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ABSTRACT 

The automatic transformation of sequential programs for efficient execution on parallel comput­
ers involves a number of analyses and restructurings of the input. Some of these analyses are 
based on computing array sections, a compact description of a range of array elements. 
Array sections describe the set of array elements that are either read or written by program 
statements. These sections can be compactly represented using shape descriptors such as 
regular sections, simple sections, or generalized convex regions. However, binary operations 
such as Union performed on these representations do not satisfy a straightforward closure 
property, e.g., if the operands to Union are convex, the result may be nonconvex. Approxima­
tions are resorted to in order to satisfy this closure property. These approximations introduce 
imprecision in the analyses and, furthermore, the imprecisions resulting from successive opera­
tions have a cumulative effect. Delayed merging is a technique suggested and used in some 
of the existing analyses to minimize the effects of approximation. However, this technique 
does not guarantee an exact solution in a general setting. This article presents a generalized 
technique to precisely compute Union which can overcome these imprecisions. © 1997 John 

Wiley & Sons, Inc. 

1 INTRODUCTION 

The automatic transformation of sequential programs 
for efficient execution on parallel computers involves 
a number of analyses and restructurings of the input. 
,Traditionally, compiler analysis for such automatic 
syntheses of parallel programs has been confined to 
the discovery of parallelism in loops. However, recent 
research studies demonstrate that loop-level paralleli-
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zation alone is not adequate to extract good perfor­
mance from current scalable parallel machines [ 1, 2 J. 
Compiler analysis is therefore being extended beyond 
loop boundaries to procedures, including the whole 
program. Global analysis techniques such as interpro­
cedural dependence analysis [2-4 J and array data 
flow analysis [5, 6] have been introduced to discover 
coarse grain parallelism, asynchronous computations 
that perform a significant amount of work between 
synchronization events. A number of such global anal­
yses techniques are based on computing array sections, 
a compact description of a range of array elements. 
Array sections describe the set of array elements that 
are either read from or written to by program state­
ments. 

Array section analysis involves computing side ef­
fects. A read-side-effect (RSE) occurs in a subcompu­
tation if an object (such as an array) defined outside 
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the scope of the subcomputation is accrssed during 
the subcornputation. * Similarly, a write-sidr-effect 
(WSE) occurs in a subcomputation if an object defined 
outside the scope of a subcomputation is modified 
during thr subcomputation. 

1. 1 Representing Array Access Sets 

Several techniques havr been proposed for represent­
ing array sections. They fundamentally differ in tht> 
granularity of recording referencE's; how multiple ref­
erences within a program· s region (usually the entire 
procedure) to the same array are described. 

Fine Grain Representations 

Methods which generate accurate information on side 
effects are based on fine grain descriptions. They re­
cord each reference to an array separately without 
attempting to summarize. Descriptors are stored as 
lists of references; translation (translation refers to 
transfer of array access information at call sites from 
the context of the called to caller) and intersection are 
performed on an element-by-element basis. Two such 
methods are Linearization [8] and Atom Images [9]. 
These accurate methods are expensive because they 
maintain complete information about a procedurt>'s 
array access sets. While translation has O(n) time com­
plexity, intersection has O(n~) time complexity for n 
recorded references. Reference lists, although precise 
in representing access information, are asymptotically 
as expensive as the in-line expansion technique. 

Coarse Grain Representations 

To circumvent the efficiency problems associated with 
accurate information generation, array sections sum­
mary techniques have been proposed which in practice 
produce good results. The main idea in these tech­
niques is to summarize all the references within a 
region using suitable coarse grain descriptions. Anum­
ber of such summary techniques have been proposed 
in the literature which are based on representing array 
accesses in terms of convex regions. Union and inter­
section operations on regions are defined to summarizt> 
multiple references and to test for data overlaps, re­
spectively. Three convex region representations pro­
posed are (a) regular sections [4, 10], (b) simple sec­
tions [ 3 J, and (c) generalized convex regions [ 11]. 

As a consequence of summarizing information, the 
descriptor size becomes independent of the number of 
references occurring within a region. Translation and 

* According to the tPrminology ddined in [7]. 

intersection t>ach has a time complexity which is a 
function of the rank of the array, typically linear or 
quadratic. The generalized convex rt>gion represt>nta­
tion is an exception where testing for feasibility of 
intersection is known to be expensive [12]. Moreover. 
it has bren found that the access shapes in a majority of 
scientific and engineering applimtions can be precisely 
represented using such shape descriptors [ 4. 1 :3]. 
These propt>rties make the region methods efficient 
and attractive for practical systems. Although the sum­
mary techniques are efficient. they suffer from certain 
sources of inaccuracies. Summarizing multiple refer­
ences is performed by applying the binary operation 
l_;nion on section descriptors. This operation dot's not 
satisfy the elosurf' property and therefore approximate 
solutions are computed so as to remain in the convex 
representation framrwork. In addition, the imprrci­
sions resulting from successive operations have a cu­
mulative effect. These approximations can potentially 
lower the precision of the analysis. The only alternativt> 
suggested and used in existing analyses to reduce these 
approximations is delayed merging [H. 15]. This 
scheme is based on maintaining a list of descriptors 
as opposed to a single descriptor. The length of the 
list has to be a preset limit in the analyses. While a 
particular limit might work well for some inputs, it 
might be inadequate for others. If this limit is reached, 
then merging is enforced. Hence, approximations may 
persist. Therefore. this scheme does not guarantee an 
exact solution in general. 

This article presents a generalized trchnique to rep­
resent precisely the union of two simple sections. The 
rrst of the article is organized as follows. Section 2 
discusses the approximations that are resorted to in 
existing analyses and presents an alternate method of 
representation that can avoid these approximations. 
The framework required for deriving this representa­
tion is presented in Section :1. The algorithm for per­
forming union under this representation and its com­
plexity is dealt with in Section 4. The intersection 
operation in this representation is presented in Section 
5. An example is given in Section 6 to demonstrate 
the utility of this representation. A discussion on the 
effectiveness of this new representation is presented 
in Section 7. 

2 COMPLEMENTARY ARRAY SECTIONS 

In order to accumulate information about arrav sec­
tions, combination of section descriptors such as Union 
are frequently performed. The operator Union for 
merging two section descriptors is a set operation and 
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FIGURE 1 l~nion of sections~ 

when applied to such section descriptors has the fol­
lowing property: 

Union: The binary operator Union ( U) performs 
a merge of two convex sections. The merge may 
result in a nonconvex description and therefore 
the set is not dosed under this operator. 

2. 1 Convex Approximations 

As an example to demonstrate the closure property 
of the operator Lnion. consider the convex polytopes 
shown in Figure 1a:t" Their exact union is shown in 
Figure 1 b. The basic property of the descriptors used 
for representing such array sections is that they collec­
tively define a convex polytope. Whenever an opera­
tion results in a nonconvex description, the smallest 
convex approximation is computed in order to remain 
in the simple section representation framework. Using 
this approximation criterion, the approximation to the 
exact union is computed as shown in Figure 1c. 

2.2 Accurate Representation Using 
Complementary Sections 

In order to obtain a precise description of array sec­
tions under the binary operator Union, a different 
method of representing array sections, termed comple­
mentary sections, is proposed. The fundamental prin­
ciple governing complementary sections is based on 
the following observation: 

Observation 2.1 Any nonconvex region canal­
ways be described using a finite number of con­
vex descriptors. 

This observation is explained further with an exam-

t The polytop£'s are rPpr£''-Cllted using simpl£' s£'ctions. 
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c, 

FIGURE 2 ComplemPntary sections. 

ple. Consider again the polytopes shown in Figure 1. 
The precise union is a nonconvex region (Figure 1 b). 
Therefore an approximate union (5') (Figure 1c) is 
computed to remain in the simple section representa­
tion framework. This approximate region can be de­
composed into two parts: 

1. The precise union (which is nonconvex) 
2. A residual set of convex regions 

Figure 2 shows such a decomposition. 8 represents 
the precise union (which is non-convex) and C1 , C2 

are the convex regions belonging to the residual part 
of the approximate union. The outer dotted line is 
the boundary of the approximate union. The convex 
combination Union can be expressed in terms of these 
decompositons as outlined in the following subsection, 
.. Operator Cnion.'· 

Operator Union 

Define the Cnion of two convex regions as follows: 

In this equation. 5' is the envelope of two convex 
regions 5 1 and 82 • 8' is a set of regions that are not a 
part of the exact union, but are contained in the enve­
lope. In Figure 2, 8' consists of two regions C1 • C. 
The '·difference" of the two regions 5'. 8' will result 
in the exact union 5. Assuming that S can be com­
puted and also that each element of 8' is a convex 
descriptor, we have a description of the precise union 
S in terms of a number of convex descriptions given 
bv 5' and 8'. The notion that S'' and S are in some 
sense complementary sets which can generate the exact 
union S is the reason for calling this representation 
complementary sections. The Union of two sections in 
this representation is precise. 
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3 PROBLEM FORMULATION 

The basic idea in the complementary sections frame­
work is to avoid information loss from approximate 
convex combination operations. This is achieved by 
extracting the "excess" regions (complements) from 
the overapproximations and maintaining them as a 
set of convex regions. 

The solution to the precise union operator requires 
the following two main subproblems to be solved: 

1. Complement construction: To compute the 
points that do not belong to the exact union 
(complements) but appear m the approxi­
mated union. 

2. Complement decomposition: To represent the 
complements using convex descriptions. 

The subproblems are discussed under the simple 
section representation which is briefly described be­
low. However, in theory, the complementary section 
framework can be extended to generalized convex rep­
resentations with increased complexity. From a practi­
cal viewpoint, it is interesting to solve the simple sec­
tion case. Since regular sections are a subset of simple 
sections, the complementary section framework will 
be applicable to regular sections as well. 

3.1 Simple Section Representation 

The simple section representation was developed by 
Balasundaram and Kennedy [3]. A brief description 
of the simple section representation is presented here 
to aid the discussion. A detailed description of related 
concepts, algorithms, and proofs regarding simple sec­
tions can be found in [ 14 J. 

A simple section is an n-dimensional convex poly­
tope with boundaries of the following types: 

where 1 :S i, j :S n, i ¥- j and c is a constant. 

These conditions imply that a boundary is either 
parallel to a coordinate axis or at 45° to a pair of 
coordinate axes. Such a boundary is termed a simple 
boundary. Thus, a simple section is characterized by 
simple boundaries. Such a representation enables the 
precise handling of interesting array sections with con­
vex polyhedral shapes such as rectangles, triangles, 
banded diagonals, and trapezoids. For example, the 
references to array A in the subroutine Access 

10 

20 

SUBROUTINE AccessShapes 
DOUBLE PRECISION A(100,100) 
DO 10 I = 1, 10 

DO 10 J = 1, 10 
A(I,J) = 1 

CONTINUE 
DO 20 I = 1, 10 

DO 20 J = 1, I 
A ( I +4 , J+4) = 1 

CONTINUE 
RETURN 
END 

FIGURE 3 Simple sections. 

Shapes shown in Figure 3 have the simple section 
representation shown in Figure 1a. The reference in 
the first nest of DO loops corresponds to region 81 and 
in the second nest to region 8 2 . 

In the following sections, the solution for the two­
dimensional complementary sections is presented. The 
reason is that the algorithms used in the two subpro­
blems namely complement construction and comple­
ment decomposition are applicable to two-dimen­
sional geometry. This assumption clarifies the use of 
terminology such as polygons and trapezoidalization 
in the following discussions. The symbols *, +, -
denote the precise binary operators Intersection, 
Union, and Difference, respectively, whereas U and n 
denote approximate binary operations for Cnion and 
Intersection, respectively. 

3.2 Complement Construction 

The envelope (convex hull) of two sections is computed 
using the Union algorithm designed for simple section. 
This results in another simple section which may be 
the exact union or an approximation. In the latter 
case, the points that do not belong to the actual union 
are "extracted" from the envelope through a series of 
"difference" operations. A procedure to perform these 
operations is outlined in Figure 4. 

11 and /2 are lists with each element containing a 
descriptor for a polygon, because each step (1, 2) in 
the above procedure can potentially output a list of 
polygons. The final output from this procedure is a 
list of polygons. These polygons may not be convex 
and further decomposition may be required. 

The set operations such as difference of two poly­
gons employed in the complement construction proce­
dure are based on the region finding algorithm of ~iev­
ergelt and Preparata [ 16 J (an implementation of these 
set operations is available in the XYZ GeoBench soft-



Procedure ComplementConstruction 
Input: Simple Sections S1 and S2 and 
their union se 
Output: sc, the set of complements. 

begin 
1 £1 +--- se - s1 
2 £2 +--- £1 - s2 
3 sc +--- £2 

end 

FIGURE 4 Complement Construction. 

ware [ 17]). For the example simple sections and its 
union shown in Figure 1c, the regions identified by 
this algorithm would be R0 , R1 , R2 , R3 , R4 , Rj as shown 
in Figure 5. The outer dotted boundary is the region 
R0 • The two difference operations in procedure Com­
plementConstruction will output R:J and R:; 
which are the desired complementary regions. 

All regions computed by the region finding algo­
rithm are represented by edges derived from the input 
polygons. This leads to an important property of com­
plements as stated below: 

Statement 3.1 If the edges of the input polygons 
arek-oriented:j:withk = {0, 1, -1, oo}, the edges 
in the complements also belong to this class. 

3.3 Complement Decomposition 

The ComplementConstruction procedure out­
puts a list of polygons, some of which may be convex 
and others nonconvex. These two types of output need 
different treatment. In particular, the nonconvex com­
plements need further decomposition. 

3.4 Convex Complements 

For those complements which are convex, there is no 
further processing required as demonstrated by the 
following lemma: 

FIGURE 5 Polygonal regions. 

:j: Orientation in this eontext means slope of a line. 

PRECISE A:'IJ"ALYSIS OF ARRAY USAGE 233 

Lemma 3.1 If a complement is convex then it 
is a simple section. 

Proof A simple section is defined as a convex poly­
tope with simple boundaries. From Statement 3.1 the 
edges in the complement are guaranteed to be simple 
boundaries. If this complement is convex, then it is a 
simple section. 

The implication of this lemma is that we can test 
each complement to check if it satisfies the convexity 
criterion. Checking for convexity is an O(n) time com­
plexity operation for n vertices and therefore can be 
used as a preprocessing step in the complement decom­
position procedure (discussed below). This optimiza­
tion can reduce the overall time required to con­
struct complements. 

3.5 Nonconvex Complements 

A complement is not always a convex polytope. In 
order to remain in the convex representation frame­
work, we need to decompose a composite nonconvex 
complement into a finite number of convex polytopes. 
The motivation for performing this decomposition is 
two fold: 

1. Computations on general polygons are difficult 
but easy for certain primitive shapes such as 
simple sections. Therefore, it is advantageous to 
decompose into primitive shapes, perform com­
putations on these well-defined shapes, and 
combine the results. 

2. We would like to remain in the simple section 
framework to apply the existing convex combi­
nation algorithms for these primitive shapes. 

Based on the above considerations, we are inter­
ested in a decomposition§ with the following prop­
erties: 

1. Edges in the decompositions should be closed 
under the orientations of the edges of the chosen 
representation. Since our chosen representation 
is simple section, the orientations of the edges 
in the decompositions should belong to {0, 1, 
-1, oo}. 

2. The number of partitions should be minimized. 

The first property is a stricter requirement than the 
second. It ensures that the partitions that we obtain 
can be represented as simple sections. The second 

§ Partition is synonymous. 
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property only affects the time complexity of testing 
the intersection of two complementary sections. 

Cnder the constraints for partiti-ons mentioned 
above, the decomposition problem can be stated as 
follows: 

Problem :3.1 Find an optimal convex partitionll 
of a simple polygon such that th<> t>dges of both 
the original (input) and the partitioned polygons 
are k-oriented with k = 4; the orientations being 
{0, L -L oo}. 

3.6 Decomposition Method 

The problem of decomposing a polygon into convex 
subpolygons has reciewd much attention in the fidd of 
computational geom<>try and various algorithms t>xist 
depending on the nature of solution. Ther<> are at least 
~hree I~ethods for decomposing a nonconvex polygon 
1~to a finite numlwr of convex polygons: (a) triangula­
twn, (b) trapezoidalization, and (c) optimal convex 
partitioning. (Triangulation and trapezoidalization 
can be viewed as special eases of a partition into convex 
polygons.) If n denotes, the number of vertices of a 
polygon, then triangulation can be done in O(n) time 
[18], trapezoidalization is O(nlogn) [ 19], and an opti­
mal convex partitioning is O(n:1

) [20]. The following 
lemma states the decomposition method that can sat­
isfy the desired closure property for edges in the par­
tition: 

Lemma 3.2 A trapezoidal decomposition of a 
complement exists which results in partitions 
that are simple sections. 

Proof The complement construction procedure 
only adds line segments with orientations {0, 1, - L 
00 } (from Statement 3.1). A horizontal (or vertical) 
trapezoidalization of this polygon partitions it into 
convex quadrilaterals (trapezoids) by adding hori­
zontal (or vertical) line segments. This will onlv intro­
duce line segments whose orientations are o· (or 00 

respectively). Since all line segments for each of these 
partitioned polygon are closed under the orientations 
and all the partitioned polygons are convex. the de­
composition method results in partitions that are sim­
ple sections (from Lemma 3.1). 

3.7 Decomposition Algorithm 

There are several alternative approaches to trapezoidal 
decomposition with the same asymptotic time com-

ll.\1inimum in tfw number of partitions. 

Type -1 Type-2 Type- 3 

FIGURE 6 Type of wrticcs. 

plexity. The main ideas of horizontal trapezoidaliza­
tion are described here. This is an abridged version 
of the description that appears in [19]. 

Given a simple polygon as input, this algorithm 
generates a set of disjoint trapezoids which covers the 
poly?on. A nonoverlapping decomposition of a poly­
gon ts called partitioning (if overlapping is allowed. 
it is called a covering). In a horizontal partitioning, 
the parallel edges of the trapezoids are parallel to the 
x-axis. in the usual intuitive sense of an x-1· coordinate 
system. The nonparallel (vertical) sides ~f the trape­
zoids are derived from the edges of the oriainal polv-

h 
l:"l • 

gon. T e basic idea is to identify these bounding edaes 
of a trapezoid. There are two in~portant characteristics 
upon which the decomposition strategy, and conse­
quently the identification of th<> bounding edges, is 
based: . 

1. The vertices of the polygon are the defining 
points for the parallel edges of the trapezoids. 

2. The vertices of a simple polygon can be charac­
terized into three types with respect to a hori­
zontal line passing through a vertex. Figure 6 
shows these three types. 

An ordered scan of the vertices of the polygon is 
performed. At each vertex encountered during this 
sean, a horizontal line is passed through it. This line 
defines a parallel edge (characteristic A) of a trapezoid. 
Whether this edge defines a starting edge (the edge 
which initiates one or more trapezoids) or the ending 
edge (which completes the initiated trapezoids) of a 
trapezoid can be decided based on the type of vertex 
(characteristic B). Every time an ending edge is estab­
lished, a pair of vertical sides have to be found to 
complete the trapezoid. These vertical sides are those 
ed?es of the polygon which are in the left and right 
netghborhood of the vertex that defined the ending 
edge: These edges are efficiently computed using dy­
namtc data structures such as height-balanced trees. 
If we assume that the vertices of the polygon have 
unique y·-coordinates, then the sean starts and terrni-



FIGURE 7 T rapezuidal partitions. 

nates at unique points. Figure 7 shows a simple poly­
gon and its trapezoidal partitions. The running time 
of this algorithm is O(nlogn) mainly contributed by 
the vertex sorting step. 

How many partitions are produced by this decom­
position algorithm? A theorem due to Asano et al. [21] 
demonstrates that this kind of partitioning is optimal; 
it produces the minimum number of partitions for a 
given class of polygons and the number of trapezoids 
is given by the index, t(P), of the polygon P. 

t(P) = n(P) + w(P)- h(P)- 1. 

Here n(P), w(P), and h(P) represent the number 
of vertices. windows or holes (a window is a polygon 
enclosed within an outer polygon). and horizontal 
edges of P. respectively. Since we are dealing with 
simple polygons without windows, w(P) = 0. For the 
polygon shown in Figure 7, n(P) = 8. w(P) = 0, 
and h(P) = 3. Hence, t(P) = 4. 

3.8 Formal Definition of Complementary 
Sections 

An informal definition of complementary sections was 
given in Section 2.2. Here we formalize the definition 
of complementary sections. 

Definition 3.1 A complementary section 5' 
(5'", S) is a pair consisting of a bounding convex 
region 5'", the envelope, and a set of disjoint 
convex regions S = {5'}, the complements. 
5'" and elements of S are represented using simple 
section descriptors. 

4 THE PRECISE UNION ALGORITHM 

With the basic machinery for constructing comple­
ments and decomposing them into convex descriptions 
in place, we can now construct the algorithm to com­
pute the union of two complementary sections. 
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4.1 Union 

Given two complementary sections 5; and 52 as input, 
the algorithm CompUnion computes the union 8; + 
82 which is another complementary section 5;,,.,. = 

( ~,,. 5 ) · 'h } ' l'e - Qc U ~,,. d 9 . o new. J.. rww sue t 1at ...__.,nell' - ...__., 1 o 2 an ... _ nell' constitute 
the new set of complementary regions. 

Algorithm CompUnion 
Input: two complementary sections 8; 
and 82. 
Output: 8~,., the merged complementary 
section. 

begin 
1 S;w~ ~ Envelope (51. 52) 
2 Sporn ~ ConsComplements (5;;,11 ., 8;, S;!) 
3 sf/('11' ~ Map (Decompose, Spuh·s) 

end 

Procedure ConsComplements (5", 5;, 52) 
Input: 5" the envelope, and two 
complementary sections 5; and 52 
Output: the updated set of complements 
as a list of polygons 5pof\"S' 

begin 
1 €1 ~s,.- 81 
2 €2 ~ 5"- S:! 
3 case(f~,f2)of 

I* 51 = 52 = 5' *I 
4 a) : el = nil/\ €2 =nil 
5 8pur,., ~ UpdateOverlaps (81 , 8 2 ) 

I* case 52 c 5; and 5,. =51 *I 
6 b): el=nill\€2<>nil 
7 S't ~ UpdateComplements (81 , 8:!) 
8 8'2 ~ UpdateOverlaps (81, 8 2) 
9 8puln ~ SetUnion (8\ 8'2) 

I* case 51 C 52 and 5,. = 82 *I 
8 c) : €2 =nil/\ el <>nil 
9 S't ~ UpdateComplements (82 , 51) 
10 8'' ~ UpdateOverlaps (81 , 8 2) 

11 8puln ~ SetUnion (S\ 8'2) 
I* one is not subset of other *I 

12 d) : el <>nil/\ €2 <>nil 
13 €2 ~ €1 -52 
14 S't ~ UpdateComplements (81, SD 
15 8'2 ~ UpdateComplements (82 , 51) 
16 S'e ~ UpdateOverlaps (81, 8 2) 

17 Spain ~ SetUnion (8\ 8'2 S\ l2) 
18 end case 
19 return Spuln 

end 
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Procedure UpdateComplements (S, S") 
Output: 5,.11 , the updated set of 
complements. 

begin 
1 for each element S in S 
2 if (S' g 8'') 

I* accummulate into S,"'" *I 
3 8,.11' ~ SetUnion (8/IPU'l s· - S") 
4 return 8/1('/1' 

end 

Procedure UpdateOverlaps (S~, 5 2 ) 

Output: Sn the updated set of 
complements. 

begin 
1 for each element Sj in 8 1 

2 for each element S§ in 8 2 

I* accummulate if S] n Si"" 0 *I 
3 8n ~ SetUnion (8n, S\ n S§) 
4 return Sn 

end 

Procedure Decompose (P) 
Input: A simple polygon P 
Output: TrapezList, the partitions of 
P into trapezoids 

begin 
1 if (IsConvex (P) true) then 
2 TrapezList ~ P 
3 else 
4 TrapezList ~ Trapezoidalize (P) 
5 return TrapezList 

end 

Algorithm CompUnion has three components 

1. Envelope computes the convex hull of two 
simple sections using the existing Union algo­
rithm for simple sections. 

2. ConsComplements computes the points that 
do not belong to the exact union but appear in 
the approximated union. It returns a list of 
polygons. 

3. Map is a higher order function which takes a 
function Decompose and a list as arguments 
and applies that function to each element in the 
list. The output after map operation is a list of 
simple sections (trapezoids). This higher-order 
function has been used only for brevity m 
syntax. 

Procedure ConsComplements includes condition 
checks to track different kinds of overlaps between 
two sections whose union is being computed. But the 
principal method to compute complements remains 
the same as shown in Figure 4. Two kinds of overlaps 
can be identified which form the basis of the condition 
checks: (a) Containment-when one section is con­
tained in the other and (b) no containment, but over­
lap could exist. When one section is contained in the 
other, their union is the larger of the two. This contain­
ment shows up when the difference operations are 
performed. As shown in the procedure, if only the first 
difference operation returns a null list of complements 
then we can declare that 8'' = Sj and therefore 82 C 

s; . In this containment situation, the complements of 
s; have to be updated. Similarly. if the second differ­
ence operation results in a null list, then the comple­
ments of S2 are updated. In the case where one is 
not contained in the other, both complement sets have 
to be updated. All these updates are performed in 
procedures UpdateComplements and Update­
Overlaps which involve a series of difference and 
intersection operations as a two-step process: 

1. In the procedure UpdateComplements, the 
overlap between the complements (S) and the 
envelope of the section (S") is removed by 
applying difference operations. 

2. The overlap between Sand the complements of 
S' cannot be detected in the previous step. This 
is computed in procedure UpdateOverlaps. 

The procedure Decompose checks if the input is 
convex in which case it does not perform further de­
composition. This check is an optimization whose le­
gality was established in Lemma 3 .1. Only nonconvex 
polygons are further processed by procedure Trape­
zoidalize. 

4.2 Complexity 

The running time of algorithm CompUnion is evalu­
ated here. The running time is mainly dependent on 
the number of complements that are to be processed. 
This is an input-sensitive feature because the number 
of complements depends on the type and distribution 
of array sections in the input program. Hence, the 
running times are estimated assuming some average 
size, say k, of the complement set. However, the algo­
rithms Union, Intersection, Difference, and Trapezoi­
dalize have fixed cost and the estimates can be ex­
pressed in terms of these fixed costs. 

Let D = 2d2 (where dis the dimension of the array), 
IS1 I = k1, and IS2I = k2 • For a two-dimensional array 



(d = 2), the cost for Union (U) or Intersection (n) is 
D [14]. The costs for Trapezoidalize and Difference 
depend on the number of vertices to be processed. The 
number of vertices to be processed is of the order D 
and therefore the cost of Trapezoidalize is O(DlogD) 
and the cost of Difference in UpdateComplements is 
O(DlogD) (because operands are always convex sec­
tions). 

Considering only the major cost components. the 
approximate cost for CompUnion is given by the fol­
lowing equation 

C(Comp Cnion) = (k 1 + kJ D log D 

+ 2(k1 k2) D 

+ (k1 + k2 ) D log D 

The terms in the cost expression above are contrib­
uted by procedures ConsComplement and Decom­
pose. Maximum time is involved when lines 14 to 16 
of ConsComplement are executed. The first term 
in the cost expression is contributed by Update­
Complements in lines 14 and 15. The second term 
of the cost expression is contributed by Update­
Overlaps in line 16. The ConsComplement proce­
dure returns a complement set of size proportional to 
k1 + k2 which may require further decomposition. 
Hence, Map will require the time shown as the last 
term of the cost expression. 

5 THE PRECISE INTERSECTION ALGORITHM 

The basic goal of this article has been to demonstrate 
a method to compute exactly the Union of convex 
sections. However, in many analyses the binary opera­
tion Intersection is also required. Here, we discuss 
the intersection algorithm in the complementary sec­
tions framework. 

5.1 Intersection 

Given two complementary sections 5; and 52 as input, 
the algorithm Compintersection computes the 
"true" intersection 5; * 52. The result is a boolean 
value indicating the presence or absence of an overlap 
between 5; and 52 . 

Algorithm Compintersection 
Input: two complementary sections 51 
and 52 
Output: true if sections intersect false 
otherwise 
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begin 
1 5n = Intersection(S1, 5 2 ) 

2 If (Sn = 0) return false 
3 If (81 = 0/\ 82 = 0) return true 
4 If (5\ = 0 1\ 82 #- 0) 
5 return(ScanComplements(5n, 8 2 )) 

6 If (82 = 0 1\ 81 #- 0) 
return ( ScanComplements(5n, 82)) 

7 /* scan both complements *I 
8 If (5\ #- 0 1\ 82 #- 0) 
9 b 1 = ScanComplements(Sn, 8 1) 

10 if ( b1 = false) ret urn false 
11 else 
12 b2 = ScanComplements(5n, 8 2) 

13 if (b2 = 0) return false 
14 else return true 

end 

Procedure ScanComplements (5n,8) 
Input: A simple section 5n and 8 the 
set of complements 
Output: true if intersection exist false 
otherwise 

begin 
1 for each complement 5' E 5 
3 5n = 5n - 5' 
4 if (Sn = = 0) return false 
5 end for 
5 return true; 

end 

The main steps in Compintersection proceed 
in the following sequence. The first step computes the 
intersection of the envelopes using the Intersection 
algorithm designed for simple sections. If the intersec­
tion returns null then there is no overlap between 
the two sections. Otherwise, it indicates the possible 
existence of an overlap. However, this could be a 
"false" overlap. To confirm this, the list of comple­
ments has to be scanned. This search constitutes the 
remaining steps of the algorithm which invoke the 
scan procedure. 

The first two steps attempt to establish a null inter­
section of two sections using the envelopes. Under such 
conditions, the intersection test will incur the same 
cost as testing the intersection of two simple sections. 
This is the advantage of retaining the envelopes in the 
complementary sections framework. Further steps of 
the algorithm are required only when a non-null inter­
section is reported in the first step. In these additional 
steps, Compintersection essentially has to scan 
the list of complements to disprove overlap between 
two sections. This is based on the idea that there is a 
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FIGURE 8 A false Intersection. 

false overlap when one section is contained in the 
complementary region of the other section. Otherwise, 
it is a "true" overlap. 

The procedure ScanComplements basically 
checks whether a given section is contained in a com·­
plementary region. Since the complementary region is 
maintained as a finite number of convex sections and 
a given section can potentially span multiple comple­
ments, the scan has to be iterated through each com­
plement in turn. At each step in the scan, the part of the 
section which overlaps with the current complement 
being tested is removed by a difference operation. If 
the given section is contained in the complementary 
region. then a series of such difference operations will 
eventually terminate in a null region. Figure 8 shows 
such a false overlap scenario in which S' is the set of 
complements (trapezoids) and Sn is the rectangular 
region which overlaps this complementary region. As 
can be noted from Figure 8 the overlap spans multiple 
complementary sections. 

The cost for Compintersection can be com­
puted in a similar manner as that of the Union. Maxi­
mum time is involved when lines 9-13 are executed. 
Each difference operation in procedure ScanCom­
plements has time complexity 0( (n + s)logn), where 
n is the total number of vertices in the two polygons 
and s denotes the number of intersections of the line 
segments of the polygons [ 16 J. After each difference 
operation, the resulting polygon can have additional 
vertices. Since n is O(D) for k difference operations, 
the number of additional vertices is proportional to 
kD. Hence, the cost for ScanComplements, Cdiff is 
O((kD + s)logkD). Based on this, the total cost for 
executing lines 9-13 in Compintersection, con­
sidering only the major cost components, is given by 
the following equation 

C(Complntersection) ""' (kt + kz) Cdiff 

6EXAMPLE 

We consider an example to demonstrate the use of 
array section analysis based on complementary sec-

Array Access Shapes for variable 'Z' in TRED2 program 

19 20 36 58 60 

~.: 

a) 

b) C) 

Simple Section Summary Complementary Section Summary 

FIGURE 9 Write accesses to Z. 

tions. This example of computing array access summa­
ries arises in the optimization phase of an automatic 
parallelizing compiler. Such summary information 
could be useful for array data-flow analysis. 

The write accesses to array variable Z occurring 
within one iteration of an outer loop are shown in 
Figure 9a. This loop corresponds to one of the main 
loops of the TRED2 subroutine from the Eispack li­
brary package. The numbers on top of the figures 
indicate the line numbers corresponding to each up­
date (these numbers are based on a code listing which 
appears in [22]). 

The access shapes corresponding to these updates 
can he precisely represented using simple sections. 
However, if these accesses are summarized. then the 
resulting summary gets approximated as shown in Fig­
ure 9b with the upper triangle information lost in the 
summary. This information can. however, be retained 
as a complement in the complementary section frame­
work as shown in Figure 9c. If we compare the descrip­
tor sizes required to describe the write accesses to Z, 
then accurate information of these accesses based on 
atom images would require five descriptors. Allowing 
summarization under the simple section framework 
requires only one descriptor, but at the cost of preci­
sion. However, with three descriptors (two comple­
ments and one envelope) under complementation, an 
accurage summary is obtained. More importantly, one 
can observe from the figure that the complementary 
sections can describe a nonconvex union precisely us­
ing a set of convex descriptors. 

7 DISCUSSION 

A number of analyses used in an automatic paralleliz­
ing compiler are based on computing array sections 
which are represented using convex shape descriptors. 
The inaccuracies arising from convex combinations 
when these descriptors are used in an analysis have 
been reported in many research studies. ln. a recent 



publication by Creusillet and lrigoin [ 6 J, the authors 
suggest that alternative representation may be re­
quired to get better precision when convex descriptors 
are used. To our knowledge, this is the first attempt 
at constructing a representation for compile-time anal­
ysis of arrays that can produce exact solutions to the 
closure property of the convex combination operator 
Union. 

7. 1 Comments on EHectiveness of 
Complementary Sections 

The often-quoted demerit of the convex regions ap­
proach is that the existing techniques produce approx­
imations to the Union of two sections which may 
weaken the precision of the analysis. Therefore, alter­
nate approaches such as reference lists have been ad­
vocated [23]. The approximations can be controlled 
to a certain extent using delayed merging technique, 
but this is not a general technique. In this article, we 
have demonstrated that convex combinations such as 
l)nion can be performed accurately and a general tech­
nique has been proposed. It only remains to be shown 
that our approach is efficient. An empirical study has 
to be conducted to demonstrate the efficiency factor. 
Here. we make a few general comments on how com­
plementary sections can be effective: 

1. The base representation chosen in the comple­
mentary section framework for representing 
array sections is simple sections. Of the three 
convex region methods proposed in literature, 
the simple section representation offers a good 
balance between precision and efficiency. Its 
Union computation has a worst case complexity 
which is quadratic in the rank of the array. 

2. Empirical studies have demonstrated that non­
zero coefficients of loop indexes in most sub­
scripts are either 1 or -1 [13]. Hence, simple 
section representation is precise enough to rep­
resent most array access sets. 

3. The computation of complements is based on 
two standard algorithms from the field of com­
putational geometry, namely region finding and 
trapezoidalization, both with an asymptotic ef­
fort O(nlog n). 

4. Because many applications found in practice 
have a maximum of four or five dimensions [13], 
these fixed cost algorithms can be computed in 
constant time. 

5. Typically, while accumulating array access in­
formation using a reference list approach such 
as Atom Images, the size of the reference list 
keeps increasing. However, the complement set 
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FIGURE 10 Efficiency v,;. precision graph. 

may not have the same behavior and may tend 
to diminish if sections begin to overlap with 
complements. This behavior hinges on a '"space 
filling" hypothesis which is based on the obser­
vation that different regions of a program access 
different sections of an array which together 
make up the entire array. Hence, as the accumu­
lation of sections occurring across procedure 
boundaries proceeds, and the sections overlap 
with the complements, the number of comple­
ments will reduce. 

6. Because the envelopes are retained along with 
the complements, the test for intersection will 
incur the same cost as for testing simple sections 
in cases where the envelopes are nonover­
lapping. 

7.2 Precision Spectrum 

Figure 10 shows a representative graph of efficiency 
vs. precision of different array section analyses. The 
classical method treats arrays as monolithic units. 
Hence, it does not distinguish between access to a 
single element of an array and access to the entire 
array. Therefore, it lies in the lower end of the precision 
spectrum. However, the side effect computation based 
on such summary is highly efficient [24 J. At the higher 
end of the precision spectrum are methods such as 
FIDA (which combines Atom Images and Lineariza­
tion). This precision is achieved at the cost of efficiency 
[23]. Between these extremes in the precision spectrum 
lie the convex region methods (shown in the dotted 
enclosure). These methods attempt to strike a balance 
between precision and efficiency. The complementary 
section representation adopts the region method and 
aims at enhancing its precision. 

The precision of complementary sections is 
bounded by points 3 and 5 in Figure 10. This is be­
cause the precision can be no worse than simple sec­
tions and can be as good as FIDA. There are two 
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scenarios for positioning the complementary sections 
in Figure 10: 

1. As evidenced by empirical studies (comment 2 
on effectiveness in previous section), in the ma­
jority of cases arising in practice, the base repre­
sentation, namely simple section, is adequate to 
precisely record an array access set (point 4 will 
coincide with 3 in such cases). However, point 
5 is better placed in the precision dimension 
because it does not suffer from convex comb ina­
tion problems. The complementary sections also 
overcome the convex combination problem and 
therefore occupies position 6. The efficiency at 
this point is depicted to be better than FIDA. 
This is possible if the pruning property of the 
complement set discussed in the previous section 
(comment 5 on effectiveness) holds. This is 
where we believe the complementary sections 
lie based on the comments on effectiveness (spe­
cifically 2, 4, and 5) in the previous section. 

2. In cases where the precision of the base represen­
tation is inadequate, the position of complemen­
tary section will get shifted to point 7. Although 
its precision is lowered, it will still be better 
than the base representation in eliminating other 
sources of imprecision. Based· on indications 
from empirical studies (comment 2 in previous 
section), this inadequacy problem will not arise 
frequently in practice. 

The proposition that complementary sections can 
be efficient in practice can be verified in an actual 
implementation in the following way. A complemen­
tary section consists of one summary information (En­
velope) and a set of complements both represented as 
simple sections. Suppose that the length of this list of 
complements is k. If we contrast with the reference list 
approach, the complementary sections will perform 
better if the cardinality of reference list is greater 
thank. 

8 FUTURE WORK 

A prototype implementation is underway in order to 
assess the effectiveness of the proposed technique. This 
implementation is being integrated into the SUIF par­
allelizing compiler [25 J. SUIF generates an abstract 
syntax tree as the intermediate representation of an 
input upon which our analysis module is built. The 
approach adopted in this implementation exercise is 
as follows. We compute the array access shapes and 
their unions for each nested loop in the body of a 

procedure. We can then use this information as input 
to the XYZ GeoBench Software system [17] to com­
pute the complements. <j[ 

The base representation, namely simple section, can 
be smoothly integrated into a compilation system. Our 
prior integration effort has been to develop a prototype 
implementation of this base representation in the 
SPOC compilation system [26, 27]. The purpose of 
this implementation was to develop an efficient array 
usage analysis module to overcome certain deficiencies 
in existing compiler analysis for the Occam program­
ming language. The array usage analysis module is 
required to track anamolous parallel updates to shared 
variables. This implementation adds about 2000 lines 
of specification code into the compilation system. The 
specifications are processed by the GMD Compiler 
Construction Toolset [28] to produce an executable 
unit. The application of complementary sections to 
enhance the precision in this analysis is also being 
pursued. 

9 CONCLUSION 

A number of important analyses in a parallelizing com­
piler are based on computing array sections which are 
represented as convex regions. Although these region 
methods achieve efficiency, they suffer from certain 
inaccuracies. A particular source of inaccuracy arises 
when two sections are merged. We have presented 
a technique which overcomes this inaccuracy. While 
alternatives such as delayed merging might work well 
in certain cases, it does not generalize and approxima­
tions could persist. However, the complementary sec­
tions framework is an exact solution in a general set­
ting. Its efficiency, however, needs to be assessed 
through empirical studies. 

The discovery of available parallelism in a program 
is a fundamental precondition for automatic paralleli­
zation to be effective. Any mapping transformations 
can only be as effective aas the precision obtained 
in this parallelism discovery process. Hence, precise 
analysis of a program is vital for automatically synthe­
sizing parallel program from its sequential specifica­
tion. The technique described in this article aims to 
improve the precision. There are a number of analyses 
which are based on representing array access sets using 
convex descriptors such as interprocedural depen-

'I[ The XYZ GeoBeneh Software is written in Object Pascal which 
inhibits direct integration into our implementation. Integration re­
quires translation into C++ whieh is cumbersome and a matter 
of detail. 



dence analysis [ 4. 6], array data flow analysis [29], 
automatic data partitioning [30], communication 
analysis [31], analysis for locality optimizations [32], 
program transformations for reducing false sharing 
on shared memory multiprocessors [15], and use of 
array sections information in run-time environments 
[ 33 J. If these analyses are being impaired due to the 
imprecision of convex operations, then the precision 
of all these analyses can he potentially enhanced by 
adopting the complementary section framework. 
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