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ABSTRACT 

p-- is a parallel extension to Gray Fortran 77 for distributed memory computers. It adds ex­
actly one new symbol to the language, a vertical line that separates two sets of indices. The 
first set contains the coordinates for data in a local data grid. The second set contains the co­
ordinates for processors in a global processor grid. A statement such as x(i, j) = y(i, .ilp, q) 
generates a load from remote address y(i, j) in the data grid on processor (p, q) followed by 
a store to local address x(i, j) in the local data grid. p-- syntax requires an explicit state­
ment of the relationship between data layout and processor layout. It assumes that good 
performance on a distributed memory computer requires the programmer to understand 
and to exploit data locality. Programmers use the p-- syntax only when it is needed. Oth­
erwise all data are local and all code is local. Compiler and library developers concentrate 
on generating well-optimized local code. 

1 INTRODUCTION 

p-- is a parallel syntax added to Cray Fortran 77. Its 
simple design is based on the assumption that the For­
tran 77 language already contains most of what it needs to 
support parallel programming. Fortran 77 lacks two im­
portant features. One is a mechanism for pointing to data 
in another processor's memory. p-- provides a syntax 
to solve this problem. The other is a mechanism for pro­
cessor synchronization and control. p-- provides library 
functions to solve this problem. 

As its name is meant to imply, the p-- philosophy is 
quite opposite from the philosophy of other parallel ex­
tensions to Fortran [ 1-4] that, for the most part, adopt 
some variation of a data parallel model. p-- is an alter­
native to the message-passing style of programming but 
it is not message-passing. No handshaking between pro­
cessors is necessary such as the send/receive mechanism 
required by message-passing. It assumes an underlying 
global address mechanism, supported either by hardware 
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or by software, that allows the programmer to read or 
write any address in any processor's memory. 

In relation to other Fortran dialects, p-- lies some­
where between Fortran 77 and Fortran 90. It is something 
less than Fortran 90 although something more than For­
tran 77. The name p++ was discarded so as not to im­
ply some flavor of an object-oriented language. On the 
contrary, it expresses a reluctance to embrace these more 
complicated programming models. 

p-- is a performance-oriented extension to For­
tran 77. It intentionally sacrifices some of the ease-of­
programming features of other extensions to Fortran in 
favor of performance. Since Cray Fortran 77 already in­
corporates some of the features of Fortran 90, such as 
array syntax, p-- includes them. It excludes other For­
tran 90 features such as passing array sections and the use 
of intrinsic functions that accept arbitrary data structures. 
p-- considers special operations to be part of a library 
supporting the language rather than a part of the language 
itself. 

p-- supports the single-program-multiple-data 
(SPMD) style of programming [5]. Each processor runs 
independently with its own copy of the code with its own 
data. It also supports the multiple-program-multiple-data 
(MIMD) style of programming through explicit use of IF 
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statements for program control and explicit calls to syn­
chronization functions for processor control. 

The most important advantage of the F-- syntax is 
that it represents processors in a coordinate grid in the 
same way that it represents data in a coordinate grid. Its 
syntax is a minimum addition to sequential Fortran that 
requires the programmer to perform explicit mappings 
between local and global addresses. The benefit to the 
programmer is that it exposes the relationship between 
data and processors and allows the programmer to assume 
control of the underlying global address space using a fa­
miliar syntax. F-- coerces local data to global data. All 
data references are assumed local unless proven remote 
by the explicit syntax. F-- syntax points to objects that 
are not here but there in another processor's memory. The 
syntax is a flag to the programmer as well as to the com­
piler that remote references are taking place. 

2 FORTRAN ADDRESSES 

The address of a Fqrtran matrix ~lement a(i, j) is defined 
by its dimension statement 

real a(m,n) 

and by a linear convention for computing its address in 
memory 

loc(a(i, })) = base(a) + (j- 1) · m + (i- 1) (1) 

relative to a base address 

loc(a(l, 1)) = base(a). (2) 

The combination of the dimension statement and the lin­
ear rule Equation ( 1) completely specifies the address of 
a(i, j). 

The dimension statement and the linear rule are inter­
preted within a local program environment. Across a sub­
routine boundary, the Fortran language passes a base ad­
dress, which may be different from Equation (2), that be­
comes the new base address in the called subroutine. The 
dimension statement may also change from one subrou­
tine to another without ambiguity. The compiler does not 
care if the programmer passes an invalid address or runs 
off the end of an array. The programmer is responsible for 
maintaining consistency across subroutine boundaries. 

The ability to refer to a matrix element as a(i, j) is 
a notational convenience that hides the address compu­
tation from the programmer. The programmer, however, 
risks Joss in performance by ignoring the fact that the 
address space has been linearized. On a single proces­
sor with interleaved memory, bank conflicts occur if code 
runs through data with a bad stride. On shared memory 

multiprocessors, interprocessor memory contention may 
lower performance, or worse yet race conditions among 
processors trying to write to the same area of memory 
may cause unpredictable results. On distributed memory 
machines, careful attention to locality of data is often crit­
ical for good performance. Vectorized blocked algorithms 
often provide solutions to these problems. The program­
mer allocates data such that each processor owns a slice 
or a block and then writes vector code on the first index of 
the block. F-- syntax is a method for explicitly adding 
support for this programming style to Fortran array syn­
tax. 

3 THE F-- EXTENSION 

F-- allows the addition of a second set of indices sepa­
rated from the usual set by a vertical line 

real a(data_gridlprocessor_grid) 

The first set of indices contains the normal Fortran data 
coordinates and the second set of indices contains proces­
sor coordinates. Any number of dimensions can be speci­
fied for processor coordinates according to the same rules 
that apply to the data coordinates. If no processor grid is 
specified, the data are local. 

To take an example that is not too simple yet not too 
complicated, consider the dimension statement 

real a(m,nlp,q) 

describing a matrix of size (m x n) on each processor in 
a (p x q) grid of processors. F-- extends the linear ad­
dress convention (Equation 1) to the processor grid such 
that matrix element a(i, Jir, s) resides in the memory of 
processor 

pe(r, s) = base(pe) + (s - 1) · p + (r - 1) (3) 

relative to a base processor 

pe(l, 1) = base(pe). (4) 

In most cases, the base processor number is zero, but it 
need not be. 

F-- requires an important additional condition: the 
base address must be the same virtual address for all pro­
cessors 

loc(a(l, 1)) = base(a) for all pe's. (5) 

If the virtual to physical translation is different on differ­
ent processors, the hardware or the software must be able 
to resolve the translation so that each processor points to 



the correct remote address. An array declaration contain­
ing p-- syntax must be loaded by the operating system 
at the same virtual address in each processor. Automatic 
arrays containing p-- syntax, as described in Section 6, 
imply implicit synchronization so that all processors al­
locate the same array at the same virtual address. 

By default, p-- follows the normal Fortran style, 
numbering the processors starting with one. If the pro­
grammer wishes to number the processors starting from 
zero, the dimension statement becomes 

real a(m,niO:p-l,O:q-1) 

and Equation (3) becomes 

pe(r, s) = base(pe) + s · p + r. (6) 

In general, the programmer may dimension the array as 

real a(m_l:m_2,n_l:n_2lp_l:p_2,q_l:q_2) 

p-- syntax replicates a local data structure across 
a set of processors. It has no concept of a global array 
shared by all processors. The programmer uses p-- syn­
tax as needed to coerce local data to distributed data. The 
processor coordinates following the vertical line are logi­
cal processor numbers not necessarily related to the phys­
ical processor numbers in the hardware. There is no re­
quirement that the product of processor coordinates in a 
dimension statement be equal to the number of processors 
actually running. Just as the compiler normally does no 
bounds checking for local array indices, it does no bounds 
checking for processor indices. Generation of an invalid 
processor number produces unpredictable behavior, most 
likely a run-time error that terminates the program. 

4 DATA TRANSFER BETWEEN PROCESSORS 

Transfer of data from one processor to another is a simple 
example that illustrates the p-- programming style. 

real a(nlnpes),b(nlnpes) 
my_pal = some_rule(me) 
do i=l,n 

b(ilmy_pal) = a(i) 
enddo 

Notice that the reference to the array a(i) on the right 
side of the do loop has no p-- syntax attached to it even 
though its dimension statement contains the syntax. Such 
usage is legal and means that the local address of the ar­
ray is intended. Since the data are written to another pro­
cessor's memory, a memory quiet function, similar to the 
CMR (complete memory reference) instruction on Cray's 
shared memory machines, must be generated at the end 
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of the do loop to guarantee completion of the transfer. 
If cache coherence on the remote processor is a problem, 
it must be handled either by the hardware or by the com­
piler or by the programmer as it is done now, for example, 
on the Cray-T3D [6]. 

Since Cray Fortran 77 includes array syntax, the pro­
grammer may choose to replace the do loop in this ex­
ample with Fortran 90 array syntax 

b(:lmy_pal) =a(:) 

Array syntax within p-- refers to purely local opera­
tions and has no connotation of data parallel operations. 
Any processor executing this statement writes data from 
its own memory to the memory of the processor whose 
number is my _pal. If a processor executes the reverse 
statement 

a(:) = b(: lmy_pal) 

it reads data from another processor's memory. In either 
case, the programmer is responsible for any required syn­
chronization between processors that makes reading or 
writing data safe. Section 9 considers synchronization 
questions in more detail. 

Gather or scatter operations are also possible 

a ( : ) = b (index ( : ) I my _pal) 
a ( index ( : ) ) = b ( i I j ndex ( : ) ) 

A broadcast from processor zero to all other processors 
becomes 

if (me . eq. 0) b ( : I : ) = a ( : ) 

And it is possible to do arithmetic using the syntax 

a(:)= a(:)+ s*x(:lpe) 

Figure 1 shows transfer velocities measured using 
p-- syntax with the current implementation on the Cray­
T3D as described in Section 12. The results are compared 
with the same measurements obtained using the library 
function put() written in assembler [7]. The asymptotic 
velocity is the same for both cases. The p-- syntax is 
slightly faster for short lengths because it saves the over­
head of the subroutine call to the put() function. 

A more complicated example, commonly found in 
computational fluid dynamics, weather and ocean codes 
that use domain decomposition methods, illustrates a pro­
cedure for updating ghost cells [8]. Each plane of physi­
cal data has one ghost cell on each of its four sides. For 
simplicity, this example assumes periodic boundary con­
ditions. The East update is independent of the West up­
date and the North update is independent of the South 
update. A barrier is required between the East-West and 
the North-South updates because the East-West transfer 
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FIGURE 1 Average transfer velocity as function of transfer 
length on the Cray-T3D with machine frequency v = 150 MHz. 
Each processor writes n 64-bit words to its partner with pro­
cessor number one greater than its own. The upper curve ( •) 
represents measurements obtained with p-- syntax. The lower 
curve (\7) represents measurements obtained with the assembler 
put() function. 

includes data in the corners of the ghost cells and must be 
completed before performing the North-South update. 

p-- syntax points to a processor's North-South-East­
West neighbors in a natural way. If my processor coor­
dinates are (my _row, my _col), then my North neigh­
bor is (my_row- I, my_col) and my East neighbor is 
(my_row, my_col+ 1). If the compiler is smart enough, 
it may recognize that each processor may safely gener­
ate traffic to two different processors at the same time. 
Using more wires on the interconnection network at the 
same time may lead to increased performance. The li­
brary functions get() and put() do not support concurrent 
communication patterns to more than one processor at a 
time. Rather than requiring specialized functions for ev­
ery kind of communication pattern, p-- syntax allows 
the programmer to write arbitrary communication pat­
terns as needed. 

subroutine update(a,m,n,my_row,my_col, 
p_row,p_col) 

integer p_row,p_col,north,south,east, 
west 

real a(O:m+1,0:n+1IO:p_row-1,0:p_col-1) 
east mod(my_col+1,p_col) 
west mod(my_col-1,p_col) 
north= mod(my_row-1,p_row) 
south= mod(my_row+1,p_row) 
call barrier() 
a(1:m, Olmy_row,east) 
a(1:m,n+1lmy_row,west) 
call barrier () 

a(1:m,n) 
a(1:m, 1) 

a(m+1,0:n+11north,my_col) 
a(O, O:n+11south,my_col) 

a(1,0:n+1) 
a(m, O:n+1) 

call barrier () 
return 
end 

5 SUBROUTINE INTERFACE 

p-- follows the same rules as Fortran 77 when it passes 
variables from one subroutine to another. Variables are 
passed by address. No global information is passed, only 
the local address. A call to a subroutine such as 

call subx(x(1lpl) 

passes the local address of array x and the processor num­
ber is ignored. By constraint Equation (5) placed on the 
base address of an array, the address of the array x is the 
same on each processor. Processor information, if needed, 
is passed as a separate argument: 

call subx(x,p) 

There is no need to pass global information, for exam­
ple, in the form of dope vectors, because global informa­
tion has only local scope within a subroutine. An array 
dimension or shape may change, with or without vertical 
line notation, across a subroutine boundary. Indices fol­
lowing the vertical line are interpreted within their local 
context just as normal indices are interpreted within their 
local context in Fortran 77. For example, consider pass­
ing an array from the main program, where it is used only 
locally, to a subroutine, where it is used globally: 

real x(n) 
call subx(x,n,npes) 

subroutine subx(x,m,np) 
real x(mlnp) 

There is no ambiguity in the meaning as long as the array 
x (n) declared in the main program is allocated space at 
the same memory location in each processor. At the call 
to routine subx(), the local address of x is passed across 
the interface where it is interpreted as the local address of 
x on the other side. Since the array x has p-- syntax in 
its declaration on the other side, it can be used to point 
to another processor's memory where the processors are 
numbered from 1 to np as a linear array of processors. 

The processor dimension in subroutine subx() could 
just as well be dimensioned with a dummy dimension, 
for example, 

real x(ml*l 

if the programmer just wants to think of processors in a 
linear grid. The programmer may, however, want to think 
of the processors in a two-dimensional grid in subroutine 
subx(), for example, 



subroutine subx(x,m,nx,ny) 
real x(mjnx,ny) 

The incoming address for x still points to the same local 
address but the programmer has a different picture of the 
relationship of the processors to each other. There is no 
ambiguity in switching views in this way. 

6 DYNAMIC MEMORY ALLOCATION 

Dynamically allocated arrays that will be used for com­
munication between processors must be located at the 
same virtual address on each processor in order for the 
p-- syntax to work. The programmer must append pro­
cessor information in the dimension statement to tell the 
compiler to allocate the new data in a common, shared 
area. 

subroutine subx(n,p,q) 
real x(njp,q) 

If the shape of the processor grid is unimportant, then the 
declaration 

subroutine subx(n) 
real x(nj *) 

is sufficient. Synchronization is required at the point of 
allocation so that all processors arrive at the same point. 
The programmer is responsible for making sure they all 
get there and the compiler is responsible for the implicit 
synchronization. 

7 GLOBAL POINTERS 

p-- syntax effectively defines a global pointer to a data 
structure that exists on each processor at the same mem­
ory location. The existing Cray Fortran 77 pointer can 
be combined with p-- syntax to point to irregular data 
structures that are located at different addresses or don't 
exist at all on other processors. For example, let 

pointer (ptr,remote_x(njnpes)) 

define a data structure that may live on another processor. 
Suppose each processor maintains a table containing a list 
of addresses that contain data to be shared with other pro­
cessors. These addresses may point to variables that the 
other processors know nothing about. If the table is al­
located at the same address in each processor, then any 
processor can use p-- syntax to read addresses from or 
write addresses to the table. A global pointer can then be 
established in the following way: 
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integer pe,table(npesjnpes) 
pointer (ptr,remote_x(njnpes)) 
pe = some_rule(me) 
ptr = table(mejpe) 
y(:) = remote_x(: jpe) 

Combined with dynamic memory allocation, this ex­
ample allows the programmer to construct arrays of struc­
tures where each processor has a different data structure. 

A similar programming style is possible in the C 
language using a syntax appropriate to that language. 
A name for such a language might be c--. Fry [9] has 
implemented one method. Carlson and Draper [10] have 
created AC. Culler et al. [11] have proposed Split-C. Rose 
and Steele [ 12] describe C*. 

8 LIBRARY SUPPORT 

A simple library supports the p-- extension. Although 
some of the members of this library might be imple­
mented as compiler directives, the p-- philosophy limits 
extensions to the basic Fortran language to a minimum 
set. p-- has no compiler directives. Fortran uses func­
tions and subroutines to perform common operations. 
Some of these functions and subroutines may need to be 
intrinsic functions for performance reasons. 

Two special variables are resolved at either compile­
time or load-time: n$pes and log$pes. If the number 
of processors equals a power of two they are related by 
n$pes = 2log$pes. If the number of processors is not a 
power of two, then log$pes = -1 so that it can be used 
as a flag to test that the number of processors matches the 
assumptions of the program. 

These two variables are useful for designing scalable 
programs that work for any size problem and any number 
of processors equal to a power of two. For example, the 
following parameter statements divide the processors into 
a two-dimensional grid (pe_row x pe_col): 

parameter{n_pes=2**log$pes) 
parameter(half_log_pe=log$pes/2) 
parameter(pe_row= 

2**(log$pes-half_log_pe)) 
parameter(pe_col=2**(half_log_pe)) 

A matrix a(mmax, nmax), for example, divides into 
blocks corresponding to the processor grid, 

parameter(mmax=128,nmax=128) 
parameter(idim = mmax/pe_row, 

jdim = nmax/pe_col) 
real a(idim,jdimjO:pe_row-l,O:pe_col-1) 
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If log$pe = 0, the code runs on a single processor with­
out change. With care the programmer can write code us­
ing the p-- syntax in such a way that by simply chang­
ing vertical lines to commas the code becomes normal 
Fortran 77, portable to other machines. 

At run-time, each processor computes its own position 
within the processor grid, 

my_pe = mype () 
my_row = and(my_pe,pe_row-1) 
my_col = 

shiftr(my_pe,log$pes-half_log_pe) 

where the grid is zero based in both directions. 
A partial list of library functions is the following: 

mype() 
npes {) 
log_pes () 
get () 
put() 
global_sum () 
global_min () 
global_max ( ) 
global_collect () 
atomic_update () 
atomic_swap () 
broadcast () 

This library is very similar to the library developed for 
the Cray-T3D [6]. The function mype() returns to each 
processor a unique number in the interval [0, n$pes -1]. 
The function npes() returns a value equal to the number 
of processors assigned at run-time. It can be used to check 
consistency with the value n$pes set at compile or load­
time: 

if(npes() .ne. n$pes) stop "error" 

The function log_pes() returns the base two logarithm of 
the number of processors at run-time and can be used in 
the same way to check consistency. 

The functions get() and put() represent a set of com­
munication primitives that the programmer may prefer to 
use instead of p-- syntax. The functions global_sum(), 
global_min(), global_max(), and global_collect() per­
form important global reduction operations. For example, 
the global_sum() function written in p-- syntax has the 
following form: 

subroutine global_sum(x,n,work) 
real x(niO:n$pes-1) ,work(n) 
integer bit,dim 
dim = log$pes 
if(dim .eq. 0) return 
me = mype () 
bit = 1 

do i=l,dim 
mypal=xor(me,bit) 
bit=shiftl(bit,l) 
call barrier{) 
work{:)= x(:lmypal) 
call barrier () 
x ( : ) =x ( : ) +work ( : ) 

enddo 
return 
end 

The atomic_update() function allows protected addi­
tion into a specified address and the atomic_swap() func­
tion allows protected interchange of data at a specified ad­
dress. The broadcast() function sends data to a specified 
address on all processors or to a subset of processors. 

Other functions such as matrix transpose, which have 
become part of the Fortran 90 language, are included as 
part of libraries to support p-- but are not part of the 
language extension itself. 

9 SYNCHRONIZATION AND CONTROL 

Synchronization and control are the responsibility of the 
programmer. The programmer must prevent race condi­
tions where more than one processor writes to the same 
location in memory at the same time. 

Two kinds of synchronization are useful. Full synchro­
nization of all processors, 

call barrier () 

and partial synchronization of a subset of processors, 

call sync(list) 

The array 1 is t contains a list of processors that partic­
ipate in the barrier. The first word in the array tells how 
many processors participate in the barrier. It is up to the 
programmer to make sure all of the appropriate proces­
sors reach the correct barriers. 

p-- supports the SPMD programming model in a nat­
ural way. But it also supports the MIMD programming 
model. Each processor may branch, based on its proces­
sor number, into separate code within a program. For ex­
ample, 

if(mype() .eq. 0) then 
call subx () 

else 
call suby() 

endif 

Critical regions can be programmed explicitly using the 
atomic_swap() function. For example, 



1 continue 
if(atomic_swap(-1) .ne. -1) then 

call subx() 
if(atomic_swap(+1) .ne. -1) 

stop "error" 
else 

go to 1 
endif 

The atomic_swap(x) function swaps the control variable 
x into a preset control word in global memory. If it re­
turns with the same value of x, then another processor is 
already in the critical region. 

10 EXTENSION TO SHARED MEMORY AND 
CLUSTERED ARCHITECTURES 

p-- syntax was designed with a distributed memory ma­
chine in mind but it can be applied to other machines 
as well. It could become a standard, portable addition to 
the Fortran language if we establish conventions for the 
meaning of p-- syntax for shared memory machines and 
for clustered machines and for networks of machines. The 
programmer is responsible for writing code that makes 
sense on the chosen machine. With careful attention to 
detail, it is possible to write code that runs on different 
kinds of machines by adjusting parameters to fit the tar­
get architecture. 

On a shared memory multiprocessor, for example, 
p-- syntax refers to a coordinate representation of 
shared memory. The notation 

real a(m,nlp,q) 

describes a matrix of size (m x n) replicated (p x q) times 
in different parts of shared memory similar to the idea of 
TASK COMMON. 

For clustered architectures or for networks of worksta­
tions, the syntax extends to multiple hierarchies of mem­
ory. For example, the dimension statement 

real a(m,nlp,qlj,k) 

might describe a matrix of size (m x n) in local memory 
distributed first across a local cluster of processors in a 
(p x q) grid and then across remote clusters in a (j x k) 

grid. 

11 p-- SYNTAX AND TENSOR NOTATION 

p-- syntax has a natural relationship to tensor notation. 
In fact, the minus-minus notation used as a superscript 
is meant to evoke memories of tensor notation in the 
reader's mind. The authors of references· [13] and [14] 
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use tensor notation for parallel algorithm design some­
what differently from the approach presented here. 

Recall what the coordinate representation of an opera­
tor means [ 15]. Let Vn and V m be vector spaces of dimen­
sion n and m and let 

(7) 

be an abstract linear operator from Vn and V m. The ab­
stract operator A does not care how we represent it, but 
to perform computations, we must pick a coordinate rep­
resentation for it. For example, let 

n { n n} e = e,, ... , en (8) 

be a basis for Vn and let 

m { m m} e = e,, ... , em (9) 

be a basis for V m. Then 

a/= (e;niAiej). (10) 

is the component of the operator A in the ith row and 
jth column for these basis sets. In Fortran syntax, this 
component is written a(i, j). Equation 1 is the rule for 
placing the component in memory. 

We are free to reorder or regroup the basis vectors any­
way we like. For a (p x q) processor grid, we may choose 
to think of the basis sets as tensor products 

(11) 

In the tensor product basis, the operator A has the coor­
dinate representation 

js ( mjp piAl njq q) air = ei · e, e j • es . (12) 

We may regroup the basis vectors such that 

(13) 

where A[ is the (m/p x njq) block of data owned by 
processor (r, s). In p-- syntax, this component is writ­
ten a(i, j I r, s). Equation 3 is the rule for assigning the 
blocks to processors. 

Matrix multiplication has a natural representation in 
tensor notation that translates easily into p-- syntax. In 
the original basis, 

(14) 

where repeated indices imply summation. In the tensor 
product basis, 

(15) 
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where repeated indices k and R imply summation over 
both. Since the uppercase symbol R is a processor in­
dex, the summation over R implies global communica­
tion. For square matrices with n$pes an even power of 
2, this block-based algorithm translates into p-- syntax 
as follows: 

real a(m,mjp,q), b(m,mjp,q), c{m,m) 
do ipe=O,n$pes/2-1 

pe = mod(my_col+ipe,n$pes/2) + 1 
do j = 1, m 

do k = l,m 
do i = l,m 
c(i,j)=c(i,j)+ 

a(i,kjmy_row,pe) 
*b(k,j jpe,my_col) 

end do 
enddo 

end do 
enddo 

For matrices distributed by columns rather than by 
blocks, only the basis set e" is split into a product so that 

CiP- ahRbiP 
i - i h (16) 

where h = R · (n/ p)+k. Summation over h implies sum­
mation over both k and R. This column-based algorithm 
translates into p-- syntax as follows: 

parameter(m=n/n$pes) 
real a(n,mjO:n$pes-1) ,b(n,m),c(n,m) 
do pe=O,n$pes-1 

remote_pe = mod(mype()+pe,n$pes) 
kk = remote_pe*m 
do j = 1, m 

do k = l,m 
do i = l,n 
c(i,j)=c(i,j)+ 

a(i,kk+kjremote_pe) 
*b(kk+k,j) 

end do 
end do 

enddo 
enddo 

Matrix transpose assumes a simple form in p-- syn­
tax. To avoid end cases, assume that npes processors 
are arranged in a logical square grid of size p_row = 

p _col = ~ and that each processor knows its 
own coordinates my _row and my _col within the grid. 
A square matrix of size n is distributed among the pro­
cessors such that each processor owns a square block of 
size n I~· Then the transpose just requires the pro­
grammer to interchange the data indices and the processor 
indices: 

jq hip 
aip = jq· (17) 
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FIGURE 2 Average transfer velocity as function of the num­
ber of processors for matrix transpose measured on the Cray­
T3D with machine frequency v = 150 MHz. The size of the 
matrix increases with the number of processors such that each 
has a local block of size (256 x 1024) 64-bit words. The four 
curves represent CRAFf (<)), F-- (•), unrolled CRAFf (\7), 

and unrolled F-- (L::.). Do Loops were unrolled by four to take 
advantage of the four word cache line. 

The p-- code is the following: 

subroutine transpose(a,b,m,n,pe_row, 
pe_col,my_row,my_col) 

real a(m,njpe_row,pe_col), b(n,m) 
do i=l,m 

do j=l,n 
a(i,jjmy_col,my_row) b(j,i) 

enddo 
enddo 
return 
end 

Figure 2 shows results for matrix transpose measured on 
the Cray-T3D. CRAFT is Cray's version of a data parallel 
language [2]. The CRAFT code is the following: 

subroutine transpose(a,b,m,n) 
cdir$ shared a(:block, :block), 

b( :block, :block) 
real a(m,n), b(n,m) 
integer i,j 

cdir$ do shared (i,j) on b(j,i) 
do i=l,m 

do j=l,n 
a(i,j) b(j,i) 

enddo 
enddo 

cdir$ nobarrier 
return 
end 

In practice, the programmer would probably call a li­
brary subroutine to perform common matrix operations. 



The purpose of these examples is to illustrate what hap­
pens should the programmer need to write communica­
tion patterns that are not contained in standard libraries. 
In such cases, as far as performance is concerned, the ad­
vantages of p-- over CRAFT are clear. For small num­
bers of processors, the transfer velocities approach the 
same high values as shown in Figure 1. Unrolling the 
do loops by four to take advantage of cache behaves as 
expected using p-- syntax while the CRAFT result is 
counterintuitive. As the number of processors increases, 
the velocity drops using p-- syntax because of con­
tention on the interconnection network [7]. The CRAFT 
velocities are less sensitive to contention because the traf­
fic on the network is lower. 

Which programming style appeals to a given program­
mer is a matter of taste. With p-- syntax, the pro­
grammer maintains an explicit picture of the data layout 
among processors. With the CDIR$ SHARED directive 
in CRAFT or the !HPF$ DISTRIBUTE directive in high­
performance Fortran (HPF), the compiler maintains an 
implicit picture of the data layout. The p-- style puts 
more burden on the programmer but yields better perfor­
mance. The CRAFT or HPF style puts less burden on the 
programmer but, at least for now, yields poorer perfor­
mance. 

12 CURRENT IMPLEMENTATION 

All of the examples in this article are running on the Cray­
T3D. In the absence of compiler support for p-- syntax, 
a simple coding trick fools the Fortran compiler [6]. To 
satisfy condition (5), the programmer allocates static ar­
rays to communicate between processors, for example, by 
placing the arrays in a common block somewhere in the 
program. The following lines of code: 

real a(m,n), b(m,n) 
pointer (ptr,remote_a(m,n)) 
ptr = mpp_annex(a,ipe,num,icode) 

create an alias for the array a(m, n) called 

remote_a (m, n). 

The function mpp_annex() inserts the value num into an 
appropriate position of the address of the aliased array 
pointing to a hardware supported lookup table containing 
the remote processor number ipe and the function code 
icode. After a call to function mpp_annex(), a replace­
ment statement such as 

remote_a (:, :) = b (:, :) 

moves every matrix element b( i, j) from local memory 
to a(i, j) in remote memory. 
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13 SUMMARY 

Fortran syntax is an intuitive convention for translating 
mathematical formulas into machine instructions [ 16]. It 
defines a linear map of data across the computer's mem­
ory. p-- extends Fortran syntax to define a linear map 
across processors. Its syntax is analogous to tensor nota­
tion. Algorithms written in tensor notation translate easily 
into p-- code. 

p-- explicitly emphasizes the difference between lo­
cal and remote memory. It gives the programmer com­
plete control over the placement and manipulation of 
data. It exposes the underlying reality that using data from 
remote memory is more costly than using data from local 
memory. 

p-- syntax allows compiler developers to concentrate 
on local code optimization. The compiler always knows 
whether an address is local or remote. The vertical line 
syntax explicitly tells the compiler that the local address 
happens to be in memory on a remote processor. The 
compiler needs to recognize invariant code related to re­
mote processor references and to schedule that code effi­
ciently just as it schedules local code. 

The programmer defines the processor grid in a con­
venient way, adding or deleting vertical lines with no am­
biguity in meaning. The programmer changes shapes or 
dimensions of the processor grid with the same rules as 
Fortran 77. Incorrect indexing generates run-time errors 
not compile-time errors. p-- places no restrictions on 
array sizes and requires no compiler directives. 

p-- is not a new language so there are no compli­
cated language issues to resolve. It is a simple extension 
to Fortran 77 that is explained in one page of text in Sec­
tion 3. The rest of the article contains examples for using 
the new syntax. All the rules that apply to data indices 
apply in the same way to processor indices. Just as data 
indices allow the programmer to think of data in a coor­
dinate grid, p-- syntax allows the programmer to think 
of processors in a coordinate grid. Abstract operators are 
independent of the particular grid chosen. Hence the pro­
grammer may freely switch back and forth from repre­
sentation to representation both in data coordinates and 
in processor coordinates. This covariance property is fun­
damental to physical theory. The rules of Fortran were 
designed to support it and p-- extends this support to 
processor coordinates. 

NOTE ADDED IN PROOF 

I thank the anonymous referees for helpful comments and 
suggestions for improving the original version of this pa­
per. I thank Dr. Geert Wenes, my occasional office mate at 
Cray Research now with IBM, for helping me pick p-­
as the name for this extension to Fortran. 
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During the long delay between acceptance and pub­
lication of this paper, I have extended p-- to the For­
tran 90 language to remove some of the restrictions forced 
on the extension by the limitations of the Fortran 77 lan­
guage. The interested reader should see the following pa­
pers: 

1. R. W. Numrich, J. L. Steidel, B. H. Johnson, 
B. D. de Dinechin, G. Elsesser, G. Fischer, and T. Mac­
Donald, "Definition of the p-- extension to Fortran 90," 

in Proceedings of the lOth International Workshop on 
Languages and Compilers for Parallel Computing, Au­
gust 1997, Springer-Verlag, in press. 

2. R. W. Numrich and J. L. Steidel, "p--; A simple 
parallel extension to Fortran 90," SIAM News, September 
1997. 
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