used 
are: 

1. randomly ordering the messages to reduce the 
likelihood of troublesome patterns, and 

2. using a latin square to schedule transmissions in a 
guaranteed contention-free way. 

Which of these mechanisms is to be preferred is architec­
ture-dependent. 

Recall that a latin square is a p x p square in which 
each of the values from 1 to p appears p times, with no 
repetition in any row or column. Such a square can be 
used as a schedule for the routing of the h-relation, using 
row i as the schedule for processor i, with the contents of 
the row regarded as the destinations for each communi­
cation iime step. 

The use of such mechanisms has a major effect on 
performance. For example, consider a total exchange al­
gorithm shown in Figure 3 where each processor i has 

xo xo 
Xt Xt 

X2 X2 

xa xa 
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Total exchange between four processors. 

data x; of size n that is to be exchanged with every other 
processor. After the communication, each processor will 
contain a data structure of size np containing all of the 
xi, where 1 ~ j < p. The BSP cost of the algorithm 
is png + l because p messages enter and exit each pro­
cessor. However, a naive implementation may have each 
processor send a message to processor 0 on the first time 
step, to processor 1 on the second, and so on. This causes 
p messages to contend at process 0, then p to contend at 
process 1, and so on. The cost of this communication will 
be 0(p2 ) rather than the linear cost predicted by the BSP 
cost formula png + l. An alternative ordering that does 
not cause contention is for processors to send their data 
in the order mod(i + j, p); where 1 ~ j < p, and i is 
the processor identifier, using a simple latin square. The 
expected linear (in p) cost can then be achieved. 

Table 3 shows the results of an implementation that 
routes total exchanges. Column 1 shows the performance 
of a system in which messages are despatched as soon 
as the puts are encountered, and in which the or­
der of the puts causes contention. The second col­
umn shows the performance when messages are immedi­
ately despatched, but the programmer has carefully hand­
crafted the order of puts to minimise contention. The 
third and fourth columns show the performance when 
both of these programs are run with puts postponed 
until the end of the superstep and reordered by the run­
time system using a latin square. The performance is 
very slightly worse than the best hand-coded program, 
because of the overhead of the runtime system manag­
ing the reordering. Far more importantly, the effect of the 
programmer's ordering of the puts has been completely 
removed. In other words, reordering provides consistent 
performance over varying orderings of the data transfer 
instructions, at the expense of a very small decrease in 
best case performance. Note also that reordering provides 
almost a factor of two performance improvement, enough 
by itself to make up for any performance loss caused by 
not overlapping computation and communication. 

The precise details of handling communication and 
building barriers differs depending on the specifics of tar­
get architectures: 



Table 3. The Effects of Node Contention on the Cray 
T3D. Entries in the table are in seconds for routing a 
4,000,000-relation, e.g., for 128 processors, 15625 integers 
per process 

immediate transmission BSPLib reordering 

Procs contention latin square contention latin square 

2 .168 .157 .157 .157 
4 .392 .194 .191 .191 
8 .461 .239 .228 .229 

16 .598 .289 .344 .345 
32 .784 .413 .465 .456 
64 .903 .529 .548 .546 

128 .961 .575 .599 .599 

Distributed-memory machines with remote-mem­
ory access (Gray T3D and Gray T3E). A barrier syn­
chronisation is performed to ensure that each process has 
finished its local computation. Once all the processors 
have passed the barrier, one-sided memory accesses are 
used to route messages into the memories of the remote 
processors. Combining is not used, because there is little 
to be gained when the actual data transfer mechanism is 
DRMA. The communication phase of a superstep is com­
pleted by performing a further barrier synchronisation. 

Distributed-memory machines with message­
passing (IBM SP2, Parsytec GC, Generic TCP/IP). 
On architectures that provide native non-blocking send 
and blocking receive message-passing primitives, the h­
relation is routed through the communication network in 
three phases: 

1. a total exchange is performed, exchanging 
information about the number, sizes, and 
destination addresses of messages. This total 
exchange is considered to be the barrier 
synchronisation for the superstep. 

2. gets are translated into puts and the data they 
refer to is buffered at the source processor. 

3. after the total exchange, each processor knows 
how many messages, from every other process, it 
is expecting. Each process therefore knows when 
the communication phase of the superstep is 
complete by counting the incoming messages. 
Communication is performed by interleaving the 
outgoing and incoming messages, so that 
minimum buffering requirements are placed on the 
underlying message-passing system. 
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Shared-memory architectures (SGI Power Chal­
lenge, Sun). The implementation on shared-memory ar­
chitectures combines features from both of the implemen­
tations above. The information about the number and size 
of messages to be sent between each processor pair is 
constructed in a region of shared memory by each call to 
put and get. After the computation phase, a barrier syn­
chronisation takes place to ensure that this information 
is frozen. Because the message information is in shared 
memory, an implicit total exchange can be considered to 
have occurred at this point. The actual exchange of data 
is performed in a message-passing style. First messages 
are copied into buffers associated with each process in 
shared memory. These buffers are then inspected by the 
remote process, and their contents copied into the remote 
processor's memories. Using a contention-limiting order 
for messages, the number of message passing buffers as­
sociated with each process can be minimised. Finally, the 
message information region is cleared and a further bar­
rier synchronisation takes place to allow renewed access 
to it. 

16 How Much Effect Does Message Size Have 
on the Value of g? 

As we have already seen, the way in which BSPLib de­
lays communication until the end of each superstep and 
then combines messages into the largest possible units re­
duces the importance of message size. The cost model 
makes no distinction between the cost of a process send­
ing h messages of size one or a single message of size h; 
both communications have an h-relation cost of hg. How­
ever, a superstep in which very little total communication 
occurs may still deviate from the cost model because of 
the effects of startup costs for message transmission. 

Miller refined the standard cost model [29] using a 
technique of Hockney [20] to model the effect of message 
granularity on communication cost. In the refined model, 
g is defined as a function of the message size x: 

g(x) = c;2 + 1 )goo, (1) 

where g00 is the asymptotic communication cost for very 
large messages (that is, the g reported in Table 2) and 
n 1/2 is the size of message that produces half the optimal 
bandwidth of the machine so g(n1;2) = 2goo. 

The value of n1;2 in Equation (1) is determined ex­
perimentally for each machine configuration by fitting a 
curve to actual values of g(x). Figure 4 shows the actual 
values of g(x) on an 8-processor IBM SP2. Because mes­
sages are combined in each superstep, the value of n 112 is 
effectively reduced to 6 words. For comparison purposes, 
the effect of naively communicating messages separately 
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FIGURE 4 Fitting experimental values of g(x) flops/word to 
Equation (I) using an 8-processor IBM SP2 with switch com­
munication. The messages are communicated using one-sided 
put communication where a process puts data into another pro­
cessor's memory. The top curve represents single-word mes­
sages and the bottom curve uses a message-combining scheme. 

is shown by the data points labeled "actual cost of single­
word messages" in the figure. Fitting a curve to this data 
gives n 112 = 202 words. 

The n 112 parameter can be used to discover the min­
imum message size for which the standard cost model 
is within a given percentage of the more-detailed cost 
model. For the standard model to be within y% accuracy 
of the cost attributed by the model that includes message 
granularity, then: 

( 
100 + y)hog00 = hog(ho) = (n

112 + l)hogoo, (2) 
100 ho 

where ho words is Valiant's parameter [36] that measures 
the minimum size of h-relation to achieve n 112 through­
put. Thus the percentage error in the communication cost 
hogoo is 

( 
lOOn1;2) y= %. 

ho 
(3) 

So on the IBM SP2 with switch communication the error 
in the standard BSP model for communicating ho = 60 
32-bit words is 10%. Moreover, as would be expected, as 
the size of h-relation increases, the error in the standard 
BSP model decreases. 

These data show that combining the messages sent be­
tween each pair of processors has a significant effect on 
the achieved value of g, and so provides further justifi­
cation for not overlapping computation and communica­
tion. 

17 What Tools Are Available to Help with 
Building and Tuning BSP Programs? 

The intensional properties of a parallel program (i.e., how 
it computes a result) can often be hard to understand. The 
BSP model goes some way towards alleviating this prob­
lem if cost analysis is used to guide program develop­
ment. Unfortunately, in large-scale problems, cost anal­
ysis is rarely used at the time of program development. 
The role of current BSP tools [18] is to aid programmers 
in understanding the intensional properties of their pro­
grams by graphically providing profiling and cost infor­
mation. The tools may be used both to analyse the com­
munication properties of a program, and to analyse the 
predicted performance of the code on a real machine. 

A central problem with any parallel-profiling systems 
is effective visualisation of large amounts of profiling 
data. In contrast to conventional parallel-profiling tools, 
which highlight the patterns of communication between 
individual sender-receiver pairs in a message passing sys­
tem, the BSP approach significantly simplifies visualisa­
tion because all of the communications from a superstep 
can be visualised as a single monolithic unit. 

Figure 5 is an example of the results from a BSP profil­
ing tool running on the IBM SP2. It shows a communica­
tion profile for the parallel prefix algorithm (with n > p) 
developed on page 260. 

The top and bottom graphs in Figure 5 show, on the 
y-axis, the volume of data moved, and on the x -axis, the 
elapsed time. Each pair of vertically-aligned bars in the 
two graphs represents the total communication during a 
superstep. The upper bars represent the output from pro­
cessors, and the lower bars the input. Within each com­
munication bar is a series of bands. The height of each 
band represents the amount of data communicated by a 
particular process, identified by the band's shade. The 
sum of all the bands (the height of the bar) represents the 
total amount of communication during a superstep. The 
width represents the elapsed time spent in both communi­
cation and barrier synchronisation. The label found at the 
lop left-hand corner of each bar can be used in conjunc­
tion with the legend in the right of the graph to identify 
the end of each superstep (i.e., the call to bsp_sync) in 
the user's code. The white space in the figure represents 
the computation time of each superstep. 

In Figure 5, the start and end of the running sums 
is identified by the points labelled 0 and 4. The white 
space in the graphs between supersteps 0 and 1 shows 
the computation of the running sums executed locally 
in each process on a block of size njp. The first su­
perstep, which is hidden by the label 1 at this scale, 
shows the synchronisation that arises due to registration 
in the function bsp_allsums 1. The three successively­
smaller bars represent the logarithmic number of commu­
nication phases of the parallel prefix technique. Contrast-
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FIGURE 6 All sums of 32,000 e lements using total exchange on an 8-processor IBM SP2. 

ing the sizes o f the communicatio n bars in Figure 5 with 
the schematic diagram of Figure 2 graphically shows the 
diminishing numbers of processors involved in communi­
cation as the parallel prefix algorithm proceeds. Contrast­
ing this method of running sums with the total-exchange­
based algorithm in Figure 6 shows that although the num­
ber of synchronisations within the algorithm is reduced 
from flog p 1 to l , the time spent in the total exchange of 
bsp_a llsurns2 is approximately the same as the algo-

rithm based upon the logarithmic technique. This is due to 
the larger amount of data transferred, i.e., 1.51 millisec­
onds spent in summing p values in p processes using the 
parallel prefix technique, compared to 1.42 mill iseconds 
when the total exchange is used. 

Figures 7 and 8 show pro fi les of the same two algo­
rithms running on a 32-processor Cray TID, with the 
same data-set size as the IBM SP2. Although the T3D has 
a lower value for the barrier synchronisation latency than 
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FIGURE 8 All sums of 32,000 elements using a total exchange on a 32-processor Cray TID. 

the IBM SP2 (see Table 2), reducing the number of super­
steps from rtog 321 = 6 supersteps to l has a marked ef­
fect on the efficiency. The version bsp_allsumsl (i.e., 
logarithmic) takes 1.39 milliseconds compared to 0.91 
milliseconds for bsp_allsums2 (i.e., total exchange). 

These data show that, for today's parallel computers, 
it is often better to reduce the number of supersteps, even 
at the expense of requiring more communication. 

18 How Does BSPLib Compare with Other 
Communication Systems such as PVM or MPI? 

In recent years, the PVM message-passing library [ l , 
2, I 0] has been widely implemented and widely used. 
In that respect, the goal of source code portabiljty in 
parallel computing has already been achieved by PVM. 
What then, are the advantages of BSP programming, if 



any, over a message-passing framework such as PVM? 
First, PVM and all other message-passing systems based 
on pairwise, rather than barrier, synchronisation have no 
simple analytic cost model for performance prediction, 
and no simple means of examining the global state of a 
computation for debugging. Second, taking a global view 
of communication introduces opportunities for optimisa­
tion that can improve performance substantially [ 17] and 
these are inaccessible to systems such as PVM. 

MPI [ 14] has been proposed as a new standard for 
those who want to write portable message-passing pro­
grams in Fortran and C. At the level of point-to-point 
communications (send, receive etc.), MPI is similar to 
PVM, and the same comparisons apply. The MPI stan­
dard is very general and is very complex relative to the 
BSP model. However, one could use some carefully­
chosen combination of the various non-blocking com­
munication primitives available in MPI, together with 
its barrier synchronisation primitive, to produce an MPI­
based BSP programming model. At the higher level of 
collective communications, MPI provides support for 
various specialised communication patterns which arise 
frequently in message-passing programs. These include 
broadcast, scatter, gather, total exchange, reduction, and 
scan. These standard communication patterns are also 
provided for BSP in a higher-level library. There have 
been two comparisons of the performance of BSP and 
MPI. One by Szymanski on a network of worksta­
tions [31] showed performance differences of the order 
of a few percent. Another by Hyaric (http: I /merry. 
comlab.ox.ac.uk/users/hyaric/doc/BSP/ 
NASfromMPitoBSP) used the NAS benchmarks. BSP 
outperformed MPI on four out of five of these, perform­
ing ten percent better in some cases. Only on LU did BSP 
perform about five percent worse. 

Compared to PVM and MPI, the BSP approach offers 

(a) a simple programming discipline (based on 
supersteps) that makes it easier to determine the 
correctness of programs; 

(b) a cost model for performance analysis and 
prediction which is simpler and compositional; 
and 

(c) more efficient implementations on many 
machines. 

19 How Is BSP Related to the LogP Model? 

LogP [7] differs from BSP in three ways: 

I. It uses a form of message passing based on 
pairwise synchronisation. 

QUESTIONS AND ANSWERS ABOUT BSP 265 

2. It adds an extra parameter representing the 
overhead involved in sending a message. This has 
the same general purpose as then 112 parameter in 
BSP, except that it applies to every 
communication, whereas the BSP parameter can 
be ignored except for a few unusual programs. 

3. It defines gin local terms. The g parameter in BSP 
is regarded as capturing the throughput of an 
architecture when every processor inserts a 
message (to a uniformly-distributed address) on 
every step. It takes no account of the actual 
capacity of the network, and does not distinguish 
between delays in the network itself and those 
caused by inability to actually enter the network 
(blocking back at the sending processor). In 
contrast, LogP regards the network as having finite 
capacity, and therefore treats g as the minimal 
permissible gap between message sends from a 
single process. This amounts to the same thing in 
the end, that is g in both cases is the reciprocal of 
the available per-processor network bandwidth, 
but BSP takes a global view of the meaning of g, 
while LogP takes a more local view. 

Experience in developing software using the LogP model 
has shown that, to analyse the correctness and efficiency 
of LogP programs, it is often necessary, or at least con­
venient, to use barriers. Also, major improvements in 
network hardware and in communications software have 
greatly reduced the overhead associated with sending 
messages. In early multiprocessors, this overhead could 
be substantial, since a single processor handled both the 
application and its communication. Manufacturers have 
learned that this is a bad idea, and most newer multi­
processors provide either a dedicated processor to han­
dle message traffic at each node or direct remote-memory 
access. In this new scenario, the only overhead for the ap­
plication processor in sending or receiving a message is 
the time to move it from user address space to a system 
buffer. This is likely to be small and relatively machine­
independent, and may even disappear as communication 
processors gain access to user address space directly. The 
importance of the overhead parameter in the long term 
seems negligible. 

Given that 

LogP +barriers- overhead= BSP, 

the above points would suggest that the LogP model does 
not improve upon BSP in any significant way. However, it 
is natural to ask whether or not the more "flexible" LogP 
model enables a designer to produce a more efficient al­
gorithm or program for some particular problem, at the 
expense of a more complex style of programming. Recent 
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results show that this is not the case. In [3] it is shown that 
the BSP and LogP models can efficiently emulate one an­
other, and that there is therefore no loss of performance 
in using the more-structured BSP programming style. 

20 How Is BSP Related to the PRAM Model? 

The BSP model can be regarded as a generalisation of 
the PRAM model which permits the frequency of barrier 
synchronisation, and hence the demands on the routing 
network, to be controlled. If a BSP architecture has a very 
small value of g, e.g., g = 1, then it can be regarded as a 
PRAM and we can use hashing to automatically achieve 
efficient memory management. The value of l determines 
the degree of parallel slackness required to achieve opti­
mal efficiency. The case l = g = 1 corresponds to the 
idealised PRAM, where no parallel slackness is required. 

21 How Is BSP Related to Data 
Parallelism? 

Data parallelism is an important niche within the field 
of scalable parallel computing. A number of interesting 
programming languages and elegant theories have been 
developed in support of the data-parallel style of pro­
gramming, see, e.g., [34]. High Performance Fortran [22] 
is a good example of a practical data-parallel language. 
Data parallelism is particularly appropriate for problems 
in which locality is crucial. 

The BSP approach, in principle, offers a more flexi­
ble and general style of programming than is provided by 
data parallelism. However, the current SPMD language 
implemented by BSPLib is very much like a large-grain 
data parallel language, in which locality is not considered 
and programmers have a great deal of control over parti­
tioning of functionality. In any case, the two approaches 
are not incompatible in any fundamental way. For some 
applications, the flexibility provided by the BSP approach 
may not be required and the more limited data-parallel 
style may offer a more attractive and productive setting 
for parallel software development, since it frees the pro­
grammer from having to provide an explicit specification 
of the various processor scheduling, communication and 
memory management aspects of the parallel computation. 
In such a situation, the BSP cost model can still play an 
important role in terms of providing an analytic frame­
work for performance prediction of the data-parallel pro­
gram. 

22 Can BSP Handle Synchronisation among a 
Subset of the Processes? 

Synchronising a subset of executing processes is a com­
plex issue because the ability of an architecture to syn­
chronise is not a bulk property in the same sense that 
its processing power and communication resources are. 
Certain architecture provide a special hardware mecha­
nism for barrier synchronisation across all of the pro­
cessors. For example the Cray T3D provides an add­
and-broadcast tree, and work at Purdue [8] has created 
generic, fast, and cheap barrier synchronisation hardware 
for a wide range of architectures. Sharing this single syn­
chronisation resource among several concurrent subsets 
that may wish to use it at any time seems difficult. We are 
currently exploring this issue, but the current version of 
the library synchronises only across the entire machine. 

Architectures in which barrier synchronisation is im­
plemented in software do not have any difficulty in im­
plementing barriers for subsets of the processors. The re­
maining difficulty here is a language design one- it is not 
yet clear what an MIMD, subset-synchronising language 
should be like if it is to retain the characteristics of BSP, 
such as accurate predictability. 

23 Can BSP be Used on Vector, Pipelined, or 
VLIW Architectures? 

Nothing about BSP presupposes how the sequential parts 
of the computation, that is the processes within each pro­
cessor, are computed. Thus architectures in which the 
processor uses a specialised technique to improve perfor­
mance might make it harder to determine the value of w 
for a particular program, but they do not otherwise af­
fect the BSP operation or cost modelling. The purpose of 
normalising g with respect to processor speed is to en­
able terms of the form hg to be compared to computation 
times so that the balance between computation and com­
munication in a program is obvious. Architectures that 
issue multiple instructions per cycle might require a more 
sophisticated normalisation to keep these quantities com­
parable in useful ways. 

24 BSP Doesn't Seem to Model Either 
Input/Output or Memory Hierarchy? 

Both properties can be modelled as part of the cost of ex­
ecuting the computation part of a superstep. Modelling 
the latency of deep storage hierarchies fits naturally into 
BSP's approach to the latency of communication, and in­
vestigations of extensions to the BSP cost model applica­
ble to databases are underway [35]. 



25 Does BSP Have a Formal Semantics? 

Several formal semantics for BSP have been developed. 
He eta!. [15] show how these may be used to give alge­
braic laws for developing BSP programs. BSP is used as 
a semantics case study in a forthcoming book [19]. 

26 Will BSP Influence the Design of 
Architectures for the Next Generation of Parallel 
Computers? 

The contribution of BSP to architecture design is that it 
clarifies those f<Jctors that are most important for perfor­
mance on problems without locality. It suggests that the 
critical properties of an architecture are: 

I. high permeability of the communication system, 
that is the ability to move arbitrary patterns of data 
quickly; and 

2. the ability to reach a consistent global state 
quickly by barrier synchronisation. 

More subtly, it also suggests that predictability of deliv­
ery for a wide range of communication patterns is more 
important than high performance for some special com­
munication patterns, and low performance for others. In 
other words, low variance is more significant than low 
mean. 

The two parameters l and g capture, in a direct way, 
how well an architecture achieves these two major per­
formance properties. Details of exactly which topology to 
use, what routing technology, and what congestion con­
trol scheme are all subsumed in the single consideration 
of total throughput. 

When the BSP model was first considered, it was of­
ten felt to be necessarily inefficient because of its use of 
permutation routing. After a while, it came to be appreci­
ated that permutation routing is not necessarily expensive, 
and architectures that do it well were developed. Next the 
BSP model was considered inefficient because of its re­
quirement for barrier synchronisation. It is now under­
stood that barriers need not be expensive, and architec­
tures that handle them well are being developed. It may 
be that total exchange is the next primitive to be made 
central to BSP and the same arguments about its neces­
sary inefficiency may well be made. New communication 
technologies, such as ATM, repay foreknowledge of com­
munication patterns, and total exchange may turn out to 
be a reasonable standard building block for parallel archi­
tectures as well. 

BSP's structured use of machine resources also sug­
gests functions that could be usefully migrated to hard­
ware. We have already seen this possibility for barrier 
synchronisation. Hardware support for message combin­
ing and scheduling would appear to be cost-effective also. 
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27 How Can I Find out More about BSP? 

Development of BSP is coordinated by BSP Worldwide, 
and organisation of researchers and users. Information 
about it can be found at the web site http: I lwww. bsp 
-worldwide. org I. The BSPLib library described 
here is a BSP Worldwide standard. Other general papers 
about BSP are [23, 36]. 

There are groups of BSP researchers at: 

I. Oxford-http: I lwww. comlab. ox. ac. ukl 
oucl I groups /bsp; 

2. Harvard- http: I ldas-www. harvard. edu 
lcslresearchlbsp.html; 

3. Utrecht- http: I lwww .math. ruu .nll 
peoplelbisseling.html; 

4. Carleton-http: I lwww. scs. carleton. ca 
l~palepuiBSP. html; 

5. Central Florida-http: I I longwood. cs. 
ucf.edu/csdept/faculty/ 
goudreau. html; 

as well as individuals working on BSP at a number of 
other universities. 
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APPENDIX A THE BSPLib LIBRARY 

This Appendix provides slightly more detail about the 
current major BSP system, BSPLib. We describe C inter­
faces to the library, but a Fortran version is also available. 

A.1 Initialisation 

Processes are created in a BSPLib program by the oper­
ations bsp_begin and bsp_end. There can only be 
one instance of a bsp_begin/bsp_end pair within a 
program. There are two different ways to start a BSPLib 
program. If bsp_begin and bsp_end are the first and 
last statements in a program, then the entire BSPLib com­
putation is SPMD. In an alternative mode, a single pro­
cess starts execution and determines the number of paral­
lel processes required for the calculation. It then spawns 
the required number of processes using bsp_begin. 
Execution of the spawned processes then continue in an 
SPMD manner, until bsp_end is encountered by all the 
processes. At that point, all processes except process zero 
are terminated, and process zero is left to continue the 
execution of the rest of the program sequentially. 

One problem with providing this mode is that some 
parallel machines available today, for example almost 
all distributed-memory machines, e.g., IBM SP2, Cray 
T3D, Meiko CS-2, Parsytec GC, Hitachi SR2001, do not 
provide dynamic process creation. Therefore we simu­
late dynamic spawning using an operation bsp_ini t 
which takes as its argument a procedure name. The pro­
cedure passed as an argument to bsp_ini t must con­
tain bsp_begin and bsp_end as its first and last state­
ments. 

The interface for these library operations is: 

void bsp_init(void (*startproc) (void), 
int argc, char**argv); 

void bsp_begin(int maxprocs); 
void bsp_end () 

maxprocs is the number of processes requested by the 
user. 

s tartproc is the name of a procedure that contains 
bsp_begin and bsp_end as its first and last 
statements. 

argc and argv are command line size and arguments. 
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A.2 Enquiry 

There are also operations to determine the total number 
of processes, and for each process to find out its process 
identifier. The interface for these operations is: 

int bsp_nprocs(); 
int bsp_pid(); 

If the function bsp_nprocs is called before bsp_ 
begin, then it returns the number of processors which 
are available. If it is called after bsp_begin it returns 
n, the actual number of processes allocated to the pro­
gram, where 1 ~ n ~ maxprocs, and maxprocs is 
the number of processes requested in bsp_begin. Each 
of then processes created by bsp_begin has a unique 
associated value m in the range 0 ~ m ~ n- 1. The func­
tion bsp_pid returns the associated value of the process 
executing the function call. 

A.3 Synchronisation 

A BSPLib calculation consists of a sequence of super­
steps. The end of one superstep and the start of the next 
is identified by a call to the library procedure bsp_sync 
with interface: 

void bsp_sync(); 

A.4 DRMA 

There are two ways of communicating among processes: 
one using direct remote-memory access (DRMA), and the 
other using a BSP version of message passing. 

The DRMA communication operations are defined for 
stack- and heap-allocated data structures as well as for 
static data. This is achieved by allowing a process to ref­
erence only certain registered areas of a remote memory. 
In a registration procedure, processes use the operation 
bsp_pushregister to announce the address of the 
start of a local area which is available for global remote 
use. This makes it possible to execute BSP programs us­
ing heterogeneous processor architectures. Registration 
takes effect at the next barrier synchronisation. 

void bsp_pushregister (void*region, 
int nbytes); 

void bsp_popregister (void*region); 

region is the starting address of the region to be reg­
istered or unregistered. The name region must 
be the same for all logically-related calls to bsp_ 
pushregister or bsp_popregister, and 
implementations may check that this is true. 

nbytes is the size of the region (used for range check­
ing). 
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Each processor maintains a stack of registration slots. 
Logically-related calls to bsp__pushregister in dif­
ferent processes (the ith call in each process is related to 
the ith call in all of the others) associate a variable name 
and the addresses to which it is mapped in each process 
with the next available slot. Registration slots can be deal­
located using bsp__popregister, which invalidates 
the last slot associated with the variable name passed as 
an argument - deregistration does not impose the strict 
nesting of push-pop pairs that is normally associated with 
a stack; the scheme allows the popping of registrations to 
occur in an arbitrary order. This provides the benefits of 
encapsulation provided by a stack, whilst providing the 
flexibility associated with a heap-based discipline. How­
ever, the registration slot of the argument to popregister 
must be the same across all the processing elements. 

The intent of registration is to make it simple to re­
fer to variables in other processes without requiring their 
locations to be explicitly known. A reference to a regis­
tered name in a put or get is translated to the address cor­
responding to the remote variable with the same name. 
Here is an example: 

Process 0: 

int x; 
bsp__pushregister(&x,sizeof(int)); 
bsp_sync(); 
X = 3; 
bsp__put(l,&x,&x,O,sizeof(int)); 
bsp_sync(); 

Process 1 

int x; 
bsp__pushregister(&x,sizeof(int)); 
bsp_sync(); 
bsp_sync(); 

Process 0 and Process 1 register x in the first slot. 
When Process 0 executes a put, using x as the destination 
region name, this is mapped to the region whose address 
is associated with the first slot in Process 1. Therefore, the 
variable x in Process 1 has the value 3 placed in it after 
the second sync as the result of the put. 

The operation bsp__put pushes locally-held data into 
a registered remote-memory area on a target process, 
without the active participation of the target process. 
The operation bsp_get reaches into the registered local 
memory of another process to copy data values held there 
into a data structure in its own local memory. All gets are 
executed before all puts at the end of a superstep, consis­
tent with the semantics that communications do not take 
effect locally until the end of a superstep. Their interfaces 
are: 

void bsp_[hp]put(int pid, 
const void *src, 
void *dst, 
int offset, 
int nbytes); 

pid is the identifier of the process where data is to be 
stored. 

src is the location of the first byte to be transferred by 
the put operation. The calculation of src is per­
formed on the process that initiates the put. 

ds t is the base address of the area where data is to be 
stored. It must be a previously-registered data area. 

offset is the displacement in bytes from dst to which 
src will copy. The calculation of offset is per­
formed by the process that initiates the put. 

nbytes is the number of bytes to be transferred from 
src into dst. It is assumed that src and dst 
are addresses of data structures that are at least 
nbytes in size. 

void bsp_[hp]get(int pid, 
const void *src, 
int offset, 
void *dst, 
int nbytes); 

pid is the identifier of the process from which data is to 
be obtained. 

src is the base address of the area from which data will 
be obtained. src must be a previously-registered 
data structure. 

offset is an offset from src. The calculation of 
offset is performed by the process that initiates 
the get. 

ds t is the location of the first byte where the data ob­
tained is to be placed. The calculation of ds t is 
performed by the process that initiates the get. 

nbytes is the number of bytes to be transferred from 
src into dst. It is assumed that src and dst 
are addresses of data structures that are at least 
nbytes in size. 

The semantics adopted for BSPLib bsp__put com­
munication is buffered-locally/buffered-remotely. When 
a bsp__pu t is executed, the data to be transferred is 
copied out of user address space immediately. The exe­
cuting process is free to alter the contents of those lo­
cations after return from the call to bsp__put. While 
the semantics is clean and safety is maximized, puts 
may unduly tax the memory resources of an imple­
mentation, thus preventing large data transfers. Conse­
quently, BSPLib also provides a high-performance put 



operation bsp_hppu t whose semantics is unbuffered­
locally/unbuffered-remotely. The use of this operation re­
quires care, as correct data delivery is only guaranteed 
if neither communication nor local/remote computations 
modify either the source or the destination areas during a 
superstep. The main advantage of this operation is its eco­
nomical use of memory. It is therefore particularly useful 
for applications which repeatedly transfer large data sets. 

The bsp_get and bsp_hpget operations reach 
into the local memory of another process and copy 
previously-registered remote data held there into a data 
structure in the local memory of the process that initiated 
them. 

A.5 BSMP 

Bulk synchronous remote-memory access is a convenient 
style of programming for BSP computations that can be 
statically analysed in a straightforward way. It is less con­
venient for computations in which the volumes of data 
being communicated are irregular and data-dependent, or 
where the computation to be performed in a superstep de­
pends on the quantity and form of data received at its start. 
A more appropriate style of programming in such cases 
is bulk-synchronous message passing (BSMP). 

In BSMP, a non-blocking send operation delivers mes­
sages to a system buffer associated with the destination 
process. The message is guaranteed to be in the destina­
tion buffer at the beginning of the subsequent superstep, 
and can be accessed by the destination process only dur­
ing that superstep. A collection of messages sent to the 
same process has no implied ordering at the receiving 
end. However, since messages may be tagged, the pro­
grammer can identify them by their tag. 

In BSPLib, bulk-synchronous message passing is based 
on the idea of two-part messages, a fixed-length part car­
rying tagging information that will help the receiver to 
interpret the message, and a variable-length part contain­
ing the main data payload. We will call the fixed-length 
portion the tag and the variable-length portion the pay­
load. In C programs, either part could be a complicated 
structure. The length of the tag is required to be fixed dur­
ing any particular superstep, but may vary between su­
persteps. The buffering mode of the BSMP operations is 
buffered-locally/buffered-remotely. 

The procedure to set tag size must be called collec­
tively by all processes. Moreover, in any superstep where 
bsp_set_tag_size is called, it must be called before 
sending any messages. 

void bsp_set_tag_size(int *tag_bytes); 

tag_bytes, on entry to the procedure, specifies the 
size of the fixed-length portion of every message 
from the current superstep until it is updated; the 
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default tag size is zero. On return from the proce­
dure, tag_bytes is changed to reflect the previ­
ous value of the tag size to allow for its use inside 
procedures. 

The tag size of incoming messages is prescribed by the 
outgoing tag size of the previous step. 

The procedure bsp_bsmp_info is an enquiry op­
eration that returns information concerning how many 
BSMP packets were sent to the process calling the opera­
tion in the prior superstep. This information is intended to 
help the user to allocate an appropriate sized data struc­
ture to hold any incoming BSMP messages. 

void bsp_bsmp_info(int*packets, 
int*accum_nbytes); 

packets becomes the number of packets sent using 
bsp_send in the previous superstep. 

accum_nbytes is the accumulated size of all the 
packets. 

The bsp_send operation is used to send a message 
that consists of a tag and a payload to a specified des­
tination process. The destination process will be able to 
access the message during the subsequent superstep. Its 
interface is: 

void bsp_send(int pid, 
const void*tag, 
const void*payload, 
int payload_bytes); 

pid is the identifier of the process where data is to be 
sent. 

tag is a token that can be used to identify the mes­
sage. Its size is determined by the value specified 
in bsp_set_size_tag. 

payload is the location of the first byte of the payload 
to be communicated. 

payload_bytes is the size of the payload. 

The bsp_send operation copies both the tag and the 
payload of the message out of user space into the system 
before returning. The tag and payload inputs may be 
changed by the user immediately after the bsp_send 
returns. 

To receive a message, the operations bsp_get_tag 
and bsp_move are used. The operation bsp_get_tag 
returns the tag of the first message in the buffer. The oper­
ation bsp_move copies the payload of the first message 
in the buffer into payload, and removes that message 
from the buffer. Its interface is: 

void bsp_get_tag(int *status, 
void *tag); 
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status returns -1 if the system buffer is empty. Oth­
erwise it returns the length of the payload of the 
first message in the buffer. This length can be used 
to allocate an appropriately-sized data structure for 
copying the payload using bsp_move. 

tag is unchanged if the system buffer is empty. Other­
wise it is assigned the tag of the first message in the 
buffer. 

void bsp_move(void *payload, 
int reception_nbytes); 

payload is an address to which the message payload 
will be copied. The buffer is then advanced to the 
next message. 

reception_nbytes specifies the size of the recep­
tion area where the payload will be copied into. 
At most reception_nbytes will be copied into 
payload. 

int bsp_hpmove(void**tag_ptr_buf, 
void**payload_ptr_buf); 

bsp_hpmove is a function which returns -1, if the sys­
tem buffer is empty. Otherwise it returns the length 
of the payload of the first message in the buffer and 

(a) places a pointer to the tag in tag_ptr_buf; 

(b) places a pointer to the payload in payload_ptr 
_buf; and 

(c) conceptually removes the message (by advanc­
ing a pointer representing the head of the buffer). 

Note that bsp_move flushes the corresponding mes­
sage from the buffer, while bsp_get_tag does not. 
This allows a program to get the tag of a message (as well 
as the payload size in bytes) before obtaining the payload 
of the message. It does, however, require that even if a 
program only uses the fixed-length tag of incoming mes­
sages the program must call bsp_move to get successive 
message tags. 

bsp_get_tag can be called repeatedly and will al­
ways return the same tag until a call to bsp_move. 

A.6 Halt 

The function bsp_abort can be used to print an error 
message followed by a halt of the entire BSPLib program. 
The routine is designed not to require a barrier synchro­
nisation of all processes. A single process can therefore 
halt the entire BSPLib program. 

void bsp_abort(char*format, ... ) ; 

format is a C-style format string as used by print f. 
Any other arguments are interpreted in the same 
way as the variable number of arguments to printf. 

The function bsp_time provides access to a high­
precision timer- the accuracy of the timer is implementa­
tion-specific. The function is a local operation of each 
process, and can be issued at any point after bsp_begin. 
The result of the timer is the time in seconds since bsp_ 
begin. The semantics of bsp_time is as though there 
were bsp_nprocs timers, one per process. BSPLib 
does not impose any synchronisation requirements be­
tween the timers in each process. 

double bsp_time(); 

APPENDIX B BENCHMARKING 

The BSP parameter l measures the minimum time for 
all processors to barrier synchronise. It is benchmarked 
by repeatedly over-sampling barrier synchronisation, and 
measuring the wall-clock time. Repeated barrier synchro­
nisation produces a pessimistic value for l as it models the 
case where the computation part of each superstep com­
pletes in each processor at the same moment. This pro­
duces most contention in whatever resources are used for 
synchronising. 

Two values for the BSP parameter g are calculated. 
The first is the value of g experienced when routing a 
local communication (a cyclic shift), and the second a 
global communication using a total exchange. As well as 
calculating the value of g, the benchmark also calculates 
the value for n 112 used in Equation (1). This is done by 
routing a fixed-sized h-relation (an over-sampling of 10 
iterations is performed for each h-relation) for large hand 
measuring the elapsed time of a superstep containing no 
computation. 

Sophisticated profiling tools are available to examine 
how much this measured value of g is affected by partic­
ular properties of the target computer. We have already 
mentioned some such factors, for example the overhead 
of message startup and the extra data that must be trans­
ferred as control information. This can be clearly seen in 
Figures 9-11. 

These figures shows the amount of data transferred 
and the effective value of g in two phases. The first half 
of each figure shows a cyclic shift; the second half a total 
exchange. All supersteps in each half send an h-relation, 
in sets of size 10 for oversampling, varying the granular­
ity for each set - first using single messages of size h, 
then using two messages of size h/2, and so on. Accord­
ing to the theory, the measured value of g should be the 
same for all of these granularities, since the same total 
volume of data is moved into and out of each processor. 
The top half of each figure shows the volume of data be­
ing moved. The second half shows the measured value of 
g for each superstep. 
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FIGURE 10 Cyclic shift and total exchange, on a 32-processor Cray T3D. 

The curves in the lower half o f F igure 9 show the 
value o f g during the cyclic shift phase and the total ex­
change phase. The curves are not the expected horizon­
tal lines because o f the overhead of message startup. The 
implementation o n the CRAY delays messages and re­
orders them, but does not combine them because the com­
munication mechanism is DRMA. The curves are good 
matches for Equation ( I) which uses the n t; 2 parame-

ter to model the extra cost of communicating small mes­
sages. The dotted line in the graph shows the value o f g 
obtained from the benchmark, and given in Table 2. It is 
very close to the asymptote of the curves. The same struc­
ture can be seen for larger numbers of processors (Fig­
ure 10). 

Figure II shows the same benchmark running on a 
e ight-processor ffiM SP2. Unlike the Cray, the value of 
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FIGURE 11 Cyclic shift and total exchange on an 8-processor IBM SP2. 

g is more unpredictable. However, although g has a value 
which is three times larger than that of the Cray, the SP2 
has a per-node computation rate twice that of the T3D, 
so the absolute values of g are closely matched on the 
two machines. From the upper graph of Figure I I, it can 
be seen that the amount of data communicated gradu­
ally grows, even though the program sends a fixed size 
h-relation . The reason is that, on the SP2, small messages 
are combined. For the combining to work, information 
concerning the size and destination of the individual com­
munications are sent with the combined individual com­
munications, so that the destination process can unpack 
the data correctly. Therefore, the total size of data sent 
may triple due to the extra unpacking information. This 
causes a slight increase in the effective value of g in the 
presence of large numbers of small messages within a su­
perstep. 

These examples show that g can deviate from the val­
ues predicted by the cost model because of properties of 
the target computers, and unavoidable overheads in the 
implementation of the library operations. Three observa­
tions seem relevant: 

1. Deviations from the predicted values are relatively 

small , even for these artificial test programs, anJ 

experience so far suggests that, for practical 

programs, deviations are much smaller. 

2. The ach ieved values of g and l in BSPLib are 

much smaller than those of a naive 

implementation, so there are advantages to using 
BSP explicitly, rather than programming 'in the 

BSP style'. 

3. Values for g and l continue to decrease as more is 

learned about the detailed properties of each 

architecture. BSP provides a focus for the 

properties of an architecture that are critical, but it 

is often different from the focus of the 

manufacturer. Basic information that would make 

better implementations possible is hard to obtain, 

sometimes because even the manufacturers do not 

know it. 
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