
A New Language Design for Prototyping
Nmnerical Computation

THOMAS DERBY, ROBERT SCHNABEL, AND BENJAMIN ZORN
Department of Computer Science, Campus Box 430, University of Colorado, Boulder, CO 80309

ABSTRACT

To naturally and conveniently express numerical algorithms, considerable expressive
power is needed in the languages in which they are implemented. The language Matlab
is widely used by numerical analysts for this reason. Expressiveness or ease-of-use can
also result in a loss of efficiency, as is the case with Matlab. In particular, because
numerical analysts are highly interested in the performance of their algorithms, proto
types are still often implemented in languages such as Fortran. In this article we describe
a language design that is intended to both provide expressiveness for numerical compu
tation, and at the same time provide performance guarantees. In our language, EQ, we
attempt to include both syntactic and semantic features that correspond closely to the
programmer's model of the problem, including unordered equations, large-granularity
state transitions, and matrix notation. The resulting language does not fit into standard
language categories such as functional or imperative but has features of both paradigms.
We also introduce the notion of language dependability, which is the idea that a language
should guarantee that certain program transformations are performed by all implemen
tations. We first describe the interesting features of EQ, and then present three examples
of algorithms written using it. We also provide encouraging performance results from
an initial implementation of our language. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

As problems in any domain become more complex,
they demand increasingly abstract notations with
which to describe solutions. For example. in the
domain of numerical computation, Fortran in its
many forms has always been a favorite implemen
tation language. Recently. however. many numeri
cal analysts are using more expressive languages
and language environments such as Ylatlab or

Received March 199.'i
Revised January 1996

© 1996 John Wiley & Sons. lne.

Scientific Prowamming. Vol. S. pp. 279-:300 (1996)
CCC 1058-9244/96/040279-22

Mathematica to initially express, evaluate, and de
bug their algorithms. While Matlab and Mathemat
ica provide advantages over traditional languages
for numerical computation, in their current form,
they lack optimizing compilers.* As a result, many
numerical analysts continue to implement their al
gorithms directly in Fortran.

The purpose of programming language design
is to provide humans with simple and natural ab
stractions that simplify the translation from the
human mind into a computable form of expres
sion. While some would argue that Fortran pro
vides such a set of abstractions for numerical ana-

* Only recently has work on compiling Matlab been pub
lished [1 •.

280 DERBY, SCHNABEL, A."'D ZOR~

lysts, our experiences and the widespread use of
Matlab suggests otherwise. In particular, in inter
viewing local numerical analysts working in the
area of numerical optimization and reviewing the
published literature in the field, we observed that
these scientists expressed their algorithms in
pseudo-code at a level typically much higher than
that ofF ortran notation. ::\1otivated in part by these
observations, we have designed a programming
language intended for use in prototyping linear al
gebra and numerical optimization computations.
We have focused our work to date in these areas
(avoiding the broad category of differential equa
tions) in order to limit the scope of the research.
Extension of EQ into the domain of differential
equations is an obvious direction for future work.

Our language, EQ, provides several important
features that directly reflect the syntactic and se
mantic ideas we observed being used. These fea
tures are:

1. Cnordered expressions: The numerical ana
lysts we interviewed described parts of com
putations out-of-order. Their "natural" se
mantics of the "=" operator was that it
defined a relationship, and not that it up
dated a memory location. Specifically, they
used a different notation to describe a vari
able definition (e.g ... tolerance = 0.0001)
and a recurrence relation (e.g .. x' = x -
lambda X H X gx).

2. Large-granularity state transitions: The nu
merical analvsts used a notation that indi
cated an update to the state of the computa
tion. as shown by the recurrence relation
notation mentioned above. Thus .. the ana
lysts· model of computation was based on
larger-grain state transitions than on the
granularity of individual memory location
updates.

3. ::\1atrix notation: Lniformly. the analysts
used standard matrix notations to describe
computations on arrays.

Incorporating these ideas has led us to a language
design that has features of both imperative lan
guages, such as Fortran and C, and functional
languages, such as Sisal.

Another aspect of the EQ design is related to the
issue of performance. Traditionally, performance
has been a critical aspect of numerical computa
tion. One of the strongest arguments for using For
tran is that the performance of its programs is tra
ditionallv excellent and well understood. In this

article, we introduce the principle of language de
pendability, by which we mean the guarantees the
language provides in relation to issues of optimiza
tion. More specifically, dependability refers to the
requirement that certain program transformations
are performed by all implementations of the lan
guage. As an example of language dependability,
tail-recursion elimination is a required transfor
mation in all Scheme implementations [2]. We rec
ognize that providing dependability in general is a
difficult problem. As a resulL in this article, we
discuss what language transformations we would
like to dependably provide in EQ. and why the EQ
language design is amenable to such guarantees.
What transformations can be provided depend
ably in EQ remains an open issue and will be con
sidered further in future work.

In this article. we introduce the important con
cepts of EQ and illustrate its use with three exam
ples representing small numerical computation
kernels. We also show that our preliminary EQ
implementation performs well for these programs.
Lnlike other languages in this domain, the expres
sion of parallel computation with EQ, either explic
itly or implicitly, is not a primary goal of the design
at this time. Some of the features of EQ appear
well suited to parallelization, but this aspect is not
the thrust of our current research.

The remainder of this article is organized as
follows. Our language is related to many other lan
guages, and in Section 2 we describe some of those
relationships in detail. In particular, we discuss in
detail the differences between EQ and its closest
relatives, Sisal. ld, and EPL. In Section 3, we de
scribe the important features of EQ, including their
syntax, semantics, and our motivation for inelud
ing them. Three example EQ programs, with line
by-line commentary, are provided in Section 4.
We provide some preliminary implementation re
sults in Section 5, including timing measurements
for our three example EQ programs. Section 6 dis
cusses the issue of dependability in more detaiL
including our goals for dependability in EQ. Fi
nally, we describe future research in Section 7,
and summarize our conclusions in Section 8.

2 RELATED WORK

ln this section, we discuss how our work with EQ
relates to existing programming language designs.
Because EQ contains side-effect-free features
(e.g .. unordered equations), large-grain state tran
sitions, and array notations, there are many differ-

ent languages that are related. This section is bv
no means a complete listing of relevant languages.:
instead, it tries to present at least one example of
each language category we discuss. At the end of
this section, we summarize the aspects of our de
sign that make it unique.

2.1 Imperative Languages

Imperative languages are those that describe com
putations by giving an ordered sequence of steps.
each of which changes the state of the computa
tion. In these languages, the granularity of state
transition is usually very small (i.e., a single mem
ory location). This class oflanguages includes For
tran [3], C [4], Matlab [51, APL [6], Fortran 90
[7], as well as object-oriented languages such as
C++ [8]. Scientific computation uses this class of
languages almost exclusively.

Because they allow the modification of locations
through the use of the assignment statement, im
perative languages are generally good at expressing
algorithms involving change. As we have noted. the
concept of change (or state transition) is expressed
explicitly in many numerical algorithms, and as a
result, such algorithms are relatively easv to ex
press in imperative languages. In c~ntras.t, many
functional languages, while allowing state transi
tions to be modeled. do not allow such transitions
to be expressed concisely and/ or provide features
to facilitate the use of such transitions (for excep
tions, see below). This property alone may explain
much of the imperative paradigm's popularity
over the functional paradigm for scientific pro
gramming.

Imperative languages also typically use an ex
plicit memory allocation scheme, through variable
declarations, which allows them to easilv be mem
ory efficient, something with which mosr" other lan
guage paradigms (including EQ) have more diffi
culty. This approach also has disadvantages,
however. Forcing users to explicitly deal with mem
ory allocation prevents them from convenientlv
creating temporary objects, or from using object~
that have more logical dimensions than the storage
needed to hold them.t

\V e discuss two broad classes of imperative pro
gramming languages below, giving examples of
specific languages that have been suggested for
use in scientific programming.

t An example of an arrav with extra dimensions is a matrix
that is computed one colum;, at a time. with all columns reusin~
the same storage.

1\EW LA:'>JGCAGE DESIGI\ 281

Scalar Imperative Languages

Scalar imperative languages only allow the pro
grammer to manipulate and update simple numer
ical quantities, rather than aggregate values such
as arrays or records. Fortran is the foremost exam
ple of this class. and is also the most popular lan
guage for use in scientific computation. This fact
has been true from its introduction right through
to the present day, and its popularity seems likely
to continue in some form (Fortran 90 is discussed
in the next section). Despite criticisms bv some
language researchers [9], Fortran has ma~w fea
tures that are desirable in scientific computi~g. In
addition to its ability to represent change easily,
Fortran also offers the ability to handle complex
numbers and variably sized subprogram argu
ments, features that are not available in other com
mon imperative languages such as C or Pascal.
Excellent compilers, a simple execution model,
and general familiarity have further added to For
tran's success.

Because scalar imperative languages by defini
tion do not support expressions using larger aggre
gates such as arrays, they are not particularly con
cise: small numerical algorithms can explode into
large amounts of code when written using lan
guages such as Fortran. In conjunction. the result
ing programs often do not correspond well with the
user's understanding of the algorithms used by
that program. This problem is often exacerbated
by the requirement that the user perform explicit
storage management. In an effort to minimize the
storage allocation of their algorithms by hand, For
tran programmers often greatly complicate their
code (e.g., by packing two triangular matrices into
storage for a single square array).

Imperative Languages with
Array Expressions

A number of imperative languages, including APL,
~atlab, and Fortran 90, allow expressions to oper
ate on entire arrays or slices of arravs. We discuss
the features provided by these langt~ages, and how
these designs have influenced EQ.

The widespread use of APL illustrates the power
of providing higher-level array operations in a pro
gramming language. While APL has been used in
numerical applications, it also provides other verv
general array operations such as rotation. APL als~
encouraged the use of array computations to an
extreme. popularizing the one-liner approach to
problem solving. One reason that APL was so suc
cessful is that it provides a very natural and concise

282 DERBY, SCH"'ABEL AND ZOR\'

notation for describing many problems. As a result,
APL has influenced many subsequent languages,
including Backus' FP [10].

Matlab supports the use of mathematically
sound operations, such as matrix multiplication.
In Matlab, users are encouraged to write as much of
their computation as possible in the array/matrix
notation for several reasons. First, the array nota
tions are more concise than the less concise itera
tive facilities. Second, the interpretive nature of
existing .\1atlab implementations means that a sig
nificant performance penalty is taken when com
putations are written using control structures
rather than the matrix notation. This problem oc
curs because while the underlying matrix compu
tation routines are implemented in compiled li
braries linked into the ~atlab executable.. any
control structures are executed though intepreta
tion, greatly reducing the performance. This effi
ciency problem can prevent Matlab from being
used to perform algorithm comparisons using large
data sets.

Fortran 90 extends Fortran 77 in a number of
ways. including adding new facilities for manipu
lating pointers and records, a new module system.
and some limited facilities for computation with
complete arrays. The inclusion of array facilities
in Fortran 90 supports our belief that numerical
programmers benefit from such extensions. On the
other hand. because Fortran 90 extends and must
remain compatible with existing Fortran dialects,
support for array expressions in Fortran 90 is not
complete. In particular, in EQ we support the no
tion of a range variable which embodies the con
cept of an array index, and which is not supported
in Fortran 90. Furthermore, the reference manual
itself suggests a significant loss of efficiency when
using Fortran 90's array features [7].

2.2 Functional Languages

Declarative programming languages are character
ized by the absence of side effects and sequencing,
essential characteristics of imperative languages.
Functional languages, specifically, also typically
provide support for higher-order, first-class func
tions. By the definition of the paradigm, these Ian
guages lack direct support for updates to locations.
As a result. computations with state must be simu
lated by explicitly passing the state as an argument
and updating it via copying (at least conceptually,
if not in practice). For example, instead of imple
menting iteration via updates to a loop index, many
of these languages require iteration to be specified
using a recursive procedure.

Some functional languages are actually mostly
functional in that they include a standard impera
tive assignment statement as an option (e.g.,
Scheme and Standard ~L). While these semantics
result in programming flexibility, they also prevent
some of the significant advantages of the functional
paradigm (e.g., referential transparency and lazy
evaluation). Other functional languages introduce
state in a semantically limited way. In particular,
Backus' applicative state-transition (AST) systems
[10] are similar to the state-transition semantics
proposed for EQ in that they both propose larger
grain state transitions than single memory cells. ld
(discussed below) also provides imperative fea
tures with restricted semantics [11].

A small number of functional programming lan
guages (e.g., Sisal), have been designed specifically
to effectively support scientific computation.
These languages include syntactic and semantic
constructs beyond those of purely functional lan
guages such as Haskell [121 and Miranda [13],
and are closest in spirit to EQ. In this section we
will discuss similarities and differences between
EQ and these languages.

Functional Languages with Explicit
Looping Constructs

Since scientific programmers often seek to express
algorithms that involve iteration. languages such
as Sisal [14] and ld [15] add explicit looping con
structs to support this goal. The general looping
constructs in these languages are similar to the
ones found in the imperative paradigm (while and
for loops). Their bodies specify the new value of
the variables in terms of the old one, with somt>
syntax that looks very imperative .. such as:

X = X + 1;

While Sisal and ld both support an imperative
style notation for iteration in similar ways. they
support the notation of array modification in very
different ways. In particular, Sisal only allows the
user to change a whole object: it is not possible
to change a single element of an array without
conceptually constructing a whole new array, at
least at the language level. ·while Sisal has been
fairly successful at using optimization techniques
to eliminate the run-time inefficiencies associated
with updating whole arrays rather than their
pieces, the language constructs do not correspond
to the large-grain state-transition semantics that
we observed programmers apply in solving scien
tific problems. In particular, we believe that pro-

grammers sometimes think in terms of ''partial up
date" semantics. For example, to describe an
identity matrix, a user can think of updating a
zero matrix to place ones only on the diagonal. EQ
differs from Sisal in many other ways as well. EQ's
array manipulation mechanisms (the range vari
ables discussed in Section 3.4) are based on im
plicit looping operators, rather than on explicit for
loops, array operators, or vectors subscripted with
index arrays. The distinctions between index
arrays and range variables are further described
in Section 3.4. Also, EQ's iterative looping nota
tions are more general than Sisal's, permitting
multiple exit conditions from a loop, an important
concept in many numerical algorithms. Overall.
the resulting programming style in EQ is quite dif
ferent from that used in Sisal.

Unlike Sisal, the programming language Id sup
ports partial updates to array objects. Id provides
an imperative mechanism called an M-structure
that allows values to be entered and removed from
individual elements of an array [11]. ""1-structure
semantics require that before a new value can be
placed in an M-structure, the old value must first
be removed. M-structures were added to Id be
cause it was observed that threading explicit state
variables sequentializes otherwise parallel sci en
tific computation and can result in significant
amounts of copying.

M-structures provide an interesting alternative
approach to supporting imperative semantics in a
mostly functional framework. They differ from the
semantics of state transitions in EQ because state
transitions remain fine-grained and updates are
asynchronous. An important purpose for M-struc
tures is to provide implicit synchronization in ld.
In EQ. on the other hand. the purpose of our large
grain state-transition mechanism (i.e., see the
"followed-by" operator in Section 3.7) is to pro
vide a feature that naturally models the scientific
programmer's intent. In particular, followed- by
supports the notion of a synchronous partial up
date across all variables currently in scope. \Vhile
these semantics limit parallelism as compared to
the semantics of M-structures, the current intent
of the EQ design is not to support a maximal
amount of parallelism, but to provide more natural
sequential language semantics.

Functional Languages with Implicit
Looping Constructs

Rather than use standard control stn1ctures, some
functional languages express loops implicitly. In
Lucid [16], this is done by treating variables as

NEW LANGCAGE DESIGN 283

representing a whole stream of values, and writing
equations such as:

x = 1 followed-by x * 2;

which sets x to the sequence (1, 2, 4, 8,
16, ...) .

EPL [17] uses a different mechanism; to de
scribe a recurrence, one writes an array and defines
each value in the array in terms of the previous
values. So, for example, the above computation
could be written:

subscript i;
X (1] 1;

x[i] = x[i-1] * 2;

Both of these languages also have difficulty ex
pressing the change of only part of an object. In
addition, these constructions are more inefficient
than those of Sisal and Id, because it may be very
difficult to easilv determine which values to com
pute first: this must be decided either at run-time
(resulting in drastic loss of efficiency), or by using
sophisticated compile-time analysis. This can be
unreliable in thP sense that compile-time analysis
is not guaranteed to generate a solution for suffi
ciently complex sequence definitions. In such
cases, the language must fall back on the run-time
system. Furthermore. the program may contain
cyclic definitions only detectable at run-time.
Thus, it is difficult for the usPr to depend on the
compiler of such languages to generate reasonable,
or even consistent, perfonnance. This relates to
the concept of dependability. which is introduced
in Section 6.

2.3 Object-Oriented Languages

Object-oriented programming has become a
widely used important programming paradigm
that is supported in many different languages. For
the most part, existing applications of object-ori
ented approaches to scientific computing prob
lems have been in the areas of class library defini
tion (e.g., matrix and array classes, libraries to
support specific scientific fields such as magnetic
resonance [18], etc.). While object-oriented ideas
relate to high-level structuring mechanisms (e.g.,
class hierarchies), our ideas are more relevant to
the practice of programming-in- the- small. Fin ally,
it is quite clear that object-oriented concepts such
as inheritance, polymorphism, and dynamic dis
patch are not yet in common use among scientists.
The object-oriented paradigm mav eventually

284 DERBY, SCHNABEL, A;\!D ZOR:"l

greatly influence the way scientific programming
is done, but the effective use of this paradigm for
scientific computation is still a topic of research
and beyond the scope of this article.

2.4 Summary of Relation of
Existing Languages to EQ

While EQ shares syntactic and semantic features
with many different languages (from different par
adigms), it combines them in a way that makes
it unique. First, it supports syntactic constructs
intended to closely model those used by numerical
analysts describing computations involving linear
algebra. While a language such as Matlab also sup
ports this goal, it does so in a purely imperative
framework. Second, the semantics of EQ are
mostly functional, with the addition of large-grain
state transitions intended to closely support the
conceptual model of the programmer. While other
functional languages, such as Sisal and ld,. also
support numerical computation and side effects,
they do so in different ways, and with different
goals.

3 FEATURES OF EQ

This section describes the EQ language. Because
this article is intended as a language overview and
not a language reference, we focus here on the
most important aspects of the language. A more
complete language reference manual that provides
further details of the language design is currently
in preparation.

After a brief discussion of lexical issues, we de
scribe the EQ language in two basic parts. First,
EQ provides a set of definitional features for defin
ing new values in terms of old ones. This part of
the language is very similar to ideas from a variety
of functional languages, except that it allows for
partial definitions-the definition of only part of
an array, or definitions that occur under only some
circumstances. Portions of EQ that fall into the
definitional category include unordered equations,
statement grouping, the conditional statement,
range variables, and matrix expressions.

Next, we describe EQ's unique support for itera
tive constructs, which involve a notation for future
and past values, and then we describe explicit op
erations that cause time to "flow," moving values
from the future into the past. The features in EQ
that support change include the "next" and

"prev" operators, the followed-by operator, and
the do loop.

3.1 Lexical and Syntactic Issues

To date, our research has focused on semantic,
rather than syntactic, issues. As a result, the for
mation of tokens, interpretation of numbers, and
other similar issues are treated as thev are in the
C programming language. These issues do not af
fect the semantics of the language constructs pre
sented below.

3.2 Unordered Equations

Mathematical notations, in general, distinguish
between ordered and unordered equations. Unor
dered definitions are given as a set of equations.
Some notations have extra words between these
equations: "x = sin y, where y = . . . " and "let
y = ... in x = sin y" are common. Ordered
definitions, involving a set of recurrences, are given
using a special syntax (e.g., x' = x + 1). EQ se
mantics support both of these notions directly.
Specifically, in this section we discuss expressing
unordered notations, and in a later section we dis
cuss recurrences. In EQ a use of"=" corresponds
to the simple unordered model. For example:

a = 4;
b = a + correction;
correction = sqrt (a) ;

would compute a = 4, correction = 2, and
b = 6. This unordered form of expression allows
the programmer greater flexibility. For program
ming-in-the-small, unordered statements can lead
to a more natural way of expressing algorithms;
statements that logically belong together can be
placed in proximity, even if they cannot be exe
cuted consecutively.

In addition, unordered equations correspond to
a proof-oriented view of the program; each equa
tion can be thought of as a fact about the values the
program computes, rather than a computational
rule. These facts can then be used to prove proper
ties about programs. From this point of view, it
is convenient to be able to view these statements
as unordered.

As we have described so far, these features are
fairly similar to the unordered facilities provided
by many functional languages. However, in addi
tion to allowing the user to assign an entire vari-

able, EQ allows an assignment to only part of an
array. The statement

would assign r to the third row of a (arrays are
accessed in column-major order), assuming r is a
one-dimensional column vector (the ''- '' operator
transposes r into a row; see Section 3. 5). In Section
3. 7, we describe what happens to the undefined
parts of an array such as a. 1\"ote that attempting
to use a totally undefined variable (one which has
no definitions at all) is a compile-time error.

EQ is a single-assignment language; this means
that the same variable cannot be defined twice.
EQ insists on this property even for arravs; the
code fragment

a [1]

a[2]
1;
2;

is not permitted in EQ. By perm1ttmg only one
assignment to an array variable, EQ avoids the
problem of determining at run-time if any element
of the array is defined twice (a double definition
would mean that the order of execution of these
unordered statements could affect the computed
result). It is, however, sometimes desirable to be
able to write code fragments such as the above;
we show how to achieve the effect of multiple as
signments in Section 3. 7.

3.3 Conditionals

Conditional computations in EQ are handled in a
very similar way to that used in imperative lan
guages:

if (X >= y) {
maximum x;
minimum y;

}
else {

maximum y;
minimum x·

' }

computes both the minimum and maximum of x
andy. We note that braces are used, as inC, to
group several individual statements into a single
compound statement. Although there are multiple
assignments to variables here, each branch of the
conditional must assign to a variable at most once.
This rule ensures that there is never more than

NEW LANGCAGE DESIG!\ 285

one definition active, since only one branch of the
conditional is executed.

By providing a conditional statement (as op
posed to the conditional expression used by func
tional languages), we have avoided the need to
have records or tuples.:j: Adding such types to EQ
would not be difficult, but would be a violation of
our direct representation design principle. More
importantly, the conditional statement permits the
programmer to assign to a variable in only one of
the branches of an if statement; this will have a
well-defined (and important) meaning when used
with EQ's iterative statements (see Section 3.8).

3.4 Range Variables

Performing computations over a set of values is a
very common activity in programming. In numeri
cal computations, typically these are sets of sub
scripts. Using loop notation (as is required in lan
guages such as Fortran) obscures the intent and
potential parallelism of the program, in addition
to expanding code volume. To address these is
sues, EQ provides the range variable, which takes
on a consecutive set of integer values. The behavior
of these range variables is strongly related to that of
EPL 's subscript variables, but used in a restricted
form (see the end of this section). Definition state
ments that involve a range variable are performed
for each possible value of the variable, by implicitly
surrounding the statement with one for loop for
each range variable used within the statement.
For example:

i 1 .. 20;
v[i] = 0;

makes v a length 20 vector of zeros. It is equivalent
to the pseudo-code:

for i = 1. . 20 {
v[i] = 0;

}

Note that range variables behave just like any
other variable with regards to EQ's unorderedness
properties: code such as

:j: Cse of a conditional expression to assign two values such
as minimum and maximum would involve a notation using
tuples such as (maximum, minimum) = if (x > =y)

then (x, y) else (y, x).

286 DERBY, SCHNABEL, AND ZORN

i = 1. .10;

a[i,j1 = i+j;

j = 1. .20:

is perfectly legal in EQ. This flexibility allows users
to place range information where it is most conve
nient and understandable, and does not force
them to place it directly before or after the code
being looped over, as many other notations (such
as explicit loops or array comprehensions) do.

We note that range variables are not equivalent
to the vector subscripting available in languages
such as APL and Sisal, where the semantics are
equivalent to textual substitution. For example,
the code

i = 1. .20; j 1. .20;
x[i,j1 = a[i1 * b[j1;

computes the "cross" product of vectors a and b
(i.e., the full two-dimensional matrix abT); it is
equivalent to the pseudo-code:

for i = 1. . 20 {
for j = 1. . 20 {

x[i,j1 = a[i1 * b[j1;
}

}

In contrast, the EQ statements:

i = 1. .20;
x[i,i1 = a[i1 *b[i1;

are equivalent to the pseudo-code:

for i = 1 .. 20 {
x[i,i1 = a[i1 * b[i];

}

which assigns only to the diagonal of x the product
of corresponding elements of a and b (the meaning
of such partial assignments to a variable in a single
assignment language will be clarified in Section
3.7). This distinction is not possible in a vector
subscripting system, and requires additional con
structs in other languages, such as the dot in Sisal
or the transposition operator in APL. In addition
to being more expressive, range variable construc
tions are easier to compile efficiently than vector
subscripting.

EQ's range variables also have some advantages
over the standard array comprehension notation

used in many functional languages. The most im
portant difference is the ability to reuse the same
range for multiple computations, such as in

i = 1. .n; j = 2 .. n-1;
x [i, j 1 func1 (i) ;
y [i, j 1 func2 (j) ;
z [i, j 1 func3 (i, j) ;

Because the definitions of x, y, and z use different
subsets of the range variables, it would not be pos
sible to express this code using a single compre
hension. Instead, one comprehension would have
to be written for each array. Writing such computa
tions using comprehensions would require repeat
ing the ranging information. In effect, EQ allows
the user to create an abstract loop object, and to
reuse it in a number of contexts within a given
program.

Range variables can also be used in several other
contexts within EQ as well, besides looping over a
simple statement. For example, they can be used
for performing reduction operations, such as a
summation. The code

i 1. . 20;
s - sum [i 1 : v [i 1 ;

adds up the elements of array v. The sum reduction
operators (along with min. max, and several others)
are built into the language definition itself. Our
experience with numerical analysts suggests that
user-defined reductions are not overly important
to scientific computation. Providing built-in oper
ators for these functions also makes the generation
of high-quality executable code much easier.

Combining reductions with other uses of range
variables can yield considerable expressive power:

i,j,k = 1. .10;
c [i, k1 = sum [j 1 : a [i, j 1 * b [j , k1

is a matrix multiplication program for lOX 10 ma
trices (note that the sum operator binds more
tightly than addition, but less tightly than multipli
cation. We believe this generally corresponds to
mathematical notation).

In addition to summation, range variables can
be used to find minimums and maximums, as well
as the locations at which the extremum occurred:

i = 1..10; j = 1..20;

at max[i,j1: c[i,j1
next c [i , j 1 = 0 ;

will replace the maximal element of c with zero
(for more information on the next keyword, see
Section 3.6). This construct more naturally ex
presses the programmer's intentions than would a
loop like Fortran. Such a construct may be more
elegant than using a location of maximum reduc
tion operator.§

We note that range variables cannot be used to
define recurrences; statements such as

x[i] = x[i-1] + 1;

are considered circular (x is defined in terms of
itself) and are not permitted in EQ. This behavior
contrasts with the behavior of EPL' s subscript
variables, where recurrences of this sort are legal,
and in fact, are how all iterative computations must
be specified. By avoiding statements such as these,
an EQ compiler does not need to determine an
appropriate order in which to loop through the
range variable(s); any order (including fully paral
lel) will produce the correct results. When compu
tations involving recurrences are needed, they can
be expressed in EQ using its "over" loops (see
Section 3.9).

3.5 Matrix Operations

As in Matlab, EQ provides the matrix operations
that correspond with those usually used in stan
dard mathematics. Thus, A * B, where A and B

are two-dimensional matrices, represents a stan
dard matrix-matrix multiplication, not the ele
ment-by-element computation that it would in
APL or Fortran 90. We believe element-by-ele
ment multiplication is more clearly expressed by
using subscripting and range variables instead of
a matrix operator:

i = 1. . n; j = 1. . n;
C[i,j] = A[i,j] * B[i,j];

Currently, EQ supports addition("+") subtrac
tion("-"), and multiplication("*") of matrices,
in addition to transposition, which is represented
by the postfix"-" operator. We plan to eventually
support less computational operations (such as
matrix inverse) efficiently.

§ In order to use this sort of reduction stvle. tupl"s would
have to be introduced. For example. the above example might
read ''let (ii, jj) = maxloc (c [i,j] for i =

1..10, j = 1..20) in ... ''.

:"'EW LA:"'GUAGE DESIGN 287

3.6 Explicit Notations for Change

In an unordered notation, each name can repre
sent only a single value: thus, a Fortran-style as
signment statement such as x = x + 1 is not
meaningful in such a context. To express such
relationships in EQ, we tum once again to notation
used for writing down algorithms that have itera
tion as a major component. In areas such as nu
merical optimization, one often finds notation
such as:

X+ = xe + XP

where the subscripts +, c, and p stand for the next
value, current value, and previous value, respec
tively. EQ models this notation very closely:

next x = x + prev x;

is a statement that would be used in a program to
compute a Fibonacci series. This notation corres
ponds more closely to the algorithmic ideas than
Fortran code for the same computation, which
would require a temporary to be introduced (and
assignment statements carefully placed) to express
this computation.

We note that there is nothing special about the
current time; the above statement could also be
written

x = prev x + prev prev x;

or as

next next x = next x + x;

provided that the rest of the code is modified simi
larly.

We expect that future EQ compilers will try to
optimize away any extra storage associated with
past copies of a variable. The issues are similar to
those faced by the Sisal compiler, which has dealt
with these issues successfully. We plan to use
somewhat different techniques, which are dis
cussed briefly in Section 6.5. These ideas have the
advantage that they generalize nicely to cover cases
where multiple past values are referenced, in addi
tion to removing programmer-introduced storage
inefficiencies.

In general, the next and prev prefixes allow
references to past and future values of a variable.
For convenience, the notation x' can be used as
an abbreviation for next X. Multiple prefixes can
be used to reference values in the distant past or

288 DERBY, SCH~ABEL AND ZOR~

future (although this is rarely done). We show how
to use these constructs to build programs that rep
resent change in the following sections.

3.7 Followed-by Operator

In order to use the next and prev notations, there
must be a way to move forward in time, so that
the value that used to be called next x becomes
x, x becomes prev x, and so on. EQ provides
several mechanisms for incrementing the time
step. The first is the followed- by operator "= > ",
which combines two individual statements A and
B into a new statement A => B. Notice that this
contrasts, for example, with the "---" barrier
statement from ld, where the barrier applies to all
statements within a pair of braces, not just the
immediately adjacent ones. Informally, the state
ment A = > B means to execute A, then move for
ward one unit in time and execute B. An example
of this is:

{x = 5; y = 2} =>
x = prev x * y;

which computes the value x = 10.
Generally, if we have the statement A => B,

then the variables defined by A are accessible
within B, but with one extra prev (or one fewer
next) if B redefines that variable. Values defined
by A but not redefined by B are accessed in B
through their usual names (the variable y in the
above example). The variables defined by A that
are redefined by B are not accessible outside the
followed-by statement (e.g., they appear either be
fore or after B); i.e., only the last (textually) defini
tion of a given variable is visible outside of the
followed-by statement. In our example above, the
value x=5 is not visible outside the followed-by
statement, and could not be referenced in the sec
tions of code labeled " ... " in our example (uses
ofx would give the value 10 instead). This property
ensures the side-effect-free nature of EQ's seman
tics, because the first assignment to the doubly
assigned variable (x in our example) is only visible
within the followed-by statement itself. As a result,
execution of the followed-by cannot modify vari
ables that are visible outside of the followed-by
statement, only define new ones (such as x in our
example, which has no other definition outside of
the followed- by statement).

One additional aspect of the followed- by opera-

tor is important. If the statements in B make a
partial definition of a variable (either by only de
fining some elements of an array or by defining a
variable in only one branch of a conditional), then
the undefined portions of that variable default to
the value defined in A for the variable. This rule
allows the followed-by operation to be used when
an array must be built up out of several parts,
because multiple definitions of the same array are
not allowed. For example, one way of defining an
n-by-n identity matrix is:

p = 1. . n; q = 1. . n;

I [p, q] 0=>
I[p,p] = 1;

The first definition of I gives each element the
value zero, and the second assigns ones to the
diagonal. Since the second definition of I does not
define all of I's elements, the values from the first
definition are used to fill in the undefined spaces.
1\'ote that for all statements outside of the followed
by statement, the zero matrix assigned to I in the
first part of the followed-by statement is inacces
sible (although some of its zeros do "show
through" the second definition). This notation (the
partial assignment to I [a, a]) allows EQ to repre
sent the change of only part of an object (e.g.,
the diagonal), a computation that many functional
languages have trouble expressing at the lan
guage level.

The above example demonstrates in a practical
example the contrast between EQ's range variables
and subscripting with vectors, as is allowed in lan
guages such as APL and Sisal. If the variables a
and b were treated as ordinar! vectors of integers,
then I [a, a] would represent the entire matrix,
not just its diagonal.

The followed-by operator is right associative;
this makes code such as

a [1]

a[2]
a[3]

1=>
4 =>
5;

have the correct behavior.

3.8 Approximation Loops-the do
Statement and once Clause

Most loops in numerical codes iterate over a fixed
set of integer values (like Fortran's DO loops).
These loops are best described using EQ's range
variables. Of the remaining loops in scientific com-

putation, almost all fall into the category of ap
proximation loops: these loops iterate, improving
an initial approximation to some quantity on each
execution of the loop, until either an adequate ap
proximation to the answer is achieved or the ap
proximation process fails. These loops often have
multiple exit conditions, with different code that
needs to be run for each exit case, and are not well
modeled by standard while or repeat loops.

EQ supports approximation loops directly with
its do statement. Each iteration of the loop ad
vances time by one step. Consider the example:

x = nl2;
do {

}

next x (x + nix) I 2;
once (lnext x - xl < 1e-7))
sqrt = next x;

This program computes the square root of anum
ber x and stores it in the variable sqrt. The first
line initializes our loop. The do statement contin
ues to compute values for next x and timeshifts
them back into x until the boolean expression of
the once statement becomes true (note the use of
lxl to compute absolute value), and which time
sqrt is assigned the last computed approxima
tion, which is next x (not x). Note that the once
condition refers to both x and next x. In fact,
any previous values of x can be referred to at any
point within the loop body. For example, a state
ment such as

ave = (x + next x) I 2;

could be inserted anywhere inside the loop, includ
ing after the once statement, and the statement
will compute the same values no matter where it
is placed. This works because of EQ's unordered
equations paradigm, and because the time-shift
of next x into x does not occur until the loop
itself iterates.

In general, a do loop body consists of an unor
dered set of statements that include one or more
once clauses. The do loop repeatedly executes its
body until one of its once clauses is triggered (has
its condition become true). When this happens,
the body of the once clause is executed, and the
loop is finished. Note that a once clause has no
effect on the current loop body execution; it only
determines whether another time-shift is called for.

If multiple once clauses are used, their condi
tions are tested in order; the lexically first once

NEW LAI"GGAGE DESIGN 289

clause that has a true condition is the one that is
used. This is the only case in EQ where the order of
statements can change the semantics of a program.
We understand that this presence of ordered once
clauses within unordered equations can be confus
ing; we hope to eliminate this problem in future
versions of EQ.

3.9 Ordered Definite lterators:
The over Statement

Range variables cannot directly be used to write
recurrences; code such as

i = 3 .. 100;
fib [1] 1 =>
fib [2] 1 =>
fib [i l fib [i - 1] + fib [i - 2];

is illegal; the last statement will be flagged by the
EQ compiler as circular, because the last line de
fines fib in terms of itself. These kind of computa
tions can be written using a do loop:

fib [1]
fib [2]
{

l 3·
'

do {

1 =>
1 =>

fib [i] = prev
prev

i + 1; i' =

once (i = 100)
}

}

fib [i
fib [i

{ }

1] +
2];

but the code is somewhat cumbersome.
To allow such computations to be written ele

gantly, EQ provides the over statement. This
statement can be used to write an ordered loop
(similar to the do loop), but which automatically
loops over the values of a range variable. This
statement permits us to write our example above
as:

X = 3 .. 100;
fib [1] 1 =>
fib [2] 2 =>
over x:

fib [X] prev fib (X 1] +
prev fib [x 2] ;

which computes the first 1 00 elements of the Fibo
nacci sequence. The over statement runs its body

290 DERBY. SCH~ABEL A.'\JD ZOR;\

as if it were a do loop; after each iteration, a time
shift is done, and x is changed to the next value
in the range. Within the over body, the range
variable is treated as an ordinary scalar variable,
with the built-in definition

x = (initial value in range);
do {

}

(body of the over statement)
next x = x + 1;
once (x >= (final value in range))

{ }

In effect, the over statement "serializes" the im
plicitly parallel range variable.

By default, the over statement loops through
the values of the range variable from smallest to
largest: to reverse this direction, the keyword rev
is placed before the variable name.

3.1 0 Summary

In summary, EQ borrows features and properties
from both imperative and functional languages in
an attempt to support rapid and natural construc
tion of numerical programs. Its single-assignment
nature and unordered definitions give it many of
the advantages of functional programming, in
cluding a correspondence with standard mathe
matical notations. Range variable notation is an
implicit looping construct that allows many com
putations on arrays to be expressed more simply
than in systems that provide only element-wise or
aggregate array operations. In addition to provid
ing simple "doall" functionality, it also naturally
extends to other operations, such as summations,
minimizations, and ordered definite iteration. At
the same time, EQ's explicit support for change,
particularly of parts of an array, enables it to ex
press algorithms that fundamentally involve the
notion of updating values. The ability to easily de
scribe such algorithms is a property it shares with
the imperative paradigm.

4 EXAMPLE PROGRAMS

We present three examples of EQ programs, with
explanations and observations about the EQ eon
struets used. The first example emphasizes the
use of range variables, the second demonstrates
iteration, matrix operations, and unordered equa
tions, and the third leads into a discussion of de-

pendability. All three examples include statements
not implemented in the current EQ prototype (see
Section 5). These examples show that the EQ eon
struets given in Section 3 allow a range of numeri
cal algorithms to be expressed dearly and natu
rally.

4.1 LU Decomposition Example

The EQ in Figure 1 computes an Ll! decomposi
tion with partial pivoting. The input matrix a is of
size 1. .n X 1. .n, and the decomposition is com
puted "in place." and therefore returned in a'
(where a' is the abbreviation for next a). The
vector of pivoting information is stored in p'. For
simplicity of presentation, our algorithm contains
no singularity detection. The lines have been num
bered so that we can refer to them. Line 1 sets up
a range variable to loop over the entire matrix.
Line 2 defines the initial state of the pivot vector
p: Each row is in its original location. The assign
ment is done for each possible value of k. Line 3
begins the main loop. The over statement loops
through each of the values of the range variable
k, going from 1 to n. Cnlike normal usage of a
range variable, in an over statement the values
are used sequentially. Each of lines 4 through 10
is executed once for each value of k, starting with
1 and going through n. These statements perform
the pivoting and elimination steps. Lines 4 and 5
set up needed range variables for the computations
at a single iteration of the L C decomposition: pi v
will be used to perform the pivot step, and i and
j will perform the rank one update to a. Line 6
searches for the proper row with which to pivot,
using the at statement, which goes through all of
the values of pi v, searching for the row with the
biggest element in column k. Note the use of lxl to

(1) k; 1- .n;
(2) p[k] ; k;

(3) over k: {
(4) i, j ; k+l. .n;

(5) piv ; k .. n;

(6) at max [piv]: la[piv, k] I {
(7) t1 ; p[k] ;) p' [k] ; p[piv] ;) p' [piv] ; t1;
(8) t2; a[k,] ;) a' [k,] ; a[piv,] ;) a' [piv,] ; t2;

} ;)

(9) a' [i,k] f; a[k,k] ;)
(10) a'[i,j] -; a[i,k] • a[k,j];

}

FIGURE 1 LC decomposition example.

calculate the absolute value of x. Lines 7 and 8
perform the required exchanges, using the fixed
value of pi v that was computed by the at state
ment. Line 7 exchanges the pivoting information,
and line 8 exchanges rows of the matrix. The fol
lowed-by operator is used because each set of three
steps must be done in the specified order. Line 9
computes the multipliers, storing them in place.
Note that this must be done after the pivoting, thus
the followed-by operator is again used. Line 10
does the rank one update. Range variables are
used to perform this operation without the use of
loops. Since this operation uses the multipliers,
the followed-by operator is placed between it and
line 9.

This example makes very little use of one of
the most important features of EQ, the ability to
specify equations is an unordered manner. It does ..
however, illustrate the simplicity that comes from
the index range features of EQ.

4.2 BFGS Example

The EQ code given in Fig. 2 finds a local uncon
strained minimizer of ann -variable function, using
a simple version of the popular BFGS quasi-1'\ew
ton method. It takes as inputs the function f ()
and its gradient gradf () , as well as an initial
estimate to the solution, start_point. The algo
rithm updates the inverse hessian, H, and uses a
simple quadratic interpolation line search.

We note the heavy use of matrix notation in this
algorithm. Lines 1 through 5 initialize the algo
rithm. The only use of range variables in this algo
rithm is in lines 5 and 6, to initialize H to the identity
matrix. Lines 7 through 22 form the main loop,
which produces better and better approximations
to the minimizer of f.

Lines 8 and 9 compute the BFGS update. Note
that they can be written at this point because EQ
uses unordered equations. These lines will be eval
uated by EQ only after the computations in line
18 have been completed, since x' and gx' are used
in line 8.

Lines 10 through 18 form the line search which,
like the loop within which it is nested, produces
better and better approximations-this time to an
acceptable step length lambda. Lines 12 and 13
compute the x and fx values for our current step
length. Lines 14 through 16 compute the new trial
step length. Line 17 checks the termination condi
tion, and once the condition is satisfied, makes the
trial values official in line 18.

Finally, we have the termination conditions for

(1)

(2)
(3)
(4)

(5)

(6)

(7)

(8)
(9)

(10)
(11)

(12)
(13)

(14)
(15)

(16)

(17)

(18)

~EW LAl\"GCAGE DESIG:"J 291

%Initialize the algorithm
iter:;;; 1;
x :;;; start_point;
fx ~ f(x);
gx ~ gradf(x);

i:;;; t .. n; j = 1 .. n;
H[i,j] ~ 0 ~> H[i,i] 1·

do {

Y. Inverse Hessian update
s :;;; x' - x; y = gx' - gx;
H' = H + ((s - H•y) • s· + s • (s - H•y)") I a·•y

- s•s-•(s - H•y)·•yl(s"•y)"2;

% Step length computation
lambda = 1;
do {

trial_x = x - lambda•H•gx;
trial_fx = f (trial_x);

slope = -gx·•a•gx;
trial_lambda = -lambda • slope I

2 • (trial_fx- fx- lambda • slope);
lambda' = max (trial_lambda, lambda I 10);

once (trial_fx < fx + 1e-4 • slope) {

}
}

x' = trial_x; fx' = trial_fx; gx' = gradf (x');

Y. Termination condi tiona
(19) once (fx' - fx < 1e-8) {
(20) answer= x'; success:;;; TRUE;

}

(21) iter' += 1;
(22) once (iter > 500) {

}
}

success = FALSE;

FIGURE 2 BFGS unconstrained optimization ex
ample.

our main loop, of which there are two. The first,
at lines 19 and 20, checks for small changes in
function value. Notice that both fx' and fx are
available for this test; the definition of fx' has no
effect on fx until a time shift occurs because of a
followed-by operator or do loop. If the test suc
ceeds, the algorithm is successful, and we return
our answer. The second termination test, in lines
21 and 22, checks for excessive iterations. As men
tioned in Section 3.8, the once conditions are eval
uated in their lexical order at each iteration of
the loop.

This example illustrates the convenience and
elegance of EQ's approximation loop facilities. Of
particular note is the lack of temporary variables
for holding "old'' values of variables; the program
mer was simply able to refer to x' and x at the
same time. The example also shows the value of
simple matrix operations, although that is not a
feature unique to EQ. Finally, we have found that

292 DERBY, SCH~ABEL, A)ID ZOR'.';

the use of unordered features demonstrated here
corresponds to the way that optimization experts
describe this algorithm. The placement of lines 8
and 9 early in the code highlights the heart of the
algorithm, the BFGS update itself.

4.3 Nelder-Meade Simplex Example

We present EQ code for the Neider-Meade simplex
algorithm for unconstrained minimization in Fig
ure 3. While somewhat less robust and slower than
the BFGS algorithm, simplex algorithms do not
require gradient information to be provided. In
practice, simplex algorithms are used for some
kinds of unconstrained minimization problems
with small numbers of variables. Furthermore.
they can also be useful in situations where compu
tation of the function itself involves significant er
ror. The routine in Figure 3 takes the dimension
n, an n dimensional function f () , and an initial
set of n + 1 points s [, i] , each of which is a vector
of size n. The algorithm returns to its best approxi
mation to the minimizer in the variable result.

The algorithm in a straightforward translation
of the Nelder-Meade simplex algorithm. Line 1
sets up an array of function values for each of the
points in the simplex. This array is created (rather
than simply calling f () every time a function
value is needed) for efficiency reasons. It is ex
tremely difficult to optimize away the extra func
tion calls in this program if this array is not pro
vided. This is also true of currently popular
languages such as Fortran or C.

Lines 2 through 33 are the major iteration.
which attempts to improve the points in the sim
plex. Lines 4 through 9 compute the candidate
points (reflect, expand, contract, reflect_
contract) to update the worst point of the sim
plex (which must be in array position n + 1 because
the simplex is sorted by function value). One of
these is chosen based on its function values in lines
10 through 21. If none of these are a sufficient
improvement, then the entire simplex is reduced
in lines 22 through 24.

Then the simplex is sorted, using an insertion
sort in lines 25 through 28, so that the points in
the simplex are once again arranged in order of
function value. We note that for typical applica
tions, the number of variables (n) is very small,
so the type of sort used does not affect perfor
mance significantly.

The termination conditions are given in lines 29
through 33. The first condition checks the largest
difference between coordinates of the best point

and the coordinates of all other simplex points.
The second is a simple iteration limit.

The code given, if naively compiled, will exhibit
several inefficiencies. First, multiple calls to the
function f would be made with the same argument
value (e.g., f (reflect) in lines 10. 13, 15, 16.
and 18). These extra function calls can be opti
mized away fairly easily, using standard tech
niques. Second, the values of variables such as
contract do not need to be computed on every
iteration of the loop; only when their values are
actually used (the else clause at line 19 is exe
cuted) does this definition need to be evaluated.
This style of programming is encouraged by the
unorderedness of EQ statements, and allows a sig
nificantly shorter source program. The sort of
transformations required to address the efficiency
issue that this raises are not commonly addressed
in current languages, but we believe that they can
be handled automatically by an EQ compiler. For
more information on these transformations, see
Section 6.

5 IMPLEMENTATION RESULTS

A prototype compiler for the EQ language has been
implemented, which translates an EQ program
into an equivalent C program, for compilation us
ing a standard C compiler. We present some timing
results comparing EQ programs wih hand-coded
C versions of our LC, BFGS, and J\"elder-:Yieade
algorithms. These measurements were taken on a
DECstation 5000/260 using its standard cc com
piler, but we received similar performance ratios
on other machines. The prototype EQ implemen
tation does not currently support all of the EQ
constructs used within the examples (in particular,
the at and over statements). As a result, we have
been forced to use alternative versions of these
examples. We plan to add these constructs to our
prototype in the future. Note that the missing fea
tures are necessary only for syntactic convenience,
and including their implementation in our proto
type should have no adverse impact on the perfor
mance measurements reported here.

For the LC algorithm, we computed 100 50-
by-50 decompositions. For BFGS. we minimized
a simple function of 64 variables-taking about
150 iterations of the main loop. The Nelder-Meade
example optimized a more complex function for
problem sizes from two to eight variables, each
done 1 0 times.

In Table 1, we provide measurements of each

:'oiE\V LA~GUAGE DESIGI\ 293

% Let fs be the value of the function at the simplex points
(1) fs[i=1. .n+1] = f(s[,i]);

% Begin the iteration
(2) iter = 1;
(3) do {

% Define the relevant points
(4) centroid= (sum[i=1 .. n]: s[,i]) In;
(5) reflect = 2•centroid- worst;
(6) expand = 2•reflect - centroid;
(7) contract = (worst + centroid) I 2;
(8) reflect_contract = (reflect + centroid) I 2;
(9) worst= s[,n+1];

% Determine which point(s) to change in the simplex
(10) if (f(reflect) < fs[1] a f(expand) < f(reflect)) {
(11) s'[,n+1] expand;
(12) fs'[n+1] = f(expand);

}

(13) else if (f(reflect) < fs[n]){
(14) s'[,n+1] reflect;
(15) fs'[n+1] = f(reflect);

}

(16) else if (f(reflect) < fs[n+1] a f(reflect_contract) < f(reflect)) {
(17) s'[,n+1] reflect_contract;
(18) fs'[n+1] = f(reflect_contract);

}

(19) else if (f(reflect) >= fs[n+1] a f(contract) < fs[n+1]) {
(20) s'[,n+1] contract;
(21) fs'[n+1] = f(contract);

}

else { (22)
(23")

(24)
s' [,i=2 .. n+1]
fs' [i=2 .. n+1]

} =>

(s [, 1] + s [, i]) I 2;
f(s' [,i]);

(25)
(26)
(27)

(28)

% Once finished, sort them
over i=2 .. n+1:

at min [j=1 .. i]: fs[j] {
t1 s[,i] => s'[,i]
t2 = fs[i] => fs'[i]

}

s[,j] => s' [,j]
fs [j] => fs' [j]

t1;
t2;

% Check the termination conditions
(29) new_best = s'[,1];
(30) once (max[i=1. .n, j=2 .. n+1]: Is' [i,j] - new_best[j] I <= 1e-8)
(31) result = new_best;

(32) iter' = iter + 1;
(33) once (iter > 500) {}

}

FIGURE 3 ~elder-Meade simplex example.

program compiled with optimization turned both
on and off. The third column in the table contains
the times of the EQ programs, while the fourth
column shows the times of the hand-coded C im-

plementation. The fifth column indicates the ratio
of the EQ to C execution times. As Table 1 shows,
the EQ programs are slower by a factor of 1.3
to 5. 9, which we believe is reasonable for a first

294 DERBY. SCH~ABEL A~D ZOR~

Table 1. Comparison of Execution Times of
Example EQ Programs against Hand-Coded C
Versions

Problem Optimization EQ c Ratio
(s) (s) (EQ/C)

PLU OFF 9.0 3.4 2.6
Ol'\ 4.7 0.8 5.9

BFGS OFF 1.8 1.4 1.3
ON 0.7 0.4 1.8

Simplex OFF 34.1 13.6 2.5
01\" 15.1 0.0 2.7

implementation of a prototyping system. There is
clearly room, however, for improvements in the
efficiency of generated EQ programs.

Further investigation revealed that a large
amount of the additional time required by the EQ
version was caused by the calls to memcpy(U
which are produced by the EQ compiler. These
calls are generated when a time step occurs in the
EQ program (followed-by operations and do
loops), and are used to copy the value of a variable
into its previous variable. Many of these copies,
however. were totally unnecessary and could be
removed entirely. Others could be reduced in size
to only one dimension. To examine the potential
effects of copy elimination optimization, we re
moved the unnecessary memcpy() calls by hand
from the code output by the EQ compiler. giving
the results shown in Table 2.

In the optimized ease, these EQ times are within
30 to 40% of the handwrittren C code. These tim
ings are very promising for a first prototype con
taining very little optimization. The Nelder-Meade
simplex algorithm is the worst of our test eases;

Table 2. Comparison of Execution Times of
Example EQ Programs with memcpy()'s Removed
against Hand-Coded C Versions

Problem Optimization EQ c Ratio
(s) (s) (EQ/C)

PLU OFF 4.8 3.4 1.4
ON 1.0 0.8 1.3

BFGS OFF 1.7 1.4 1.2
0~ 0.5 0.4 1.3

Simplex OFF 26.2 13.6 1.9
ON 7.8 5.5 1.4

II The C library function memcpv() copies a block of memorv
from one location to another.

we suspect this is because the EQ version of the
code computes some values that are not used in
the computation (see Section 6.6). OveralL these
data suggest that EQ programs can execute with
efficiency very close to that of optimized C code.
provided that the problem of copy elimination can
be suitably solved. We discuss this and other opti
mization issues in the next section.

6 OPTIMIZATION AND DEPENDABILITY

Traditionally, many issues of implementation are
avoided in language definitions, at least explicitly.
On the other hand, truly successful languages such
as Fortran, C, and C++ are very carefully designed
so that efficient implementations can be provided,
and thus implementation and optimization issues
are implicit in their design. Such implicit treatment
of implementation issues has drawbacks, however.
For example, because different compilers provide
different levels of optimization, to achieve the best
performance, programmers often have to experi
ment with code sequences and examine the gener
ated assembly instructions to achieve the best per
formance for a given compiler. Worse, because a
programmer may not be able to rely on all compil
ers to provide a particular optimization (e.g., reus
ing a common subexpression), the programmer
will be tempted to implement the optimization di
rectly in high-level code .. perhaps significantly in
creasing its complexity.

In order to prevent users from changing from
representation A of a program to a less understand
able representation B due to efficiency concerns.
the language must guarantee that A and B will
provide substantially the same performance for all
implementations of the language. This leads us to

propose the principle of language dependability
concrete guarantees of source program equiva
lences.

To provide dependability, the language defini
tion must define explicitly what program equiva
lences the implementations of a language are re
quired to provide. An application of this principle
is the requirement in Scheme that all implementa
tions perform tail-recursion elimination [2], thus
making all tail-recursive programs equivalent to
some nonrecursive program. at least to some de
gree. There are also similarities to the work of Skil
licorn on congruence [19]. Congruence represents
a guarantee of predictable performance on parallel
machines as you move between different parallel
architectures and different numbers of processors.

In other words, if the same source program is
moved from one parallel machine to another, the
performance changes are predictable. This is
somewhat different from dependability. which
guarantees equivalent performance of two differ
ent source programs on the same machine, but
provides no cross-machine relationships.

We are particularly interested in applying the
principle of language dependability to EQ for the
following reasons:

1. Efficiency is a concern to scientific program
mers. If a language feature cannot be pro
vided along with some understanding of its
expected performance consequences, then
the feature is likely to remain unused by pro
grammers who are concerned with perfor
mance.

2. EQ is intended to be used to compare proto
type implementations of complex numerical
algorithms. Because such comparisons are
intended to identify the algorithms with the
best performance, language implementation
overheads that are not well defined will ren
der such comparisons meaningless. Matlab
[5] is an example of a language that does not
meet this requirement. Efficiency of looping
constructs in current implementations of
.Vlatlab is significantly less than that of array
constructs. As a result, computations that
do not conveniently fit into array form are
penalized. In some extreme cases we've seen
in Matlab, the difference in performance be
tween array and nonarray programs for the
same computation can be over a factor of
100.

To see how language dependability impacts the
use of a language like EQ, consider the following
code fragment from our Nelder-Meade example
program:

if (f(reflect) < fs[l] &
f(expand) < f(reflect)) {

}

It is clear that a naive implementation of the pro
gram will run the function f three times. Two of
these will be passed the same argument (reflect),
and therefore compute the same value (since EQ
contains no side effects). The extra function call is
unnecessary, and can be optimized away. Another
way of looking at a language that provides this

1\EW LA!'\GeAGE DESIG~ 295

optimization in all cases is that it provides the pro
grammer with the following rule:

:\Iultiple computations of the same value by applying
the same function or operator to the same arguments
will not hurt efficiency: it is exactly equivalent to a pro
gram using a temporary variable to hold the intermedi
ate value.

By the nature of being a guarantee, dependability
is generally not easy to provide. Our current goal
with regard to this issue is to identify the impor
tance of this aspect of language design, and to do
some preliminary investigations to determine how
other language design decisions impact issues of
dependability. While we see the principle of de
pendability as very important in the EQ design, we
do not currently have sufficient experience with
the implementation of EQ to definitively describe
what source language equivalences EQ will be able
to dependably provide.

In the remainder of this section, we list language
features and/ or programming styles that we hope
to support in EQ, the optimizations that corre
spond to them, and our preliminary assessment of
the viability of providing them dependably. ~ote
that our focus here is on identifying what guaran
tees might be made to a programmer of the EQ
language. We are not claiming that any of the sug
gested optimizations that support these depend
ability guarantees are new with this work. We only
mention these optimizations to indicate that such
guarantees can be provided with existing language
and compiler implementation technology.

6.1 Irrelevance of Redundant
Computations

As pointed out in the above example, the ability
to reuse an expression rather than to create a tem
porary for it is an important language feature for
prototyping. The full Nelder-Meade code becomes
significantly more complex if the user must write
temporaries for all of the appropriate function
calls. Similar situations arise in many numerical al
gorithms.

Fortunately, since expressions in EQ have no
side effects, this language feature (expression re
use) can be provided by the well-known common
subexpression elimination (CSE) optimization.
This optimization can be performed in reasonable
time and eliminates redundant computations in all
cases where the equivalence of two expressions is

296 DERBY, SCHNABEL, AND ZORN

guaranteed by the equivalence of their parts.~ This
guarantee is a property that EQ shares with the
functional programming paradigm, but imperative
languages such as Fortran must perform more
complex (albeit fairly standard) analysis to deter
mine whether two expressions are actually redun
dant. As a result, the user of such a language may
have difficulty recognizing when two expressions
will be treated as redundant by any particular lan
guage or compiler. This implies that in these lan
guages, the user might have to carefully choose
those expressions that should be given temporary
storage, and declare that storage appropriately.
Even in cases where common optimization tech
niques can typically eliminate the unnecessary
storage (such as simple scalar temporaries) from
imperative languages, the lack of a guarantee to
do so, and the very syntax and semantics of the
language itself (the presence of storage declara
tions), is likely to compel users to choose their vari
ables carefully. This extra user effort may occur
even in cases where such decisions will not have
any effect on the final output code.

6.2 Irrelevance of Temporaries

Irrelevance of temporaries means that replacing an
expression with a temporary name, and defining
that name elsewhere, does not have any effect on
the efficiency or memory usage of the resulting
executable. An example where this is a useful lan
guage property is given below (this time, taken from
our BFGS example code):

triaL lambda

lambda' max

-lambda * slope I
2 * (triaLfx - fx -

lambda * slope);
(triaL lambda,
lambda I 10);

Here, the variable trial_lambda was simply in
troduced to shorten up the expression for lambda'
and to make the program more readable. It also
serves as a comment on the meaning of this part
of the computation of lambda'. Unfortunately, do
ing so in many languages will result in wasted mem
ory and slower execution.

By using an intermediate representation that is
data flow oriented, the intermediate representa-

~ This includes such cases as f (X) and f (y) • where x =

y. This works because functions in EQ are side effect free.

tions of programs that use temporaries will be ex
actly the same as those of equivalent programs that
do not use temporaries. As a result, the final code
produced will be the same for the two programs,
and therefore, this optimization can be performed
perfectly-the resulting executable will be exactly
identical in the two cases.

6.3 Irrelevance of Full or Partial Copies

This property is in some ways a subset of the previ
ous optimization, but it has additional implica
tions. Consider the following code:

i = 1. .n+1;

fs[i] = f(s[,i]);
best = s [, 1];
if (f(reflect) < f(best))

This example highlights the special problems of
copies. Here, best is a partial copy of s. As a
result, no storage is needed for best. Further,
however, the expression f (best) is equal to
f (s [, 1]), which has already been computed in
f s [1] . Therefore, an en tire call to f can be
avoided if the relationship between best and x
is exploited.

Our example in fact comes from an early version
of the 1\'elder-Meade simplex algorithm. To avoid
the need for this optimization, the sample code in
Section 4.3 replaces f (best) with fs [1]. This
shows that partial copies are an important concept
which must be optimized properly. The elimina
tion of full copies (such as are created by the state
ment a = b;) is a fairly simple optimization, and
we believe it will be possible to generalize the algo
rithm to handle partial copies. Once the partial
copies are removed, the remaining issue is to deal
with the partial CSE (in our example above,
f (best) was equivalent to part of the variable
fs). An extension of the CSE algorithm which
keeps track of which parts of two objects have the
same value (rather than treating values in aggre
gate) should allow it to handle this sort of optimiza
tion for almost all cases; we plan to investigate this
optimization more thoroughly in future work.

6.4 Interchangeability of Matrix and
Range Variable Notation

This language property is an attempt to avoid the
tendency toward one liners that affects prototyping

languages that have significantly faster perfor
mance when using their built-in matrix operators,
such as APL and Matlab. Users of these languages
are often forced into matrix notations, even when
the computation could be more clearly described
using control structures, because of efficiency or
memory usage considerations.

To avoid this inefficiency, matrix notations
should simply be a convenient shorthand for a
scalar program involving looping notations (in the
case of EQ, range variables). There should be no
effect on speed or memory efficiency because of
matrix notation, allowing users to choose the nota
tion that corresponds to their mental conception
of the problem.

EQ already handles this interchangeability by
the simplest conceivable method; it translates all
matrix operations into range variable notation dur
ing an early phase of the compilation process. Of
course, it is still important to provide for the effi
cient execution of range variable notations.

6.5 Irrelevance of Extra Matrix
Dimensions

Ylany times, a Fortran programmer will have a
variable that conceptually has one or more dim en
sions, but will declare it to be of fewer dimensions.
This can be done if the code can be arranged such
that one part of the array is computed, its values
are used, and then those parts of the array are no
longer needed-so that they can be overwritten by
the next section of the array. Examples of this are
pervasive in many numerical codes (e.g., see [20]).

The process of manually controlling this over
writing makes programs harder to write and under
stand, and makes them further removed from their
mathematical underpinnings. Support for arrays
and matrix operations becomes difficult to use ef
ficiently if these unnecessary matrix dimensions
must be removed by the programmer. A good ex
ample of this is line 9 of the BFGS example in
Section 4.2. The update to H' has been written in
its natural matrix notation, but taken literally this
will create several unnecessary n by n matrices.
Writing the expression in a directly storage-effi
cient form, however, is difficult and unnatural, and
obscures the mathematical meaning of the pro
gram. Thus, it is important for EQ to be able to
optimize the temporary matrices created by such
expressions down to their minimal sizes.

We refer to reducing the number of dimensions
of an array's storage in memory as a rank reduc-

NEW LANGUAGE DESIGN 297

tion. This optimization cannot only improve stor
age efficiency, but can also produce execution
speed improvements, if the storage for an array
can be reduced to a scalar, and therefore be stored
in a register. We give a simple example below:

i
a[i]
b [i]

1. . 100;
sin (i);
a [i] * i;

In a naive implementation of this code, storage
would be allocated for two 1 00-element real vec
tors. However, the storage for the array a is totally
unnecessary; if we rewrite the code as

i 1.. 100;
over i {

a = sin(i);
b[i] = a* i;

}

the same computation can be performed, using
only a scalar quantity a. Furthermore, since a has
been fully rank reduced (to a scalar), it can now
be stored in a register, rather than being written
to memory. This produces a significant execution
speed savings.

This optimization can also be used as a major
component of algorithms to ensure that statements
such as

next x [i] X [i] I 2;

allow x to be updated in place, without creating a
separate array next x. The basic idea is that the
storage for next x will be rank reduced to a scalar.
Once this occurs, standard register allocation tech
niques can be used to place it in a register, elimi
nating the extra memory requirement altogether.

The rank reduction optimization is one of the
key impediments to natural description languages
for scientific computations that are array based,
and is therefore an important problem to address.
Unfortunately, the process of trying to choose
which rank reductions to perform to achieve opti
mal results is very difficult, and is NP hard in the
general case, as shown in EPL [17]. However, we
hope to formulate some more restrictive rules un
der which a perfect optimization is feasible, such
as reducing all objects that can be fully rank re
duced or minimizing the maximum number of di
mensions used by any array in the program. This

298 DERBY, SCHJ'~,'ABEL, AND ZOR~

aspect of EQ optimization will be an interesting
facet of future research.

6.6 Irrelevance of Equation Placement

This property may sound somewhat redundant,
since EQ already offers unordered equations which
allow users to group their equations in the most
natural and convenient wav. However, the move
ment of equations into and ~ut of control structures
can have an effect on efficiency, even when the
semantics of the program are unchanged. For ex
ample, consider the following code fragment (taken
from the Nelder-Meade simplex algorithm in Sec
tion 4.3):

contract

if .
else if
else if

(worst + centroid) 1 2;

else if (f(reflect) >= fx[n+l] &
f(contract) < fs[n+l])

Here. the current implementation will evaluate
contract on each iteration through the outer
loop, even though it is only needed if the first three
if clauses are false. The code could be more effi
ciently written as:

if ...
else if
else if
else {

}

contract = (worst + centroid) /2;
if (f (reflect) >= fx [n+l] &

f(contract) < fs[n+l])

This version solves the efficiency problem, but the
code is more complex. Furthermore, it can be very
cumbersome to do this optimization by hand i~
the general case. Another example of this sort of
code movement is the lifting of invariant computa
tions out of loops, which is a classical optimiza
tion technique.

We hope that future versions of EQ will make
the placement of statements have as little effect on
the speed or storage usage of compiled EQ pro
grams as possible. Traditional code-motion opti
mizations can be used to achieve some of these
effects in imperative languages. It may also be pos
sible to extend these results to functional languages

as well, in which case we will use them. We antici
pate that there may be more opportunities to per
form these optimizations in EQ code than in imper
ative languages due to EQ's single-assignment
property and unordered semantics.

7 FUTURE WORK

The current prototype EQ implementation does
not support syntactic conveniences such as the at
and over operations. Correcting these deficiencies
is one of the top priorities for our future work in
this area. Once this is done, it will be possible to
do further examples of EQ programming of a more
lengthy and complex nature than those given here.
We hope to use these experiences to continue to
evolve and change the constructs of the EQ Ian
guage.

Another area of interest is the efficient support
for more complex matrix operations, such as ma
trix inversion, and support for some kinds of struc
tured matrices, such as triangular and diagonal
matrices. We hope to be able to add these kinds
of constructs to EQ, using compile-time analvsis
to avoid any loss of efficiency. As an exampl~ of
the sorts of issues that occur in providing matrix
operators, consider an operator for inversion.
While very nice from a mathematical point of view,
very few scientific programs calculate an actual
inverse matrix; instead, they use some sort of de
composition, such as an L U or Choleskv factoriza
tion. Then backsolves are used to co.mplete the
computation. Thus, a good implementation of rna
trix inverse in EQ would only compute the actual
inverse in those cases where it had to, and would
simply use a factorization otherwise.

Additionally, a study and implementation of
specific transformations, including those dis
cussed in Section 6, are important both to obtain
an understanding of the impact of the EQ language
constructs on efficiency, and to determine the ef
fectiveness of language properties such as expres
sion reuse and invariance to statement placement.
This work will involve examining the typical effec
tiveness of the transformations (i.e .. how much
they improve performance) and looking at depend
ability issues. Due to its single assignment and un
ordered semantics, EQ is a rich environment for
studying such techniques.

Finally, a detailed study of the opportunities
for parallelism in EQ is justified. EQ has much

potential data parallelism exposed directly to the
user of the language through its range variables.
Furthermore, its unordered equations express
functional parallelism. The inherently parallel na
ture of these features suggests that a parallel ver
sion of EQ could be quite natural and easy to un
derstand when compared with languages based on
the basically nonparallel imperative paradigm. We
plan to continue research into both implicit and
explicit models of parallelism in EQ.

8 CONCLUSION

The purpose of this research is to propose and
investigate a new programming language design
based on identifying the abstractions used by nu
merical analysts when they solve problems. Our
language, EQ, provides several important features
that attempt to directly reflect the syntactic and
semantic concepts expressed by numerical ana
lysts whom we interviewed. Specifically, we de
signed EQ to allow scientific programmers to rap
idly prototype complex new algorithms using a
language that is both efficient (where optimizing
transformations are applied in a dependable man
ner) and expressive.

In particular, our language supports unordered
equations, large-grained state transitions, and
high-level matrix notation. Unordered equations
support defining a set of values and their relations.
Large-grain state transitions allow programmers
to express a form of structured large-scale change
that corresponds to the concept of iteration or re
currence. Our matrix notation supports range vari
ables, a powerful implicit looping construct. As a
language, EQ falls in between the functional and
imperative programming paradigms, providing
elements of both. While EQ contains elements
found in a number of diverse programming lan
guages, including Sisal, ld, and EPL, no other lan
guage brings these elements together in the same
wav.

In EQ we also introduce the general principle
of language dependability. This principle states
that language definitions should specify what pro
gram transformations the implementations of the
language are required to perform. Dependability
is necessary because without such a guarantee in
the definition, programmers are unlikely to assume
such transformations will be done, and will poten
tially greatly complicate their code in an effort to

NEW LANGUAGE DESIGN 299

make it more efficient. Dependability is especially
important in a language like EQ because one goal
of our design is to provide a high-level language
that programmers can use to compare the perfor
mance of complex algorithms.

While dependability is an important principle
to support in design, the logistics of supporting it
are quite difficult. In this article, we have identified
a set of transformation guarantees that appear
possible with existing implementation technology.
In the future, we intend to investigate these issues
more closely and completely specify which guaran
tees we are able to provide.

We plan to refine the design of EQ and experi
ment more with its implementation. Our experi
ences with EQ have shown us the value of domain
specific language design and demonstrated that
interesting new styles of expressing computations
can arise from interacting with programmers in
different application domains (e.g., that of numeri
cal computation).

ACKNOWLEDGMENTS

Research supported by NSF grant ASC-9307315.

REFERENCES

[1] S. C. Johnson, "Compiling MATLAB,'' in Proc.
of the Symposium on Very High Level Languages,
pp.119-128.

[2]. J. Recs and W. ClingeL "The revised3 report on
the algorithmic language Scheme," ACM SIC
PLAN Notices, Vol. 21, pp. 37-79, Dec. 1986.

[3] A!\"SI, American National Standard Programming
LanguageFortranANSIX3.9-1978. ANSI, 1978.

[4] B. W. Kemighan and D. M. Ritchie, The C Pro
gramming Language. Engle Cliffs, l'.,JJ: Prentice
Hall, 1978.

[5] Math Works Inc., Matlab User's Guide, Math
Works, Inc. 1992.

[6] K. E. Iverson. A Programming Language. New
York, Wiley, 1962.

[7] ISO, Fortran 90 Standard ISO/ IEC 1539:
1991 (E). ISO, 1991.

[8] B. Stroustrup, The C++ Programming Language.
Reading, MA: Addison-Wesley, 1986.

[9] D. Cann, "Retire Fortran? A debate rekindled,"
Commun. ACM, Vol. 35, pp. 81-89, Aug. 1992.

[1 OJ J. Backus, "Can programming be liberated for the
von l'.,J eumann style? A functional style and its alge
bra of programs," Commun. ACM, Vol. 21, pp.
613-641, Aug. 1978.

300 DERBY, SCHNABEL, AND ZOR:\1

[11] P. S. Barth, R. S. Nikhil, and Arvind, ":vi-struc
tures: Extending a paralleL non-strict, functional
language with state," In Proc. on Functional Pro
gramming and Computer Architecture, 1991, p.
538.

[12] P. Hudak, et al., "Report on the programming
language Haskell: A non-strict, purely functional
language version 1.2," SIC PLAN Notices, Vol. 27,
pp. R-1-R-164, May 1992.

[13] D. Turner, ''An overviewofMiranda,'' in Research
Topics in Functional Programming, D. Turner,
Ed. Reading, MA: Addison-Wesley, 1990, pp.
1-14.

[14] A. P. W. Bohm, R. R. Oldehoeft, D. C. Cann, and
J. T. Feo, SISAL Reference Manual, Language
Version 2.0.

[15] R. S. ":'--ikhiiJdLanguageReferenceManual, Ver
sion 90.1. Postscript available via FTP from :vlas
sachusetts Institute of Technology. Boston. :viA,
July 1991.

[16] W. W. W adge, Lucid, the Dataflow Programming
Language. London: Academic Press, 1985.

[17] B. K. Szymanski. "EPL-parallel programming
with recurrent equations,'· in Parallel Functional
Languages and Compilers, B. K. Szymanski, Ed.
New York: ACYl Press. 1991.

[18] S. A. Smith. T. 0. Levante. B. H. Meier. and R.
R. Ems, "Computer simulations in magnetic reso
nance: An object-oriented programming ap
proach,"]. Magnetic Resonance, Vol. 1 06A, pp.
75-105, Nov. 1993.

[19] D. B. Skillicom. "Models for practical parallel
computation!' Int.]. Parallel Program., Vol. 20,
pp. 133-158,April 1991.

[20] D. Olander and R. B. Schnabel. "Preliminary
experience in developing a parallel thin-layer
1\avier Stokes code and implications for parallel
language design," Gniversity of Colorado at
Boulder, Tech. Rep. CU-CS-;582-92. Feb.
1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

