
Precise Analysis of Array Usage
Scientific Programs*

• m

M. MANJUNATHAIAH AND DENIS A. NICOLE
Department of Electronics and Computer Science, University of Southampton, Southampton, SO 17 1 B];
e-mail: {mm93r,dan}@ecs.soton.ac.uk

ABSTRACT

The automatic transformation of sequential programs for efficient execution on parallel comput­
ers involves a number of analyses and restructurings of the input. Some of these analyses are
based on computing array sections, a compact description of a range of array elements.
Array sections describe the set of array elements that are either read or written by program
statements. These sections can be compactly represented using shape descriptors such as
regular sections, simple sections, or generalized convex regions. However, binary operations
such as Union performed on these representations do not satisfy a straightforward closure
property, e.g., if the operands to Union are convex, the result may be nonconvex. Approxima­
tions are resorted to in order to satisfy this closure property. These approximations introduce
imprecision in the analyses and, furthermore, the imprecisions resulting from successive opera­
tions have a cumulative effect. Delayed merging is a technique suggested and used in some
of the existing analyses to minimize the effects of approximation. However, this technique
does not guarantee an exact solution in a general setting. This article presents a generalized
technique to precisely compute Union which can overcome these imprecisions. © 1997 John

Wiley & Sons, Inc.

1 INTRODUCTION

The automatic transformation of sequential programs
for efficient execution on parallel computers involves
a number of analyses and restructurings of the input.
,Traditionally, compiler analysis for such automatic
syntheses of parallel programs has been confined to
the discovery of parallelism in loops. However, recent
research studies demonstrate that loop-level paralleli-

Received September 199S
Revised ~arch 1996

* Supported by a research grant from the Commonwealth Schol­
arship Commisoion in the { ·.K.

© 1997 by John Wiley & Sons. Inc.

Scientific Programming. Vol. 6. pp. 229-242 (1997)
CC(: 1 0:>8-9244/97 /020229-14

zation alone is not adequate to extract good perfor­
mance from current scalable parallel machines [1, 2 J.
Compiler analysis is therefore being extended beyond
loop boundaries to procedures, including the whole
program. Global analysis techniques such as interpro­
cedural dependence analysis [2-4 J and array data
flow analysis [5, 6] have been introduced to discover
coarse grain parallelism, asynchronous computations
that perform a significant amount of work between
synchronization events. A number of such global anal­
yses techniques are based on computing array sections,
a compact description of a range of array elements.
Array sections describe the set of array elements that
are either read from or written to by program state­
ments.

Array section analysis involves computing side ef­
fects. A read-side-effect (RSE) occurs in a subcompu­
tation if an object (such as an array) defined outside

230 \1Al\JL:\ATIIATAH A~D 'ITCOLE

the scope of the subcomputation is accrssed during
the subcornputation. * Similarly, a write-sidr-effect
(WSE) occurs in a subcomputation if an object defined
outside the scope of a subcomputation is modified
during thr subcomputation.

1. 1 Representing Array Access Sets

Several techniques havr been proposed for represent­
ing array sections. They fundamentally differ in tht>
granularity of recording referencE's; how multiple ref­
erences within a program· s region (usually the entire
procedure) to the same array are described.

Fine Grain Representations

Methods which generate accurate information on side
effects are based on fine grain descriptions. They re­
cord each reference to an array separately without
attempting to summarize. Descriptors are stored as
lists of references; translation (translation refers to
transfer of array access information at call sites from
the context of the called to caller) and intersection are
performed on an element-by-element basis. Two such
methods are Linearization [8] and Atom Images [9].
These accurate methods are expensive because they
maintain complete information about a procedurt>'s
array access sets. While translation has O(n) time com­
plexity, intersection has O(n~) time complexity for n
recorded references. Reference lists, although precise
in representing access information, are asymptotically
as expensive as the in-line expansion technique.

Coarse Grain Representations

To circumvent the efficiency problems associated with
accurate information generation, array sections sum­
mary techniques have been proposed which in practice
produce good results. The main idea in these tech­
niques is to summarize all the references within a
region using suitable coarse grain descriptions. Anum­
ber of such summary techniques have been proposed
in the literature which are based on representing array
accesses in terms of convex regions. Union and inter­
section operations on regions are defined to summarizt>
multiple references and to test for data overlaps, re­
spectively. Three convex region representations pro­
posed are (a) regular sections [4, 10], (b) simple sec­
tions [3 J, and (c) generalized convex regions [11].

As a consequence of summarizing information, the
descriptor size becomes independent of the number of
references occurring within a region. Translation and

* According to the tPrminology ddined in [7].

intersection t>ach has a time complexity which is a
function of the rank of the array, typically linear or
quadratic. The generalized convex rt>gion represt>nta­
tion is an exception where testing for feasibility of
intersection is known to be expensive [12]. Moreover.
it has bren found that the access shapes in a majority of
scientific and engineering applimtions can be precisely
represented using such shape descriptors [4. 1 :3].
These propt>rties make the region methods efficient
and attractive for practical systems. Although the sum­
mary techniques are efficient. they suffer from certain
sources of inaccuracies. Summarizing multiple refer­
ences is performed by applying the binary operation
l_;nion on section descriptors. This operation dot's not
satisfy the elosurf' property and therefore approximate
solutions are computed so as to remain in the convex
representation framrwork. In addition, the imprrci­
sions resulting from successive operations have a cu­
mulative effect. These approximations can potentially
lower the precision of the analysis. The only alternativt>
suggested and used in existing analyses to reduce these
approximations is delayed merging [H. 15]. This
scheme is based on maintaining a list of descriptors
as opposed to a single descriptor. The length of the
list has to be a preset limit in the analyses. While a
particular limit might work well for some inputs, it
might be inadequate for others. If this limit is reached,
then merging is enforced. Hence, approximations may
persist. Therefore. this scheme does not guarantee an
exact solution in general.

This article presents a generalized trchnique to rep­
resent precisely the union of two simple sections. The
rrst of the article is organized as follows. Section 2
discusses the approximations that are resorted to in
existing analyses and presents an alternate method of
representation that can avoid these approximations.
The framework required for deriving this representa­
tion is presented in Section :1. The algorithm for per­
forming union under this representation and its com­
plexity is dealt with in Section 4. The intersection
operation in this representation is presented in Section
5. An example is given in Section 6 to demonstrate
the utility of this representation. A discussion on the
effectiveness of this new representation is presented
in Section 7.

2 COMPLEMENTARY ARRAY SECTIONS

In order to accumulate information about arrav sec­
tions, combination of section descriptors such as Union
are frequently performed. The operator Union for
merging two section descriptors is a set operation and

a)

[~0
b) c)

FIGURE 1 l~nion of sections~

when applied to such section descriptors has the fol­
lowing property:

Union: The binary operator Union (U) performs
a merge of two convex sections. The merge may
result in a nonconvex description and therefore
the set is not dosed under this operator.

2. 1 Convex Approximations

As an example to demonstrate the closure property
of the operator Lnion. consider the convex polytopes
shown in Figure 1a:t" Their exact union is shown in
Figure 1 b. The basic property of the descriptors used
for representing such array sections is that they collec­
tively define a convex polytope. Whenever an opera­
tion results in a nonconvex description, the smallest
convex approximation is computed in order to remain
in the simple section representation framework. Using
this approximation criterion, the approximation to the
exact union is computed as shown in Figure 1c.

2.2 Accurate Representation Using
Complementary Sections

In order to obtain a precise description of array sec­
tions under the binary operator Union, a different
method of representing array sections, termed comple­
mentary sections, is proposed. The fundamental prin­
ciple governing complementary sections is based on
the following observation:

Observation 2.1 Any nonconvex region canal­
ways be described using a finite number of con­
vex descriptors.

This observation is explained further with an exam-

t The polytop£'s are rPpr£''-Cllted using simpl£' s£'ctions.

PRECISE A:\AL YSIS OF ARRAY CSAGE 231

c,

FIGURE 2 ComplemPntary sections.

ple. Consider again the polytopes shown in Figure 1.
The precise union is a nonconvex region (Figure 1 b).
Therefore an approximate union (5') (Figure 1c) is
computed to remain in the simple section representa­
tion framework. This approximate region can be de­
composed into two parts:

1. The precise union (which is nonconvex)
2. A residual set of convex regions

Figure 2 shows such a decomposition. 8 represents
the precise union (which is non-convex) and C1 , C2

are the convex regions belonging to the residual part
of the approximate union. The outer dotted line is
the boundary of the approximate union. The convex
combination Union can be expressed in terms of these
decompositons as outlined in the following subsection,
.. Operator Cnion.'·

Operator Union

Define the Cnion of two convex regions as follows:

In this equation. 5' is the envelope of two convex
regions 5 1 and 82 • 8' is a set of regions that are not a
part of the exact union, but are contained in the enve­
lope. In Figure 2, 8' consists of two regions C1 • C.
The '·difference" of the two regions 5'. 8' will result
in the exact union 5. Assuming that S can be com­
puted and also that each element of 8' is a convex
descriptor, we have a description of the precise union
S in terms of a number of convex descriptions given
bv 5' and 8'. The notion that S'' and S are in some
sense complementary sets which can generate the exact
union S is the reason for calling this representation
complementary sections. The Union of two sections in
this representation is precise.

232 MA:'IIJUNATHAIAH A:\D :\ICOLE

3 PROBLEM FORMULATION

The basic idea in the complementary sections frame­
work is to avoid information loss from approximate
convex combination operations. This is achieved by
extracting the "excess" regions (complements) from
the overapproximations and maintaining them as a
set of convex regions.

The solution to the precise union operator requires
the following two main subproblems to be solved:

1. Complement construction: To compute the
points that do not belong to the exact union
(complements) but appear m the approxi­
mated union.

2. Complement decomposition: To represent the
complements using convex descriptions.

The subproblems are discussed under the simple
section representation which is briefly described be­
low. However, in theory, the complementary section
framework can be extended to generalized convex rep­
resentations with increased complexity. From a practi­
cal viewpoint, it is interesting to solve the simple sec­
tion case. Since regular sections are a subset of simple
sections, the complementary section framework will
be applicable to regular sections as well.

3.1 Simple Section Representation

The simple section representation was developed by
Balasundaram and Kennedy [3]. A brief description
of the simple section representation is presented here
to aid the discussion. A detailed description of related
concepts, algorithms, and proofs regarding simple sec­
tions can be found in [14 J.

A simple section is an n-dimensional convex poly­
tope with boundaries of the following types:

where 1 :S i, j :S n, i ¥- j and c is a constant.

These conditions imply that a boundary is either
parallel to a coordinate axis or at 45° to a pair of
coordinate axes. Such a boundary is termed a simple
boundary. Thus, a simple section is characterized by
simple boundaries. Such a representation enables the
precise handling of interesting array sections with con­
vex polyhedral shapes such as rectangles, triangles,
banded diagonals, and trapezoids. For example, the
references to array A in the subroutine Access

10

20

SUBROUTINE AccessShapes
DOUBLE PRECISION A(100,100)
DO 10 I = 1, 10

DO 10 J = 1, 10
A(I,J) = 1

CONTINUE
DO 20 I = 1, 10

DO 20 J = 1, I
A (I +4 , J+4) = 1

CONTINUE
RETURN
END

FIGURE 3 Simple sections.

Shapes shown in Figure 3 have the simple section
representation shown in Figure 1a. The reference in
the first nest of DO loops corresponds to region 81 and
in the second nest to region 8 2 .

In the following sections, the solution for the two­
dimensional complementary sections is presented. The
reason is that the algorithms used in the two subpro­
blems namely complement construction and comple­
ment decomposition are applicable to two-dimen­
sional geometry. This assumption clarifies the use of
terminology such as polygons and trapezoidalization
in the following discussions. The symbols *, +, -
denote the precise binary operators Intersection,
Union, and Difference, respectively, whereas U and n
denote approximate binary operations for Cnion and
Intersection, respectively.

3.2 Complement Construction

The envelope (convex hull) of two sections is computed
using the Union algorithm designed for simple section.
This results in another simple section which may be
the exact union or an approximation. In the latter
case, the points that do not belong to the actual union
are "extracted" from the envelope through a series of
"difference" operations. A procedure to perform these
operations is outlined in Figure 4.

11 and /2 are lists with each element containing a
descriptor for a polygon, because each step (1, 2) in
the above procedure can potentially output a list of
polygons. The final output from this procedure is a
list of polygons. These polygons may not be convex
and further decomposition may be required.

The set operations such as difference of two poly­
gons employed in the complement construction proce­
dure are based on the region finding algorithm of ~iev­
ergelt and Preparata [16 J (an implementation of these
set operations is available in the XYZ GeoBench soft-

Procedure ComplementConstruction
Input: Simple Sections S1 and S2 and
their union se
Output: sc, the set of complements.

begin
1 £1 +--- se - s1
2 £2 +--- £1 - s2
3 sc +--- £2

end

FIGURE 4 Complement Construction.

ware [17]). For the example simple sections and its
union shown in Figure 1c, the regions identified by
this algorithm would be R0 , R1 , R2 , R3 , R4 , Rj as shown
in Figure 5. The outer dotted boundary is the region
R0 • The two difference operations in procedure Com­
plementConstruction will output R:J and R:;
which are the desired complementary regions.

All regions computed by the region finding algo­
rithm are represented by edges derived from the input
polygons. This leads to an important property of com­
plements as stated below:

Statement 3.1 If the edges of the input polygons
arek-oriented:j:withk = {0, 1, -1, oo}, the edges
in the complements also belong to this class.

3.3 Complement Decomposition

The ComplementConstruction procedure out­
puts a list of polygons, some of which may be convex
and others nonconvex. These two types of output need
different treatment. In particular, the nonconvex com­
plements need further decomposition.

3.4 Convex Complements

For those complements which are convex, there is no
further processing required as demonstrated by the
following lemma:

FIGURE 5 Polygonal regions.

:j: Orientation in this eontext means slope of a line.

PRECISE A:'IJ"ALYSIS OF ARRAY USAGE 233

Lemma 3.1 If a complement is convex then it
is a simple section.

Proof A simple section is defined as a convex poly­
tope with simple boundaries. From Statement 3.1 the
edges in the complement are guaranteed to be simple
boundaries. If this complement is convex, then it is a
simple section.

The implication of this lemma is that we can test
each complement to check if it satisfies the convexity
criterion. Checking for convexity is an O(n) time com­
plexity operation for n vertices and therefore can be
used as a preprocessing step in the complement decom­
position procedure (discussed below). This optimiza­
tion can reduce the overall time required to con­
struct complements.

3.5 Nonconvex Complements

A complement is not always a convex polytope. In
order to remain in the convex representation frame­
work, we need to decompose a composite nonconvex
complement into a finite number of convex polytopes.
The motivation for performing this decomposition is
two fold:

1. Computations on general polygons are difficult
but easy for certain primitive shapes such as
simple sections. Therefore, it is advantageous to
decompose into primitive shapes, perform com­
putations on these well-defined shapes, and
combine the results.

2. We would like to remain in the simple section
framework to apply the existing convex combi­
nation algorithms for these primitive shapes.

Based on the above considerations, we are inter­
ested in a decomposition§ with the following prop­
erties:

1. Edges in the decompositions should be closed
under the orientations of the edges of the chosen
representation. Since our chosen representation
is simple section, the orientations of the edges
in the decompositions should belong to {0, 1,
-1, oo}.

2. The number of partitions should be minimized.

The first property is a stricter requirement than the
second. It ensures that the partitions that we obtain
can be represented as simple sections. The second

§ Partition is synonymous.

234 :\1A,\IJE\ATIIAIAII A:\D :\!COLE

property only affects the time complexity of testing
the intersection of two complementary sections.

Cnder the constraints for partiti-ons mentioned
above, the decomposition problem can be stated as
follows:

Problem :3.1 Find an optimal convex partitionll
of a simple polygon such that th<> t>dges of both
the original (input) and the partitioned polygons
are k-oriented with k = 4; the orientations being
{0, L -L oo}.

3.6 Decomposition Method

The problem of decomposing a polygon into convex
subpolygons has reciewd much attention in the fidd of
computational geom<>try and various algorithms t>xist
depending on the nature of solution. Ther<> are at least
~hree I~ethods for decomposing a nonconvex polygon
1~to a finite numlwr of convex polygons: (a) triangula­
twn, (b) trapezoidalization, and (c) optimal convex
partitioning. (Triangulation and trapezoidalization
can be viewed as special eases of a partition into convex
polygons.) If n denotes, the number of vertices of a
polygon, then triangulation can be done in O(n) time
[18], trapezoidalization is O(nlogn) [19], and an opti­
mal convex partitioning is O(n:1

) [20]. The following
lemma states the decomposition method that can sat­
isfy the desired closure property for edges in the par­
tition:

Lemma 3.2 A trapezoidal decomposition of a
complement exists which results in partitions
that are simple sections.

Proof The complement construction procedure
only adds line segments with orientations {0, 1, - L
00 } (from Statement 3.1). A horizontal (or vertical)
trapezoidalization of this polygon partitions it into
convex quadrilaterals (trapezoids) by adding hori­
zontal (or vertical) line segments. This will onlv intro­
duce line segments whose orientations are o· (or 00

respectively). Since all line segments for each of these
partitioned polygon are closed under the orientations
and all the partitioned polygons are convex. the de­
composition method results in partitions that are sim­
ple sections (from Lemma 3.1).

3.7 Decomposition Algorithm

There are several alternative approaches to trapezoidal
decomposition with the same asymptotic time com-

ll.\1inimum in tfw number of partitions.

Type -1 Type-2 Type- 3

FIGURE 6 Type of wrticcs.

plexity. The main ideas of horizontal trapezoidaliza­
tion are described here. This is an abridged version
of the description that appears in [19].

Given a simple polygon as input, this algorithm
generates a set of disjoint trapezoids which covers the
poly?on. A nonoverlapping decomposition of a poly­
gon ts called partitioning (if overlapping is allowed.
it is called a covering). In a horizontal partitioning,
the parallel edges of the trapezoids are parallel to the
x-axis. in the usual intuitive sense of an x-1· coordinate
system. The nonparallel (vertical) sides ~f the trape­
zoids are derived from the edges of the oriainal polv-

h
l:"l •

gon. T e basic idea is to identify these bounding edaes
of a trapezoid. There are two in~portant characteristics
upon which the decomposition strategy, and conse­
quently the identification of th<> bounding edges, is
based: .

1. The vertices of the polygon are the defining
points for the parallel edges of the trapezoids.

2. The vertices of a simple polygon can be charac­
terized into three types with respect to a hori­
zontal line passing through a vertex. Figure 6
shows these three types.

An ordered scan of the vertices of the polygon is
performed. At each vertex encountered during this
sean, a horizontal line is passed through it. This line
defines a parallel edge (characteristic A) of a trapezoid.
Whether this edge defines a starting edge (the edge
which initiates one or more trapezoids) or the ending
edge (which completes the initiated trapezoids) of a
trapezoid can be decided based on the type of vertex
(characteristic B). Every time an ending edge is estab­
lished, a pair of vertical sides have to be found to
complete the trapezoid. These vertical sides are those
ed?es of the polygon which are in the left and right
netghborhood of the vertex that defined the ending
edge: These edges are efficiently computed using dy­
namtc data structures such as height-balanced trees.
If we assume that the vertices of the polygon have
unique y·-coordinates, then the sean starts and terrni-

FIGURE 7 T rapezuidal partitions.

nates at unique points. Figure 7 shows a simple poly­
gon and its trapezoidal partitions. The running time
of this algorithm is O(nlogn) mainly contributed by
the vertex sorting step.

How many partitions are produced by this decom­
position algorithm? A theorem due to Asano et al. [21]
demonstrates that this kind of partitioning is optimal;
it produces the minimum number of partitions for a
given class of polygons and the number of trapezoids
is given by the index, t(P), of the polygon P.

t(P) = n(P) + w(P)- h(P)- 1.

Here n(P), w(P), and h(P) represent the number
of vertices. windows or holes (a window is a polygon
enclosed within an outer polygon). and horizontal
edges of P. respectively. Since we are dealing with
simple polygons without windows, w(P) = 0. For the
polygon shown in Figure 7, n(P) = 8. w(P) = 0,
and h(P) = 3. Hence, t(P) = 4.

3.8 Formal Definition of Complementary
Sections

An informal definition of complementary sections was
given in Section 2.2. Here we formalize the definition
of complementary sections.

Definition 3.1 A complementary section 5'
(5'", S) is a pair consisting of a bounding convex
region 5'", the envelope, and a set of disjoint
convex regions S = {5'}, the complements.
5'" and elements of S are represented using simple
section descriptors.

4 THE PRECISE UNION ALGORITHM

With the basic machinery for constructing comple­
ments and decomposing them into convex descriptions
in place, we can now construct the algorithm to com­
pute the union of two complementary sections.

PRECISE A""ALYSTS OF ARRAY USAGE 235

4.1 Union

Given two complementary sections 5; and 52 as input,
the algorithm CompUnion computes the union 8; +
82 which is another complementary section 5;,,.,. =

(~,,. 5) · 'h } ' l'e - Qc U ~,,. d 9 . o new. J.. rww sue t 1at ...__.,nell' - ...__., 1 o 2 an ... _ nell' constitute
the new set of complementary regions.

Algorithm CompUnion
Input: two complementary sections 8;
and 82.
Output: 8~,., the merged complementary
section.

begin
1 S;w~ ~ Envelope (51. 52)
2 Sporn ~ ConsComplements (5;;,11 ., 8;, S;!)
3 sf/('11' ~ Map (Decompose, Spuh·s)

end

Procedure ConsComplements (5", 5;, 52)
Input: 5" the envelope, and two
complementary sections 5; and 52
Output: the updated set of complements
as a list of polygons 5pof\"S'

begin
1 €1 ~s,.- 81
2 €2 ~ 5"- S:!
3 case(f~,f2)of

I* 51 = 52 = 5' *I
4 a) : el = nil/\ €2 =nil
5 8pur,., ~ UpdateOverlaps (81 , 8 2)

I* case 52 c 5; and 5,. =51 *I
6 b): el=nill\€2<>nil
7 S't ~ UpdateComplements (81 , 8:!)
8 8'2 ~ UpdateOverlaps (81, 8 2)
9 8puln ~ SetUnion (8\ 8'2)

I* case 51 C 52 and 5,. = 82 *I
8 c) : €2 =nil/\ el <>nil
9 S't ~ UpdateComplements (82 , 51)
10 8'' ~ UpdateOverlaps (81 , 8 2)

11 8puln ~ SetUnion (S\ 8'2)
I* one is not subset of other *I

12 d) : el <>nil/\ €2 <>nil
13 €2 ~ €1 -52
14 S't ~ UpdateComplements (81, SD
15 8'2 ~ UpdateComplements (82 , 51)
16 S'e ~ UpdateOverlaps (81, 8 2)

17 Spain ~ SetUnion (8\ 8'2 S\ l2)
18 end case
19 return Spuln

end

236 .\'IA:\JC:\IATHAIAH A:\D :\ICOLE

Procedure UpdateComplements (S, S")
Output: 5,.11 , the updated set of
complements.

begin
1 for each element S in S
2 if (S' g 8'')

I* accummulate into S,"'" *I
3 8,.11' ~ SetUnion (8/IPU'l s· - S")
4 return 8/1('/1'

end

Procedure UpdateOverlaps (S~, 5 2)

Output: Sn the updated set of
complements.

begin
1 for each element Sj in 8 1

2 for each element S§ in 8 2

I* accummulate if S] n Si"" 0 *I
3 8n ~ SetUnion (8n, S\ n S§)
4 return Sn

end

Procedure Decompose (P)
Input: A simple polygon P
Output: TrapezList, the partitions of
P into trapezoids

begin
1 if (IsConvex (P) true) then
2 TrapezList ~ P
3 else
4 TrapezList ~ Trapezoidalize (P)
5 return TrapezList

end

Algorithm CompUnion has three components

1. Envelope computes the convex hull of two
simple sections using the existing Union algo­
rithm for simple sections.

2. ConsComplements computes the points that
do not belong to the exact union but appear in
the approximated union. It returns a list of
polygons.

3. Map is a higher order function which takes a
function Decompose and a list as arguments
and applies that function to each element in the
list. The output after map operation is a list of
simple sections (trapezoids). This higher-order
function has been used only for brevity m
syntax.

Procedure ConsComplements includes condition
checks to track different kinds of overlaps between
two sections whose union is being computed. But the
principal method to compute complements remains
the same as shown in Figure 4. Two kinds of overlaps
can be identified which form the basis of the condition
checks: (a) Containment-when one section is con­
tained in the other and (b) no containment, but over­
lap could exist. When one section is contained in the
other, their union is the larger of the two. This contain­
ment shows up when the difference operations are
performed. As shown in the procedure, if only the first
difference operation returns a null list of complements
then we can declare that 8'' = Sj and therefore 82 C

s; . In this containment situation, the complements of
s; have to be updated. Similarly. if the second differ­
ence operation results in a null list, then the comple­
ments of S2 are updated. In the case where one is
not contained in the other, both complement sets have
to be updated. All these updates are performed in
procedures UpdateComplements and Update­
Overlaps which involve a series of difference and
intersection operations as a two-step process:

1. In the procedure UpdateComplements, the
overlap between the complements (S) and the
envelope of the section (S") is removed by
applying difference operations.

2. The overlap between Sand the complements of
S' cannot be detected in the previous step. This
is computed in procedure UpdateOverlaps.

The procedure Decompose checks if the input is
convex in which case it does not perform further de­
composition. This check is an optimization whose le­
gality was established in Lemma 3 .1. Only nonconvex
polygons are further processed by procedure Trape­
zoidalize.

4.2 Complexity

The running time of algorithm CompUnion is evalu­
ated here. The running time is mainly dependent on
the number of complements that are to be processed.
This is an input-sensitive feature because the number
of complements depends on the type and distribution
of array sections in the input program. Hence, the
running times are estimated assuming some average
size, say k, of the complement set. However, the algo­
rithms Union, Intersection, Difference, and Trapezoi­
dalize have fixed cost and the estimates can be ex­
pressed in terms of these fixed costs.

Let D = 2d2 (where dis the dimension of the array),
IS1 I = k1, and IS2I = k2 • For a two-dimensional array

(d = 2), the cost for Union (U) or Intersection (n) is
D [14]. The costs for Trapezoidalize and Difference
depend on the number of vertices to be processed. The
number of vertices to be processed is of the order D
and therefore the cost of Trapezoidalize is O(DlogD)
and the cost of Difference in UpdateComplements is
O(DlogD) (because operands are always convex sec­
tions).

Considering only the major cost components. the
approximate cost for CompUnion is given by the fol­
lowing equation

C(Comp Cnion) = (k 1 + kJ D log D

+ 2(k1 k2) D

+ (k1 + k2) D log D

The terms in the cost expression above are contrib­
uted by procedures ConsComplement and Decom­
pose. Maximum time is involved when lines 14 to 16
of ConsComplement are executed. The first term
in the cost expression is contributed by Update­
Complements in lines 14 and 15. The second term
of the cost expression is contributed by Update­
Overlaps in line 16. The ConsComplement proce­
dure returns a complement set of size proportional to
k1 + k2 which may require further decomposition.
Hence, Map will require the time shown as the last
term of the cost expression.

5 THE PRECISE INTERSECTION ALGORITHM

The basic goal of this article has been to demonstrate
a method to compute exactly the Union of convex
sections. However, in many analyses the binary opera­
tion Intersection is also required. Here, we discuss
the intersection algorithm in the complementary sec­
tions framework.

5.1 Intersection

Given two complementary sections 5; and 52 as input,
the algorithm Compintersection computes the
"true" intersection 5; * 52. The result is a boolean
value indicating the presence or absence of an overlap
between 5; and 52 .

Algorithm Compintersection
Input: two complementary sections 51
and 52
Output: true if sections intersect false
otherwise

PRECISE ANALYSIS OF ARRAY CSACE 237

begin
1 5n = Intersection(S1, 5 2)

2 If (Sn = 0) return false
3 If (81 = 0/\ 82 = 0) return true
4 If (5\ = 0 1\ 82 #- 0)
5 return(ScanComplements(5n, 8 2))

6 If (82 = 0 1\ 81 #- 0)
return (ScanComplements(5n, 82))

7 /* scan both complements *I
8 If (5\ #- 0 1\ 82 #- 0)
9 b 1 = ScanComplements(Sn, 8 1)

10 if (b1 = false) ret urn false
11 else
12 b2 = ScanComplements(5n, 8 2)

13 if (b2 = 0) return false
14 else return true

end

Procedure ScanComplements (5n,8)
Input: A simple section 5n and 8 the
set of complements
Output: true if intersection exist false
otherwise

begin
1 for each complement 5' E 5
3 5n = 5n - 5'
4 if (Sn = = 0) return false
5 end for
5 return true;

end

The main steps in Compintersection proceed
in the following sequence. The first step computes the
intersection of the envelopes using the Intersection
algorithm designed for simple sections. If the intersec­
tion returns null then there is no overlap between
the two sections. Otherwise, it indicates the possible
existence of an overlap. However, this could be a
"false" overlap. To confirm this, the list of comple­
ments has to be scanned. This search constitutes the
remaining steps of the algorithm which invoke the
scan procedure.

The first two steps attempt to establish a null inter­
section of two sections using the envelopes. Under such
conditions, the intersection test will incur the same
cost as testing the intersection of two simple sections.
This is the advantage of retaining the envelopes in the
complementary sections framework. Further steps of
the algorithm are required only when a non-null inter­
section is reported in the first step. In these additional
steps, Compintersection essentially has to scan
the list of complements to disprove overlap between
two sections. This is based on the idea that there is a

238 MA~JU~ATHAIAH Al\D :\ICOLE

FIGURE 8 A false Intersection.

false overlap when one section is contained in the
complementary region of the other section. Otherwise,
it is a "true" overlap.

The procedure ScanComplements basically
checks whether a given section is contained in a com·­
plementary region. Since the complementary region is
maintained as a finite number of convex sections and
a given section can potentially span multiple comple­
ments, the scan has to be iterated through each com­
plement in turn. At each step in the scan, the part of the
section which overlaps with the current complement
being tested is removed by a difference operation. If
the given section is contained in the complementary
region. then a series of such difference operations will
eventually terminate in a null region. Figure 8 shows
such a false overlap scenario in which S' is the set of
complements (trapezoids) and Sn is the rectangular
region which overlaps this complementary region. As
can be noted from Figure 8 the overlap spans multiple
complementary sections.

The cost for Compintersection can be com­
puted in a similar manner as that of the Union. Maxi­
mum time is involved when lines 9-13 are executed.
Each difference operation in procedure ScanCom­
plements has time complexity 0((n + s)logn), where
n is the total number of vertices in the two polygons
and s denotes the number of intersections of the line
segments of the polygons [16 J. After each difference
operation, the resulting polygon can have additional
vertices. Since n is O(D) for k difference operations,
the number of additional vertices is proportional to
kD. Hence, the cost for ScanComplements, Cdiff is
O((kD + s)logkD). Based on this, the total cost for
executing lines 9-13 in Compintersection, con­
sidering only the major cost components, is given by
the following equation

C(Complntersection) ""' (kt + kz) Cdiff

6EXAMPLE

We consider an example to demonstrate the use of
array section analysis based on complementary sec-

Array Access Shapes for variable 'Z' in TRED2 program

19 20 36 58 60

~.:

a)

b) C)

Simple Section Summary Complementary Section Summary

FIGURE 9 Write accesses to Z.

tions. This example of computing array access summa­
ries arises in the optimization phase of an automatic
parallelizing compiler. Such summary information
could be useful for array data-flow analysis.

The write accesses to array variable Z occurring
within one iteration of an outer loop are shown in
Figure 9a. This loop corresponds to one of the main
loops of the TRED2 subroutine from the Eispack li­
brary package. The numbers on top of the figures
indicate the line numbers corresponding to each up­
date (these numbers are based on a code listing which
appears in [22]).

The access shapes corresponding to these updates
can he precisely represented using simple sections.
However, if these accesses are summarized. then the
resulting summary gets approximated as shown in Fig­
ure 9b with the upper triangle information lost in the
summary. This information can. however, be retained
as a complement in the complementary section frame­
work as shown in Figure 9c. If we compare the descrip­
tor sizes required to describe the write accesses to Z,
then accurate information of these accesses based on
atom images would require five descriptors. Allowing
summarization under the simple section framework
requires only one descriptor, but at the cost of preci­
sion. However, with three descriptors (two comple­
ments and one envelope) under complementation, an
accurage summary is obtained. More importantly, one
can observe from the figure that the complementary
sections can describe a nonconvex union precisely us­
ing a set of convex descriptors.

7 DISCUSSION

A number of analyses used in an automatic paralleliz­
ing compiler are based on computing array sections
which are represented using convex shape descriptors.
The inaccuracies arising from convex combinations
when these descriptors are used in an analysis have
been reported in many research studies. ln. a recent

publication by Creusillet and lrigoin [6 J, the authors
suggest that alternative representation may be re­
quired to get better precision when convex descriptors
are used. To our knowledge, this is the first attempt
at constructing a representation for compile-time anal­
ysis of arrays that can produce exact solutions to the
closure property of the convex combination operator
Union.

7. 1 Comments on EHectiveness of
Complementary Sections

The often-quoted demerit of the convex regions ap­
proach is that the existing techniques produce approx­
imations to the Union of two sections which may
weaken the precision of the analysis. Therefore, alter­
nate approaches such as reference lists have been ad­
vocated [23]. The approximations can be controlled
to a certain extent using delayed merging technique,
but this is not a general technique. In this article, we
have demonstrated that convex combinations such as
l)nion can be performed accurately and a general tech­
nique has been proposed. It only remains to be shown
that our approach is efficient. An empirical study has
to be conducted to demonstrate the efficiency factor.
Here. we make a few general comments on how com­
plementary sections can be effective:

1. The base representation chosen in the comple­
mentary section framework for representing
array sections is simple sections. Of the three
convex region methods proposed in literature,
the simple section representation offers a good
balance between precision and efficiency. Its
Union computation has a worst case complexity
which is quadratic in the rank of the array.

2. Empirical studies have demonstrated that non­
zero coefficients of loop indexes in most sub­
scripts are either 1 or -1 [13]. Hence, simple
section representation is precise enough to rep­
resent most array access sets.

3. The computation of complements is based on
two standard algorithms from the field of com­
putational geometry, namely region finding and
trapezoidalization, both with an asymptotic ef­
fort O(nlog n).

4. Because many applications found in practice
have a maximum of four or five dimensions [13],
these fixed cost algorithms can be computed in
constant time.

5. Typically, while accumulating array access in­
formation using a reference list approach such
as Atom Images, the size of the reference list
keeps increasing. However, the complement set

PRECISE ANALYSIS OF ARRAY USAGE 239

!2 7
: 3 • 6 :
' . ' : ______ A __ :

5

I Classical
2 Regular Sections
3 Simple Sections
4 General Convex Regions
5 FIDA

Precision

FIGURE 10 Efficiency v,;. precision graph.

may not have the same behavior and may tend
to diminish if sections begin to overlap with
complements. This behavior hinges on a '"space
filling" hypothesis which is based on the obser­
vation that different regions of a program access
different sections of an array which together
make up the entire array. Hence, as the accumu­
lation of sections occurring across procedure
boundaries proceeds, and the sections overlap
with the complements, the number of comple­
ments will reduce.

6. Because the envelopes are retained along with
the complements, the test for intersection will
incur the same cost as for testing simple sections
in cases where the envelopes are nonover­
lapping.

7.2 Precision Spectrum

Figure 10 shows a representative graph of efficiency
vs. precision of different array section analyses. The
classical method treats arrays as monolithic units.
Hence, it does not distinguish between access to a
single element of an array and access to the entire
array. Therefore, it lies in the lower end of the precision
spectrum. However, the side effect computation based
on such summary is highly efficient [24 J. At the higher
end of the precision spectrum are methods such as
FIDA (which combines Atom Images and Lineariza­
tion). This precision is achieved at the cost of efficiency
[23]. Between these extremes in the precision spectrum
lie the convex region methods (shown in the dotted
enclosure). These methods attempt to strike a balance
between precision and efficiency. The complementary
section representation adopts the region method and
aims at enhancing its precision.

The precision of complementary sections is
bounded by points 3 and 5 in Figure 10. This is be­
cause the precision can be no worse than simple sec­
tions and can be as good as FIDA. There are two

240 MANJlL\ATHAIAH Al\D MCOLE

scenarios for positioning the complementary sections
in Figure 10:

1. As evidenced by empirical studies (comment 2
on effectiveness in previous section), in the ma­
jority of cases arising in practice, the base repre­
sentation, namely simple section, is adequate to
precisely record an array access set (point 4 will
coincide with 3 in such cases). However, point
5 is better placed in the precision dimension
because it does not suffer from convex comb ina­
tion problems. The complementary sections also
overcome the convex combination problem and
therefore occupies position 6. The efficiency at
this point is depicted to be better than FIDA.
This is possible if the pruning property of the
complement set discussed in the previous section
(comment 5 on effectiveness) holds. This is
where we believe the complementary sections
lie based on the comments on effectiveness (spe­
cifically 2, 4, and 5) in the previous section.

2. In cases where the precision of the base represen­
tation is inadequate, the position of complemen­
tary section will get shifted to point 7. Although
its precision is lowered, it will still be better
than the base representation in eliminating other
sources of imprecision. Based· on indications
from empirical studies (comment 2 in previous
section), this inadequacy problem will not arise
frequently in practice.

The proposition that complementary sections can
be efficient in practice can be verified in an actual
implementation in the following way. A complemen­
tary section consists of one summary information (En­
velope) and a set of complements both represented as
simple sections. Suppose that the length of this list of
complements is k. If we contrast with the reference list
approach, the complementary sections will perform
better if the cardinality of reference list is greater
thank.

8 FUTURE WORK

A prototype implementation is underway in order to
assess the effectiveness of the proposed technique. This
implementation is being integrated into the SUIF par­
allelizing compiler [25 J. SUIF generates an abstract
syntax tree as the intermediate representation of an
input upon which our analysis module is built. The
approach adopted in this implementation exercise is
as follows. We compute the array access shapes and
their unions for each nested loop in the body of a

procedure. We can then use this information as input
to the XYZ GeoBench Software system [17] to com­
pute the complements. <j[

The base representation, namely simple section, can
be smoothly integrated into a compilation system. Our
prior integration effort has been to develop a prototype
implementation of this base representation in the
SPOC compilation system [26, 27]. The purpose of
this implementation was to develop an efficient array
usage analysis module to overcome certain deficiencies
in existing compiler analysis for the Occam program­
ming language. The array usage analysis module is
required to track anamolous parallel updates to shared
variables. This implementation adds about 2000 lines
of specification code into the compilation system. The
specifications are processed by the GMD Compiler
Construction Toolset [28] to produce an executable
unit. The application of complementary sections to
enhance the precision in this analysis is also being
pursued.

9 CONCLUSION

A number of important analyses in a parallelizing com­
piler are based on computing array sections which are
represented as convex regions. Although these region
methods achieve efficiency, they suffer from certain
inaccuracies. A particular source of inaccuracy arises
when two sections are merged. We have presented
a technique which overcomes this inaccuracy. While
alternatives such as delayed merging might work well
in certain cases, it does not generalize and approxima­
tions could persist. However, the complementary sec­
tions framework is an exact solution in a general set­
ting. Its efficiency, however, needs to be assessed
through empirical studies.

The discovery of available parallelism in a program
is a fundamental precondition for automatic paralleli­
zation to be effective. Any mapping transformations
can only be as effective aas the precision obtained
in this parallelism discovery process. Hence, precise
analysis of a program is vital for automatically synthe­
sizing parallel program from its sequential specifica­
tion. The technique described in this article aims to
improve the precision. There are a number of analyses
which are based on representing array access sets using
convex descriptors such as interprocedural depen-

'I[The XYZ GeoBeneh Software is written in Object Pascal which
inhibits direct integration into our implementation. Integration re­
quires translation into C++ whieh is cumbersome and a matter
of detail.

dence analysis [4. 6], array data flow analysis [29],
automatic data partitioning [30], communication
analysis [31], analysis for locality optimizations [32],
program transformations for reducing false sharing
on shared memory multiprocessors [15], and use of
array sections information in run-time environments
[33 J. If these analyses are being impaired due to the
imprecision of convex operations, then the precision
of all these analyses can he potentially enhanced by
adopting the complementary section framework.

ACKNOWLEDGMENTS

Thanks to .\lark Keil and Bill Jones of the Eniversity of
Saskatchewan for their input on the decomposition issues.
Thanks to Michelle of ETH Zurich for answering queries
on the XYZ GeoBench software. Finally. many thanks to
Mrs. Rajini Sivaram for her avid discussions on many issues
in this article.

REFERENCES

[1] W. Blume and R. Eigenmann. '"Performance analysis
of parallelizing compilers on the perfect benchmarks
programs,., IEEE Trans. Parallel Distrib. Systems, vol.
3. pp. 643-656. ~ov. 1992.

[2] .\1. W. HalL et a!., ''Overview of an interprocedural
automatic parallelization system.·' in Fifth Workshop
on Compilers for Parallel Computers, 1995.

[3] V. Balasundaram and K. Kennedy, ''A technique for
summarizing data access and its use in parallelism
enhancing transformations,'' in Proc. ACM SIGPLAN
Conf Programming Language Design and Implemm­
tation, 1989. p. 41.

[4] P. Havlak and K. Kennedy. '·An implementation of
interprocedural bounded regular section analysis,"
IEEE Trans. Parallel Distrib. Systems, vol. 2, pp. 350-
:360. July 1991.

[5] H. Tsalapatas, '"Interprocedural array side effect anal­
ysis,'' .\laster's Thesis, Rice University. Houston, 1994.

[6] B. Creusillet and F. lrigoin, "lnterprocedural array
region analyses,'' in Eighth Workshop on Languages
and Compilers for Parallel Computing, 1995.

[7] W. L. Harrison, ·The interprocedural analysis and
automatic parallelization of scheme programs,'' Lisp
Symbolic Computation, vol. 2, pp. 179-396. 1989.

[8] M. Burke and R. Cytron, "'lnterprocdural dependence
analysis and parallelization,"' inProc. SIGPLAN ~~ymp.
Compiler Construction, 1986. p. 162.

[9] Z. Li and P.-C. Yew, "Efficient interprocedural analy­
sis for program parallelization and restructuring,'' in
SIGPLAN, 1988, p. 8.5.

PRECISE ANALYSIS OF ARRAY CSAGE 241

[10] D. Callahan and K. Kennedy. ''Analysis ofinterproce­
dural side effects in a parallel programming environ­
menL '']. Parallel Distrib. Comput. vol. 5. pp. 517-
550, 1988.

[11] R. Trio let. et aL "Direct parallelization of CALL state­
ments .. , in Proc. SIC PLAN Symp. Compiler Construc­
tion, 1986, p. 176.

[12] F. lrigoin, eta!.. "Semantic interprocedural paralleli­
zation: An overview of the PIPS project .. , in Proc. Int.
Conf. Supercomputing, 1991.

[13] Z. Shen, et aL ·'An empirical study of Fortran pro­
grams for parallelizing compilers,·· IEEE Trans. Paral­
lel Distrib. ,~ystems. pp. 356-.364. July 1990.

[14] V. Balasundaram, ''Interactive parallelization of nu­
merical sciPntific programs, PhD Thesis. Rise l 'niver­
sity. Houston. April 1989.

[1.SJ T. E. Jeremiassen and S. J. Eggers, "Reducing false
sharing on shared memory multiprocessors through
compile time data transfonnations.·· inFifthACMSIG­
PLAlV Symp. Principles and Practice of Parallel Pro­
gramming, 199.1. p. 179.

[16] J. .\"ievergelt and F. P. Preparata. "Plane sweeping
algorithms for intersecting geometric figures,·· CACM.
vol. 25. pp. 739-747. Oct. 1982.

[17] lnforrnatik. ETH. Zurich. XYZ GeoBench ,\1anual
V4.4.6, Aug. 199-S.

[18] B. Chazelle, ·'Triangulating a simple polygon in linear
time,., Disc. Computational Geometry, vol. 6. pp. 48.5-
524. 1991.

[19] A. Fournier and D. Y. Ylontuno. ·Triangulating simple
polygons and equivalent problems.·· ACM Trans.
Graphics, vol. 3. pp. 153-174. 1984.

[20] B. Chazelle and D. P. Dobkin, Computational
GPOmetry. North Holland: Elsevier Science Publish­
ers. 1985.

[21] T. Asano, T. Asano, and H. Imai, ·'Partitioning a
polygonal region into trapezoids,'']. Assoc. Computing
Machinery, vol. .33. pp. 290-:) 12, 1986.

[22] .\1. Gupta and P. Banerjee, "Demonstration of auto­
matic data partitioning techniques for parallelizing
compilers on multicomputers,'' IEEE Trans. Parallel
Distrib. Systems. vol. :1. pp. 179-193. March 1992.

[23] .\1. Hind, et aL '·An empirical study of precise iuterpro­
cedural array analysis,"]. Sci. Prog. vol. 3, pp. 255-
271. 1994.

[24] K. Cooper and K. Kennedy. "lnterprocedural side­
effect analysis in linear time." in Proc. ACM SIC PLAN
Conf Programming Language Design and Implemen­
tation, 1988.

[2.SJ S. P. Amarasinghe, et a!.. 'The SElF compiler for
scalable parallel machines,'' in Proc. Seventh SIAM
Corif. on Parallel Processing for Scientific Comput­
ing, 199.5.

[26] .\1. \1anjunathaiah and D. A. Nicole, ·'Advanced paral­
lel usage analysis,'' in First Int. Workshop on Parallel
Processing, 1994.

[27] .\1. Debbage, et aL "'Southampton's portable occam
compiler (SPOC)," in WOTUG-17. 1994.

242 MA""JU!\ATHAIAH Al\D l\ICOLE

[28] J. Grosch and H. Emmelmanu. ·'A toolbox for compiler
construction," C~D Karlsruhe, Germany. Tech. Rep.
20. 1990.

[29] B. Creusillet. ·~In and out array region analysis.·· in
Fifth Workshop on Compilers for Parallel Comput­
ers, 1995.

[30] P. D. Hovland and L. .VI. Ni, "A model for automatic
data partitioning." in Int. Conf Parallel Processing,
vol. 2. pp. 251-259. 1993.

[:31] .T. Stichnoth, ·~Efficient compilation of array state-

ments for private memory multicomputers.'' School of
Computer Science. Carnegie ~ellon Lniversity, Tech.
Rep. CMC-CS-93-1 09, 1993.

[32] S. Carr and K. Kennedy, "Compiler blockability of
numerical algorithms." Department of Computer Sci­
ence, Rice University. Houston. Tech. Rep. CRPC­
TR92208-S. April 1992.

[3.3] L N. Shenoy. et a!., '~An automatic parallelization
framework for multirornputers," Computer T~an­

guaf{es. vol. 20, pp. 1:35-1 EiO. 1994.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

