
Questions and Answers about BSP

D.B. SKILLICORN, 1 JONATHAN M.D. HILL, 2 AND W.F. McCOLL 2

1 Department of Computing and Information Science, Queen's University, Kingston, Canada; e-mail: skill@qucis.queensu.ca
2 Computing Laboratory, University of Oxford, Oxford, UK; e-mail: {Jonathan.Hill, Bill.McCollj@comlab.ox.ac.uk

ABSTRACT

Bulk Synchronous Parallelism (BSP) is a parallel programming model that abstracts from
low-level program structures in favour of supersteps. A superstep consists of a set of in­
dependent local computations, followed by a global communication phase and a barrier
synchronisation. Structuring programs in this way enables their costs to be accurately de­
termined from a few simple architectural parameters, namely the permeability of the com­
munication network to uniformly-random traffic and the time to synchronise. Although per­
mutation routing and barrier synchronisations are widely regarded as inherently expensive,
this is not the case. As a result, the structure imposed by BSP does not reduce perfor­
mance, while bringing considerable benefits for application building. This paper answers
the most common questions we are asked about BSP and justifies its claim to be a major
step forward in parallel programming.

1 Why Is Another Model Needed?

In the 1980s, a large number of different types of parallel
architectures were developed. This variety may have been
necessary to thoroughly explore the design space but, in
retrospect, it had a negative effect on the commercial de­
velopment of parallel applications software. To achieve
acceptable performance, software had to be carefully tai­
lored to the specific architectural properties of each com­
puter, making portability almost impossible. Each new
generation of processors appeared in strikingly-different
parallel architectural frameworks, forcing performance­
driven software developers to redesign their applications
from the ground up. Understandably, few were keen to
join this process.

Today, the number of parallel computation models and
languages probably exceeds the number of different ar­
chitectures with which parallel programmers had to con­
tend ten years ago. Most make it hard to achieve portabil­
ity, hard to achieve performance, or both.

© 1997 lOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 249-274 (1997) ·

The two largest classes of models are based on
message passing, and on shared memory. Those based
on message passing are inadequate for three reasons.
First, messages require paired actions at the sender and
receiver, which it is difficult to ensure are correctly
matched. Second, messages blend communication and
synchronisation so that sender and receiver must be in
appropriately-consistent states when the communication
takes place. This is appallingly difficult to ensure in most
models, and programs are prone to deadlock as a result.
Third, the performance of such programs is impossible to
predict because the interaction of large numbers of indi­
vidual messages in the interconnection mechanism makes
the variance in their delivery times large.

The argument for shared-memory models is that they
are easier to program because they provide the abstrac­
tion of a single, shared address space. A whole class of
placement decisions are avoided. This is true, but is only
half of the issue. When memory is shared, simultaneous
access to the same location must be prevented. This re­
quires either PRAM-style discipline by the programmer,
or expensive lock management (and locks are expensive
on today's parallel computers [16]). In both cases, the
benefits are counterbalanced by quite serious drawbacks.

250 SKILLICORN, HILL, AND McCOLL

From an architectural point of view, shared-memory ab­
stractions limit the size of computer that can be built be­
cause a larger and larger fraction of the computer's re­
sources must be devoted to communication and the main­
tenance of coherence. Even worse, this part of the com­
puter is most likely to be highly customized, and hence to
be proportionally more expensive. Thus even the propo­
nents of shared memory agree that, with our current un­
derstanding, such architectures can contain no more than,
say, fifty processors. Whether this is sufficient for the ap­
plication demands of the next decade is debatable.

The Bulk Synchronous Parallel (BSP) model [36] is
a distributed-memory abstraction that treats communica­
tion as a bulk action of a program, rather than as the ag­
gregate of a set of individual, point-to-point messages.
It provides software developers with an attractive escape
route from the world of architecture-dependent parallel
software. The emergence of the model has coincided with
the convergence of commercial parallel machine designs
to a standard architectural form with which it is com­
patible. These developments have been enthusiastically
welcomed by a rapidly-growing community of software
engineers who produce scalable and portable parallel ap­
plications. However, while the parallel-applications com­
munity has welcomed the approach, there is a degree
of skepticism amongst parts of the computer science re­
search community. Some people seem to regard some of
the claims made in support of the BSP approach as "too
good to be true". We will make these claims, and back
them up, in what follows.

The only sensible way to evaluate an architecture­
independent model of parallel computation such as BSP
is to consider it in terms of all of its properties, that is

(a) its usefulness as a basis for the design and analysis
of algorithms,

(b) its applicability across the whole range of
general-purpose architectures and its ability to
provide efficient, scalable performance on them,
and

(c) its support for the design of fully-portable
programs with analytically-predictable
performance.

To focus on only one of these at a time, is simply to re­
place the zoo of parallel architectures in the 1980s by a
new zoo of parallel models in the 1990s. A fully-rounded
viewpoint on the nature and role of models seems more
appropriate as we move from the straightforward world
of parallel algorithms to the much more complex world
of parallel software systems.

2 What Is Bulk Synchronous
Parallelism?

Bulk Synchronous Parallelism is a style of parallel pro­
gramming intended for parallelism across all application
areas and a wide range of architectures [25]. Its goals are
more ambitious than most parallel-programming systems
which are aimed at particular kinds of applications, or
work well only on particular classes of parallel architec­
tures [26].

BSP's most fundamental properties are that:

1. It is simple to write. BSP imposes a high-level
series-parallel structure on programs which
makes them easy to write, and to read. Existing
BSP languages are SPMD, making programs even
simpler, since the parallelism is largely implicit.

2. It is independent of target architectures. Unlike
many parallel programming systems, BSP is
designed to be architecture-independent, so that
programs run unchanged when they are moved
from one architecture to another. Thus BSP
programs are portable in a strong sense.

3. The performance of a program on a given
architecture is predictable. The execution time of
a BSP program can be computed from the text of
the program and a few simple parameters of the
target architecture. This makes engineering design
possible, since the effect of a decision on
performance can be determined at the time it is
made.

BSP achieves these properties by raising the level of
abstraction at which programs are written and implemen­
tation decisions made. Rather than considering individ­
ual processes and individual communication actions, BSP
considers computation and communication at the level
of the entire program, and the entire executing computer
and its interconnection mechanism. Determining the bulk
properties of a program, and the bulk ability of a partic­
ular computer to satisfy them makes it possible to design
with new clarity.

One way in which BSP is able to achieve this abstrac­
tion is by renouncing locality as a performance optimisa­
tion. This simplifies many aspects of both program and
implementation design, and in the end does not adversely
affect performance for most application domains. There
will always be some application domains for which lo­
cality is critical, for example low-level image processing,
and for these BSP may not be the best choice.

-Virtual Processors--....-

FIGURE I

Local Computations

Global Communications

Barrier Synchronisation

A superstep.

3 What Does the BSP Programming Style Look
Like?

BSP programs have both a vertical structure and a hor­
izontal structure. The vertical structure arises from the
progress of a computation through time. For BSP, this is a
sequential composition of global supersteps, which con­
ceptually occupy the full width of the executing architec­
ture. A superstep is shown in Figure 1.

Each superstep is further subdivided into three ordered
phases consisting of:

1. simultaneous local computation in each process,
using only values stored in the memory of its
processor;

2. communication actions amongst the processes,
causing transfers of data between processors;

3. a barrier synchronisation, which waits for all of
the communication actions to complete, and which
then makes any data transferred visible in the local
memories of the destination processes.

The horizontal structure arises from concurrency, and
consists of a fixed number of virtual processes. These pro­
cesses are not regarded as having a particular linear order,
and may be mapped to processors in any way. Thus local­
ity plays no role in the placement of processes on proces­
sors.

We will use p to denote the virtual parallelism of a pro­
gram, that is the number of processes it uses. If the target
parallel computer has fewer processors than the virtual
parallelism, an extension of Brent's theorem [5] can be
used to transform any BSP program into a slimmer ver­
sion.

4 How Does BSP Communication Work?

Most parallel programming systems treat communica­
tion, both conceptually and in implementations, at the

QUESTIONS AND ANSWERS ABOUT BSP 251

level of individual actions: memory-to-memory transfers,
sends and receives, or active messages. This level is diffi­
cult to work with because parallel programs contain many
simultaneous communication actions, and their interac­
tions are complex. For example, congestion in the inter­
connection mechanism is typically very sensitive to the
applied load. This makes it hard to discover much about
the time any single communication action will take to
complete, because it depends so much on what else is
happening in the computer at the same time.

Considering communication actions en masse both
simplifies their treatment, and makes it possible to bound
the time it takes to deliver a whole set of data. BSP does
this by considering all of the communication actions of a
superstep as a unit. For the time being, imagine that all
messages have a fixed size. During a superstep, each pro­
cess has designated some set of outgoing messages and
is expecting to receive some set of incoming messages. If
the maximum number of incoming or outgoing messages
per processor is h, then such a communication pattern is
called an h-relation. The communication pattern in Fig­
ure 1 is a 2-relation.

Many communication topologies deliver almost all
message patterns well, but perform badly for a particular,
small set of patterns. The patterns in this set are typically
regular ones. In other words, a random message pattern
is unlikely to be in this set of 'bad' patterns unless it has
some regular structure. One of the attractions of adap­
tive routing techniques is that they reduce the likelihood
of such 'bad' patterns. BSP randomises the placement
of processes on processors so that regularities from the
problem domain, which are often reflected in programs,
are destroyed in the implementation. This tends to make
the destination processor addresses of an h-relation ap­
proximate a random permutation. This, in turn, makes it
unlikely that each h-relation will be a 'bad' pattern. The
performance advantage of avoiding patterns that take the
network a long time to deliver outweighs any advantage
gained by exploiting locality in placement.

The ability of a communication network to deliver data
is captured by a BSP parameter, g, that measures the per­
meability of the network to continuous traffic addressed
to uniformly-random destinations. As we have seen, BSP
programs randomise to approximate such traffic. The pa­
rameter g is defined such that an h-relation will be de­
livered in time hg. Subject to some small provisos, dis­
cussed later, hg is an accurate measure of communica­
tion performance over a large range of architectures. The
value of g is normalised with respect to the clock rate of
each architecture so that it is in the same units as the time
for executing sequences of instructions.

Sending a message of length m clearly takes longer
than sending a message of size 1. For reasons that will
become clear later, BSP does not distinguish between a

252 SKILL! CORN, HILL, AND McCOLL

message of length m and m messages of length 1 - the
cost in either case is mhg. So messages of varying lengths
may either be costed using the form mhg where h is
the number of messages, or the message lengths can be
folded into h, so that it becomes the number of units of
data to be transferred.

The parameter g is related to the bisection bandwidth
of the communication network but they are not equivalent
- g also depends on factors such as:

1. the protocols used to interface with, and within,
the communication network;

2. buffer management by both the processors and the
communication network;

3. the routing strategy used in the communication
network; and

4. the BSP runtime system.

So g is bounded below by the ratio of p to the bisection
bandwidth, suitably normalised, but may be much larger
because of these other factors. Only a very unusual net­
work would have a bisection bandwidth that grew faster
than p, so g is a monotonically increasing function of p.
The precise values of g is, in practice, determined em­
pirically for each parallel computer, by running suitable
benchmarks. A BSP benchmarking protocol in given in
Appendix B.

Note that g is not the single-word delivery time, but the
single-word delivery time under continuous traffic condi­
tions. This difference is subtle but crucial.

5 Surely This Isn't a Very Precise Measure of
How Long Communication Takes? Don't
Hotspots and Congestion Make It Very
Inaccurate?

One of the most difficult problems of determining the per­
formance of conventional messaging systems is precisely
that congestion makes upper bounds hard to determine
and quite pessimistic. BSP largely avoids this difficulty.

An apparently-balanced communication pattern may
always generate hotspots in some region of the intercon­
nection network. BSP prevents this in several ways. First,
the random allocation of processes to processors breaks
up patterns arising from the problem domain. Second, the
BSP runtime system uses routing techniques that avoid
localized congestion. These include randomized routing
[37], in which particular kinds of randomness are intro­
duced into the choice of route for each communication
action, and adaptive routing [4], in which data are di­
verted from their normal route in a controlled way to
avoid congestion. If congestion occurs, as when an archi­
tecture has only a limited range of deterministic routing

techniques for the BSP runtime system to choose from,
this limitation on continuous message traffic is reflected
in the measured value of g.

Notice also that the definition of an h-relation distin­
guishes the cost of a balanced communication pattern
from one that is skewed. A communication pattern in
which each processor sends a single message to some
other (distinct) processor counts as a 1-relation. However,
a communication pattern that transfers the same number
of messages, but in the form of a broadcast from one pro­
cessor to all of the others, counts as a p-relation. Hence,
unbalanced communication, which is the most likely to
cause congestion, is charged a higher cost. Thus the cost
model does take into account congestion phenomena aris­
ing from the limits on each processor's capacity to send
and receive data, and from extra traffic that might occur
on the communication links near a busy processor.

Experiments have shown that g is an accurate measure
of the cost of moving large amounts of data on a wide
range of existing parallel computers. The reason that g

works so well is that, while today's interconnection net­
works do have non-uniform latencies, these are quite flat.
Once a message has entered the network, the latency to
an immediate neighbour is not very much smaller than
the latency to the other side of the network. Almost all
of the end-to-end latency arises on the path from the pro­
cessor to the network itself, and is caused by operating
system overheads, protocol overheads, and limited band­
width into the network.

6 Isn't It Expensive to Give up Locality?

There will always be application domains where exploit­
ing locality is the key to achieving good performance.
However, there are not as many of them as a naive analy­
sis might suggest.

There are two reasons why locality is oflimited impor­
tance. The first is that the communication networks of to­
day's parallel computers seldom have the regular topolo­
gies that are often assumed. They are far more likely to
have a hierarchical, cluster-based topology (the important
exceptions being the Cray T3D and T3E which have a
torus topology). Hence each processor has a few neigh­
bours in its cluster, a lot more neighbours slightly further
away, and then all of the other nodes at the same effective
distance. Furthermore, these distances vary only slightly.
So there is just not much advantage to locality in the ar­
chitecture, since it makes very little difference to latencies
once in the network.

The second reason why locality is of limited impor­
tance is that most performance-limited problems work
with large amounts of data, and can therefore exploit large
amounts of virtual parallelism. However, most existing

parallel computers have only modest numbers of pro­
cessors. When highly-parallel programs are mapped to
much less parallel architectures, many virtual processes
must be multiplexed onto each physical processor by the
programmer. Almost all of the locality is lost when this
is done, unless the application domain is highly-regular
and matches the structure of the communication topol­
ogy very closely. Most interesting applications have lo­
cality arising from the three-dimensional nature of the
world, while most communication networks have two­
dimensional locality. For example, finite element appli­
cations typically triangulate a three-dimensional surface,
and there is no obvious way to map such triangulations
onto, say, a 2D torus, while preserving all of the local­
ity. So, while there are applications where locality can be
exploited, they are, in practice, less frequent than is com­
monly supposed.

7 Most Parallel Computers Have a Considerable
Cost Associated with Starting up
Communicaton. Doesn't This Mean that the
Cost Model Is Inaccurate for Small Messages,
Since g Doesn't Account for Start-up Costs?

The cost model can be inaccurate, but only in rather spe­
cial circumstances. Recall that all of the communications
in a superstep are regarded as taking place at the end of
the superstep. This semantics makes it possible for imple­
mentations to wait until the end of the computation part
of each superstep to begin the communication actions that
have been requested. The implementation can then pack­
age the data to be transferred into larger message units.
The cost of starting up a data transfer is thus only paid
once per destination per superstep.

However, if the total amount of communication in a
superstep is small, then start-up effects may make a no­
ticeable difference to the performance. We address this
quantitatively later.

8 Aren't Barrier Synchronisations Expensive?
How Are Their Costs Accounted for?

Barriers are often expensive on today's architectures. The
reasons can usually be traced back to naive implemen­
tations based on, say, trees of pairwise synchronisations,
which are themselves expensive on most machines be­
cause of poor implementations of semaphores and locks
[16]. There is nothing inherently expensive about barri­
ers, and there are signs that future architecture develop­
ments will make them much cheaper.

The cost of a barrier synchronisation comes in two
parts:

QUESTIONS AND ANSWERS ABOUT BSP 253

1. The cost caused by the variation in the completion
times of the computation steps that participate.
There is not much that an implementation can do
about this, but it does suggest that balance in the
computation parts of a superstep is a good thing.

2. The cost of reaching a globally-consistent state in
all of the processors. This depends, of course, on
the communication network, but also on whether
or not special-purpose hardware is available for
synchronizing, and on the way in which interrupts
are handled by processors.

For each architecture, the cost of a barrier synchroni­
sation is captured by a parameter, l. The diameter of
the communication network, or at least the length of the
longest path that allows state to be moved from one pro­
cessor to another clearly imposes a lower bound on l.
However, it is also affected by many other factors, so that,
in practice, an accurate value of l for each parallel archi­
tecture is obtained empirically.

Notice that barriers, although potentially costly, have
a number of attractive features. They make it possible for
communication and synchronisation to be logically sepa­
rated. Communication patterns can no longer accidentally
introduce circular state dependencies, so there is no pos­
sibility of deadlock or livelock in a BSP program. This
makes software easier to build and to understand, and
completely avoids the complex debugging needed to find
state errors in traditional parallel programs. Barriers also
permit novel forms of fault tolerance.

9 How Do These Parameters Allow the Cost of
Programs to Be Determined?

The cost of a single superstep is the sum of three terms:
the (maximum) cost of the local computations on each
processor, the cost of the global communication of an h­
relation, and the cost of the barrier synchronisation at the
end of the superstep. Thus the cost is given by

cost of a superstep = MAX w; + MAX h;g + l,
processes processes

where i ranges over processes, and w; is the time for the
local computation in process i. Often the maxima are as­
sumed and BSP costs are expressed in the form w+hg+l.
The cost of an entire BSP program is just the sum of
the cost of each superstep. We call this the standard cost
model. At this point we emphasize that the standard cost
model is not simply a theoretical construct. It provides an
accurate model for the cost of real programs of all sizes,
across a wide range of real parallel computers. Hill et al.
[18] illustrates the use of the cost model to predict the
cost of a computational fluid dynamics code running on

254 SKILLICORN, HILL, AND McCOLL

one architecture when it is moved to another. In contrast,
[33] uses the cost model to compare the predicted and
actual speedup of an electromagnetics application.

To make this summation of costs meaningful, and to
allow comparisons between different parallel computers,
the parameters w, g, and l are expressed in terms of the
basic instruction execution rate, s, of the target architec­
ture. Since this will only vary by a constant factor across
architectures, asymptotic complexities for programs are
often given unless the constant factors are critically im­
portant. Note that we are assuming that the processors
are homogeneous, although it is not hard to avoid that as­
sumption by expressing performance factors in any com­
mon unit.

The existence of a cost model that is both tractable
and accurate makes it possible to truly design BSP pro­
grams, that is to consciously and justifiably make choices
between different implementations of a specification. For
example, the cost model makes it clear that the follow­
ing strategies should be used to write efficient BSP pro­
grams:

1. balance the computation in each superstep
between processes, since w is a maximum over
computation times, and the barrier synchronisation
must wait for the slowest process;

2. balance the communication between processes,
since h is a maximum over fan-in and fan-out of
data; and

3. minimise the number of supersteps, since this
determines the number of times l appears in the
final cost.

The cost model also shows how to predict performance
across target architectures. The values of p, w, and h for
each superstep, and the number of supersteps can be de­
termined by inspection of the program code, subject to
the usual limits on determining the cost of sequential pro­
grams. Values of g and l can then be inserted into the cost
formula to estimate execution time before the program is
executed. The cost model can be used

1. as part of the design process for BSP programs;
2. to predict the performance of programs ported to

new parallel computers; and
3. to guide buying decisions for parallel computers if

the BSP program characteristics of typical
workloads are known.

Other cost models for BSP have been proposed, in­
corporating finer detail. For example, communication and
computation could conceivably be overlapped, giving a
superstep cost of the form

max(w, hg) + l,

although this optimisation is not usually a good idea on
today's architectures [17, 32]. It is also sometimes argued
that the cost of an h-relation is limited by the time taken
to send h messages and then receive h messages, so that
the communication term should be of the form

All of these variations alter costs by no more than small
constant factors, so we will continue to use the standard
cost model in the interests of simplicity and clarity.

A more important omission from the standard cost
model is any restriction on the amount of memory re­
quired at each processor. While the existing cost model
encourages balance in communication and limited barrier
synchronisation, it encourages profligate use of memory.
An extension to the cost model to bound the memory as­
sociated with each processor is being investigated.

The cost model also makes it possible to use BSP to
design algorithms, not just programs. Here the goal is to
build solutions that are optimal with respect to total com­
putation, total communication, and total number of su­
persteps over the widest possible range of values of p.
Designing a particular program then becomes a matter
of choosing among known algorithms for those that are
optimal for the range of machine sizes envisaged for the
application.

For example two BSP algorithms for matrix multipli­
cation have been developed. The first, a block paralleliza­
tion of the standard n3 algorithm [26], has (asymptotic)
BSP complexity

Block MM cost= n3 1 p + (n 2 1 p 112)g + p 112z,

requiring memory at each processor of size n2 I p. This is
optimal in computation time and memory requirement.

A more sophisticated algorithm (McColl and Valiant
[23]) has BSP complexity

Block and Broadcast MM cost = n3 1 p + (n 2 1 p213)g +l,

requiring memory at each processor of size n2 1 p 213. This
is optimal in time, communication, and supersteps, but
requires more memory at each processor. Therefore the
choice between these two algorithms in an implementa­
tion may well depend on the relationship between the size
of problem instances and the memory available on pro­
cessors of the target architecture.

10 Is BSP a Programming Discipline, or a
Programming Language, or Something else?

BSP is a model of parallel computation. It is concerned
with high-level structure of computations. Therefore it

QUESTIONS AND ANSWERS ABOUT BSP 255

Table 1. Core BSP Operations

Class Operation Meaning

Initialisation bsp_ init Simulate dynamic processes
bsp_begin Start of SPMD code
bsp_end End of SPMD code

Enquiry bsp_pid Find my process id
bsp_nprocs Number of processes
bsp_ time Local time

Synchronisation bsp_sync Barrier synchronisation

DRMA bsp_pushregister Make region globally visible
bsp_popregister Remove global visibility
bsp_put Push to remote memory
bsp_get Pull from remote memory

BSMP bsp_set_tag_size Choose tag size
bsp_bsrnp_info
bsp_ send
bsp_get_tag
bsp_rnove

Halt bsp_abort

High Performance bsp_hpput
bsp_hpget
bsp_hprnove

does not prescribe the way in which local computations
are carried out, nor how communication actions are ex­
pressed. All existing BSP languages are imperative, but
there is no intrinsic reason why this need be so.

BSP can be expressed in a wide variety of program­
ming languages and systems. For example, BSP programs
could be written using existing communication libraries
such as PVM [9], MPI [27], or Cray's SHMEM. All that
is required is that they provide non-blocking communica­
tion mechanisms and a way to implement barrier synchro­
nisation. Indeed, experienced programmers may already
find themselves writing in a style reminiscent ofBSP pre­
cisely to avoid the deadlock potential of the unrestricted
message passing style.

There are two advantages to explicitly adopting the
BSP framework. First, the values of g and l depend not
only on the hardware performance of the target architec­
ture but also on the amount of software overhead required
to achieve the necessary behaviour. Systems not designed
with BSP in mind may not deliver good values of g and l.
Second, use of the cost model as a design tool can guide
software development and increase confidence that good
choices have been made.

The most common approach to BSP programming is
SPMD imperative programming using Fortran or C, with
BSP functionality provided by library calls. Two BSP li­
braries have been in use for some years: the Oxford BSP

Number of packets in queue
Send to remote queue
Get tag of I st message
Fetch from queue

One process halts all

Unbuffered versions
of communication
primitives

Library [26] and the Green BSP Library [11, 12]. A stan­
dard has recently been agreed for a library called BSPLib
[13]. BSPLib contains operations for delimiting super­
steps, and two variants of communication, one based on
direct memory transfer, and the other on buffered mes­
sage passmg.

Other BSP languages have been developed. These in­
clude GPL [24] and Opal [21].

11 How Easy Is It to Program Using the BSPLib
Library?

The BSPLib library provides the operations shown in Ta­
ble 1. There are operations to:

1. set up a BSP program;
2. discover properties of the environment in which

each process is executing;
3. communicate, either directly into or out of a

remote memory, or using a message queue;
4. participate in a barrier synchronisation;
5. abort a computation from anywhere inside it; and
6. communicate in a high-performance unbuffered

mode.

256 SKILL! CORN, HILL, AND McCOLL

The BSPLib library is freely available in both Fortran
and C from http: I IWW"N. bsp-wor ldwide. org I
implmnts I oxtool. htm. A more complete descrip­
tion of the library can be found in Appendix A.

Another higher-level library provides specialised col­
lective-communication operations. These are not consid­
ered as part of the core library, but they can be easily re­
alised in terms of the core. These include operations for
broadcast, scatter, gather, and total exchange.

12 In what Application Domains Has BSP Been
Used?

BSP has been used in a number of application areas, pri­
marily in scientific computing. Much of this work has
been done as part of contracts involving Oxford Parallel
(http: I IWW"N. comlab. ox. ac. ukl oxpara/).

Computational fluid dynamics applications of BSP in­
clude:

(a) an implementation of a BSP version of the OPlus
library for solving 3D multigrid viscous flows,
used for computation of flows around aircraft or
complex parts of aircraft in a project with Rolls
Royce [6];

(b) a BSP version of FLOW3D, a computational fluid
dynamics code;

(c) oil reservoir modelling in the presence of
discontinuities and anisotropies in a project with
Schlumberger Geoquest Ltd.

Computational electromagnetics applications of BSP
[30] include:

(a) 3D modelling of electromagnetic interactions with
complex bodies using unstructured 3D meshes, in
a project with British Aerospace;

(b) parallelisation of the TOSCA, SCALA, and
ELEKTRA codes, and demonstrations on
problems such as design of electric motors and
permanent magnets for MRI imaging;

(c) a parallel implementation of a time domain
electromagnetic code ParEMC3d with absorbing
boundary conditions;

(d) parallelisation of the EMMA-T2 code for
calculating electromagnetic properties of
microstrips, wires and cables, and antennae [33].

BSP has been used to parallelise the MERLIN code
in a project with Lloyds Register of Shipping and Ford
Motor Company. It has been applied to plasma simulation
at Rensselaer Polytechnic Institute in New York [31]. It
is being used to build neural network systems for data
mining at Queen's University in Kingston, Canada.

13 What Do BSP Programs Look Like?

Most BSP programs for real problems are large and it
is impractical to include their source here. Instead we
include some small example programs to show how the
BSPLib interface can be used. We illustrate some differ­
ent possibilities using the standard parallel prefix or scan
operation: given xo, ... , Xp-1 (with Xi stored on process
i), compute xo + · · · +Xi on each process i.

All Sums: Version 1

The function bsp_allsumsl calculates the partial
sums of p integers stored on p processors. The algorithm
uses the logarithmic technique that performs !log p l su­
persteps, such that during the kth superstep, the processes
in the range 2k-i ::;; i < p each combine their local par­
tial sums with process i - 2k-l. Figure 2 shows the steps
involved in summing the values bsp_pid () +1 using 4
processors.

int bsp_allsumsl(int x) {
int i, left, right;
bsp_pushregister(&left,sizeof(int));
bsp_sync();

right = x;
for(i=l;i<bsp_nprocs();i*=2)

if (bsp_pid()+i < bsp_nprocs())
bsp_put(bsp_pid()+i,&right,&left,

O,sizeof(int));
bsp_sync();
if (bsp_pid()>=i)right=left+right;

bsp_popregister(&left);
return right;

A process called registration is used to enable refer­
ences to a data structure on one processor to be correctly
mapped to locations on other processors. BSPLib does
not assume that processors are homogeneous. In any case,
heap-allocated data structures need not have the same ad­
dresses on different processors, so some mechanism for
associating names to addresses is required. The procedure

FIGURE 2 All sums using the logarithmic technique.

bsp_pushregister allows all processors to declare
that the variable left is willing to have data put into it
by a DRMA operation.

When

bsp_put(bsp_pid()+i,&right,&left,
O,sizeof(int))

is executed on process bsp_pid (), then a single in­
teger right is copied into the memory of processor
bsp_pid () +i at the address &left+O.

The cost of the algorithm is llog p l (1 + g + /) + l as
there are llog p l + 1 supersteps (including one for reg­
istration); during each superstep a local addition is per­
formed (which costs 1 flop), and at most one message of
size 1 word enters and exits each process.

All Sums: Version 2

An alternative implementation of the prefix sums func­
tion can be achieved in a single superstep by using a tem­
porary data structure containing up to p integers. Each
process i puts the data to be summed into the ith element
of the temporary array on processes j (where 0 ~ j ~ i).
After all communications have been completed, a local
sum is then performed on the accumulated data. The cost
of the algorithm is p + p g + 2!.

int bsp_allsums2(int x)
inti, result,*array =

calloc(bsp_nprocs() ,sizeof(int));
if (array==NULL)

bsp_abort("Unable to allocate %d
element array",bsp_nprocs(});

bsp_pushregister(array,bsp_nprocs()
*sizeof(int));

bsp_sync();

for(i=bsp_pid() ;i<bsp_nprocs();i++)
bsp_put(i,&x,array,bsp_pid()

*sizeof(int) ,sizeof(int));
bsp_sync();

result = array[O];
for(i=1;i<=bsp_pid() ;i++)

result += array[i];
free (array);
bsp_popregister(array);
return result;

The first algorithm performs a logarithmic number of
additions and supersteps, while the second algorithm per­
forms a linear number of additions but a constant number
of supersteps. If the operation being performed at each
iteration of the algorithm were changed from addition to
another, more costly, associative operator, then BSP cost
analysis provides a simple mechanism for determining
which is the better implementation.

QUESTIONS AND ANSWERS ABOUT BSP 257

All Sums on an Array

Either of the routines defined above can be used to sum
n values held in nl p blocks distributed among p proces­
sors. The algorithm proceeds in four phases:

1. The running sum of each nIp block of integers is
computed locally on each processor.

2. As the last element of each nl p block contains the
sum of each (nIp)-element segment, then either of
the two simple algorithms can be used to calculate
the running sums of the last element in each block
(call this last).

3. Each processor gets the value of last from its
left neighbouring processor (we call this
lefts_last).

4. Adding lefts_last to each of the
locally-summed nl p elements produces the
desired effect of the running sums of all n
elements.

void bsp_allsums(int*array,
int n_over_p)

int i, last, lefts_last;
bsp_pushregister(&last,sizeof(int));

for (i=1;i<n_over_p;i++)
array[i] += array[i-1];

last = bsp_allsums2
(array[n_over_p-1]);

if (bsp_pid()==O) lefts_last=O;
else

bsp_get(bsp_pid()-1,&last,O,
&lefts_last,sizeof(int));

bsp_sync();
for(i=O;i<n_over_p;i++)

array[i] += lefts_last;

bsp_popregister(&last);

void main() {
int i,j,n_over_p,*xs;
bsp_begin(bsp_nprocs());

n_over_p = 100;
xs = calloc(n_over_p,sizeof(int));
for (i=O;i<n_over_p;i++) xs[i]=1;
bsp_allsums(xs,n_over_p);

for(i=O;i<bsp_nprocs() ;i++)
if (bsp_pid()==i) {

printsf("On process %d: "

258 SKILLICORN, HILL, AND McCOLL

bsp_pid ()) ;
for(j=O;j<n_over_p;j++)

printf("%d ",xs[j]);
printf("\n");
fflush(stdout);

bsp_sync();
}

bsp_end();

14 What Are Typical Values of g and I for
Common Parallel Computers?

Values of the BSP cost model parameters are shown in
Table 2. The values of the g and l parameters are nor­
malised by the instruction rate, s, of each processor (to aid
comparisons between machines, raw rates are also given
in microseconds). Because this instruction rate depends
heavily upon the kind of computations being done, the
average of two different measured values are used:

Ls J measures the cost of an inner product, where O(n)
operations are performed on a data structure of
size n. The value of n is chosen to be far greater
than the cache size on each processor. This bench­
mark therefore gives a lower-bound megaflop rate
for the processor as each arithmetic operation in­
duces a cache miss.

Is l measures the cost of a dense matrix multiplication,
where O(n3) operations are performed on a data
structures of size n2 . Because a large percentage of
the computation can be kept in cache, this bench­
mark gives an upper-bound megaflop rate for the
processor.

As we have already mentioned, good BSP algorithm
design is often based around balanced patterns of com­
munication. We illustrate the communication capacity, g,
using two balanced communications. The first is a par­
ticularly easy !-relation, a local communication that per­
forms a cyclic shift of data between neighbouring proces­
sors. This benchmark provides an upper-bound rate for
communication as there are only p messages injected into
the communication network during a superstep.

Parallel computers have far greater difficulty in achiev­
ing scalable communication for patterns of communica­
tion that move lots of data to many destinations. As an
extreme example, we consider the total exchange global
communication that injects p 2 messages into the network
and realises a p-relation. As no scalable architecture can
provide p 2 dedicated wires because it is too expensive,
sparser interconnection networks are used in practice. For

example, the Cray T3D uses a 3D Torus, while the IBM
SP2 uses a hierarchy of 8-node fully-connected crossbar
switches. The value of g for a total exchange therefore
provides a good measure of the lower-bound rate of com­
munication of an architecture.

Not very surprisingly, the two values of g, derived di­
rectly from a !-relation, and from the pg cost of a p­
relation total exchange can be quite different. This might
mean that the !-relation performance of the network is
not very good (for example, a ring takes time proportional
top to deliver both a !-relation and a p-relation), but usu­
ally means that the network's effective capacity is not as
large as the per-link bandwidth would suggest. When cost
modelling algorithms, it is advisable to use the value of g

produced by the global communication (total exchange)
benchmark.

Appendix B shows how these figures were obtained.
The meaning of n 112 is explained in Section 16.

15 How Can the BSPLib Be Implemented
Efficiently on Today's Architectures?

The semantics of supersteps separates local computation
from communication, and the Oxford implementation of
BSPLib keeps these two phases separate in the imple­
mentation also. Thus while the semantics of calls to put
and get permits them to begin executing concurrently
with the local process's computation, calls to these func­
tions in fact buffer the data for later transfer. Not over­
lapping computation and communication contradicts con­
ventional wisdom, but it turns out that the performance
advantages of postponing communication are larger than
of exploiting the potential overlap [17].

We begin by noting that overlapping computation and
communication can give at best a factor of two perfor­
mance improvement, and then only when the computa­
tion and communication times are precisely equal. This
equality is neither a scalable nor portable property, so we
must expect an appropriate balance to be quite rare. Thus
the performance improvement factor due to overlapping
is likely to be much less than two in practice.

On the other hand, postponing communication is a big
performance win because it permits two major optimisa­
tions:

1. Combining all of the transfers between a pair of
processors into a single messages, so that the
overhead of message startup is paid only once.
The benefits of doing this are discussed in the next
section.

2. Reordering communications so that the load they
generate is applied to the communication network
effectively, rather than in the order in which the

QUESTIONS AND ANSWERS ABOUT BSP 259

Table 2. BSP Machine Parameters

computation barrier local comm. global comm.

LsJ lsl s p g g/s f? R/S n 1/2

Machine Mflops flops /LS flop/word tLS!word flop/word tLS!word words

SGI PowerChallenge 53 94 74 226 3.1 0.5 0.007 0.5 0.007 80
2 1132 15.3 9.8 0.13 10.2 0.14 12
3 1496 20.2 8.9 0.12 9.5 0.13 12
4 1902 25.7 9.8 0.13 9.3 0.13 12

Cray T3E 4.3 89.2 46.7 86 1.8 2.12 0.05 2.14 0.05 9
2 269 5.7 0.87 0.02 2.61 0.07 33
3 296 6.3 0.86 0.02 2.11 0.04 35
4 357 7.6 0.87 0.02 1.77 0.04 40
8 506 10.8 0.81 0.02 1.64 0.03 40

9 552 11.7 0.82 0.02 1.57 0.03 42
16 751 16.0 1.04 0.02 1.66 0.04 38
20 880 18.7 0.96 0.02 1.63 0.03 38
24 1013 21.6 1.39 0.03 1.70 0.04 36

Cray T3D 5 19 12 68 5.6 0.3 0.02 0.3 0.02 94
2 164 13.5 0.7 0.06 1.0 0.08 71
4 168 13.9 0.7 0.06 0.8 0.65 66
8 175 14.4 0.8 0.07 0.8 0.65 59
9 383 31.7 0.9 0.07 1.2 0.10 39

16 181 14.9 0.9 0.07 1.0 0.08 61
25 486 40.2 1.1 0.09 1.5 0.13 26
32 201 16.6 1.1 0.09 1.4 0.12 28

64 148 12.3 1.0 0.09 1.7 0.14 27
128 301 24.9 1.1 0.09 1.8 0.15 20
256 387 32.1 1.2 0.11 2.4 0.19 15

IBM SP2 (switch) 25 27 26 1 244 9.4 1.3 0.05 1.3 0.05 7
2 1903 73.2 6.3 0.24 7.8 0.30 6
4 3583 137.8 6.4 0.25 8.0 0.31 7
8 5412 208.2 6.9 0.27 11.4 0.43 6

Multiprocessor Sun 3.8 16.4 10.1 1 24 2.4 0.4 0.04 0.4 0.04 7
2 54 5.3 3.0 0.29 3.4 0.34 7
3 74 7.4 2.9 0.29 4.1 0.41 8
4 118 11.7 3.3 0.32 4.1 0.41 11

Parsytec GC 19.3 98 5.1 1.0 0.05 1.0 0.05 16
2 6309 325 109 5.6 113 5.9 3
4 23538 1219 190 9.9 143 7.4 3
8 29080 1506 252 13.1 254 13.2 3

16 224977 11600 253 13.1 342 17.7 3
32 130527 6700 272 14.1 658 34.1 3

IBM SP2 (ethernet) 25 27 26 I 241 9.3 1.3 0.05 1.3 0.05 8
2 18759 721.5 182.1 7.0 183.6 7.1 3
4 39025 1500.9 388.2 14.9 628.2 24.2 5
8 88795 3415.2 1246.6 47.3 1224.1 47.1 2

(1) All values for g are for communications of 32-bit words; (2) benchmarks were performed at the- 03 optimisation level; (3) the
Cray T3D, SGI PowerChallenge, IBM SP2, and Parsytec GC used native implementations of the toolset; (4) the toolset used on the
multiprocessor Sun was built using generic System V shared-memory facilities

260 SKILLICORN, HILL, AND McCOLL

particular puts and gets appears in the
program. Patterns guaranteed to avoid congestion
can be set up in software, rather than requiring
expensive hardware solutions operating during the
data transfers.

These results are counter-intuitive, since they appear to
increase congestion in the network that could be avoided
by allowing some messages to begin transmission early.
This effect is undoubtedly present, but it it dwarfed by
the size of the improvements which postponement makes
possible. Reordering communication, for example, gives
performance improvements of a factor between about 2
and p, while combining multiple transfers into single
messages can give improvements of several orders of
magnitude. One reason why this tradeoff has not been
noted previously is that message-passing interfaces that
operate at the level of single messages cannot naturally
conceive of postponing transmission since there is no
clear moment to postpone transmission to.

The performance gains of delaying communication are
so large that even.,the high-performance versions of the
put and get operations, which are designed so that
computation and communication can be overlapped with­
out buffering, postpone transmissions until the end of the
computation phase of each superstep. Congestion within
the network is much less important, in practice, than con­
gestion at the network boundaries. A processor that si­
multaneously receives messages from several other pro­
cessors has no choice but to sequentialise their removal
from the network.

Regardless of the type of parallel architecture, the abil­
ity to reorder messages before transmission is crucial
to creating a consistent bulk-communication behaviour
without increasing the value of g. Two mechanisms used
are:

1. randomly ordering the messages to reduce the
likelihood of troublesome patterns, and

2. using a latin square to schedule transmissions in a
guaranteed contention-free way.

Which of these mechanisms is to be preferred is architec­
ture-dependent.

Recall that a latin square is a p x p square in which
each of the values from 1 to p appears p times, with no
repetition in any row or column. Such a square can be
used as a schedule for the routing of the h-relation, using
row i as the schedule for processor i, with the contents of
the row regarded as the destinations for each communi­
cation iime step.

The use of such mechanisms has a major effect on
performance. For example, consider a total exchange al­
gorithm shown in Figure 3 where each processor i has

xo xo
Xt Xt

X2 X2

xa xa

FIGURE3

xo xo
Xt Xt

X2 X2

xa xa

Before
communication

After

communication

Total exchange between four processors.

data x; of size n that is to be exchanged with every other
processor. After the communication, each processor will
contain a data structure of size np containing all of the
xi, where 1 ~ j < p. The BSP cost of the algorithm
is png + l because p messages enter and exit each pro­
cessor. However, a naive implementation may have each
processor send a message to processor 0 on the first time
step, to processor 1 on the second, and so on. This causes
p messages to contend at process 0, then p to contend at
process 1, and so on. The cost of this communication will
be 0(p2) rather than the linear cost predicted by the BSP
cost formula png + l. An alternative ordering that does
not cause contention is for processors to send their data
in the order mod(i + j, p); where 1 ~ j < p, and i is
the processor identifier, using a simple latin square. The
expected linear (in p) cost can then be achieved.

Table 3 shows the results of an implementation that
routes total exchanges. Column 1 shows the performance
of a system in which messages are despatched as soon
as the puts are encountered, and in which the or­
der of the puts causes contention. The second col­
umn shows the performance when messages are immedi­
ately despatched, but the programmer has carefully hand­
crafted the order of puts to minimise contention. The
third and fourth columns show the performance when
both of these programs are run with puts postponed
until the end of the superstep and reordered by the run­
time system using a latin square. The performance is
very slightly worse than the best hand-coded program,
because of the overhead of the runtime system manag­
ing the reordering. Far more importantly, the effect of the
programmer's ordering of the puts has been completely
removed. In other words, reordering provides consistent
performance over varying orderings of the data transfer
instructions, at the expense of a very small decrease in
best case performance. Note also that reordering provides
almost a factor of two performance improvement, enough
by itself to make up for any performance loss caused by
not overlapping computation and communication.

The precise details of handling communication and
building barriers differs depending on the specifics of tar­
get architectures:

Table 3. The Effects of Node Contention on the Cray
T3D. Entries in the table are in seconds for routing a
4,000,000-relation, e.g., for 128 processors, 15625 integers
per process

immediate transmission BSPLib reordering

Procs contention latin square contention latin square

2 .168 .157 .157 .157
4 .392 .194 .191 .191
8 .461 .239 .228 .229

16 .598 .289 .344 .345
32 .784 .413 .465 .456
64 .903 .529 .548 .546

128 .961 .575 .599 .599

Distributed-memory machines with remote-mem­
ory access (Gray T3D and Gray T3E). A barrier syn­
chronisation is performed to ensure that each process has
finished its local computation. Once all the processors
have passed the barrier, one-sided memory accesses are
used to route messages into the memories of the remote
processors. Combining is not used, because there is little
to be gained when the actual data transfer mechanism is
DRMA. The communication phase of a superstep is com­
pleted by performing a further barrier synchronisation.

Distributed-memory machines with message­
passing (IBM SP2, Parsytec GC, Generic TCP/IP).
On architectures that provide native non-blocking send
and blocking receive message-passing primitives, the h­
relation is routed through the communication network in
three phases:

1. a total exchange is performed, exchanging
information about the number, sizes, and
destination addresses of messages. This total
exchange is considered to be the barrier
synchronisation for the superstep.

2. gets are translated into puts and the data they
refer to is buffered at the source processor.

3. after the total exchange, each processor knows
how many messages, from every other process, it
is expecting. Each process therefore knows when
the communication phase of the superstep is
complete by counting the incoming messages.
Communication is performed by interleaving the
outgoing and incoming messages, so that
minimum buffering requirements are placed on the
underlying message-passing system.

QUESTIONS AND ANSWERS ABOUT BSP 261

Shared-memory architectures (SGI Power Chal­
lenge, Sun). The implementation on shared-memory ar­
chitectures combines features from both of the implemen­
tations above. The information about the number and size
of messages to be sent between each processor pair is
constructed in a region of shared memory by each call to
put and get. After the computation phase, a barrier syn­
chronisation takes place to ensure that this information
is frozen. Because the message information is in shared
memory, an implicit total exchange can be considered to
have occurred at this point. The actual exchange of data
is performed in a message-passing style. First messages
are copied into buffers associated with each process in
shared memory. These buffers are then inspected by the
remote process, and their contents copied into the remote
processor's memories. Using a contention-limiting order
for messages, the number of message passing buffers as­
sociated with each process can be minimised. Finally, the
message information region is cleared and a further bar­
rier synchronisation takes place to allow renewed access
to it.

16 How Much Effect Does Message Size Have
on the Value of g?

As we have already seen, the way in which BSPLib de­
lays communication until the end of each superstep and
then combines messages into the largest possible units re­
duces the importance of message size. The cost model
makes no distinction between the cost of a process send­
ing h messages of size one or a single message of size h;
both communications have an h-relation cost of hg. How­
ever, a superstep in which very little total communication
occurs may still deviate from the cost model because of
the effects of startup costs for message transmission.

Miller refined the standard cost model [29] using a
technique of Hockney [20] to model the effect of message
granularity on communication cost. In the refined model,
g is defined as a function of the message size x:

g(x) = c;2 + 1)goo, (1)

where g00 is the asymptotic communication cost for very
large messages (that is, the g reported in Table 2) and
n 1/2 is the size of message that produces half the optimal
bandwidth of the machine so g(n1;2) = 2goo.

The value of n1;2 in Equation (1) is determined ex­
perimentally for each machine configuration by fitting a
curve to actual values of g(x). Figure 4 shows the actual
values of g(x) on an 8-processor IBM SP2. Because mes­
sages are combined in each superstep, the value of n 112 is
effectively reduced to 6 words. For comparison purposes,
the effect of naively communicating messages separately

262 SKILLICORN, HILL, AND McCOLL

60rr------.------~-----.-------r----~

50

40

g(z) 30

20

Actual cost of single-word messages <>
Actual cost of combined messages +

Theoretical model of eqn. {1). u~ = 7.8; n112 =202 -­
Theoretical model of eqn. (1). u~ = 9.2; n112 =6 · · · •

10 ~-~-. + ~.,..,..,..~--'1>----~ a........., .. _,_ -~· ..

0~----~------~----~~----~----~
0 500 1000 1500 2000 2500

message size in words

FIGURE 4 Fitting experimental values of g(x) flops/word to
Equation (I) using an 8-processor IBM SP2 with switch com­
munication. The messages are communicated using one-sided
put communication where a process puts data into another pro­
cessor's memory. The top curve represents single-word mes­
sages and the bottom curve uses a message-combining scheme.

is shown by the data points labeled "actual cost of single­
word messages" in the figure. Fitting a curve to this data
gives n 112 = 202 words.

The n 112 parameter can be used to discover the min­
imum message size for which the standard cost model
is within a given percentage of the more-detailed cost
model. For the standard model to be within y% accuracy
of the cost attributed by the model that includes message
granularity, then:

(
100 + y)hog00 = hog(ho) = (n

112 + l)hogoo, (2)
100 ho

where ho words is Valiant's parameter [36] that measures
the minimum size of h-relation to achieve n 112 through­
put. Thus the percentage error in the communication cost
hogoo is

(
lOOn1;2) y= %.

ho
(3)

So on the IBM SP2 with switch communication the error
in the standard BSP model for communicating ho = 60
32-bit words is 10%. Moreover, as would be expected, as
the size of h-relation increases, the error in the standard
BSP model decreases.

These data show that combining the messages sent be­
tween each pair of processors has a significant effect on
the achieved value of g, and so provides further justifi­
cation for not overlapping computation and communica­
tion.

17 What Tools Are Available to Help with
Building and Tuning BSP Programs?

The intensional properties of a parallel program (i.e., how
it computes a result) can often be hard to understand. The
BSP model goes some way towards alleviating this prob­
lem if cost analysis is used to guide program develop­
ment. Unfortunately, in large-scale problems, cost anal­
ysis is rarely used at the time of program development.
The role of current BSP tools [18] is to aid programmers
in understanding the intensional properties of their pro­
grams by graphically providing profiling and cost infor­
mation. The tools may be used both to analyse the com­
munication properties of a program, and to analyse the
predicted performance of the code on a real machine.

A central problem with any parallel-profiling systems
is effective visualisation of large amounts of profiling
data. In contrast to conventional parallel-profiling tools,
which highlight the patterns of communication between
individual sender-receiver pairs in a message passing sys­
tem, the BSP approach significantly simplifies visualisa­
tion because all of the communications from a superstep
can be visualised as a single monolithic unit.

Figure 5 is an example of the results from a BSP profil­
ing tool running on the IBM SP2. It shows a communica­
tion profile for the parallel prefix algorithm (with n > p)
developed on page 260.

The top and bottom graphs in Figure 5 show, on the
y-axis, the volume of data moved, and on the x -axis, the
elapsed time. Each pair of vertically-aligned bars in the
two graphs represents the total communication during a
superstep. The upper bars represent the output from pro­
cessors, and the lower bars the input. Within each com­
munication bar is a series of bands. The height of each
band represents the amount of data communicated by a
particular process, identified by the band's shade. The
sum of all the bands (the height of the bar) represents the
total amount of communication during a superstep. The
width represents the elapsed time spent in both communi­
cation and barrier synchronisation. The label found at the
lop left-hand corner of each bar can be used in conjunc­
tion with the legend in the right of the graph to identify
the end of each superstep (i.e., the call to bsp_sync) in
the user's code. The white space in the figure represents
the computation time of each superstep.

In Figure 5, the start and end of the running sums
is identified by the points labelled 0 and 4. The white
space in the graphs between supersteps 0 and 1 shows
the computation of the running sums executed locally
in each process on a block of size njp. The first su­
perstep, which is hidden by the label 1 at this scale,
shows the synchronisation that arises due to registration
in the function bsp_allsums 1. The three successively­
smaller bars represent the logarithmic number of commu­
nication phases of the parallel prefix technique. Contrast-

QUESTIONS AND ANSWERS ABOUT BSP 263

D-·

·-·
FIGURE 5 All sums of 32,000 elements using the logarithmic technique on an 8-processor IBM SP2.

GJ-·
lilll-· ·-· ·-· ·-·
~-· ·-·

FIGURE 6 All sums of 32,000 e lements using total exchange on an 8-processor IBM SP2.

ing the sizes o f the communicatio n bars in Figure 5 with
the schematic diagram of Figure 2 graphically shows the
diminishing numbers of processors involved in communi­
cation as the parallel prefix algorithm proceeds. Contrast­
ing this method of running sums with the total-exchange­
based algorithm in Figure 6 shows that although the num­
ber of synchronisations within the algorithm is reduced
from flog p 1 to l , the time spent in the total exchange of
bsp_a llsurns2 is approximately the same as the algo-

rithm based upon the logarithmic technique. This is due to
the larger amount of data transferred, i.e., 1.51 millisec­
onds spent in summing p values in p processes using the
parallel prefix technique, compared to 1.42 mill iseconds
when the total exchange is used.

Figures 7 and 8 show pro fi les of the same two algo­
rithms running on a 32-processor Cray TID, with the
same data-set size as the IBM SP2. Although the T3D has
a lower value for the barrier synchronisation latency than

264 SKILLICORN, HILL, AND McCOLL

c- · 121-·
m- · s --
a- •-· ·- ·-· •-· rn-·
ES- !:!--

1.70 "" 110 -GI- HI-·

2.'71 1 11 t.• .t.OI ,....._....

·-· ·-· ·- ·-· •- rn-·
0 -·lil--

l!bl-· ·-·
19-· ·--
ID-· ·--
11-· o--
o-· GJ--

FIGURE 7 All sums of 32,000 elements using the logarithmic technique on a 32-processor Cray T3D.

o-· Ell-·
o- , s-·
·-II-· ·- ·-· •-· rn-·
ts- m--

-Gt-·11-·

·-· ·--·- ·--·- E!l-·
0-· Iii-· a-·•­
fB-· ·-·
ID-· ·--
11-· o-·
0 -· Q--

FIGURE 8 All sums of 32,000 elements using a total exchange on a 32-processor Cray TID.

the IBM SP2 (see Table 2), reducing the number of super­
steps from rtog 321 = 6 supersteps to l has a marked ef­
fect on the efficiency. The version bsp_allsumsl (i.e.,
logarithmic) takes 1.39 milliseconds compared to 0.91
milliseconds for bsp_allsums2 (i.e., total exchange).

These data show that, for today's parallel computers,
it is often better to reduce the number of supersteps, even
at the expense of requiring more communication.

18 How Does BSPLib Compare with Other
Communication Systems such as PVM or MPI?

In recent years, the PVM message-passing library [l ,
2, I 0] has been widely implemented and widely used.
In that respect, the goal of source code portabiljty in
parallel computing has already been achieved by PVM.
What then, are the advantages of BSP programming, if

any, over a message-passing framework such as PVM?
First, PVM and all other message-passing systems based
on pairwise, rather than barrier, synchronisation have no
simple analytic cost model for performance prediction,
and no simple means of examining the global state of a
computation for debugging. Second, taking a global view
of communication introduces opportunities for optimisa­
tion that can improve performance substantially [17] and
these are inaccessible to systems such as PVM.

MPI [14] has been proposed as a new standard for
those who want to write portable message-passing pro­
grams in Fortran and C. At the level of point-to-point
communications (send, receive etc.), MPI is similar to
PVM, and the same comparisons apply. The MPI stan­
dard is very general and is very complex relative to the
BSP model. However, one could use some carefully­
chosen combination of the various non-blocking com­
munication primitives available in MPI, together with
its barrier synchronisation primitive, to produce an MPI­
based BSP programming model. At the higher level of
collective communications, MPI provides support for
various specialised communication patterns which arise
frequently in message-passing programs. These include
broadcast, scatter, gather, total exchange, reduction, and
scan. These standard communication patterns are also
provided for BSP in a higher-level library. There have
been two comparisons of the performance of BSP and
MPI. One by Szymanski on a network of worksta­
tions [31] showed performance differences of the order
of a few percent. Another by Hyaric (http: I /merry.
comlab.ox.ac.uk/users/hyaric/doc/BSP/
NASfromMPitoBSP) used the NAS benchmarks. BSP
outperformed MPI on four out of five of these, perform­
ing ten percent better in some cases. Only on LU did BSP
perform about five percent worse.

Compared to PVM and MPI, the BSP approach offers

(a) a simple programming discipline (based on
supersteps) that makes it easier to determine the
correctness of programs;

(b) a cost model for performance analysis and
prediction which is simpler and compositional;
and

(c) more efficient implementations on many
machines.

19 How Is BSP Related to the LogP Model?

LogP [7] differs from BSP in three ways:

I. It uses a form of message passing based on
pairwise synchronisation.

QUESTIONS AND ANSWERS ABOUT BSP 265

2. It adds an extra parameter representing the
overhead involved in sending a message. This has
the same general purpose as then 112 parameter in
BSP, except that it applies to every
communication, whereas the BSP parameter can
be ignored except for a few unusual programs.

3. It defines gin local terms. The g parameter in BSP
is regarded as capturing the throughput of an
architecture when every processor inserts a
message (to a uniformly-distributed address) on
every step. It takes no account of the actual
capacity of the network, and does not distinguish
between delays in the network itself and those
caused by inability to actually enter the network
(blocking back at the sending processor). In
contrast, LogP regards the network as having finite
capacity, and therefore treats g as the minimal
permissible gap between message sends from a
single process. This amounts to the same thing in
the end, that is g in both cases is the reciprocal of
the available per-processor network bandwidth,
but BSP takes a global view of the meaning of g,
while LogP takes a more local view.

Experience in developing software using the LogP model
has shown that, to analyse the correctness and efficiency
of LogP programs, it is often necessary, or at least con­
venient, to use barriers. Also, major improvements in
network hardware and in communications software have
greatly reduced the overhead associated with sending
messages. In early multiprocessors, this overhead could
be substantial, since a single processor handled both the
application and its communication. Manufacturers have
learned that this is a bad idea, and most newer multi­
processors provide either a dedicated processor to han­
dle message traffic at each node or direct remote-memory
access. In this new scenario, the only overhead for the ap­
plication processor in sending or receiving a message is
the time to move it from user address space to a system
buffer. This is likely to be small and relatively machine­
independent, and may even disappear as communication
processors gain access to user address space directly. The
importance of the overhead parameter in the long term
seems negligible.

Given that

LogP +barriers- overhead= BSP,

the above points would suggest that the LogP model does
not improve upon BSP in any significant way. However, it
is natural to ask whether or not the more "flexible" LogP
model enables a designer to produce a more efficient al­
gorithm or program for some particular problem, at the
expense of a more complex style of programming. Recent

266 SKILLICORN, HILL, AND McCOLL

results show that this is not the case. In [3] it is shown that
the BSP and LogP models can efficiently emulate one an­
other, and that there is therefore no loss of performance
in using the more-structured BSP programming style.

20 How Is BSP Related to the PRAM Model?

The BSP model can be regarded as a generalisation of
the PRAM model which permits the frequency of barrier
synchronisation, and hence the demands on the routing
network, to be controlled. If a BSP architecture has a very
small value of g, e.g., g = 1, then it can be regarded as a
PRAM and we can use hashing to automatically achieve
efficient memory management. The value of l determines
the degree of parallel slackness required to achieve opti­
mal efficiency. The case l = g = 1 corresponds to the
idealised PRAM, where no parallel slackness is required.

21 How Is BSP Related to Data
Parallelism?

Data parallelism is an important niche within the field
of scalable parallel computing. A number of interesting
programming languages and elegant theories have been
developed in support of the data-parallel style of pro­
gramming, see, e.g., [34]. High Performance Fortran [22]
is a good example of a practical data-parallel language.
Data parallelism is particularly appropriate for problems
in which locality is crucial.

The BSP approach, in principle, offers a more flexi­
ble and general style of programming than is provided by
data parallelism. However, the current SPMD language
implemented by BSPLib is very much like a large-grain
data parallel language, in which locality is not considered
and programmers have a great deal of control over parti­
tioning of functionality. In any case, the two approaches
are not incompatible in any fundamental way. For some
applications, the flexibility provided by the BSP approach
may not be required and the more limited data-parallel
style may offer a more attractive and productive setting
for parallel software development, since it frees the pro­
grammer from having to provide an explicit specification
of the various processor scheduling, communication and
memory management aspects of the parallel computation.
In such a situation, the BSP cost model can still play an
important role in terms of providing an analytic frame­
work for performance prediction of the data-parallel pro­
gram.

22 Can BSP Handle Synchronisation among a
Subset of the Processes?

Synchronising a subset of executing processes is a com­
plex issue because the ability of an architecture to syn­
chronise is not a bulk property in the same sense that
its processing power and communication resources are.
Certain architecture provide a special hardware mecha­
nism for barrier synchronisation across all of the pro­
cessors. For example the Cray T3D provides an add­
and-broadcast tree, and work at Purdue [8] has created
generic, fast, and cheap barrier synchronisation hardware
for a wide range of architectures. Sharing this single syn­
chronisation resource among several concurrent subsets
that may wish to use it at any time seems difficult. We are
currently exploring this issue, but the current version of
the library synchronises only across the entire machine.

Architectures in which barrier synchronisation is im­
plemented in software do not have any difficulty in im­
plementing barriers for subsets of the processors. The re­
maining difficulty here is a language design one- it is not
yet clear what an MIMD, subset-synchronising language
should be like if it is to retain the characteristics of BSP,
such as accurate predictability.

23 Can BSP be Used on Vector, Pipelined, or
VLIW Architectures?

Nothing about BSP presupposes how the sequential parts
of the computation, that is the processes within each pro­
cessor, are computed. Thus architectures in which the
processor uses a specialised technique to improve perfor­
mance might make it harder to determine the value of w
for a particular program, but they do not otherwise af­
fect the BSP operation or cost modelling. The purpose of
normalising g with respect to processor speed is to en­
able terms of the form hg to be compared to computation
times so that the balance between computation and com­
munication in a program is obvious. Architectures that
issue multiple instructions per cycle might require a more
sophisticated normalisation to keep these quantities com­
parable in useful ways.

24 BSP Doesn't Seem to Model Either
Input/Output or Memory Hierarchy?

Both properties can be modelled as part of the cost of ex­
ecuting the computation part of a superstep. Modelling
the latency of deep storage hierarchies fits naturally into
BSP's approach to the latency of communication, and in­
vestigations of extensions to the BSP cost model applica­
ble to databases are underway [35].

25 Does BSP Have a Formal Semantics?

Several formal semantics for BSP have been developed.
He eta!. [15] show how these may be used to give alge­
braic laws for developing BSP programs. BSP is used as
a semantics case study in a forthcoming book [19].

26 Will BSP Influence the Design of
Architectures for the Next Generation of Parallel
Computers?

The contribution of BSP to architecture design is that it
clarifies those f<Jctors that are most important for perfor­
mance on problems without locality. It suggests that the
critical properties of an architecture are:

I. high permeability of the communication system,
that is the ability to move arbitrary patterns of data
quickly; and

2. the ability to reach a consistent global state
quickly by barrier synchronisation.

More subtly, it also suggests that predictability of deliv­
ery for a wide range of communication patterns is more
important than high performance for some special com­
munication patterns, and low performance for others. In
other words, low variance is more significant than low
mean.

The two parameters l and g capture, in a direct way,
how well an architecture achieves these two major per­
formance properties. Details of exactly which topology to
use, what routing technology, and what congestion con­
trol scheme are all subsumed in the single consideration
of total throughput.

When the BSP model was first considered, it was of­
ten felt to be necessarily inefficient because of its use of
permutation routing. After a while, it came to be appreci­
ated that permutation routing is not necessarily expensive,
and architectures that do it well were developed. Next the
BSP model was considered inefficient because of its re­
quirement for barrier synchronisation. It is now under­
stood that barriers need not be expensive, and architec­
tures that handle them well are being developed. It may
be that total exchange is the next primitive to be made
central to BSP and the same arguments about its neces­
sary inefficiency may well be made. New communication
technologies, such as ATM, repay foreknowledge of com­
munication patterns, and total exchange may turn out to
be a reasonable standard building block for parallel archi­
tectures as well.

BSP's structured use of machine resources also sug­
gests functions that could be usefully migrated to hard­
ware. We have already seen this possibility for barrier
synchronisation. Hardware support for message combin­
ing and scheduling would appear to be cost-effective also.

QUESTIONS AND ANSWERS ABOUT BSP 267

27 How Can I Find out More about BSP?

Development of BSP is coordinated by BSP Worldwide,
and organisation of researchers and users. Information
about it can be found at the web site http: I lwww. bsp
-worldwide. org I. The BSPLib library described
here is a BSP Worldwide standard. Other general papers
about BSP are [23, 36].

There are groups of BSP researchers at:

I. Oxford-http: I lwww. comlab. ox. ac. ukl
oucl I groups /bsp;

2. Harvard- http: I ldas-www. harvard. edu
lcslresearchlbsp.html;

3. Utrecht- http: I lwww .math. ruu .nll
peoplelbisseling.html;

4. Carleton-http: I lwww. scs. carleton. ca
l~palepuiBSP. html;

5. Central Florida-http: I I longwood. cs.
ucf.edu/csdept/faculty/
goudreau. html;

as well as individuals working on BSP at a number of
other universities.

ACKNOWLEDGEMENTS

We appreciate the helpful comments made on earlier
drafts of this paper by David Burgess, Dave Dove, Gaetan
Hains, Jifeng He, Owen Rogers, Heiko Schroder, Bolek
Szymanski, and Alexandre Tiskin.

D. B. Skillicorn was supported in part by EPSRC Re­
search Grant GR/K63740 "A Unified Framework for Par­
allel Programming".

J. M. D. Hill and W. F. McColl were supported in
part by EPSRC Research Grant GR/K40765 "A BSP Pro­
gramming Environment".

REFERENCES

[I] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and
Y. Sunderam, "Recent enhancements to PVM," Interna­
tional Journal of Supercomputing Applications and High
Performance Computing, 1995.

[2] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and
Y. Sunderam, "A users' guide to PVM parallel virtual ma­
chine," University of Tennessee, Tech. Rep. CS-91-136,
July 1991.

[3] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and
P. Spirakis, "BSP vs LogP," in Proc. 8th Ann. Symp. Par­
allel Algorithms and Architectures, June 1996, pp. 25-32.

[4] R. V. Boppana and S. Chalasani, "A comparison of adap­
tive wormhole routing algorithms," in Proc. 20th Ann.
Symp. Computer Architecture, May 1993.

268 SKILLICORN, HILL, AND McCOLL

[5] R. P. Brent, "The parallel evaluation of general arithmetic
expressions," Journal of the ACM, vol. 21, no. 2, pp. 201-
206, April1974.

[6] P. I. Crumpton and M. B. Giles, "Multigrid aircraft com­
putations using the OP!us parallel library," in Parallel
Computational Fluid Dynamics: Implementation andRe­
sults using Parallel Computers, Proc. Parallel CFD'95,
Pasadena, CA, USA. Elsevier/North-Holland, June 1995,
pp. 339-346.

[7] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramanian, and T. von
Eicken, "LogP: Towards a realistic model of parallel com­
putation," in Proc. 4th ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, San Diego, CA,
May 1993.

[8] H. G. Dietz, T. Muhammad, J. B. Sponaugle, and T. Mat­
tox, "PAPERS: Purdue's adapter for parallel execution and
rapid synchronisation," Purdue School of Electrical Engi­
neering, Tech. Rep. TR-EE-94-11, March 1994.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, PVM 3 Users Guide and Reference
Manual. Oak Ridge National Laboratory, Oak Ridge, Ten­
nessee 37831, May 1994.

[10] G. A. Geist, "PVM3: Beyond network computing," in
J. Volkert, ed., Parallel Computation, Lecture Notes in
Computer Science 734, Springer, 1993, pp. 194-203.

[II] M. Goudreau, K. Lang, S. Rao, T. Sue!, and T. Tsanti­
las, "Towards efficiency and portability: Programming the
BSP model," in Proc. 8th Ann. Symp. Parallel Algorithms
and Architectures, June 1996, pp. 1-12.

[12] M. W. Goudreau, K. Lang, S. B. Rao, and T. Tsantilas,
"The Green BSP Library," University of Central Florida,
Tech. Rep. 95-11, August, 1995.

[13] M. W. Goudreau, J. M. D. Hill, K. Lang, W. F. McColl,
S. D. Rao, D. C. Stefanescu, T. Sue!, and T. Tsantilas, "A
proposal for a BSP Worldwide standard," BSP Worldwide,
http://www.bsp-worldwide.org/, Aprill996.

[14] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming. Cambridge, MA: MIT
Press, 1994.

[15] J. He, Q. Miller, and L. Chen, "Algebraic laws for BSP
programming," in Proc. Europar'96, Lecture Notes in
Computer Science, vol. 1124, Springer-Verlag, August
1996.

[16] J. M. D. Hill and D. B. Skillicorn, "Practical barrier syn­
chronisation," Oxford University Computing Laboratory,
Tech. Rep. TR-96-16, October 1996.

[17] J. M. D. Hill and D. B. Skillicorn, "Lessons learned from
implementing BSP," in High-Performance Computing and
Networks, Lecture Notes in Computer Science, vol. 1225,
Springer, April 1997, pp. 762-771. Also appears as Ox­
ford University Computing Laboratory Tech. Rep. TR-96-
21.

[18] J. M.D. Hill, P. I. Crumpton, and D. A. Burgess, "The the­
ory , practice, and a tool for BSP performance prediction,"
in Proc. Europar'96, LNCS, vol. 1124, Springer-Verlag,
August 1996, pp. 697-705.

[19] C. A. R. Hoare and J. He, Unified Theories of Program­
ming. Prentice-Hall International, 1997 (to.appear).

[20] R. W. Hockney, "Performance parameters and benchmark­
ing of supercomputers, " Parallel Computing, vol. 17,
pp. 1111-1130, 1991.

[21] S. Knee, "Program development and performance predic­
tion on BSP machines using Opal," Oxford University
Computing Laboratory, Tech. Rep. PRG-TR-18-94, Au­
gust 1994.

[22] C. H. Koelbel, D. B. Loveman, R. S. Schreiber,
G. L. Steele Jr., and M. E. Zosel, The High Performance
Fortran Handbook. Cambridge, MA: MIT Press, 1994.

[23] W. F. McColl, "Scalable computing," in J. van Leeuwen,
ed., Computer Science Today: Recent Trends and Devel­
opments. Lecture Notes in Computer Science, vol. 1000,
Springer-Verlag, 1995, pp. 46-61.

[24] W. F. McColl and Q. Miller, "The GPL language: Refer­
ence manual," ESPRIT GEPPCOM Project, Oxford Uni­
versity Computing Laboratory, Tech. Rep., October 1995.

[25] W. F. McColl, "General purpose parallel computing," in
A. M. Gibbons and P. Spirakis, eds, Lectures on Parallel
Computation. Cambridge International Series on Parallel
Computation, Cambridge: Cambridge University Press,
1993, pp. 337-391.

[26] W. F. McColl, "Special purpose parallel computing," in
A. M. Gibbons and P. Spirakis, eds, Lectures on Parallel
Computation. Cambridge International Series on Parallel
Computation, Cambridge: Cambridge University Press,
1993, pp. 261-336.

[27] Message Passing Interface Forum, "MPI: A message pass­
ing interface," in Proc. Supercomputing'93, IEEE Com­
puter Society, 1993, pp. 878-883.

[28] R. Miller, "A library for Bulk Synchronous Parallel pro­
gramming," in Proc. BCS Parallel Processing Specialist
Group workshop on General Purpose Parallel Computing,
December 1993, pp. 100-108.

[29] R. Miller, Two approaches to architecture-independent
parallel computation, Oxford University Computing Lab­
oratory, Wolfson Building, Parks Road, Oxford OX! 3QD,
Ph.D. thesis, 1994.

[30] P. B. Monk, A. K. Parrott, and P. J. Wesson, "A paral­
lel finite element method for electromagnetic scattering,"
COMPEL, vol. 13, Supp. A, pp. 237-242, 1994.

[31] M. Nibhanupudi, C. Norton, and B. Szymanski, "Plasma
simulation on networks of workstations using the bulk
synchronous parallel model," in Proc. Int. Conf Parallel
and Distributed Processing Techniques and Applications,
Athens, GA, November 1995.

[32] M. J. Quinn and P. J. Hatcher, "On the utility of
communication-computation overlap in data-parallel pro­
grams," J. Parallel and Distributed Computing, vol. 33,
pp. 197-204, 1996.

[33] J. Reed, K. Parrott, and T. Lanfear, "Portability, pre­
dictability and performance for parallel computing: BSP
in practice," Concurrency: Practice and Experience (to
appear).

[34] D. B. Skillicorn, Foundations of Parallel Programming.
Cambridge Series in Parallel Computation, vol. 6, Cam­
bridge University Press, 1994.

[35] K. R. Sujithan and J. M. D. Hill, "Collection types for
database programming in the BSP model," in Proc. Eu-

romicro Workshop on Parallel and Distributed Processing,
IEEE CS Press, January 1997.

[36] L. G. Valiant, "A bridging model for parallel computa­
tion," Comm. ACM, vol. 33, pp. 103-111, August 1990.

[37] L. G. Valiant, "General purpose parallel architectures," in
J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, vol. A, Elsevier and MIT Press, 1990.

APPENDIX A THE BSPLib LIBRARY

This Appendix provides slightly more detail about the
current major BSP system, BSPLib. We describe C inter­
faces to the library, but a Fortran version is also available.

A.1 Initialisation

Processes are created in a BSPLib program by the oper­
ations bsp_begin and bsp_end. There can only be
one instance of a bsp_begin/bsp_end pair within a
program. There are two different ways to start a BSPLib
program. If bsp_begin and bsp_end are the first and
last statements in a program, then the entire BSPLib com­
putation is SPMD. In an alternative mode, a single pro­
cess starts execution and determines the number of paral­
lel processes required for the calculation. It then spawns
the required number of processes using bsp_begin.
Execution of the spawned processes then continue in an
SPMD manner, until bsp_end is encountered by all the
processes. At that point, all processes except process zero
are terminated, and process zero is left to continue the
execution of the rest of the program sequentially.

One problem with providing this mode is that some
parallel machines available today, for example almost
all distributed-memory machines, e.g., IBM SP2, Cray
T3D, Meiko CS-2, Parsytec GC, Hitachi SR2001, do not
provide dynamic process creation. Therefore we simu­
late dynamic spawning using an operation bsp_ini t
which takes as its argument a procedure name. The pro­
cedure passed as an argument to bsp_ini t must con­
tain bsp_begin and bsp_end as its first and last state­
ments.

The interface for these library operations is:

void bsp_init(void (*startproc) (void),
int argc, char**argv);

void bsp_begin(int maxprocs);
void bsp_end ()

maxprocs is the number of processes requested by the
user.

s tartproc is the name of a procedure that contains
bsp_begin and bsp_end as its first and last
statements.

argc and argv are command line size and arguments.

QUESTIONS AND ANSWERS ABOUT BSP 269

A.2 Enquiry

There are also operations to determine the total number
of processes, and for each process to find out its process
identifier. The interface for these operations is:

int bsp_nprocs();
int bsp_pid();

If the function bsp_nprocs is called before bsp_
begin, then it returns the number of processors which
are available. If it is called after bsp_begin it returns
n, the actual number of processes allocated to the pro­
gram, where 1 ~ n ~ maxprocs, and maxprocs is
the number of processes requested in bsp_begin. Each
of then processes created by bsp_begin has a unique
associated value m in the range 0 ~ m ~ n- 1. The func­
tion bsp_pid returns the associated value of the process
executing the function call.

A.3 Synchronisation

A BSPLib calculation consists of a sequence of super­
steps. The end of one superstep and the start of the next
is identified by a call to the library procedure bsp_sync
with interface:

void bsp_sync();

A.4 DRMA

There are two ways of communicating among processes:
one using direct remote-memory access (DRMA), and the
other using a BSP version of message passing.

The DRMA communication operations are defined for
stack- and heap-allocated data structures as well as for
static data. This is achieved by allowing a process to ref­
erence only certain registered areas of a remote memory.
In a registration procedure, processes use the operation
bsp_pushregister to announce the address of the
start of a local area which is available for global remote
use. This makes it possible to execute BSP programs us­
ing heterogeneous processor architectures. Registration
takes effect at the next barrier synchronisation.

void bsp_pushregister (void*region,
int nbytes);

void bsp_popregister (void*region);

region is the starting address of the region to be reg­
istered or unregistered. The name region must
be the same for all logically-related calls to bsp_
pushregister or bsp_popregister, and
implementations may check that this is true.

nbytes is the size of the region (used for range check­
ing).

270 SKILLICORN, HILL, AND McCOLL

Each processor maintains a stack of registration slots.
Logically-related calls to bsp__pushregister in dif­
ferent processes (the ith call in each process is related to
the ith call in all of the others) associate a variable name
and the addresses to which it is mapped in each process
with the next available slot. Registration slots can be deal­
located using bsp__popregister, which invalidates
the last slot associated with the variable name passed as
an argument - deregistration does not impose the strict
nesting of push-pop pairs that is normally associated with
a stack; the scheme allows the popping of registrations to
occur in an arbitrary order. This provides the benefits of
encapsulation provided by a stack, whilst providing the
flexibility associated with a heap-based discipline. How­
ever, the registration slot of the argument to popregister
must be the same across all the processing elements.

The intent of registration is to make it simple to re­
fer to variables in other processes without requiring their
locations to be explicitly known. A reference to a regis­
tered name in a put or get is translated to the address cor­
responding to the remote variable with the same name.
Here is an example:

Process 0:

int x;
bsp__pushregister(&x,sizeof(int));
bsp_sync();
X = 3;
bsp__put(l,&x,&x,O,sizeof(int));
bsp_sync();

Process 1

int x;
bsp__pushregister(&x,sizeof(int));
bsp_sync();
bsp_sync();

Process 0 and Process 1 register x in the first slot.
When Process 0 executes a put, using x as the destination
region name, this is mapped to the region whose address
is associated with the first slot in Process 1. Therefore, the
variable x in Process 1 has the value 3 placed in it after
the second sync as the result of the put.

The operation bsp__put pushes locally-held data into
a registered remote-memory area on a target process,
without the active participation of the target process.
The operation bsp_get reaches into the registered local
memory of another process to copy data values held there
into a data structure in its own local memory. All gets are
executed before all puts at the end of a superstep, consis­
tent with the semantics that communications do not take
effect locally until the end of a superstep. Their interfaces
are:

void bsp_[hp]put(int pid,
const void *src,
void *dst,
int offset,
int nbytes);

pid is the identifier of the process where data is to be
stored.

src is the location of the first byte to be transferred by
the put operation. The calculation of src is per­
formed on the process that initiates the put.

ds t is the base address of the area where data is to be
stored. It must be a previously-registered data area.

offset is the displacement in bytes from dst to which
src will copy. The calculation of offset is per­
formed by the process that initiates the put.

nbytes is the number of bytes to be transferred from
src into dst. It is assumed that src and dst
are addresses of data structures that are at least
nbytes in size.

void bsp_[hp]get(int pid,
const void *src,
int offset,
void *dst,
int nbytes);

pid is the identifier of the process from which data is to
be obtained.

src is the base address of the area from which data will
be obtained. src must be a previously-registered
data structure.

offset is an offset from src. The calculation of
offset is performed by the process that initiates
the get.

ds t is the location of the first byte where the data ob­
tained is to be placed. The calculation of ds t is
performed by the process that initiates the get.

nbytes is the number of bytes to be transferred from
src into dst. It is assumed that src and dst
are addresses of data structures that are at least
nbytes in size.

The semantics adopted for BSPLib bsp__put com­
munication is buffered-locally/buffered-remotely. When
a bsp__pu t is executed, the data to be transferred is
copied out of user address space immediately. The exe­
cuting process is free to alter the contents of those lo­
cations after return from the call to bsp__put. While
the semantics is clean and safety is maximized, puts
may unduly tax the memory resources of an imple­
mentation, thus preventing large data transfers. Conse­
quently, BSPLib also provides a high-performance put

operation bsp_hppu t whose semantics is unbuffered­
locally/unbuffered-remotely. The use of this operation re­
quires care, as correct data delivery is only guaranteed
if neither communication nor local/remote computations
modify either the source or the destination areas during a
superstep. The main advantage of this operation is its eco­
nomical use of memory. It is therefore particularly useful
for applications which repeatedly transfer large data sets.

The bsp_get and bsp_hpget operations reach
into the local memory of another process and copy
previously-registered remote data held there into a data
structure in the local memory of the process that initiated
them.

A.5 BSMP

Bulk synchronous remote-memory access is a convenient
style of programming for BSP computations that can be
statically analysed in a straightforward way. It is less con­
venient for computations in which the volumes of data
being communicated are irregular and data-dependent, or
where the computation to be performed in a superstep de­
pends on the quantity and form of data received at its start.
A more appropriate style of programming in such cases
is bulk-synchronous message passing (BSMP).

In BSMP, a non-blocking send operation delivers mes­
sages to a system buffer associated with the destination
process. The message is guaranteed to be in the destina­
tion buffer at the beginning of the subsequent superstep,
and can be accessed by the destination process only dur­
ing that superstep. A collection of messages sent to the
same process has no implied ordering at the receiving
end. However, since messages may be tagged, the pro­
grammer can identify them by their tag.

In BSPLib, bulk-synchronous message passing is based
on the idea of two-part messages, a fixed-length part car­
rying tagging information that will help the receiver to
interpret the message, and a variable-length part contain­
ing the main data payload. We will call the fixed-length
portion the tag and the variable-length portion the pay­
load. In C programs, either part could be a complicated
structure. The length of the tag is required to be fixed dur­
ing any particular superstep, but may vary between su­
persteps. The buffering mode of the BSMP operations is
buffered-locally/buffered-remotely.

The procedure to set tag size must be called collec­
tively by all processes. Moreover, in any superstep where
bsp_set_tag_size is called, it must be called before
sending any messages.

void bsp_set_tag_size(int *tag_bytes);

tag_bytes, on entry to the procedure, specifies the
size of the fixed-length portion of every message
from the current superstep until it is updated; the

QUESTIONS AND ANSWERS ABOUT BSP 271

default tag size is zero. On return from the proce­
dure, tag_bytes is changed to reflect the previ­
ous value of the tag size to allow for its use inside
procedures.

The tag size of incoming messages is prescribed by the
outgoing tag size of the previous step.

The procedure bsp_bsmp_info is an enquiry op­
eration that returns information concerning how many
BSMP packets were sent to the process calling the opera­
tion in the prior superstep. This information is intended to
help the user to allocate an appropriate sized data struc­
ture to hold any incoming BSMP messages.

void bsp_bsmp_info(int*packets,
int*accum_nbytes);

packets becomes the number of packets sent using
bsp_send in the previous superstep.

accum_nbytes is the accumulated size of all the
packets.

The bsp_send operation is used to send a message
that consists of a tag and a payload to a specified des­
tination process. The destination process will be able to
access the message during the subsequent superstep. Its
interface is:

void bsp_send(int pid,
const void*tag,
const void*payload,
int payload_bytes);

pid is the identifier of the process where data is to be
sent.

tag is a token that can be used to identify the mes­
sage. Its size is determined by the value specified
in bsp_set_size_tag.

payload is the location of the first byte of the payload
to be communicated.

payload_bytes is the size of the payload.

The bsp_send operation copies both the tag and the
payload of the message out of user space into the system
before returning. The tag and payload inputs may be
changed by the user immediately after the bsp_send
returns.

To receive a message, the operations bsp_get_tag
and bsp_move are used. The operation bsp_get_tag
returns the tag of the first message in the buffer. The oper­
ation bsp_move copies the payload of the first message
in the buffer into payload, and removes that message
from the buffer. Its interface is:

void bsp_get_tag(int *status,
void *tag);

272 SKILLICORN, HILL, AND McCOLL

status returns -1 if the system buffer is empty. Oth­
erwise it returns the length of the payload of the
first message in the buffer. This length can be used
to allocate an appropriately-sized data structure for
copying the payload using bsp_move.

tag is unchanged if the system buffer is empty. Other­
wise it is assigned the tag of the first message in the
buffer.

void bsp_move(void *payload,
int reception_nbytes);

payload is an address to which the message payload
will be copied. The buffer is then advanced to the
next message.

reception_nbytes specifies the size of the recep­
tion area where the payload will be copied into.
At most reception_nbytes will be copied into
payload.

int bsp_hpmove(void**tag_ptr_buf,
void**payload_ptr_buf);

bsp_hpmove is a function which returns -1, if the sys­
tem buffer is empty. Otherwise it returns the length
of the payload of the first message in the buffer and

(a) places a pointer to the tag in tag_ptr_buf;

(b) places a pointer to the payload in payload_ptr
_buf; and

(c) conceptually removes the message (by advanc­
ing a pointer representing the head of the buffer).

Note that bsp_move flushes the corresponding mes­
sage from the buffer, while bsp_get_tag does not.
This allows a program to get the tag of a message (as well
as the payload size in bytes) before obtaining the payload
of the message. It does, however, require that even if a
program only uses the fixed-length tag of incoming mes­
sages the program must call bsp_move to get successive
message tags.

bsp_get_tag can be called repeatedly and will al­
ways return the same tag until a call to bsp_move.

A.6 Halt

The function bsp_abort can be used to print an error
message followed by a halt of the entire BSPLib program.
The routine is designed not to require a barrier synchro­
nisation of all processes. A single process can therefore
halt the entire BSPLib program.

void bsp_abort(char*format, ...) ;

format is a C-style format string as used by print f.
Any other arguments are interpreted in the same
way as the variable number of arguments to printf.

The function bsp_time provides access to a high­
precision timer- the accuracy of the timer is implementa­
tion-specific. The function is a local operation of each
process, and can be issued at any point after bsp_begin.
The result of the timer is the time in seconds since bsp_
begin. The semantics of bsp_time is as though there
were bsp_nprocs timers, one per process. BSPLib
does not impose any synchronisation requirements be­
tween the timers in each process.

double bsp_time();

APPENDIX B BENCHMARKING

The BSP parameter l measures the minimum time for
all processors to barrier synchronise. It is benchmarked
by repeatedly over-sampling barrier synchronisation, and
measuring the wall-clock time. Repeated barrier synchro­
nisation produces a pessimistic value for l as it models the
case where the computation part of each superstep com­
pletes in each processor at the same moment. This pro­
duces most contention in whatever resources are used for
synchronising.

Two values for the BSP parameter g are calculated.
The first is the value of g experienced when routing a
local communication (a cyclic shift), and the second a
global communication using a total exchange. As well as
calculating the value of g, the benchmark also calculates
the value for n 112 used in Equation (1). This is done by
routing a fixed-sized h-relation (an over-sampling of 10
iterations is performed for each h-relation) for large hand
measuring the elapsed time of a superstep containing no
computation.

Sophisticated profiling tools are available to examine
how much this measured value of g is affected by partic­
ular properties of the target computer. We have already
mentioned some such factors, for example the overhead
of message startup and the extra data that must be trans­
ferred as control information. This can be clearly seen in
Figures 9-11.

These figures shows the amount of data transferred
and the effective value of g in two phases. The first half
of each figure shows a cyclic shift; the second half a total
exchange. All supersteps in each half send an h-relation,
in sets of size 10 for oversampling, varying the granular­
ity for each set - first using single messages of size h,
then using two messages of size h/2, and so on. Accord­
ing to the theory, the measured value of g should be the
same for all of these granularities, since the same total
volume of data is moved into and out of each processor.
The top half of each figure shows the volume of data be­
ing moved. The second half shows the measured value of
g for each superstep.

-
-

QUESTIONS AND ANSWERS ABOUT BSP 273

_ ...

-

--··ON
1 '"'"•·•u~ .• •n
• ~. an

__ ...
~
............. . Mal

............ Jill

CJ-·
llilll-·
lEI-·
Ill-·

....

- - ·-· ·-· ~-· .• .., ;.
---------------~-------~----------- ·

FIGURE 9 Cyclic shift and total exchange, on an 8-processor Cray T3D.

CWrrwdiNPTOIIIIIMIII01......_& .. •••11 IID~....,_.. ... c~TID

-· ,. ,,
11 ,
••

-

EJ-· ·-· Ill-··-·
Ill!-· o-·
·-· !:3-·
·-· ffi-· -·-·6.'1-·
E!-· a-·
Et-· ·-· s-· e-·
•-·B-· •-·B-·
•-· D-·

---------------------~-------- --- - - - -- --· - ~-.. B-·11:1-· --- e-· a-·
19-· [!]-·
a-· 1!1-·

•+---~-----r----r---~----~---,----~----r----, o.oo 1.00 1.01 a.oo 4.00 uo a.oo 1.00 a.oo __.

FIGURE 10 Cyclic shift and total exchange, on a 32-processor Cray T3D.

The curves in the lower half o f F igure 9 show the
value o f g during the cyclic shift phase and the total ex­
change phase. The curves are not the expected horizon­
tal lines because o f the overhead of message startup. The
implementation o n the CRAY delays messages and re­
orders them, but does not combine them because the com­
munication mechanism is DRMA. The curves are good
matches for Equation (I) which uses the n t; 2 parame-

ter to model the extra cost of communicating small mes­
sages. The dotted line in the graph shows the value o f g
obtained from the benchmark, and given in Table 2. It is
very close to the asymptote of the curves. The same struc­
ture can be seen for larger numbers of processors (Fig­
ure 10).

Figure II shows the same benchmark running on a
e ight-processor ffiM SP2. Unlike the Cray, the value of

274 SKJLLICORN, HILL, AND McCOLL

-· .

Tue ~3D 10:Gt:21 1•

~- -·· , ~. Ln

• -..-u..-.• "'
-~. ut
......,..... .• sa -----· ...

14 • • • ~ •••• :: .. : ·: . . . '• .,.,···,. m- ·
II-· -------~ ---------,--- ~~:~~-~-~ --------· " ~ . ~ .

10 • ' • , '-'. ;.-. ,._,.,. ~·.......:.,w .. ;r-.. .~: ~ ·-· ·-· ·-·
~+.oo----,~r----,.r~----,.r~----, .~r---~2.00~~.2,.~----~,~----~T•----~T•o---~-,

FIGURE 11 Cyclic shift and total exchange on an 8-processor IBM SP2.

g is more unpredictable. However, although g has a value
which is three times larger than that of the Cray, the SP2
has a per-node computation rate twice that of the T3D,
so the absolute values of g are closely matched on the
two machines. From the upper graph of Figure I I, it can
be seen that the amount of data communicated gradu­
ally grows, even though the program sends a fixed size
h-relation . The reason is that, on the SP2, small messages
are combined. For the combining to work, information
concerning the size and destination of the individual com­
munications are sent with the combined individual com­
munications, so that the destination process can unpack
the data correctly. Therefore, the total size of data sent
may triple due to the extra unpacking information. This
causes a slight increase in the effective value of g in the
presence of large numbers of small messages within a su­
perstep.

These examples show that g can deviate from the val­
ues predicted by the cost model because of properties of
the target computers, and unavoidable overheads in the
implementation of the library operations. Three observa­
tions seem relevant:

1. Deviations from the predicted values are relatively

small , even for these artificial test programs, anJ

experience so far suggests that, for practical

programs, deviations are much smaller.

2. The ach ieved values of g and l in BSPLib are

much smaller than those of a naive

implementation, so there are advantages to using
BSP explicitly, rather than programming 'in the

BSP style'.

3. Values for g and l continue to decrease as more is

learned about the detailed properties of each

architecture. BSP provides a focus for the

properties of an architecture that are critical, but it

is often different from the focus of the

manufacturer. Basic information that would make

better implementations possible is hard to obtain,

sometimes because even the manufacturers do not

know it.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

