
p--= A Parallel Extension to Cray Fortran

ROBERT W. NUMRICH

Cray Research, 655 Lone Oak Drive, Eagan, MN 55121, USA; e-mail: rwn@cray.com

ABSTRACT

p-- is a parallel extension to Gray Fortran 77 for distributed memory computers. It adds ex­
actly one new symbol to the language, a vertical line that separates two sets of indices. The
first set contains the coordinates for data in a local data grid. The second set contains the co­
ordinates for processors in a global processor grid. A statement such as x(i, j) = y(i, .ilp, q)
generates a load from remote address y(i, j) in the data grid on processor (p, q) followed by
a store to local address x(i, j) in the local data grid. p-- syntax requires an explicit state­
ment of the relationship between data layout and processor layout. It assumes that good
performance on a distributed memory computer requires the programmer to understand
and to exploit data locality. Programmers use the p-- syntax only when it is needed. Oth­
erwise all data are local and all code is local. Compiler and library developers concentrate
on generating well-optimized local code.

1 INTRODUCTION

p-- is a parallel syntax added to Cray Fortran 77. Its
simple design is based on the assumption that the For­
tran 77 language already contains most of what it needs to
support parallel programming. Fortran 77 lacks two im­
portant features. One is a mechanism for pointing to data
in another processor's memory. p-- provides a syntax
to solve this problem. The other is a mechanism for pro­
cessor synchronization and control. p-- provides library
functions to solve this problem.

As its name is meant to imply, the p-- philosophy is
quite opposite from the philosophy of other parallel ex­
tensions to Fortran [1-4] that, for the most part, adopt
some variation of a data parallel model. p-- is an alter­
native to the message-passing style of programming but
it is not message-passing. No handshaking between pro­
cessors is necessary such as the send/receive mechanism
required by message-passing. It assumes an underlying
global address mechanism, supported either by hardware

Received March 1995
Revised January 1996

© 1997 lOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 275-284 (1997)

or by software, that allows the programmer to read or
write any address in any processor's memory.

In relation to other Fortran dialects, p-- lies some­
where between Fortran 77 and Fortran 90. It is something
less than Fortran 90 although something more than For­
tran 77. The name p++ was discarded so as not to im­
ply some flavor of an object-oriented language. On the
contrary, it expresses a reluctance to embrace these more
complicated programming models.

p-- is a performance-oriented extension to For­
tran 77. It intentionally sacrifices some of the ease-of­
programming features of other extensions to Fortran in
favor of performance. Since Cray Fortran 77 already in­
corporates some of the features of Fortran 90, such as
array syntax, p-- includes them. It excludes other For­
tran 90 features such as passing array sections and the use
of intrinsic functions that accept arbitrary data structures.
p-- considers special operations to be part of a library
supporting the language rather than a part of the language
itself.

p-- supports the single-program-multiple-data
(SPMD) style of programming [5]. Each processor runs
independently with its own copy of the code with its own
data. It also supports the multiple-program-multiple-data
(MIMD) style of programming through explicit use of IF

276 NUMRICH

statements for program control and explicit calls to syn­
chronization functions for processor control.

The most important advantage of the F-- syntax is
that it represents processors in a coordinate grid in the
same way that it represents data in a coordinate grid. Its
syntax is a minimum addition to sequential Fortran that
requires the programmer to perform explicit mappings
between local and global addresses. The benefit to the
programmer is that it exposes the relationship between
data and processors and allows the programmer to assume
control of the underlying global address space using a fa­
miliar syntax. F-- coerces local data to global data. All
data references are assumed local unless proven remote
by the explicit syntax. F-- syntax points to objects that
are not here but there in another processor's memory. The
syntax is a flag to the programmer as well as to the com­
piler that remote references are taking place.

2 FORTRAN ADDRESSES

The address of a Fqrtran matrix ~lement a(i, j) is defined
by its dimension statement

real a(m,n)

and by a linear convention for computing its address in
memory

loc(a(i, })) = base(a) + (j- 1) · m + (i- 1) (1)

relative to a base address

loc(a(l, 1)) = base(a). (2)

The combination of the dimension statement and the lin­
ear rule Equation (1) completely specifies the address of
a(i, j).

The dimension statement and the linear rule are inter­
preted within a local program environment. Across a sub­
routine boundary, the Fortran language passes a base ad­
dress, which may be different from Equation (2), that be­
comes the new base address in the called subroutine. The
dimension statement may also change from one subrou­
tine to another without ambiguity. The compiler does not
care if the programmer passes an invalid address or runs
off the end of an array. The programmer is responsible for
maintaining consistency across subroutine boundaries.

The ability to refer to a matrix element as a(i, j) is
a notational convenience that hides the address compu­
tation from the programmer. The programmer, however,
risks Joss in performance by ignoring the fact that the
address space has been linearized. On a single proces­
sor with interleaved memory, bank conflicts occur if code
runs through data with a bad stride. On shared memory

multiprocessors, interprocessor memory contention may
lower performance, or worse yet race conditions among
processors trying to write to the same area of memory
may cause unpredictable results. On distributed memory
machines, careful attention to locality of data is often crit­
ical for good performance. Vectorized blocked algorithms
often provide solutions to these problems. The program­
mer allocates data such that each processor owns a slice
or a block and then writes vector code on the first index of
the block. F-- syntax is a method for explicitly adding
support for this programming style to Fortran array syn­
tax.

3 THE F-- EXTENSION

F-- allows the addition of a second set of indices sepa­
rated from the usual set by a vertical line

real a(data_gridlprocessor_grid)

The first set of indices contains the normal Fortran data
coordinates and the second set of indices contains proces­
sor coordinates. Any number of dimensions can be speci­
fied for processor coordinates according to the same rules
that apply to the data coordinates. If no processor grid is
specified, the data are local.

To take an example that is not too simple yet not too
complicated, consider the dimension statement

real a(m,nlp,q)

describing a matrix of size (m x n) on each processor in
a (p x q) grid of processors. F-- extends the linear ad­
dress convention (Equation 1) to the processor grid such
that matrix element a(i, Jir, s) resides in the memory of
processor

pe(r, s) = base(pe) + (s - 1) · p + (r - 1) (3)

relative to a base processor

pe(l, 1) = base(pe). (4)

In most cases, the base processor number is zero, but it
need not be.

F-- requires an important additional condition: the
base address must be the same virtual address for all pro­
cessors

loc(a(l, 1)) = base(a) for all pe's. (5)

If the virtual to physical translation is different on differ­
ent processors, the hardware or the software must be able
to resolve the translation so that each processor points to

the correct remote address. An array declaration contain­
ing p-- syntax must be loaded by the operating system
at the same virtual address in each processor. Automatic
arrays containing p-- syntax, as described in Section 6,
imply implicit synchronization so that all processors al­
locate the same array at the same virtual address.

By default, p-- follows the normal Fortran style,
numbering the processors starting with one. If the pro­
grammer wishes to number the processors starting from
zero, the dimension statement becomes

real a(m,niO:p-l,O:q-1)

and Equation (3) becomes

pe(r, s) = base(pe) + s · p + r. (6)

In general, the programmer may dimension the array as

real a(m_l:m_2,n_l:n_2lp_l:p_2,q_l:q_2)

p-- syntax replicates a local data structure across
a set of processors. It has no concept of a global array
shared by all processors. The programmer uses p-- syn­
tax as needed to coerce local data to distributed data. The
processor coordinates following the vertical line are logi­
cal processor numbers not necessarily related to the phys­
ical processor numbers in the hardware. There is no re­
quirement that the product of processor coordinates in a
dimension statement be equal to the number of processors
actually running. Just as the compiler normally does no
bounds checking for local array indices, it does no bounds
checking for processor indices. Generation of an invalid
processor number produces unpredictable behavior, most
likely a run-time error that terminates the program.

4 DATA TRANSFER BETWEEN PROCESSORS

Transfer of data from one processor to another is a simple
example that illustrates the p-- programming style.

real a(nlnpes),b(nlnpes)
my_pal = some_rule(me)
do i=l,n

b(ilmy_pal) = a(i)
enddo

Notice that the reference to the array a(i) on the right
side of the do loop has no p-- syntax attached to it even
though its dimension statement contains the syntax. Such
usage is legal and means that the local address of the ar­
ray is intended. Since the data are written to another pro­
cessor's memory, a memory quiet function, similar to the
CMR (complete memory reference) instruction on Cray's
shared memory machines, must be generated at the end

p--: A PARALLEL EXTENSION TO CRAY FORTRAN 277

of the do loop to guarantee completion of the transfer.
If cache coherence on the remote processor is a problem,
it must be handled either by the hardware or by the com­
piler or by the programmer as it is done now, for example,
on the Cray-T3D [6].

Since Cray Fortran 77 includes array syntax, the pro­
grammer may choose to replace the do loop in this ex­
ample with Fortran 90 array syntax

b(:lmy_pal) =a(:)

Array syntax within p-- refers to purely local opera­
tions and has no connotation of data parallel operations.
Any processor executing this statement writes data from
its own memory to the memory of the processor whose
number is my _pal. If a processor executes the reverse
statement

a(:) = b(: lmy_pal)

it reads data from another processor's memory. In either
case, the programmer is responsible for any required syn­
chronization between processors that makes reading or
writing data safe. Section 9 considers synchronization
questions in more detail.

Gather or scatter operations are also possible

a (:) = b (index (:) I my _pal)
a (index (:)) = b (i I j ndex (:))

A broadcast from processor zero to all other processors
becomes

if (me . eq. 0) b (: I :) = a (:)

And it is possible to do arithmetic using the syntax

a(:)= a(:)+ s*x(:lpe)

Figure 1 shows transfer velocities measured using
p-- syntax with the current implementation on the Cray­
T3D as described in Section 12. The results are compared
with the same measurements obtained using the library
function put() written in assembler [7]. The asymptotic
velocity is the same for both cases. The p-- syntax is
slightly faster for short lengths because it saves the over­
head of the subroutine call to the put() function.

A more complicated example, commonly found in
computational fluid dynamics, weather and ocean codes
that use domain decomposition methods, illustrates a pro­
cedure for updating ghost cells [8]. Each plane of physi­
cal data has one ghost cell on each of its four sides. For
simplicity, this example assumes periodic boundary con­
ditions. The East update is independent of the West up­
date and the North update is independent of the South
update. A barrier is required between the East-West and
the North-South updates because the East-West transfer

278 NUMRICH

60-

50- v
~ T V V V V V V V

40-
'1

Average
Transfer

30- '1

Velocity
(Mbyte/s) 20- '1

'1
10-

T
v

0-1 I I I I I I I I

0 2 4 6 8 10 12 14 16

log2 n

FIGURE 1 Average transfer velocity as function of transfer
length on the Cray-T3D with machine frequency v = 150 MHz.
Each processor writes n 64-bit words to its partner with pro­
cessor number one greater than its own. The upper curve (•)
represents measurements obtained with p-- syntax. The lower
curve (\7) represents measurements obtained with the assembler
put() function.

includes data in the corners of the ghost cells and must be
completed before performing the North-South update.

p-- syntax points to a processor's North-South-East­
West neighbors in a natural way. If my processor coor­
dinates are (my _row, my _col), then my North neigh­
bor is (my_row- I, my_col) and my East neighbor is
(my_row, my_col+ 1). If the compiler is smart enough,
it may recognize that each processor may safely gener­
ate traffic to two different processors at the same time.
Using more wires on the interconnection network at the
same time may lead to increased performance. The li­
brary functions get() and put() do not support concurrent
communication patterns to more than one processor at a
time. Rather than requiring specialized functions for ev­
ery kind of communication pattern, p-- syntax allows
the programmer to write arbitrary communication pat­
terns as needed.

subroutine update(a,m,n,my_row,my_col,
p_row,p_col)

integer p_row,p_col,north,south,east,
west

real a(O:m+1,0:n+1IO:p_row-1,0:p_col-1)
east mod(my_col+1,p_col)
west mod(my_col-1,p_col)
north= mod(my_row-1,p_row)
south= mod(my_row+1,p_row)
call barrier()
a(1:m, Olmy_row,east)
a(1:m,n+1lmy_row,west)
call barrier ()

a(1:m,n)
a(1:m, 1)

a(m+1,0:n+11north,my_col)
a(O, O:n+11south,my_col)

a(1,0:n+1)
a(m, O:n+1)

call barrier ()
return
end

5 SUBROUTINE INTERFACE

p-- follows the same rules as Fortran 77 when it passes
variables from one subroutine to another. Variables are
passed by address. No global information is passed, only
the local address. A call to a subroutine such as

call subx(x(1lpl)

passes the local address of array x and the processor num­
ber is ignored. By constraint Equation (5) placed on the
base address of an array, the address of the array x is the
same on each processor. Processor information, if needed,
is passed as a separate argument:

call subx(x,p)

There is no need to pass global information, for exam­
ple, in the form of dope vectors, because global informa­
tion has only local scope within a subroutine. An array
dimension or shape may change, with or without vertical
line notation, across a subroutine boundary. Indices fol­
lowing the vertical line are interpreted within their local
context just as normal indices are interpreted within their
local context in Fortran 77. For example, consider pass­
ing an array from the main program, where it is used only
locally, to a subroutine, where it is used globally:

real x(n)
call subx(x,n,npes)

subroutine subx(x,m,np)
real x(mlnp)

There is no ambiguity in the meaning as long as the array
x (n) declared in the main program is allocated space at
the same memory location in each processor. At the call
to routine subx(), the local address of x is passed across
the interface where it is interpreted as the local address of
x on the other side. Since the array x has p-- syntax in
its declaration on the other side, it can be used to point
to another processor's memory where the processors are
numbered from 1 to np as a linear array of processors.

The processor dimension in subroutine subx() could
just as well be dimensioned with a dummy dimension,
for example,

real x(ml*l

if the programmer just wants to think of processors in a
linear grid. The programmer may, however, want to think
of the processors in a two-dimensional grid in subroutine
subx(), for example,

subroutine subx(x,m,nx,ny)
real x(mjnx,ny)

The incoming address for x still points to the same local
address but the programmer has a different picture of the
relationship of the processors to each other. There is no
ambiguity in switching views in this way.

6 DYNAMIC MEMORY ALLOCATION

Dynamically allocated arrays that will be used for com­
munication between processors must be located at the
same virtual address on each processor in order for the
p-- syntax to work. The programmer must append pro­
cessor information in the dimension statement to tell the
compiler to allocate the new data in a common, shared
area.

subroutine subx(n,p,q)
real x(njp,q)

If the shape of the processor grid is unimportant, then the
declaration

subroutine subx(n)
real x(nj *)

is sufficient. Synchronization is required at the point of
allocation so that all processors arrive at the same point.
The programmer is responsible for making sure they all
get there and the compiler is responsible for the implicit
synchronization.

7 GLOBAL POINTERS

p-- syntax effectively defines a global pointer to a data
structure that exists on each processor at the same mem­
ory location. The existing Cray Fortran 77 pointer can
be combined with p-- syntax to point to irregular data
structures that are located at different addresses or don't
exist at all on other processors. For example, let

pointer (ptr,remote_x(njnpes))

define a data structure that may live on another processor.
Suppose each processor maintains a table containing a list
of addresses that contain data to be shared with other pro­
cessors. These addresses may point to variables that the
other processors know nothing about. If the table is al­
located at the same address in each processor, then any
processor can use p-- syntax to read addresses from or
write addresses to the table. A global pointer can then be
established in the following way:

p--: A PARALLEL EXTENSION TO CRAY FORTRAN 279

integer pe,table(npesjnpes)
pointer (ptr,remote_x(njnpes))
pe = some_rule(me)
ptr = table(mejpe)
y(:) = remote_x(: jpe)

Combined with dynamic memory allocation, this ex­
ample allows the programmer to construct arrays of struc­
tures where each processor has a different data structure.

A similar programming style is possible in the C
language using a syntax appropriate to that language.
A name for such a language might be c--. Fry [9] has
implemented one method. Carlson and Draper [10] have
created AC. Culler et al. [11] have proposed Split-C. Rose
and Steele [12] describe C*.

8 LIBRARY SUPPORT

A simple library supports the p-- extension. Although
some of the members of this library might be imple­
mented as compiler directives, the p-- philosophy limits
extensions to the basic Fortran language to a minimum
set. p-- has no compiler directives. Fortran uses func­
tions and subroutines to perform common operations.
Some of these functions and subroutines may need to be
intrinsic functions for performance reasons.

Two special variables are resolved at either compile­
time or load-time: n$pes and log$pes. If the number
of processors equals a power of two they are related by
n$pes = 2log$pes. If the number of processors is not a
power of two, then log$pes = -1 so that it can be used
as a flag to test that the number of processors matches the
assumptions of the program.

These two variables are useful for designing scalable
programs that work for any size problem and any number
of processors equal to a power of two. For example, the
following parameter statements divide the processors into
a two-dimensional grid (pe_row x pe_col):

parameter{n_pes=2**log$pes)
parameter(half_log_pe=log$pes/2)
parameter(pe_row=

2**(log$pes-half_log_pe))
parameter(pe_col=2**(half_log_pe))

A matrix a(mmax, nmax), for example, divides into
blocks corresponding to the processor grid,

parameter(mmax=128,nmax=128)
parameter(idim = mmax/pe_row,

jdim = nmax/pe_col)
real a(idim,jdimjO:pe_row-l,O:pe_col-1)

280 NUMRICH

If log$pe = 0, the code runs on a single processor with­
out change. With care the programmer can write code us­
ing the p-- syntax in such a way that by simply chang­
ing vertical lines to commas the code becomes normal
Fortran 77, portable to other machines.

At run-time, each processor computes its own position
within the processor grid,

my_pe = mype ()
my_row = and(my_pe,pe_row-1)
my_col =

shiftr(my_pe,log$pes-half_log_pe)

where the grid is zero based in both directions.
A partial list of library functions is the following:

mype()
npes {)
log_pes ()
get ()
put()
global_sum ()
global_min ()
global_max ()
global_collect ()
atomic_update ()
atomic_swap ()
broadcast ()

This library is very similar to the library developed for
the Cray-T3D [6]. The function mype() returns to each
processor a unique number in the interval [0, n$pes -1].
The function npes() returns a value equal to the number
of processors assigned at run-time. It can be used to check
consistency with the value n$pes set at compile or load­
time:

if(npes() .ne. n$pes) stop "error"

The function log_pes() returns the base two logarithm of
the number of processors at run-time and can be used in
the same way to check consistency.

The functions get() and put() represent a set of com­
munication primitives that the programmer may prefer to
use instead of p-- syntax. The functions global_sum(),
global_min(), global_max(), and global_collect() per­
form important global reduction operations. For example,
the global_sum() function written in p-- syntax has the
following form:

subroutine global_sum(x,n,work)
real x(niO:n$pes-1) ,work(n)
integer bit,dim
dim = log$pes
if(dim .eq. 0) return
me = mype ()
bit = 1

do i=l,dim
mypal=xor(me,bit)
bit=shiftl(bit,l)
call barrier{)
work{:)= x(:lmypal)
call barrier ()
x (:) =x (:) +work (:)

enddo
return
end

The atomic_update() function allows protected addi­
tion into a specified address and the atomic_swap() func­
tion allows protected interchange of data at a specified ad­
dress. The broadcast() function sends data to a specified
address on all processors or to a subset of processors.

Other functions such as matrix transpose, which have
become part of the Fortran 90 language, are included as
part of libraries to support p-- but are not part of the
language extension itself.

9 SYNCHRONIZATION AND CONTROL

Synchronization and control are the responsibility of the
programmer. The programmer must prevent race condi­
tions where more than one processor writes to the same
location in memory at the same time.

Two kinds of synchronization are useful. Full synchro­
nization of all processors,

call barrier ()

and partial synchronization of a subset of processors,

call sync(list)

The array 1 is t contains a list of processors that partic­
ipate in the barrier. The first word in the array tells how
many processors participate in the barrier. It is up to the
programmer to make sure all of the appropriate proces­
sors reach the correct barriers.

p-- supports the SPMD programming model in a nat­
ural way. But it also supports the MIMD programming
model. Each processor may branch, based on its proces­
sor number, into separate code within a program. For ex­
ample,

if(mype() .eq. 0) then
call subx ()

else
call suby()

endif

Critical regions can be programmed explicitly using the
atomic_swap() function. For example,

1 continue
if(atomic_swap(-1) .ne. -1) then

call subx()
if(atomic_swap(+1) .ne. -1)

stop "error"
else

go to 1
endif

The atomic_swap(x) function swaps the control variable
x into a preset control word in global memory. If it re­
turns with the same value of x, then another processor is
already in the critical region.

10 EXTENSION TO SHARED MEMORY AND
CLUSTERED ARCHITECTURES

p-- syntax was designed with a distributed memory ma­
chine in mind but it can be applied to other machines
as well. It could become a standard, portable addition to
the Fortran language if we establish conventions for the
meaning of p-- syntax for shared memory machines and
for clustered machines and for networks of machines. The
programmer is responsible for writing code that makes
sense on the chosen machine. With careful attention to
detail, it is possible to write code that runs on different
kinds of machines by adjusting parameters to fit the tar­
get architecture.

On a shared memory multiprocessor, for example,
p-- syntax refers to a coordinate representation of
shared memory. The notation

real a(m,nlp,q)

describes a matrix of size (m x n) replicated (p x q) times
in different parts of shared memory similar to the idea of
TASK COMMON.

For clustered architectures or for networks of worksta­
tions, the syntax extends to multiple hierarchies of mem­
ory. For example, the dimension statement

real a(m,nlp,qlj,k)

might describe a matrix of size (m x n) in local memory
distributed first across a local cluster of processors in a
(p x q) grid and then across remote clusters in a (j x k)

grid.

11 p-- SYNTAX AND TENSOR NOTATION

p-- syntax has a natural relationship to tensor notation.
In fact, the minus-minus notation used as a superscript
is meant to evoke memories of tensor notation in the
reader's mind. The authors of references· [13] and [14]

F--: A PARALLEL EXTENSION TO CRAY FORTRAN 281

use tensor notation for parallel algorithm design some­
what differently from the approach presented here.

Recall what the coordinate representation of an opera­
tor means [15]. Let Vn and V m be vector spaces of dimen­
sion n and m and let

(7)

be an abstract linear operator from Vn and V m. The ab­
stract operator A does not care how we represent it, but
to perform computations, we must pick a coordinate rep­
resentation for it. For example, let

n { n n} e = e,, ... , en (8)

be a basis for Vn and let

m { m m} e = e,, ... , em (9)

be a basis for V m. Then

a/= (e;niAiej). (10)

is the component of the operator A in the ith row and
jth column for these basis sets. In Fortran syntax, this
component is written a(i, j). Equation 1 is the rule for
placing the component in memory.

We are free to reorder or regroup the basis vectors any­
way we like. For a (p x q) processor grid, we may choose
to think of the basis sets as tensor products

(11)

In the tensor product basis, the operator A has the coor­
dinate representation

js (mjp piAl njq q) air = ei · e, e j • es . (12)

We may regroup the basis vectors such that

(13)

where A[is the (m/p x njq) block of data owned by
processor (r, s). In p-- syntax, this component is writ­
ten a(i, j I r, s). Equation 3 is the rule for assigning the
blocks to processors.

Matrix multiplication has a natural representation in
tensor notation that translates easily into p-- syntax. In
the original basis,

(14)

where repeated indices imply summation. In the tensor
product basis,

(15)

282 NUMRICH

where repeated indices k and R imply summation over
both. Since the uppercase symbol R is a processor in­
dex, the summation over R implies global communica­
tion. For square matrices with n$pes an even power of
2, this block-based algorithm translates into p-- syntax
as follows:

real a(m,mjp,q), b(m,mjp,q), c{m,m)
do ipe=O,n$pes/2-1

pe = mod(my_col+ipe,n$pes/2) + 1
do j = 1, m

do k = l,m
do i = l,m
c(i,j)=c(i,j)+

a(i,kjmy_row,pe)
*b(k,j jpe,my_col)

end do
enddo

end do
enddo

For matrices distributed by columns rather than by
blocks, only the basis set e" is split into a product so that

CiP- ahRbiP
i - i h (16)

where h = R · (n/ p)+k. Summation over h implies sum­
mation over both k and R. This column-based algorithm
translates into p-- syntax as follows:

parameter(m=n/n$pes)
real a(n,mjO:n$pes-1) ,b(n,m),c(n,m)
do pe=O,n$pes-1

remote_pe = mod(mype()+pe,n$pes)
kk = remote_pe*m
do j = 1, m

do k = l,m
do i = l,n
c(i,j)=c(i,j)+

a(i,kk+kjremote_pe)
*b(kk+k,j)

end do
end do

enddo
enddo

Matrix transpose assumes a simple form in p-- syn­
tax. To avoid end cases, assume that npes processors
are arranged in a logical square grid of size p_row =

p _col = ~ and that each processor knows its
own coordinates my _row and my _col within the grid.
A square matrix of size n is distributed among the pro­
cessors such that each processor owns a square block of
size n I~· Then the transpose just requires the pro­
grammer to interchange the data indices and the processor
indices:

jq hip
aip = jq· (17)

60.0

50.0

Average 40.0

Transfer
30.0

Velocity
(Mbyte/s) 20.0

10.0

0.0 CRAFT (unrolled)

0 2 3 4 5 6 7

log2 p

FIGURE 2 Average transfer velocity as function of the num­
ber of processors for matrix transpose measured on the Cray­
T3D with machine frequency v = 150 MHz. The size of the
matrix increases with the number of processors such that each
has a local block of size (256 x 1024) 64-bit words. The four
curves represent CRAFf (<)), F-- (•), unrolled CRAFf (\7),

and unrolled F-- (L::.). Do Loops were unrolled by four to take
advantage of the four word cache line.

The p-- code is the following:

subroutine transpose(a,b,m,n,pe_row,
pe_col,my_row,my_col)

real a(m,njpe_row,pe_col), b(n,m)
do i=l,m

do j=l,n
a(i,jjmy_col,my_row) b(j,i)

enddo
enddo
return
end

Figure 2 shows results for matrix transpose measured on
the Cray-T3D. CRAFT is Cray's version of a data parallel
language [2]. The CRAFT code is the following:

subroutine transpose(a,b,m,n)
cdir$ shared a(:block, :block),

b(:block, :block)
real a(m,n), b(n,m)
integer i,j

cdir$ do shared (i,j) on b(j,i)
do i=l,m

do j=l,n
a(i,j) b(j,i)

enddo
enddo

cdir$ nobarrier
return
end

In practice, the programmer would probably call a li­
brary subroutine to perform common matrix operations.

The purpose of these examples is to illustrate what hap­
pens should the programmer need to write communica­
tion patterns that are not contained in standard libraries.
In such cases, as far as performance is concerned, the ad­
vantages of p-- over CRAFT are clear. For small num­
bers of processors, the transfer velocities approach the
same high values as shown in Figure 1. Unrolling the
do loops by four to take advantage of cache behaves as
expected using p-- syntax while the CRAFT result is
counterintuitive. As the number of processors increases,
the velocity drops using p-- syntax because of con­
tention on the interconnection network [7]. The CRAFT
velocities are less sensitive to contention because the traf­
fic on the network is lower.

Which programming style appeals to a given program­
mer is a matter of taste. With p-- syntax, the pro­
grammer maintains an explicit picture of the data layout
among processors. With the CDIR$ SHARED directive
in CRAFT or the !HPF$ DISTRIBUTE directive in high­
performance Fortran (HPF), the compiler maintains an
implicit picture of the data layout. The p-- style puts
more burden on the programmer but yields better perfor­
mance. The CRAFT or HPF style puts less burden on the
programmer but, at least for now, yields poorer perfor­
mance.

12 CURRENT IMPLEMENTATION

All of the examples in this article are running on the Cray­
T3D. In the absence of compiler support for p-- syntax,
a simple coding trick fools the Fortran compiler [6]. To
satisfy condition (5), the programmer allocates static ar­
rays to communicate between processors, for example, by
placing the arrays in a common block somewhere in the
program. The following lines of code:

real a(m,n), b(m,n)
pointer (ptr,remote_a(m,n))
ptr = mpp_annex(a,ipe,num,icode)

create an alias for the array a(m, n) called

remote_a (m, n).

The function mpp_annex() inserts the value num into an
appropriate position of the address of the aliased array
pointing to a hardware supported lookup table containing
the remote processor number ipe and the function code
icode. After a call to function mpp_annex(), a replace­
ment statement such as

remote_a (:, :) = b (:, :)

moves every matrix element b(i, j) from local memory
to a(i, j) in remote memory.

p--: A PARALLEL EXTENSION TO CRAY FORTRAN 283

13 SUMMARY

Fortran syntax is an intuitive convention for translating
mathematical formulas into machine instructions [16]. It
defines a linear map of data across the computer's mem­
ory. p-- extends Fortran syntax to define a linear map
across processors. Its syntax is analogous to tensor nota­
tion. Algorithms written in tensor notation translate easily
into p-- code.

p-- explicitly emphasizes the difference between lo­
cal and remote memory. It gives the programmer com­
plete control over the placement and manipulation of
data. It exposes the underlying reality that using data from
remote memory is more costly than using data from local
memory.

p-- syntax allows compiler developers to concentrate
on local code optimization. The compiler always knows
whether an address is local or remote. The vertical line
syntax explicitly tells the compiler that the local address
happens to be in memory on a remote processor. The
compiler needs to recognize invariant code related to re­
mote processor references and to schedule that code effi­
ciently just as it schedules local code.

The programmer defines the processor grid in a con­
venient way, adding or deleting vertical lines with no am­
biguity in meaning. The programmer changes shapes or
dimensions of the processor grid with the same rules as
Fortran 77. Incorrect indexing generates run-time errors
not compile-time errors. p-- places no restrictions on
array sizes and requires no compiler directives.

p-- is not a new language so there are no compli­
cated language issues to resolve. It is a simple extension
to Fortran 77 that is explained in one page of text in Sec­
tion 3. The rest of the article contains examples for using
the new syntax. All the rules that apply to data indices
apply in the same way to processor indices. Just as data
indices allow the programmer to think of data in a coor­
dinate grid, p-- syntax allows the programmer to think
of processors in a coordinate grid. Abstract operators are
independent of the particular grid chosen. Hence the pro­
grammer may freely switch back and forth from repre­
sentation to representation both in data coordinates and
in processor coordinates. This covariance property is fun­
damental to physical theory. The rules of Fortran were
designed to support it and p-- extends this support to
processor coordinates.

NOTE ADDED IN PROOF

I thank the anonymous referees for helpful comments and
suggestions for improving the original version of this pa­
per. I thank Dr. Geert Wenes, my occasional office mate at
Cray Research now with IBM, for helping me pick p-­
as the name for this extension to Fortran.

284 NUMRICH

During the long delay between acceptance and pub­
lication of this paper, I have extended p-- to the For­
tran 90 language to remove some of the restrictions forced
on the extension by the limitations of the Fortran 77 lan­
guage. The interested reader should see the following pa­
pers:

1. R. W. Numrich, J. L. Steidel, B. H. Johnson,
B. D. de Dinechin, G. Elsesser, G. Fischer, and T. Mac­
Donald, "Definition of the p-- extension to Fortran 90,"

in Proceedings of the lOth International Workshop on
Languages and Compilers for Parallel Computing, Au­
gust 1997, Springer-Verlag, in press.

2. R. W. Numrich and J. L. Steidel, "p--; A simple
parallel extension to Fortran 90," SIAM News, September
1997.

REFERENCES

[1] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and
M. Zosel, The High Performance Fortran Handbook.
Cambridge, MA: The MIT Press, 1994.

[2] D. M. Pase, T. MacDonald, and A. Meltzer, "The CRAFf
Fortran programming model," Sci. Prog., vol. 3, pp. 227-
253, 1994.

[3] High Performance Fortran Forum, "High performance
Fortran I Journal of development," Sci. Prog., vol. 2, no.
1-2, 1993.

[4] B. Chapman, P. Mehrotra, and H. Zima, "Programming in
Vienna Fortran," Sci. Prog., vol. 1, pp. 31-50, 1992.

[5] R. W. Numrich, "An explicit node-oriented programming
model," Cray Research, Inc., Eagan, MN, Tech. Rep.,
March 1991.

[6] R. W. Numrich, "The Cray T3D address space and how to
use it," Cray Research, Inc., Eagan, MN, Tech. Rep., April
1994.

[7] R. W. Numrich, P. L. Springer, and J. C. Peterson, "Mea­
surement of communication rates on the Cray T3D in-

terprocessor network," in Proc. High-Performance Com­
puting and Networking, Vol. 2: Networking and Tools,
W. Gentzsch and U. Harms, Eds. New York: Springer­
Verlag, 1994, pp. 150-157.

[8] A. Sawdey, M. O'Keefe, R. Bleck, and R. W. Numrich,
"The design, implementation, and performance of a par­
allel ocean circulation model," in Proc. Sixth ECMWF
Workshop on the Use of Parallel Processors in Meteorol­
ogy, World Scientific Publishers, 1995, pp. 523-550.

[9] J. H. Fry, "MYC: A user-optimized C compiler," Cray
T3D Applications Meeting, Munich, Tech. Rep., Oct.
1993.

[10] W. W. Carlson and J. M. Draper, "AC for the T3D," Super­
computer Research Center, Institute for Defense Analysis,
17100 Science Drive, Bowie, MD 20715-4300, Tech. Rep.
SRC-TR-95-141, Feb. 1995.

[11] D. E. Culler, A. Dusseau, S. Copen Goldstein, A. Krish­
namurthy, S. Lumetta, T. von Eicken, and K. Yelick, "Par­
allel programming in Split-C," in Proc. Supercomputing
'93, 1993, pp. 262-273.

[12] J. R. Rose and G. L. Steele Jr., "C*: An extended C lan­
guage for data parallel programming," in Proc. 2nd Int.
Conf Supercomputing, vol. 2, 1987, pp. 2-16.

[13] D. L. Dai, S. K. S. Gupta, S. D. Kaushik, J. H. Lu,
R. V. Singh, C.-H. Huang, P. Sadayappan, and R. W. John­
son, "EXTENT: a portable programming environment for
designing and implementing high-performance block re­
cursive algorithms," in Proc. Supercomputing '94, 1994,
pp. 49-58.

[14] S.D. Kaushik, C.-H. Huang, J. R. Johnson, R. W. Johnson,
and P. Sadayappan, "Efficient transposition algorithms
for large matrices," in Proc. Supercomputing '93, 1993,
pp. 656-665.

[15] P.R. Halmos, Finite Dimensional Vector Spaces, 2nd ed.
Princeton, NJ: D. Van Nostrand Company, Inc., 1958.

[16] M. J. Merchant, Fortran 77 Language and Style. Belmont,
CA: Wadsworth Publishing, 1981.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

