
Abstract Level Parallelization of Finite
Difference Methods

EDWIN VOLLEBREGT

Faculty of Technical Mathematics and Informatics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands;
tel: +31-15 278 58 05; fax: +31-15 278 72 09; e-mail: edwin@pa.twi.tudelft.nl

ABSTRACT

A formalism is proposed for describing finite difference calculations in an abstract way. The
formalism consists of index sets and stencils, for characterizing the structure of sets of
data items and interactions between data items (“neighbouring relations”). The formalism
provides a means for lifting programming to a more abstract level. This simplifies the tasks
of performance analysis and verification of correctness, and opens the way for automatic
code generation.

The notation is particularly useful in parallelization, for the systematic construction of par-
allel programs in a process/channel programming paradigm (e.g., message passing). This
is important because message passing, unfortunately, still is the only approach that leads
to acceptable performance for many more unstructured or irregular problems on parallel
computers that have non-uniform memory access times. It will be shown that the use of in-
dex sets and stencils greatly simplifies the determination of which data must be exchanged
between different computing processes.

1 INTRODUCTION

One of the main causes for the complexity of parallel pro-
gramming is the necessity ofdata locality. Truly scalable
and cost-effective parallel computers will have a physi-
cally distributed memory organization. This causes mem-
ory access times to be non-uniform, such that memory
can be said to be close to or far from a processor. The key
to high performance on these machines is to optimally ex-
ploit the structure of the memory system, for instance by
minimizing the number of non-local data items that are
needed by a processor.

Control over data locality is maximized if a pro-
cess/channel parallel programming paradigm is used in
which computing processes work on private data only,

Received December 1996
Revised November 1997
 1997 IOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 331–344 (1997)

and exchange data with each other through communica-
tion [12]. At the same time this programming paradigm
is also the most difficult to manage for more irregular ap-
plications. It requires that a program is written for each
computing process that explicitly states which data items
must be exchanged between the processes and at which
times. Unfortunately this (currently) is the only approach
that leads to acceptable performance for many more un-
structured or irregular problems.

The development of software with a process/channel
paradigm can be simplified by lifting the programming
to a higher level of abstraction. Whereas many numerical
applications are nicely structured on a conceptual level
(as in a finite element mesh), this structure may have been
obscured in a computer program. Determining data de-
pendences and corresponding communication required is
much easier at the higher level. Therefore a means is re-
quired for specifying the program at the conceptual level
and then methodically transforming it into the desired
form.

332 VOLLEBREGT

In this work we describe our approach for the paral-
lelization of a complex finite difference application with
irregularly shaped grids. This approach has been applied
for parallelization of the operational 3D shallow water
simulation program TRIWAQ of the Dutch National In-
stitute for Coastal and Marine Management, Rijkswater-
staat/RIKZ. The parallelization is based on PVM and has
yielded good results, e.g., almost ideal speed up on 48
processors of a Cray T3E parallel computer [22, 23].
This article describes the theoretical foundation underly-
ing some of the parts of the parallel software, which are
in the public domain.

The application TRIWAQ, too, is provided with a nice
mathematical structure, through the usage of an internally
regular grid. However, the irregular boundaries of the do-
main (coastlines) necessitate usage of an indirect address-
ing mechanism, i.e., putting all active grid points consec-
utively in a 1D array. This mismatch between mathemat-
ical and implementation structures becomes important in
parallelization, because distribution of the implementa-
tion structure does not preserve data locality.

Essential abstractions in our approach are index sets
and stencils (Section 2) forpreciselyandcompactly de-
scribingfor which grid points calculations are carried out
and which data items are involved. It can be argued that
this is valuable also in sequential computation, because it
gives additional insights in the numerical method, helps
preventing and detecting errors in the final source code,
and can be a starting point for developing tool-support.
The notation is much more indispensible in parallel com-
putation. This is because it allows for the specification of
inherently data parallel operations in a parallel way, and
greatly simplifies the determination of which data must
be exchanged between neighbouring subdomains.

The index sets and stencils in our formalism are in
essence the same asindex domainsandcommunication
formsin Crystal [7], andindex spacesandcommunication
topologiesin PROMOTER [14, 20]. Although developed
independently, this work can be viewed as a case study to
the use of these formalisms for a complex finite difference
application. We show that the formalism leads not only to
concise documentation but also contributes to better un-
derstanding of the numerical method. In parallelization it
enables handsome optimizations in the amount of com-
munication. In the manipulations that are required we use
knowledge of the problem domain, such that this work
cannot be automated easily in a compiler-system such as
Crystal or PROMOTER.

This clearly illustrates the different scopes of both
Crystal and PROMOTER and that of the current work:
whereas the former intend to provide a general purpose
programming model/compiler system, our formalism is
oriented towards a specific application domain and to par-
allelization of sequential Fortran code. Important aspects

in our case are the re-use of program-code, algorithms
and data structures, because of the huge investments
made in the program and in pre- and post-processing fa-
cilities. A commonality is the requirement that increasing
the level of abstraction should not be achieved at the cost
of efficiency.

Other solutions that have been proposed for simplify-
ing the programming of parallel applications are: auto-
matic transformation of abstract specifications into exe-
cutable program code [10, 11, 19], formalization of the
software development process [4, 5, 17], and the use of
skeletons [8, 9]. These approaches also work by increas-
ing the level of abstraction of parallel programming, and
are supplementary to our work. Firstly because our com-
munication operations (Subsection 4.6) can be seen as a
kind of skeletons, secondly, our notation allows for for-
malization of some part of the development process and
finally, our description clearly shows starting-points for
automatic code generation.

2 THE FORMALISM IN A GENERAL SETTING

The purpose of the concepts introduced below is to de-
scribe explicitly the structure and interactions of data
items in a numerical simulation algorithm. For instance
we want to capture the structure of an irregularly bounded
grid such as is shown in Figure 1. This is done with anin-
dex set:

Definition 1 An n-dimensional index set is an arbitrary
subset ofZn.

This concept provides a generalization of conventional ar-
rays, for which the index set is a Cartesian product: the
index set of anm × n array is{1, . . . ,m} × {1, . . . , n}.
Calligraphic letters are used to denote index sets. For sim-
plicity we mainly restrict ourselves to two-dimensional
index sets.

The structure of the interactions between data items
is non-trivial for instance in the matrix-vector multiplica-
tion y := Ax for a sparse matrixA ∈ Rm×n. A question
is which elementsxj of x are required for calculation of
a given set of elementsyi for i ∈ Is ⊂ {1, . . . ,m}. The
set of indicesj for whichxj is required is calledJs . It is
determined by the non-zeros inA:

yi =
n∑
j=1

aij xj (1a)

→ Js =
{
j ∈ {1, . . . , n} | ∃i ∈ Is : aij 6= 0

}
. (1b)

In this example the structure of the operation is deter-
mined by the non-zero pattern ofA. This pattern is given

ABSTRACT LEVEL PARALLELIZATION OF FINITE DIFFERENCE METHODS 333

FIGURE 1 Typical grid in shallow water applications (Wadden sea, the Netherlands, 400× 270, 45,000 active points).

by the pairs

A = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} | aij 6= 0
}
. (2)

Index setA is called theinteraction setof the operation
(thecommunication productof [20]). It describes the in-
teractions between the elements ofx andy (data depen-
dences of the operation) in a compact way.

Definition 2 An interaction set is an arbitrary subset of
the Cartesian product of two index sets.

In many large scale computing problems the non-zero
pattern of a sparse matrix (at least at the conceptual level)
can be characterized by a sparsity structure. In finite dif-
ference applications the structure arises through the ap-
plication ofstencilsor computational molecules [1, 16].
An example is the well-known five-point stencil for the
Laplace operator,  1

1 −4 1
1

 , (3)

which implies that the equation for an internal grid point
takes the values of its four “neighbouring” grid points mi-
nus four times the value of the grid point itself. The sten-
cil is determined by the discretization techniques that are
used (e.g., central, 1st order upwind, 2nd order upwind).
In our case a stencil is not used for describing the mutual
influences of neighbouring grid points (through weights

such as in Equation (3)), but only for characterizing the
pattern of the interactions:

Definition 3 A two-dimensional stencil is an arbitrary
collection of offsets(δm, δn) ∈ Z2.

A list of stencils that are used in this work is given in
Table 1.

A stencil is always used in the meaning that a calcula-
tion for each central point (offset(0,0)) requires values
from all points referred to by the stencil. In some cases
we want to describe an interaction with opposite direction
(information of the central point is needed by all other
points indicated by the stencil), therefore we introduce:

Definition 4 The negative of a (two-dimensional) stencil
S is the stencil

−S = {(δm, δn) ∈ Z2 | (−δm,−δn) ∈ S}. (4)

With these definitions we can construct the interaction
set for many finite difference operations. However, we are
mostly interested in determining data requirements such
as in Equation (1b). In such a case one index set (Is) is
used as therangeof the computation (also calleditera-
tion setconform [6]); a computation is performed for all
elements (yi) in this set using neighbouring values spec-
ified by a stencil. Which values (xj) are required is now
easily determined by adding all offsets in the stencil to all
elements in the range of the computation. This operation
is calleddilatationand is denoted by the symbol⊗.

334 VOLLEBREGT

Table 1. Definition of a Number of Stencils

stencil collection of offsets stencil offsets

S1 (0,−1), (−1,0), (0,0), (1,0), (0, 1)
S1x (−1,0), (0,0), (1,0) S1y (0,−1), (0,0), (0, 1)
S−1x (−1,0), (0,0) S−1y (0,−1), (0,0)
S+1x (0,0), (1, 0) S+1y (0, 0), (0, 1)
Suv (−1,0), (0,0), (−1,1), (0,1) Svu (0,−1), (0,0), (1,−1), (1,0)

Definition 5 The dilatation of an index setIs ⊂ I with
stencilS is

Js = Is ⊗ S
= {

(m̃, ñ) ∈ J | ∃(m, n) ∈ Is ∧ ∃(δm, δn) ∈ S:

m̃ = m+ δm, ñ = n+ δn}. (5)

Although the index setJ for which the input data is de-
fined need not be the same as the index set of the result
variable (I), it is clear that they must have the same di-
mension. From Definition 5 follows further that the di-
latation operation iscommutativeandassociative:

I ⊗ S = S ⊗ I, (6a)

(I ⊗ S1)⊗ S2 = I ⊗ (S1⊗ S2). (6b)

Also note the direction of the stencil: offsets in the sten-
cil areaddedto each point of the iteration set. If instead
we want to determine the set of elementsyi that are in-
fluenced by elementsxj in a subsetJs ⊂ J of the in-
put data, then we must calculate the dilatation ofJs with
stencil−S:

Is = Js ⊗−S
= {

(m, n) ∈ I | ∃(m̃, ñ) ∈ Js ∧ ∃(δm, δn) ∈ S:

m+ δm = m̃, n+ δn = ñ}. (7)

Finally the interaction set for the entire operation is given
by {

(m, n, m̃, ñ) ∈ I × J | ∃(δm, δn) ∈ S:

m̃ = m+ δm, ñ = n+ δn}. (8)

The concepts of index sets and interaction sets are
applicable in many fields in scientific computing. For
instance in finite element applications we can distin-
guish the sets of vertices, edges and elementsV, E,T .
For an unstructured mesh the index setV will be one-
dimensional, simply giving the node number. The set of
edgesE can be defined as a subset ofV × V, specifying

a relation between two vertices. Similarly triangular el-
ements can be defined as points in the setV × V × V.
Interactions can be defined in terms of these relations be-
tween nodes, edges and elements. For instance a compu-
tation for an element might require information from the
nodes that constitute the element. In another computation
information might also be required from “neighbouring”
nodes, which can be stated precisely using index setE .

Using index sets we can also give a nice characteri-
zation of data parallelism: a data parallel operation, also
called super-step, consists of more or less elementary cal-
culations performed independently for all elements of an
iteration set. Examples are found in parallel constructs
such as theforall -loop in parallel Fortran languages
[6]. A data parallel program consists of a sequence of
such data parallel operations. A single thread of control is
visible to the programmer; parallelism is explicit in each
data parallel operation. A program in this form can be
parallelized by applying multiple workers to each step
(agenda-parallel way of working, see [3]), and can be
converted into an SPMD form with multiple processes.
Where possible this should be left to a compiler; in the
following sections however it will be done manually in a
systematic manner.

At the conceptual level, the main issue in paralleliza-
tion is that of determining a suitable distribution of all
computations over a set of processors. In data parallel al-
gorithms, the data dependence graph of the algorithm is
presented in a highly structured form through the list of
super-steps. A partitioning for the entire algorithm can
then be constructed by giving a partitioning for each of
the super-steps. Of course the objective is to determine
the separate partitionings such that the overall perfor-
mance is maximized, which requires optimal utilization
of the processors as well as minimization of the amount
of data movement. This implies among others that dif-
ferent steps using the same result variable (iteration set)
should be partitioned in the same way if possible. Fur-
thermore different index sets which are used together in
super-steps should be partitioned such that as many inter-
acting indices are assigned to the same processor as pos-
sible. These issues are also visible in High Performance

ABSTRACT LEVEL PARALLELIZATION OF FINITE DIFFERENCE METHODS 335

Fortran (HPF, [6, 15]), in the problems ofdata distribu-
tion and re-distribution and ofalignmentof different ar-
rays. Index sets and interaction sets thus provide general-
izations of the regular array structures in HPF.

3 APPLICATION TO SHALLOW WATER
SIMULATION PROBLEMS

We have applied our formalism to the documentation and
parallelization of the complex three-dimensional shallow
water simulation program TRIWAQ [22, 23]. For mat-
ter of exposition we restrict ourselves in this section to a
numerical model for simulation of the two-dimensional
(depth-integrated) shallow water equations (SWE). The
characteristics of the problem that are essential for the
mathematical structure of the application are maintained,
namely the use of irregularly bounded staggered grids
and a time-dependent computational domain due to dry-
ing and flooding. However, a large number of practical
(engineering) aspects are abstracted from, such as the use
of curvi-linear grids, density differences due to temper-
ature and salinity variations, and solution of non-linear
equations etc. An introduction to SWE and their numer-
ical treatment is given in [24]. An introduction to finite
difference methods can be found in [1, 16].

We show how a finite difference method can accu-
rately be described on a high level of abstraction by
means of index sets and stencils. All the parallelism of
the numerical method is still present here. Therefore this
level is well suitable for analysis purposes and for starting
the parallelization. In Section 4 index sets and stencils are
used for describing the parallelization of the simulation
method. It will be shown that communication require-
ments can be determined easily and manipulated using
extra index sets for grid points near subdomain bound-
aries.

3.1 A numerical model for SWE

As a test case for illustrating the use of our documentation
techniques we use the numerical method of Yu [21, 25].
Because this problem is two-dimensional and due to the
largely linear and explicit treatment this method can be
explained somewhat easier than other shallow water mod-
els. This method is especially attractive for large scale
models such as the continental shelf, although it has also
been used for the Belgium coast and for lab-scale models.

The partial differential equations that are considered
here are:

∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y
+ g ∂ζ

∂x
− f v + λu = Fx, (9a)

∂v

∂t
+ u∂v

∂x
+ v ∂v

∂y
+ g ∂ζ

∂y
+ fu+ λv = Fy, (9b)

∂ζ

∂t
+ ∂Hu

∂x
+ ∂Hv

∂y
= 0. (9c)

In these equations,ζ denotes the water elevation with
respect to a plane of reference andu andv are the flow
velocities inx andy-directions.H = ζ + d is the to-
tal water depth, withd representing the bottom profile.
Fx, Fy are the components of the wind-stress vector in
x andy-directions,g is the acceleration of gravity,f is
the Coriolis parameter andλ is the bottom friction co-
efficient. We have omitted among others eddy-viscosity
effects and atmospheric pressure because they are not
needed for showing the use of index sets and stencils.

Equations (9a)–(9c) are numerically integrated with
respect to time by means of an Alternating Direction Im-
plicit (ADI) method. This means that a time-step is split
into two halves, first from timet to t + δt/2 and then
from t + δt/2 to t + δt. In the first half step the spatial
derivatives concerning water-elevation are taken explic-
itly in y-direction and implicitly inx-direction. This step
is given in Equations (10a)–(10c), with a prime denoting
values at the new time-level.

u′ − u
δt/2

+ u∂u
∂x
+ v ∂u

∂y
+ g ∂ζ

′

∂x

− f v′ + λu = F ′x, (10a)

v′ − v
δt/2

+ u∂v
∂x
+ v ∂v

∂y
+ g ∂ζ

∂y

+ fu+ λv′ = F ′y, (10b)

ζ ′ − ζ
δt/2

+ ∂(ζ + d)u
′

∂x
+ ∂(ζ + d)v

′

∂y
= 0. (10c)

The second half step is largely the same, except that the
role of x- andy-directions andu- andv-velocities is in-
terchanged. In each half time step the calculations consist
of first calculating values for the flow velocity in one di-
rection at the new time-level, then solving a collection
of tridiagonal systems for the water levelsζ , and finally
computing the other flow velocity.

3.2 Finite difference grids and index sets

In shallow water simulations the use of irregularly boun-
ded grids is inevitable, see Figure 1. An important aspect
is furthermore that the domain is varying in time, as a
result of drying and flooding due to tidal motion. In the
Wadden sea shown in Figure 1 this effect is quite extreme:
more than half of the grid points can be taken out of the
computation due to drying.

Another form of irregularity arises through the use of
staggered grids. This means that the different quantities
in the PDEs (velocities, water-levels) are discretized on
grids that are displaced with respect to each other by

336 VOLLEBREGT

one half mesh width. The use of staggered grids has sev-
eral advantages over standard grids in the area of SWE:
a decrease in storage requirement by a factor of four is
achieved without noticeable loss of accuracy, the imple-
mentation of boundary conditions is simplified and spu-
rious oscillations (“2δx waves”) are prevented, see, e.g.,
[24].

The finite difference grids are constructed by first ap-
proximating the physical domain by a collection of cells,
with cell-faces parallel to the coordinate directions (Fig-
ure 2, left). The computational domain, i.e., the collection
of cells, is represented by a two-dimensional index set:

Computational Domain= D = {(m, n)} ⊂ Z2. (11)

Then the water levelζ is approximated in the centres of
all cells and velocities are approximated on cell-faces.
For instanceu is approximated in the centres of cell-
faces parallel to they-axis. The nodes in which the un-
knowns are approximated thus form three different grids
that are displaced with respect to each other: a stag-
gered grid (Figure 2, right). Theu-point with coordinates
((m + 1/2)δx, nδy) is given the index(m, n), just asv-
point (mδx, (n+ 1/2)δy).

The index setsG∗u,G
∗
v,Gs for u, v- andζ -grids are for-

mally defined as:

G∗u = D ⊗ S+1x

= {
(m, n) ∈ Z2 |
(m, n) ∈ D ∨ (m+ 1, n) ∈ D}, (12a)

G∗v = D ⊗ S+1y

= {
(m, n) ∈ Z2 |
(m, n) ∈ D ∨ (m, n+ 1) ∈ D}, (12b)

Gs = D. (12c)

The adopted notation indicates that boundary points are
included in the sets of velocity-points, but not in the set
of water-level points. For the implementation of bound-
ary conditions an extra ring of virtualζ -points is cre-
ated around the domain which is denoted by the index
set∂Gs = ∂Gxs ∪ ∂Gys .

∂Gxs =
{
(m, n) ∈ Z2/D |
(m− 1, n) ∈ D ∨ (m+ 1, n) ∈ D}, (12d)

∂Gys =
{
(m, n) ∈ Z2/D |
(m, n− 1) ∈ D ∨ (m, n+ 1) ∈ D}. (12e)

The collection of all water-level points is denoted by
Gs = Gs ∪ ∂Gs . In the first phase of the ADI scheme
only the boundary points inx-direction∂Gxs are used, in
the second phase those iny-direction. Therefore we in-
troduce index setGxs = Gs ∪ ∂Gxs and likewiseGys . Note

that a boundary point can be needed inx-direction as well
as iny-direction, see for instance index(m+ 1, n+ 1) in
Figure 2 (right). Therefore∂Gxs and∂Gys are overlapping
if there are diagonal boundaries.

Only velocity points are subject to drying and flood-
ing in the numerical method that is considered. A point is
taken out of the computation as soon as the water-height
drops below a threshold and is inserted again if the water-
level rises above a (larger) threshold. The actual (time de-
pendent) set of wetu-points at a given time, denoted by
Gu, can thus be smaller than index setG∗u defined in Equa-
tion (12a).

Mapping the three grid points(mδx, nδy), ((m +
1/2)δx, nδy) and(mδx, (n+1/2)δy) onto the same index
(m, n) amounts toaligning the different grids. The three
points together form one grid point of the staggered grid.
The collection of all grid points in the staggered grid (the
union ofG∗u, G

∗
v andGs) is denoted byH. It has a similar

function as atemplatein HPF.
Calculations in the ADI scheme are sometimes based

on the rows and columns of the computational domain,
for instance in the definition of tridiagonal systems of
equations. A row is a set of cells with identicaln index
and consecutivem indices. The index set of all rows is
defined by

R = {
(n,m0,m1) ∈ Z3 |
m0 6 m1 ∧ (m0− 1, n) /∈ D ∧
(m1+ 1, n) /∈ D ∧ ∀m ∈ {m0, . . . ,m1}:
(m, n) ∈ D}. (13)

The collection of columnsC is defined similarly. There
can be several rows with the samen coordinate if there
are holes in the domain.

Definition (13) gives another representation of the
computational domain because

D ≡ {
(m, n) ∈ Z2 | ∃(ñ,m0,m1) ∈ R:

ñ = n ∧m0 6 m 6 m1
}
. (14)

This relation forms the basis of the actual implementa-
tion in Fortran. An operation for a specific index set is
realised by performing a double loop over all rows inR
and all points(m, n) within each row. A calculation for
wet points only is realised by selection with a mask array.

The implementation is not trivial however, but requires
detailed knowledge of and is tailored to the application.
For instance a calculation for allζ -points inGxs requires
a loop overm0 − 1, . . . ,m1 + 1 instead ofm0, . . . ,m1,
becauseGxs = D ⊗ S1x :

∀(n,m0,m1) ∈ R:

∀m ∈ {m0− 1,m0, . . . ,m1+ 1}:
calculate for grid point(m, n). (15)

ABSTRACT LEVEL PARALLELIZATION OF FINITE DIFFERENCE METHODS 337

FIGURE 2 Computational domain versus staggered grid.

With respect toGxs , a rowr = (ñ,m0,m1) therefore con-
sists of the grid points

gp(r) = {
(m, n) ∈ Gxs |
n = ñ ∧m0− 16 m 6 m1+ 1

}
. (16)

This relation also describes the interaction set betweenGxs
andR. With this definition two rows can have a grid point
in common if the left boundary point of one row is the
right boundary point of another (n = n′,m0− 1= m′1+
1). This may be problematic if the indices are also used as
array-indices in the implementation. It can be prevented
by imposing a restriction on the shape ofD.

The index sets that have been defined above character-
ize the mathematical structure of the data items in the ap-
plication, and provide a natural starting point for choos-
ing an implementation structure. For instance it is very
convenient to have an array that contains the index setR.
Then a specification of a program in terms of index sets
can be transformed automatically into program code by a
simple preprocessor, see Figure 3.

This way of automatization allows for programming
on a higher level of abstraction, leading to a more con-
cise and readable program. It preventsoff-by-oneerrors
in loop bounds, because the programmer must only con-
centrate on which range is intended (range_g_sx), and
not on how to realize this calculation. This way of work-
ing also enables choosing different realizations on differ-
ent platforms. For instance on vector computers a useful
alternative to the double loop implementation is to loop
over all points in the rectangular hull around the domain,
because this leads to longer vectors. Also it is often ad-
vantageous to have unit stride in computations, e.g., in the
presence of cache memory, such that it might be better to
access grid points column-wise instead of row-wise.

Abstract program code:

c$ix for (m,n) in range_g_sx
Fortran code for point (m,n)

c$ix endfor

Fortran implementation withdo-loops:

do 20 ix_r = 1, norows
n = rowtbl(ix_r, 1)
ix_m0 = rowtbl(ix_r, 2)
ix_m1 = rowtbl(ix_r, 3)
do 10 m = ix_m0-1, ix_m1+1

Fortran code for
grid point (m,n)

10 continue
20 continue

FIGURE 3 Illustration of a simple mechanism for providing
tool-support, for lifting the programming to a higher level of
abstraction.

3.3 Spatial discretizations and stencils

All differentials in Equations (10a)–(10c) are replaced
(approximated) by difference quotients. This is done in
such a way that the values of unknowns are only required
in the points where they are approximated. Due to the
grid-staggering, this sometimes requires interpolation or
averaging. For example in the discretization of (10b) in
wet v-points inGv, approximation of the Coriolis term
f u requiresu in v-points:

f u|v-point(m,n)

≈ f um−1,n + um,n + um−1,n+1+ um,n+1

4
. (17)

338 VOLLEBREGT

The values that are required for evaluation of this for-
mula are characterized by stencilSuv (see Table 1). If
Equation (17) is applied for iteration setGv, then the set
of grid points for whichu-values are required isGv⊗Suv .
But the value ofu is undefined for indices in this set that
do not belong toG∗u. Therefore Equation (17) cannot be
applied inv-points(m, n) for which

∃(δm, δn) ∈ Suv: (m+ δm, n+ δn) /∈ G∗u
⇐⇒ {(m, n)} ⊗ Suv/G∗u 6= ∅. (18)

This occurs frequently if larger stencils (e.g., five points
wide) are used. Therefore different approximations must
be used near boundaries and in other special cases (e.g.,
for drying and flooding). Equation (18) illustrates the pos-
sibility for tool-support for automatic verification of the
correctness of the discretizations that are used, for check-
ing whether the stencils used in discretization need only
data for grid points in the domain.

3.4 The solution algorithm

The steps in the solution algorithm have been described
after the specification of temporal discretizations in Equa-
tions (10a)–(10c). In this subsection a more detailed de-
scription is presented for the first half of each time step.

The first step in the solution algorithm is to determine
v′ from the spatially discretized version of

∀(m, n) ∈ Gv: v′m,n = vm,n
+ δt

2(1+ λ)
(
F ′y − u

∂v

∂x
− v ∂v

∂y
− g ∂ζ

∂y
− fu

)
, (19a)

∀(m, n) ∈ G∗v/Gv: v′m,n = 0. (19b)

Thenu′ andζ ′ are calculated by solving Equations (10a)
and (10c). For this, Equation (10a) is rewritten such that
u′m,n is expressed inζ ′m+1,n− ζ ′m,n, which is used to sym-
bolically eliminateu′m,n from (10c). This leads to tridiag-
onal systems of equations forζ ′ for all rows of the grid.
For allζ -points inGxs the corresponding equation is writ-
ten as

am,nζ
′
m−1,n + bm,nζ ′m,n + cm,nζ ′m+1,n = dm,n. (20)

Of course at the start of a row where index(m −
1, n) /∈ Gxs boundary conditions are inserted and the term
am,nζ

′
m−1,n is dropped, and similarly at the end of a row.

The second step in the solution algorithm is now to set up
these equations:

∀(m, n) ∈ Gxs :
calculateam,n, bm,n, cm,n anddm,n. (21)

These calculations are independent for all grid points.
The formulas that must be evaluated can be found by per-
forming the symbolic transformations described above.

The third step consists of solving the tridiagonal sys-
tems, for instance with Thomas’ algorithm (“Gaussian
elimination without pivoting”, see for instance [16]).

∀r ∈ R: ∀(m, n) ∈ gp(r):
determineζ ′m,n from (20). (22)

Here the first loop over all rows describes independent
calculations, whereas the second part consists of the so-
lution of one tridiagonal system of equations.

Finally u′ can be calculated from

∀(m, n) ∈ Gu: u′m,n = um,n
+ δt

2

(
F ′x − u

∂u

∂x
− v ∂u

∂y
− g ∂ζ

′

∂x
+ f v′ − λu

)
, (23a)

∀(m, n) ∈ G∗u/Gu: u′m,n = 0. (23b)

The description above shows how index sets are used
for specifying the range of a computation, which causes
information to be recorded that is otherwise not docu-
mented. For instance in Equation (23a) it is made ex-
plicit that wet u-points are treated differently than dry
u-points (Equation (23b)). Also in Equation (22) it is
explicitly specified where newζ -values are calculated,
namely in all points inGxs (see Equation (14)), and not
in y-boundary points∂Gys /∂Gxs (note that∂Gxs and∂Gys
need not be disjoint, see Section 3.2). This way of work-
ing therefore leads to less mistakes during software devel-
opment. More information regarding data dependences
can be recorded using stencils, as will be shown in the
following section.

The solution algorithm in steps (19), (21), (22) and
(23) can be further refined into a sequence of more el-
ementary calculations for all grid points. This will give
a detailed but also still abstract specification of the nu-
merical method, concentrating only on the mathematical
structure of the algorithm. This level is suitable for ma-
nipulations such as algebraic simplification (expanding or
rewriting expressions) and common subexpression elim-
ination (calculating averagedu-values only once from
(17), use twice in (19a)), see [10]. In this way the com-
putational complexity of the algorithm can be reduced.
Similarly the data dependences between different super-
steps may be optimized.

4 APPLICATION IN PARALLELIZATION

In the previous section we have shown our way of work-
ing in documentation of a finite difference method. In the

ABSTRACT LEVEL PARALLELIZATION OF FINITE DIFFERENCE METHODS 339

description of the solution algorithm much attention is
paid to precisely specifying for which grid points calcu-
lations are carried out and which data items are involved.
This helps preventing and detecting errors in the final
source code and may lead to new insights in the numerical
method. In this section we consider the application of the
extra documentation for parallelization of the numerical
method.

The parallelization is based on the agenda parallel ap-
proach described in Section 2: the super-steps of the so-
lution algorithm are carried out in order, and the work in
each step is carried out by multiple processes. The distri-
bution of work in the steps is based on a partitioning of
the staggered gridH, and each worker process is respon-
sible for the computations for one subgrid (subdomain).
For the kind of grids that occur in shallow water applica-
tions the subdomains are necessarily irregularly shaped.
This implies that determination of which data must be ex-
changed between neighbouring subdomains can be an ex-
tremely difficult task. However, it is greatly simplified by
the use of index sets and stencils, by performing the par-
allelization first on the conceptual level and then working
this down to the source code.

The notation that is used for describing the partition-
ing of the grid and the related index sets is introduced in
Subsection 4.1 below. Then this notation is used for trans-
forming the solution algorithm into a form with multiple
computing processes. The amount of data exchange be-
tween these processes can be derived easily. This allows
for comparison of the performance of alternative paral-
lelization strategies for the super-steps, see Subsections
4.4 and 4.5. Finally a set of high-level collective com-
munication subroutines is introduced with which the pro-
gram can be converted easily into process/channel form,
by inserting communication between the steps where nec-
essary.

4.1 Partitioning of index sets

The distribution of work and data over the processors
is based on a partitioning of the staggered gridH. This
means that each grid point is assigned to a processor. The
subdomains (subgrids) are denoted byHp, with subdo-
main numberp ∈ P . The sets ofu, v- andζ -points are
partitioned accordingly. This gives for example for the set
of internalζ -points:

Gs =
⋃
p∈P
Gs,p with Gs,p ∩ Gs,p̃ = ∅ if p 6= p̃. (24)

Similarly for boundary points:

∂Gs =
⋃
p∈P

∂Gs,p with ∂Gs,p ∩ ∂Gs,p̃ = ∅ if p 6= p̃.
(25)

Thus the set of boundary points of subdomainp consists
only of real boundary points and does not include points
at interface boundaries between subdomains. Like before
we defineGs,p = Gs,p ∪ ∂Gs,p.

For denoting the range of a calculation or the domain
for which a variable is required we must also describe the
interface points of subdomains. The points just outside a
subdomainp are calledexternalinterface points and are
referred to byJp and points inside subdomainp near the
interface are calledinternal interface pointsIp. A precise
specification of which points are “near” the interface is
made with stencils:

Definition 6 The external interfaceJp,S of subdomain
p with respect to stencilS is the collection of all grid
points that do not belong to subdomainp and which can
be obtained from a grid point inHp plus an offset inS:

Jp,S = (Hp ⊗ S)/Hp. (26)

Definition 7 The internal interfaceIp,S of subdomainp
with respect to stencilS is the set of grid points inHp for
which one of the points referred to byS is outsideHp:

Ip,S = (H/Hp ⊗−S) ∩Hp. (27)

These definitions can be generalized easily for exclud-
ing certain interface points, for instance if a calculation is
performed for interiorζ -points or wetu-points only.

Note that three different index sets are partitioned at
once by partitioning ofH. This idea is carried further
in the parallelization of the full application TRIWAQ.
There, we have identified about 15 different index sets
such as for source points or for open boundary points. All
these index sets can be related to the grid through grid
point numbers, which implicitly defines interaction sets.
Quantities for these additional index sets are stored in dif-
ferent arrays than the fieldsu, v andζ . Therefore direct
partitioning of all separate arrays, on the level of the im-
plementation structures, would not preserve data locality.
However, with our approach of partitioning all index sets
through partitioning ofH, all related data are assigned to
the same subdomain.

Optimization of the partitioning requires that the per-
formance for a given partitioning can be estimated be-
forehand. This is done by defining a workload for each
grid point inH, and by estimating the amount of commu-
nication overhead. A good approximation of the work-
load per domain is given by the number of active grid
points, i.e., by the cardinality #H. Estimates for the com-
munication overhead are derived from the stencils that are
used, for instance by analyzing the cardinalities #Jp,S
and #Ip,S for a few elementary domains (e.g., rectan-
gles). In this work we do not consider load balancing any
further, i.e., the partitioning method that is used is com-
pletely left open. For an overview of partitioning and par-
titioning methods see for instance [18].

340 VOLLEBREGT

4.2 Distribution with an owner computes rule

A partitioning ofH into disjoint subsetsHp is nothing
more than that, and does not command anything about
the mapping of operations onto the processors. A com-
mon approach for making a distribution of work out of a
partitioning is by means of an owner computes rule. This
rule is here formulated as “a calculation is assigned to the
processor that owns the index of the result variable”.

As an example we consider the following super-step in
the evaluation of the terms between brackets in Equation
(19a) in auxiliary variableem,n:

∀(m, n) ∈ Gv : calculate

em,n := em,n −
(
g
ζm,n+1 − ζm,n

δy

)
. (28)

This super-step can be parallelized by noting thatem,n
belongs to grid point(m, n) and assigning the update of
em,n to the owner of this grid point. This results in the
following super-step:

∀p ∈ P : ∀(m, n) ∈ Gv,p: calculate

em,n := em,n −
(
g
ζm,n+1 − ζm,n

δy

)
. (29)

This super-step is called parallel because it is explicitly
subdivided into groups of calculations for different pro-
cesses. The required data items for each group are de-
termined by the dilatation of the subdomain with stencil
S+1y , the stencil of the calculation:

∀p ∈ P : input: ζm,n for (m, n) ∈ Gv,p ⊗ S+1y. (30)

The amount of data exchange between different pro-
cesses can be determined by counting the number of non-
local grid points in (30). An estimate is obtained by not-
ing thatGv,p⊗S+1y ⊂ Gys,p∪Jp,+1y , using (26), with the
difference residing in dryv-points and boundary effects.
So the number of values that must be obtained by proces-
sorp from other processors is roughly equal to #Jp,+1y .

Subgrids can be represented by a collection of rows in
the same way as the entire grid (Equation (14)). Calcula-
tions for subdomain index sets can therefore also be im-
plemented with a double loop over rows and grid points
per row, and the same ideas for automatic code generation
are valid. In determining which points belong to a row
(loop bounds, see Equation (16)) we must now take into
account whether a boundary point is an interface point or
a true boundary point. Parallelization actually consists of
adding a check on whether the calculation must be per-
formed for the start and end-points of each row. This im-
plies that the greater part of the sequential code can be
re-used in the parallelization.

4.3 Parallel solution of tridiagonal systems

The solution of tridiagonal systems by means of Thomas’
algorithm is purely sequential. Still there is parallelism
in step (22), namely through the occurrence of multiple
tridiagonal systems, one for each row inR. Paralleliza-
tion is therefore possible by means of partitioning of the
setR over the processors, into disjoint subsetsRp.

The processor that must solve the tridiagonal sys-
tem for a row r ∈ R must have all the coefficients
am,n, . . . , dm,n for this row. The precise set of grid points
for which data are required is determined with the set
gp(r), which contains all grid points that are associated
with row r:

∀p ∈ P : input: am,n, . . . , dm,n for (m, n) ∈
⋃
r∈Rp

gp(r).

(31)
From the viewpoint of data locality it is now advanta-
geous to choose the partitionings ofH andR such that
the overlap betweenHp and

⋃
r∈Rp gp(r) is maximized.

However, in the second phase of the integration scheme
tridiagonal systems have to be solved for all columns in
C. This imposes a requirement concerning overlap ofHp
and Cp that is conflicting with the former requirement
for Rp ; a row-wise distribution ofH is required in the
first phase and a column-wise distribution in the second.
Therefore a complete data transposition step (similar to
transposing a distributed matrix) is needed between the
two solution phases.

The amount of communication in the transposition
step is proportional to the number of grid points inH.
Therefore other parallelization approaches might be bet-
ter than this “Thomas algorithm with data transposition”
(TADT, partitioning ofR andC) approach. However, for
the numerical model discussed in this work, this TADT
approach outperforms a number of direct and iterative
alternatives on an Intel iPSC/860 parallel computer for
moderate (16–32) numbers of processors [21]. For other
numerical methods the number of data transpositions can
be larger, in which case other solvers are more appropri-
ate [22].

The TADT approach in this subsection illustrates the
application of general interaction sets (betweenH and
R, throughgp(r)) for determining the data items that are
needed in an operation. The specification of data require-
ments is done by adding aninput-clause as annotation to
each step. This has been applied also for non-data par-
allel operations such as the solution of a tridiagonal sys-
tem. Further we have given an example of a solution algo-
rithm that consists of super-steps for different index sets,
for which parallelization requires the determination of an
optimal alignment of the separate partitionings.

ABSTRACT LEVEL PARALLELIZATION OF FINITE DIFFERENCE METHODS 341

4.4 Distribution with redundant calculations

Use of the owner computes rule implies that a proces-
sor always calculates values for his own grid points only.
This rule is easy to use, but may not be the most effi-
cient in all cases. An alternative strategy is to allowre-
dundant calculations. This means that a processor per-
forms a calculation not only for its own grid points, but
also for some external interface points. For indices close
to subdomain boundaries the same value is then calcu-
lated independently by different processes. This may re-
quire more communication for one calculation, but may
save communication in another place.

For instance it is possible to let all processors calculate
v′ for (Hp ∪Jp,−1y)∩Gv (all wetv-points in subdomain
p and its external interface with respect toS−1y) instead
of for their own grid pointsGv,p only (as in Equation
(29)). The advantage is thatv′ does not have to be com-
municated for discretization of the term∂(ζ + d)v′/∂y
in Equation (10c), (in coefficientdm,n in Equation (21)).
Unfortunatelyv′ is still required for stencilSvu for eval-
uation of (23a) (see Equation (17)), such that this scheme
does not save communication in this example. We have
encountered other cases in which this technique does re-
duce the total amount of communication.

Redundant calculation ofv′ implies that step (28) is
parallelized with

∀p ∈ P : ∀(m, n) ∈ (Hp ∪ Jp,−1y) ∩ Gv :
em,n := em,n −

(
g
ζm,n+1 − ζm,n

δy

)
. (32)

Therefore theζ -values that are required are given by:

∀p ∈ P : input: ζm,n for

(m, n) ∈ ((Hp ∪ Jp,−1y) ∩ Gv
)⊗ S+1y. (33)

By manipulation with index sets, using thatS1y =
S−1y⊗S+1y , it can be shown that the number of non-local
ζ -values needed by processorp is now roughly #Jp,1y.
This must be compared with #Jp,+1y for the original ap-
proach. Redundant calculations always need more data
than with an owner computes rule because calculations
are done for a larger iteration set. However, depending on
the situation these data might already be available from
previous calculations or communication.

The discussion above shows that the analysis of redun-
dant calculation schemes can be done using a high-level
description of the numerical method in terms of index sets
and stencils. The manipulation with index sets and deriva-
tion of the amount of communication can even be auto-
mated. This analysis would have been virtually impossi-
ble otherwise, on the level of the implementation struc-
ture, without (implicitly) using the notation.

4.5 Distribution with an input-owner computes
rule

In determining data requirements for the matrix-vector
multiplication in (1b) we have actually assumed that
an owner computes rule is used. Another parallelization
strategy is to define the distribution of work not on basis
of the elementsyi of y but instead on the elementsxj of
x. This can be viewed as a column-wise distribution of the
matrixA, where the original scheme implies a row-wise
distribution ofA.

Similarly, an alternative to (29) can be based on the
indices ofζ -values in (28) instead of the indices ofe.
This leads to the parallel calculations (for allp ∈ P)

∀(m, n) ∈ Gys,p: if (m, n− 1) ∈ Gv :
calculateem,n−1 := em,n−1 − gζm,n/δy, (34a)

∀(m, n) ∈ Gys,p: if (m, n) ∈ Gv :
calculateem,n := em,n + gζm,n/δy. (34b)

Here we violate the owner computes rule of Subsec-
tion 4.2 because there are indices(m, n) ∈ Gys,p such that
processorp is not the owner of result variableem,n−1,
corresponding tov-point (m, n − 1). The distribution of
work is no longer based on the result variable, but in-
stead on one of the input variables. Therefore this way
of work-distribution is called an “input-owner computes
rule”. The correctness of this realization can be shown by
manipulation of the index sets that are involved.

A complication in implementation of (34a) and (34b)
is that specific valuesem,n are modified by more than one
processor. In a parallel programming paradigm in which
all data is shared by all computing processes this requires
some form of synchronization for enforcing mutual ex-
clusion. In a process/channel paradigm, where processes
only have local memory, processes cannot access all vari-
ables that they contribute to. Then it is useful to intro-
duce temporary variablese(p)m,n on all processorsp that
contribute to the result value for index(m, n). The index
set for which temporary variables must be introduced is
given by

∀p ∈ P : output: e(p)m,n for

(m, n) ∈ (Gys,p ⊗ S−1y
) ∩ Gv. (35)

Communication is then used for summing up the different
contributions and recovering the final value, see Subsec-
tion 4.6 below. On the other hand, no communication is
required forζ because it is required for grid points inGys,p
only. Therefore the situation is reversed in comparison to
the original owner computes rule, where communication
is needed for the input variable and not for the output
variable.

342 VOLLEBREGT

4.6 Abstract communication operations

In the previous subsections we have shown how to specify
distributions of work at the mathematical level in terms of
subdomain and interface index sets, thereby disregarding
whether a processor can access the required data or not.
A distribution of work should be specified for each super-
step separately. Then the data that are needed and pro-
duced by an operation can be derived immediately from
the iteration set and stencil that are used. This informa-
tion has been indicated by annotating super-steps with
input andoutput-clauses. We have shown how the data
requirements can be influenced by choosing different dis-
tributions of work. After all super-steps have been paral-
lelized in this way, communication must be inserted be-
tween them for ensuring that all required data are indeed
available.

For this we introduce two communication steps by
means of their input- and output-clauses. The first one
is update , with as function to make information of each
subdomain available to neighbouring subdomains. On in-
put, a grid functiondm,n is stored in a distributed way in
the local memories of all computing processes. Auxiliary
variables are introduced for storing local copies ofdm,n
for indices “just outside” each subdomain (a so-called
guard band). The update procedure is used for refresh-
ing these auxiliary variables.

Procedural abstraction P1. Update of local copies
tmp

(p)
m,n of global valuesdm,n for stencilS,

∀p ∈ P : input: dm,n for (m, n) ∈ Hp, (36a)

∀p ∈ P : output: tmp(p)m,n = dm,n
for (m, n) ∈ Hp ∪ Jp,S . (36b)

In an implementation, a single array can be used for
storing bothdm,n in subdomainp and tmp(p)m,n. This ar-
ray then provides different views on the data alternately,
namely as part of a global grid function or as individual
local grid functions. In the definition of P1 above these
views have been separated.

The second communication step isaccumulate ,
which is used for summing up contributions from differ-
ent processors on the processor that owns an index. This
operation is in many respects the dual of theupdate -
operation. It is not required if the owner computes rule is
applied consistently.

Procedural abstraction P2.Accumulation of local con-
tributions tmp(p)m,n to valuesdm,n with respect to sten-
cil S,

∀p ∈ P : input:

tmp
(p)
m,n for (m, n) ∈ Hp ∪ Jp,−S , (37a)

∀p ∈ P : output:

dm,n =
∑

p̃∈pr(m,n)
tmp

(p̃)
m,n for (m, n) ∈ Hp, with

pr(m, n) = {p̃ ∈ P | (m, n) ∈ Hp̃ ∪ Jp̃,−S}. (37b)

The stencil−S is used in the definition of the accumulate
operation because we adhere to the conventional meaning
of a stencil in which central point is connected with the
result variable. With this definition, valuese(p)m,n provided
in (35) must then accumulated for stencilS+1y instead of
S−1y , which agrees with the stencil that is used in calcu-
lation (28).

By inserting communication a program in a pro-
cess/shared data paradigm is transformed into a new pro-
gram in which communication is taken into account. The
task of determining where these communication opera-
tions are needed and for which variables and stencils is
straightforward and is largely similar to data dependence
analysis. It is amenable to automization especially if all
super-steps in the solution algorithm are annotated with
the required input and output data. Data dependence anal-
ysis might also be used for ordering the super-steps in an
optimal way. The amount of communication overhead is
reduced if different communications are taken together
and if communication is overlapped with useful calcu-
lations. For example in step (23a) of the solution algo-
rithm the communication forζ ′ can be overlapped with
the evaluation of the other terms in this equation.

Communication operations P1 and P2 are abstract in
the sense that implementation aspects such as intercon-
nectivity of subdomains, processor topology and mes-
sage passing protocol are hidden. The interface is for-
mulated in terms of entities that are meaningful to ap-
plication programmers, which further simplifies their us-
age (see Figure 4). Therefore these operations can also
be used by non-parallelization experts. At the same time
they are very powerful, because they allow for arbitrar-
ily shaped subgrids and allow for precise specification of
what should be communicated through the index set and
stencil used.

Portability is obtained by using a standard interface
that can be implemented on all (distributed and shared
memory) parallel computers, and by using thede facto
message passing standard PVM [2, 13] in the implemen-
tation. Efficiency is achieved because of the inherent pos-
sibility of message-vectorizationfor minimization of la-
tency effects, i.e., packing as many data items in one mes-
sage as possible. Furthermore the detailed knowledge of
the solution algorithm and required communication oper-
ations allows fordirect determinationof the sets of values
(indices) to be sent to and received from other processes.

ABSTRACT LEVEL PARALLELIZATION OF FINITE DIFFERENCE METHODS 343

c partno=processor number,
c h_owner=specifying the partitioning,
c make_table: create the communication
c table for a stencil

call make_table(partno, proc_list,
+ h_owner, stencil, table)

call update(partno, in_field,
+ table, out_field)

FIGURE 4 Example calls to the communication subroutines.

In this way theinspector-phase is avoided that is often
used in the compilation of HPF programs. The inspector-
phase works by executing a loop without calculating any-
thing, for determining what must be communicated. Then
the communication takes place and finally the loop is ex-
ecuted with all calculations in anexecutor-phase [6].

The interface index sets that are required can be im-
plemented by formulas or by tables. The latter is espe-
cially advantageous for irregular partitionings. The num-
ber of tables required is reduced by performing slightly
more communication than strictly required, providing
data for an interface index set slightly larger than spec-
ified in the input-clauses. For instance data can be sent
for all interface points instead of wet interface points
only. This yields a considerable gain because it requires
the inspector-phase to be executed only once instead of
each time that points are drying and flooding. Also in-
stead of defining interface index sets forG∗u,p, G∗v,p and

Gs,p we useHp in the definition ofIp,S andJp,S , lead-
ing to slightly more communication near boundaries of
the computational domain. To assess the amount of ex-
tra communication that is introduced in this way requires
knowledge about the problem and therefore these modifi-
cations cannot be automated easily.

5 SUMMARY AND DISCUSSION

In this work we have introduced the concepts of index
sets and stencils and shown their application for docu-
menting and parallelizing a complex numerical model.
Their essential contribution is to specify precisely the
mathematical structure of the model, i.e., the domain of
variables, the range of computations and the set of data
items required in each operation. This extra information
can be used throughout for structuring the development
of numerical simulation software. Possibilities for tool-
support have been indicated, such as devising a simple
preprocessor for replacing calculations for index sets by
do-loops. This allows for choosing different implemen-
tations on different types of computers and therefore en-
hances portability.

The notation is particularly useful in parallelization,
in determining where and what to be communicated be-
tween processes. Namely, the index set for which data
is required for an operation is the set of all points that
are reached by applying the stencil of the calculation
in all points in the range of the calculation. Paralleliza-
tion by means of an owner computes rule has almost
become a mechanical process of determining (and opti-
mizing) data dependences and inserting communication,
and is highly suitable for automatization. Other paral-
lelization strategies have become manageable, whereas
determination of the required communication would be
virtually impossible otherwise. A few powerful sub-
routines can be devised for this communication that
take care of all necessary message passing. Portability
and efficiency are achieved by using a standard inter-
face and providing efficient implementations on all plat-
forms.

We have thus shown how message passing software
can be developed in a systematic way for more unstruc-
tured or irregular problems. The success of our tech-
niques is based on bringing the development to a more
abstract level. At this level, the structure of a solution al-
gorithm is made explicit through the interactions between
different data items. This allows for improving the degree
of data locality in a parallel implementation, by proper
alignment of the partitionings of different index sets. In
the comparison of alternatives application programmers
can concentrate on relevant issues of the solution algo-
rithm only. These issues do includewhatmust be commu-
nicated, but not the precise details of sending messages,
i.e.,howit is implemented.

Concepts that are similar to our index sets and inter-
action sets are employed in Crystal [7] and PROMOTER
[14, 20]. A difference is that our work is oriented towards
a specific application (FDM on irregularly bounded stag-
gered grids). It has been shown that complex algebraic
manipulations with index setsD,G,H andR are possible
and that a considerable performance gain can be achieved
using knowledge of the application. For instance by com-
municating for allu-points (G∗u) instead of wetu-points
only (Gu) repeated analysis of the required communica-
tion can be avoided. It is therefore advisable to apply the
concepts not only as entities in a programming model or
compiler system, but to use them throughout the entire
software development process.

6 OBTAINING THE COMMUNICATION
SOFTWARE

The communication subroutines that implement the pro-
cedural abstractions of Subsection 4.6 are kindly made
available to the public by the Dutch Rijkswaterstaat and

344 VOLLEBREGT

VORtech . They can be obtained via the world wide web
at URL

http://ta.twi.tudelft.nl/PA/VORtech/

REFERENCES

[1] W. F. Ames,Numerical Methods for Partial Differential
Equations, 3rd ed. New York: Academic Press, 1992.

[2] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and
V. Sunderam, “Recent enhancements to PVM,”Interna-
tional Journal of Supercomputer Applications and High
Performance Computing, Vol. 9, no. 2, pp. 108–127, 1995.

[3] N. Carriero and D. Gelernter, “How to write parallel pro-
grams: A guide to the perplexed,”ACM Computing Sur-
veys, Vol. 21, pp. 323–357, 1989.

[4] H. H. ten Cate and E. A. H. Vollebregt, “On the portability
and efficiency of parallel algorithms and software,”Par-
allel Computing, Vol. 22, no. 8, pp. 1149–1163, October
1996.

[5] K. M. Chandy and J. Misra,Parallel Program Design, A
Foundation. Addison-Wesley, 1988.

[6] B. Chapman, P. Mehrotra, and H. Zima, “High Perfor-
mance Fortran languages: Advanced applications and their
implementation,”Future Generation Computer Systems,
Vol. 11, pp. 401–407, 1995.

[7] M. Chen, Y. Choo, and J. Li, “Crystal: Theory and prag-
matics of generating efficient parallel code,” in B. K. Szy-
manski, Ed.,Parallel Functional Languages and Compil-
ers, Frontier Series. ACM Press, 1991, Ch. 7, pp. 255–308.

[8] M. I. Cole, Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. Research Monographs in
Parallel and Distributed Computing. Cambridge, MA:
MIT Press, 1989.

[9] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly,
D. W. N. Sharp, Q. Wu, and R. L. While, “Paral-
lel programming using skeleton functions,” in A. Bode,
M. Reeve, and G. Wolf, Eds.,PARLE 93: Parallel Archi-
tectures and Languages Europe. Berlin: Springer-Verlag,
1993.

[10] R. van Engelen, L. Wolters, and G. Cats, CTADEL: A gen-
erator of efficient code for PDE-based scientific applica-
tions,” Technical Report 95-26, Department of Computer
Science, Leiden University, 1995.

[11] S. Fitzpatrick, M. Clint, P. Kilpatrick, and T. J. Harmer,
“The tailoring of abstract functional specifications of nu-
merical algorithms for sparse data structures through auto-
mated program derivation and transformation,”The Com-
puter Journal, Vol. 39, no 2, pp. 145–168, 1996.

[12] I. Foster, Designing and Building Parallel Programs.
Addison-Wesley, 1995.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, “PVM 3 user’s guide and reference
manual,” Technical Report TM-12187, Oak Ridge Na-
tional Laboratory, May 1994.

[14] W. K. Giloi and A. Schramm, “PROMOTER – an
application-oriented programming model for massive par-
allelism,” in W. K. Giloi, S. Jähnichen, and B. Shriver,
Eds.,Massively Parallel Programming Models, Proc. Int.
MPPM Conference. IEEE-CS Press, 1993.

[15] High Performance Fortran Forum. High Performance
Fortran language specification.Scientific Programming,
Vol. 2, no. 1, pp. 1–170, 1993.

[16] C. Hirsch,Numerical Computation of Internal and Exter-
nal Flows, Vol. 1: Fundamentals of Numerical Discretiza-
tion. Chichester: Wiley, 1988.

[17] P. Pepper, J. Exner, and M. Südholt, “Functional devel-
opment of massively parallel programs,” in D. Bjørner,
M. Broy, and I. V. Pottosin, Eds.,Formal Methods in
Programming and Their Applications. Proc. Int. Conf.
Novosibirsk, 1993, Lecture Notes in Computer Science,
Vol. 735. Berlin: Springer-Verlag, 1993, pp. 217–238.

[18] M. R. T. Roest,Partitioning for Parallel Finite Difference
Computations in Coastal Water Simulation. PhD thesis,
Delft University of Technology, 1997.

[19] Th. Ruppelt and G. Wirtz, “Automatic transformation of
high-level object-oriented specifications into parallel pro-
grams,”Parallel Computing, Vol. 10, pp. 15–28, 1989.

[20] A. Schramm, “Irregular applications in PROMOTER,” in
W. K. Giloi, S. Jähnichen, and B. Shriver, Eds.,Massively
Parallel Programming Models, Proc. Int. MPPM Confer-
ence. IEEE-CS Press, 1995.

[21] Z. W. Song,Parallelization of Hydrodynamic Models for
Distributed Memory Computers. PhD thesis, K.U. Leu-
ven, 1995.

[22] E. A. H. Vollebregt,Parallel Software Development Tech-
niques for Shallow Water Models. PhD thesis, Delft Uni-
versity of Technology, 1997.

[23] E. A. H. Vollebregt, M. R. T. Roest, H. H. ten Cate, and
H. X. Lin, “The PARALLEL project: Parallel simulation
of 3D flow and transport models,” in L. Dekker, W. Smit,
and J. C. Zuidervaart, Eds.,Int. EUROSIM Conference
HPCN Challenges in Telecomp and Telecom. Elsevier,
1996, pp. 479–486.

[24] C. B. Vreugdenhil,Numerical Methods for Shallow-Water
Flow, Water Science and Technology Library, Vol. 13.
Dordrecht: Kluwer Academic Publishers, 1994.

[25] C. S. Yu,Modelling Shelf Sea Dynamics. PhD thesis, K.U.
Leuven, Belgium, 1993.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

