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ABSTRACT 

To naturally and conveniently express numerical algorithms, considerable expressive 
power is needed in the languages in which they are implemented. The language Matlab 
is widely used by numerical analysts for this reason. Expressiveness or ease-of-use can 
also result in a loss of efficiency, as is the case with Matlab. In particular, because 
numerical analysts are highly interested in the performance of their algorithms, proto
types are still often implemented in languages such as Fortran. In this article we describe 
a language design that is intended to both provide expressiveness for numerical compu
tation, and at the same time provide performance guarantees. In our language, EQ, we 
attempt to include both syntactic and semantic features that correspond closely to the 
programmer's model of the problem, including unordered equations, large-granularity 
state transitions, and matrix notation. The resulting language does not fit into standard 
language categories such as functional or imperative but has features of both paradigms. 
We also introduce the notion of language dependability, which is the idea that a language 
should guarantee that certain program transformations are performed by all implemen
tations. We first describe the interesting features of EQ, and then present three examples 
of algorithms written using it. We also provide encouraging performance results from 
an initial implementation of our language. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

As problems in any domain become more complex, 
they demand increasingly abstract notations with 
which to describe solutions. For example. in the 
domain of numerical computation, Fortran in its 
many forms has always been a favorite implemen
tation language. Recently. however. many numeri
cal analysts are using more expressive languages 
and language environments such as Ylatlab or 
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Mathematica to initially express, evaluate, and de
bug their algorithms. While Matlab and Mathemat
ica provide advantages over traditional languages 
for numerical computation, in their current form, 
they lack optimizing compilers.* As a result, many 
numerical analysts continue to implement their al
gorithms directly in Fortran. 

The purpose of programming language design 
is to provide humans with simple and natural ab
stractions that simplify the translation from the 
human mind into a computable form of expres
sion. While some would argue that Fortran pro
vides such a set of abstractions for numerical ana-

* Only recently has work on compiling Matlab been pub
lished [1 •. 
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lysts, our experiences and the widespread use of 
Matlab suggests otherwise. In particular, in inter
viewing local numerical analysts working in the 
area of numerical optimization and reviewing the 
published literature in the field, we observed that 
these scientists expressed their algorithms in 
pseudo-code at a level typically much higher than 
that ofF ortran notation. ::\1otivated in part by these 
observations, we have designed a programming 
language intended for use in prototyping linear al
gebra and numerical optimization computations. 
We have focused our work to date in these areas 
(avoiding the broad category of differential equa
tions) in order to limit the scope of the research. 
Extension of EQ into the domain of differential 
equations is an obvious direction for future work. 

Our language, EQ, provides several important 
features that directly reflect the syntactic and se
mantic ideas we observed being used. These fea
tures are: 

1. Cnordered expressions: The numerical ana
lysts we interviewed described parts of com
putations out-of-order. Their "natural" se
mantics of the "=" operator was that it 
defined a relationship, and not that it up
dated a memory location. Specifically, they 
used a different notation to describe a vari
able definition (e.g ... tolerance = 0.0001) 
and a recurrence relation (e.g .. x' = x -
lambda X H X gx). 

2. Large-granularity state transitions: The nu
merical analvsts used a notation that indi
cated an update to the state of the computa
tion. as shown by the recurrence relation 
notation mentioned above. Thus .. the ana
lysts· model of computation was based on 
larger-grain state transitions than on the 
granularity of individual memory location 
updates. 

3. ::\1atrix notation: Lniformly. the analysts 
used standard matrix notations to describe 
computations on arrays. 

Incorporating these ideas has led us to a language 
design that has features of both imperative lan
guages, such as Fortran and C, and functional 
languages, such as Sisal. 

Another aspect of the EQ design is related to the 
issue of performance. Traditionally, performance 
has been a critical aspect of numerical computa
tion. One of the strongest arguments for using For
tran is that the performance of its programs is tra
ditionallv excellent and well understood. In this 

article, we introduce the principle of language de
pendability, by which we mean the guarantees the 
language provides in relation to issues of optimiza
tion. More specifically, dependability refers to the 
requirement that certain program transformations 
are performed by all implementations of the lan
guage. As an example of language dependability, 
tail-recursion elimination is a required transfor
mation in all Scheme implementations [2]. We rec
ognize that providing dependability in general is a 
difficult problem. As a resulL in this article, we 
discuss what language transformations we would 
like to dependably provide in EQ. and why the EQ 
language design is amenable to such guarantees. 
What transformations can be provided depend
ably in EQ remains an open issue and will be con
sidered further in future work. 

In this article. we introduce the important con
cepts of EQ and illustrate its use with three exam
ples representing small numerical computation 
kernels. We also show that our preliminary EQ 
implementation performs well for these programs. 
Lnlike other languages in this domain, the expres
sion of parallel computation with EQ, either explic
itly or implicitly, is not a primary goal of the design 
at this time. Some of the features of EQ appear 
well suited to parallelization, but this aspect is not 
the thrust of our current research. 

The remainder of this article is organized as 
follows. Our language is related to many other lan
guages, and in Section 2 we describe some of those 
relationships in detail. In particular, we discuss in 
detail the differences between EQ and its closest 
relatives, Sisal. ld, and EPL. In Section 3, we de
scribe the important features of EQ, including their 
syntax, semantics, and our motivation for inelud
ing them. Three example EQ programs, with line
by-line commentary, are provided in Section 4. 
We provide some preliminary implementation re
sults in Section 5, including timing measurements 
for our three example EQ programs. Section 6 dis
cusses the issue of dependability in more detaiL 
including our goals for dependability in EQ. Fi
nally, we describe future research in Section 7, 
and summarize our conclusions in Section 8. 

2 RELATED WORK 

ln this section, we discuss how our work with EQ 
relates to existing programming language designs. 
Because EQ contains side-effect-free features 
(e.g .. unordered equations), large-grain state tran
sitions, and array notations, there are many differ-



ent languages that are related. This section is bv 
no means a complete listing of relevant languages.: 
instead, it tries to present at least one example of 
each language category we discuss. At the end of 
this section, we summarize the aspects of our de
sign that make it unique. 

2.1 Imperative Languages 

Imperative languages are those that describe com
putations by giving an ordered sequence of steps. 
each of which changes the state of the computa
tion. In these languages, the granularity of state 
transition is usually very small (i.e., a single mem
ory location). This class oflanguages includes For
tran [3], C [4], Matlab [51, APL [6], Fortran 90 
[7], as well as object-oriented languages such as 
C++ [8]. Scientific computation uses this class of 
languages almost exclusively. 

Because they allow the modification of locations 
through the use of the assignment statement, im
perative languages are generally good at expressing 
algorithms involving change. As we have noted. the 
concept of change (or state transition) is expressed 
explicitly in many numerical algorithms, and as a 
result, such algorithms are relatively easv to ex
press in imperative languages. In c~ntras.t, many 
functional languages, while allowing state transi
tions to be modeled. do not allow such transitions 
to be expressed concisely and/ or provide features 
to facilitate the use of such transitions (for excep
tions, see below). This property alone may explain 
much of the imperative paradigm's popularity 
over the functional paradigm for scientific pro
gramming. 

Imperative languages also typically use an ex
plicit memory allocation scheme, through variable 
declarations, which allows them to easilv be mem
ory efficient, something with which mosr" other lan
guage paradigms (including EQ) have more diffi
culty. This approach also has disadvantages, 
however. Forcing users to explicitly deal with mem
ory allocation prevents them from convenientlv 
creating temporary objects, or from using object~ 
that have more logical dimensions than the storage 
needed to hold them.t 

\V e discuss two broad classes of imperative pro
gramming languages below, giving examples of 
specific languages that have been suggested for 
use in scientific programming. 

t An example of an arrav with extra dimensions is a matrix 
that is computed one colum;, at a time. with all columns reusin~ 
the same storage. 
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Scalar Imperative Languages 

Scalar imperative languages only allow the pro
grammer to manipulate and update simple numer
ical quantities, rather than aggregate values such 
as arrays or records. Fortran is the foremost exam
ple of this class. and is also the most popular lan
guage for use in scientific computation. This fact 
has been true from its introduction right through 
to the present day, and its popularity seems likely 
to continue in some form (Fortran 90 is discussed 
in the next section). Despite criticisms bv some 
language researchers [9], Fortran has ma~w fea
tures that are desirable in scientific computi~g. In 
addition to its ability to represent change easily, 
Fortran also offers the ability to handle complex 
numbers and variably sized subprogram argu
ments, features that are not available in other com
mon imperative languages such as C or Pascal. 
Excellent compilers, a simple execution model, 
and general familiarity have further added to For
tran's success. 

Because scalar imperative languages by defini
tion do not support expressions using larger aggre
gates such as arrays, they are not particularly con
cise: small numerical algorithms can explode into 
large amounts of code when written using lan
guages such as Fortran. In conjunction. the result
ing programs often do not correspond well with the 
user's understanding of the algorithms used by 
that program. This problem is often exacerbated 
by the requirement that the user perform explicit 
storage management. In an effort to minimize the 
storage allocation of their algorithms by hand, For
tran programmers often greatly complicate their 
code (e.g., by packing two triangular matrices into 
storage for a single square array). 

Imperative Languages with 
Array Expressions 

A number of imperative languages, including APL, 
~atlab, and Fortran 90, allow expressions to oper
ate on entire arrays or slices of arravs. We discuss 
the features provided by these langt~ages, and how 
these designs have influenced EQ. 

The widespread use of APL illustrates the power 
of providing higher-level array operations in a pro
gramming language. While APL has been used in 
numerical applications, it also provides other verv 
general array operations such as rotation. APL als~ 
encouraged the use of array computations to an 
extreme. popularizing the one-liner approach to 
problem solving. One reason that APL was so suc
cessful is that it provides a very natural and concise 
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notation for describing many problems. As a result, 
APL has influenced many subsequent languages, 
including Backus' FP [ 10 ]. 

Matlab supports the use of mathematically 
sound operations, such as matrix multiplication. 
In Matlab, users are encouraged to write as much of 
their computation as possible in the array/matrix 
notation for several reasons. First, the array nota
tions are more concise than the less concise itera
tive facilities. Second, the interpretive nature of 
existing .\1atlab implementations means that a sig
nificant performance penalty is taken when com
putations are written using control structures 
rather than the matrix notation. This problem oc
curs because while the underlying matrix compu
tation routines are implemented in compiled li
braries linked into the ~atlab executable.. any 
control structures are executed though intepreta
tion, greatly reducing the performance. This effi
ciency problem can prevent Matlab from being 
used to perform algorithm comparisons using large 
data sets. 

Fortran 90 extends Fortran 77 in a number of 
ways. including adding new facilities for manipu
lating pointers and records, a new module system. 
and some limited facilities for computation with 
complete arrays. The inclusion of array facilities 
in Fortran 90 supports our belief that numerical 
programmers benefit from such extensions. On the 
other hand. because Fortran 90 extends and must 
remain compatible with existing Fortran dialects, 
support for array expressions in Fortran 90 is not 
complete. In particular, in EQ we support the no
tion of a range variable which embodies the con
cept of an array index, and which is not supported 
in Fortran 90. Furthermore, the reference manual 
itself suggests a significant loss of efficiency when 
using Fortran 90's array features [7]. 

2.2 Functional Languages 

Declarative programming languages are character
ized by the absence of side effects and sequencing, 
essential characteristics of imperative languages. 
Functional languages, specifically, also typically 
provide support for higher-order, first-class func
tions. By the definition of the paradigm, these Ian
guages lack direct support for updates to locations. 
As a result. computations with state must be simu
lated by explicitly passing the state as an argument 
and updating it via copying (at least conceptually, 
if not in practice). For example, instead of imple
menting iteration via updates to a loop index, many 
of these languages require iteration to be specified 
using a recursive procedure. 

Some functional languages are actually mostly 
functional in that they include a standard impera
tive assignment statement as an option (e.g., 
Scheme and Standard ~L). While these semantics 
result in programming flexibility, they also prevent 
some of the significant advantages of the functional 
paradigm (e.g., referential transparency and lazy 
evaluation). Other functional languages introduce 
state in a semantically limited way. In particular, 
Backus' applicative state-transition (AST) systems 
[ 10] are similar to the state-transition semantics 
proposed for EQ in that they both propose larger
grain state transitions than single memory cells. ld 
(discussed below) also provides imperative fea
tures with restricted semantics [ 11]. 

A small number of functional programming lan
guages (e.g., Sisal), have been designed specifically 
to effectively support scientific computation. 
These languages include syntactic and semantic 
constructs beyond those of purely functional lan
guages such as Haskell [121 and Miranda [13], 
and are closest in spirit to EQ. In this section we 
will discuss similarities and differences between 
EQ and these languages. 

Functional Languages with Explicit 
Looping Constructs 

Since scientific programmers often seek to express 
algorithms that involve iteration. languages such 
as Sisal [ 14] and ld [ 15] add explicit looping con
structs to support this goal. The general looping 
constructs in these languages are similar to the 
ones found in the imperative paradigm (while and 
for loops). Their bodies specify the new value of 
the variables in terms of the old one, with somt> 
syntax that looks very imperative .. such as: 

X = X + 1; 

While Sisal and ld both support an imperative
style notation for iteration in similar ways. they 
support the notation of array modification in very 
different ways. In particular, Sisal only allows the 
user to change a whole object: it is not possible 
to change a single element of an array without 
conceptually constructing a whole new array, at 
least at the language level. ·while Sisal has been 
fairly successful at using optimization techniques 
to eliminate the run-time inefficiencies associated 
with updating whole arrays rather than their 
pieces, the language constructs do not correspond 
to the large-grain state-transition semantics that 
we observed programmers apply in solving scien
tific problems. In particular, we believe that pro-



grammers sometimes think in terms of ''partial up
date" semantics. For example, to describe an 
identity matrix, a user can think of updating a 
zero matrix to place ones only on the diagonal. EQ 
differs from Sisal in many other ways as well. EQ's 
array manipulation mechanisms (the range vari
ables discussed in Section 3.4) are based on im
plicit looping operators, rather than on explicit for 
loops, array operators, or vectors subscripted with 
index arrays. The distinctions between index 
arrays and range variables are further described 
in Section 3.4. Also, EQ's iterative looping nota
tions are more general than Sisal's, permitting 
multiple exit conditions from a loop, an important 
concept in many numerical algorithms. Overall. 
the resulting programming style in EQ is quite dif
ferent from that used in Sisal. 

Unlike Sisal, the programming language Id sup
ports partial updates to array objects. Id provides 
an imperative mechanism called an M-structure 
that allows values to be entered and removed from 
individual elements of an array [ 11]. ""1-structure 
semantics require that before a new value can be 
placed in an M-structure, the old value must first 
be removed. M-structures were added to Id be
cause it was observed that threading explicit state 
variables sequentializes otherwise parallel sci en
tific computation and can result in significant 
amounts of copying. 

M-structures provide an interesting alternative 
approach to supporting imperative semantics in a 
mostly functional framework. They differ from the 
semantics of state transitions in EQ because state 
transitions remain fine-grained and updates are 
asynchronous. An important purpose for M-struc
tures is to provide implicit synchronization in ld. 
In EQ. on the other hand. the purpose of our large
grain state-transition mechanism (i.e., see the 
"followed-by" operator in Section 3.7) is to pro
vide a feature that naturally models the scientific 
programmer's intent. In particular, followed- by 
supports the notion of a synchronous partial up
date across all variables currently in scope. \Vhile 
these semantics limit parallelism as compared to 
the semantics of M-structures, the current intent 
of the EQ design is not to support a maximal 
amount of parallelism, but to provide more natural 
sequential language semantics. 

Functional Languages with Implicit 
Looping Constructs 

Rather than use standard control stn1ctures, some 
functional languages express loops implicitly. In 
Lucid [ 16], this is done by treating variables as 
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representing a whole stream of values, and writing 
equations such as: 

x = 1 followed-by x * 2; 

which sets x to the sequence ( 1, 2, 4, 8, 
16, ... ) . 

EPL [17] uses a different mechanism; to de
scribe a recurrence, one writes an array and defines 
each value in the array in terms of the previous 
values. So, for example, the above computation 
could be written: 

subscript i; 
X (1] 1; 

x[i] = x[i-1] * 2; 

Both of these languages also have difficulty ex
pressing the change of only part of an object. In 
addition, these constructions are more inefficient 
than those of Sisal and Id, because it may be very 
difficult to easilv determine which values to com
pute first: this must be decided either at run-time 
(resulting in drastic loss of efficiency), or by using 
sophisticated compile-time analysis. This can be 
unreliable in thP sense that compile-time analysis 
is not guaranteed to generate a solution for suffi
ciently complex sequence definitions. In such 
cases, the language must fall back on the run-time 
system. Furthermore. the program may contain 
cyclic definitions only detectable at run-time. 
Thus, it is difficult for the usPr to depend on the 
compiler of such languages to generate reasonable, 
or even consistent, perfonnance. This relates to 
the concept of dependability. which is introduced 
in Section 6. 

2.3 Object-Oriented Languages 

Object-oriented programming has become a 
widely used important programming paradigm 
that is supported in many different languages. For 
the most part, existing applications of object-ori
ented approaches to scientific computing prob
lems have been in the areas of class library defini
tion (e.g., matrix and array classes, libraries to 
support specific scientific fields such as magnetic 
resonance [18], etc.). While object-oriented ideas 
relate to high-level structuring mechanisms (e.g., 
class hierarchies), our ideas are more relevant to 
the practice of programming-in- the- small. Fin ally, 
it is quite clear that object-oriented concepts such 
as inheritance, polymorphism, and dynamic dis
patch are not yet in common use among scientists. 
The object-oriented paradigm mav eventually 
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greatly influence the way scientific programming 
is done, but the effective use of this paradigm for 
scientific computation is still a topic of research 
and beyond the scope of this article. 

2.4 Summary of Relation of 
Existing Languages to EQ 

While EQ shares syntactic and semantic features 
with many different languages (from different par
adigms), it combines them in a way that makes 
it unique. First, it supports syntactic constructs 
intended to closely model those used by numerical 
analysts describing computations involving linear 
algebra. While a language such as Matlab also sup
ports this goal, it does so in a purely imperative 
framework. Second, the semantics of EQ are 
mostly functional, with the addition of large-grain 
state transitions intended to closely support the 
conceptual model of the programmer. While other 
functional languages, such as Sisal and ld,. also 
support numerical computation and side effects, 
they do so in different ways, and with different 
goals. 

3 FEATURES OF EQ 

This section describes the EQ language. Because 
this article is intended as a language overview and 
not a language reference, we focus here on the 
most important aspects of the language. A more 
complete language reference manual that provides 
further details of the language design is currently 
in preparation. 

After a brief discussion of lexical issues, we de
scribe the EQ language in two basic parts. First, 
EQ provides a set of definitional features for defin
ing new values in terms of old ones. This part of 
the language is very similar to ideas from a variety 
of functional languages, except that it allows for 
partial definitions-the definition of only part of 
an array, or definitions that occur under only some 
circumstances. Portions of EQ that fall into the 
definitional category include unordered equations, 
statement grouping, the conditional statement, 
range variables, and matrix expressions. 

Next, we describe EQ's unique support for itera
tive constructs, which involve a notation for future 
and past values, and then we describe explicit op
erations that cause time to "flow," moving values 
from the future into the past. The features in EQ 
that support change include the "next" and 

"prev" operators, the followed-by operator, and 
the do loop. 

3.1 Lexical and Syntactic Issues 

To date, our research has focused on semantic, 
rather than syntactic, issues. As a result, the for
mation of tokens, interpretation of numbers, and 
other similar issues are treated as thev are in the 
C programming language. These issues do not af
fect the semantics of the language constructs pre
sented below. 

3.2 Unordered Equations 

Mathematical notations, in general, distinguish 
between ordered and unordered equations. Unor
dered definitions are given as a set of equations. 
Some notations have extra words between these 
equations: "x = sin y, where y = . . . " and "let 
y = ... in x = sin y" are common. Ordered 
definitions, involving a set of recurrences, are given 
using a special syntax (e.g., x' = x + 1 ). EQ se
mantics support both of these notions directly. 
Specifically, in this section we discuss expressing 
unordered notations, and in a later section we dis
cuss recurrences. In EQ a use of"=" corresponds 
to the simple unordered model. For example: 

a = 4; 
b = a + correction; 
correction = sqrt (a) ; 

would compute a = 4, correction = 2, and 
b = 6. This unordered form of expression allows 
the programmer greater flexibility. For program
ming-in-the-small, unordered statements can lead 
to a more natural way of expressing algorithms; 
statements that logically belong together can be 
placed in proximity, even if they cannot be exe
cuted consecutively. 

In addition, unordered equations correspond to 
a proof-oriented view of the program; each equa
tion can be thought of as a fact about the values the 
program computes, rather than a computational 
rule. These facts can then be used to prove proper
ties about programs. From this point of view, it 
is convenient to be able to view these statements 
as unordered. 

As we have described so far, these features are 
fairly similar to the unordered facilities provided 
by many functional languages. However, in addi
tion to allowing the user to assign an entire vari-



able, EQ allows an assignment to only part of an 
array. The statement 

would assign r to the third row of a (arrays are 
accessed in column-major order), assuming r is a 
one-dimensional column vector (the ''- '' operator 
transposes r into a row; see Section 3. 5). In Section 
3. 7, we describe what happens to the undefined 
parts of an array such as a. 1\"ote that attempting 
to use a totally undefined variable (one which has 
no definitions at all) is a compile-time error. 

EQ is a single-assignment language; this means 
that the same variable cannot be defined twice. 
EQ insists on this property even for arravs; the 
code fragment 

a [1] 

a[2] 
1; 
2; 

is not permitted in EQ. By perm1ttmg only one 
assignment to an array variable, EQ avoids the 
problem of determining at run-time if any element 
of the array is defined twice (a double definition 
would mean that the order of execution of these 
unordered statements could affect the computed 
result). It is, however, sometimes desirable to be 
able to write code fragments such as the above; 
we show how to achieve the effect of multiple as
signments in Section 3. 7. 

3.3 Conditionals 

Conditional computations in EQ are handled in a 
very similar way to that used in imperative lan
guages: 

if (X >= y) { 
maximum x; 
minimum y; 

} 
else { 

maximum y; 
minimum x· 

' } 

computes both the minimum and maximum of x 
andy. We note that braces are used, as inC, to 
group several individual statements into a single 
compound statement. Although there are multiple 
assignments to variables here, each branch of the 
conditional must assign to a variable at most once. 
This rule ensures that there is never more than 
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one definition active, since only one branch of the 
conditional is executed. 

By providing a conditional statement (as op
posed to the conditional expression used by func
tional languages), we have avoided the need to 
have records or tuples.:j: Adding such types to EQ 
would not be difficult, but would be a violation of 
our direct representation design principle. More 
importantly, the conditional statement permits the 
programmer to assign to a variable in only one of 
the branches of an if statement; this will have a 
well-defined (and important) meaning when used 
with EQ's iterative statements (see Section 3.8). 

3.4 Range Variables 

Performing computations over a set of values is a 
very common activity in programming. In numeri
cal computations, typically these are sets of sub
scripts. Using loop notation (as is required in lan
guages such as Fortran) obscures the intent and 
potential parallelism of the program, in addition 
to expanding code volume. To address these is
sues, EQ provides the range variable, which takes 
on a consecutive set of integer values. The behavior 
of these range variables is strongly related to that of 
EPL 's subscript variables, but used in a restricted 
form (see the end of this section). Definition state
ments that involve a range variable are performed 
for each possible value of the variable, by implicitly 
surrounding the statement with one for loop for 
each range variable used within the statement. 
For example: 

i 1 .. 20; 
v[i] = 0; 

makes v a length 20 vector of zeros. It is equivalent 
to the pseudo-code: 

for i = 1. . 20 { 
v[i] = 0; 

} 

Note that range variables behave just like any 
other variable with regards to EQ's unorderedness 
properties: code such as 

:j: Cse of a conditional expression to assign two values such 
as minimum and maximum would involve a notation using 
tuples such as (maximum, minimum) = if (x > =y) 

then (x, y) else (y, x). 
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i = 1. .10; 

a[i,j1 = i+j; 

j = 1. .20: 

is perfectly legal in EQ. This flexibility allows users 
to place range information where it is most conve
nient and understandable, and does not force 
them to place it directly before or after the code 
being looped over, as many other notations (such 
as explicit loops or array comprehensions) do. 

We note that range variables are not equivalent 
to the vector subscripting available in languages 
such as APL and Sisal, where the semantics are 
equivalent to textual substitution. For example, 
the code 

i = 1. .20; j 1. .20; 
x[i,j1 = a[i1 * b[j1; 

computes the "cross" product of vectors a and b 
(i.e., the full two-dimensional matrix abT); it is 
equivalent to the pseudo-code: 

for i = 1. . 20 { 
for j = 1. . 20 { 

x[i,j1 = a[i1 * b[j1; 
} 

} 

In contrast, the EQ statements: 

i = 1. .20; 
x[i,i1 = a[i1 *b[i1; 

are equivalent to the pseudo-code: 

for i = 1 .. 20 { 
x[i,i1 = a[i1 * b[i]; 

} 

which assigns only to the diagonal of x the product 
of corresponding elements of a and b (the meaning 
of such partial assignments to a variable in a single
assignment language will be clarified in Section 
3.7). This distinction is not possible in a vector 
subscripting system, and requires additional con
structs in other languages, such as the dot in Sisal 
or the transposition operator in APL. In addition 
to being more expressive, range variable construc
tions are easier to compile efficiently than vector 
subscripting. 

EQ's range variables also have some advantages 
over the standard array comprehension notation 

used in many functional languages. The most im
portant difference is the ability to reuse the same 
range for multiple computations, such as in 

i = 1. .n; j = 2 .. n-1; 
x [ i, j 1 func1 ( i) ; 
y [ i, j 1 func2 (j ) ; 
z [ i, j 1 func3 ( i, j ) ; 

Because the definitions of x, y, and z use different 
subsets of the range variables, it would not be pos
sible to express this code using a single compre
hension. Instead, one comprehension would have 
to be written for each array. Writing such computa
tions using comprehensions would require repeat
ing the ranging information. In effect, EQ allows 
the user to create an abstract loop object, and to 
reuse it in a number of contexts within a given 
program. 

Range variables can also be used in several other 
contexts within EQ as well, besides looping over a 
simple statement. For example, they can be used 
for performing reduction operations, such as a 
summation. The code 

i 1. . 20; 
s - sum [ i 1 : v [ i 1 ; 

adds up the elements of array v. The sum reduction 
operators (along with min. max, and several others) 
are built into the language definition itself. Our 
experience with numerical analysts suggests that 
user-defined reductions are not overly important 
to scientific computation. Providing built-in oper
ators for these functions also makes the generation 
of high-quality executable code much easier. 

Combining reductions with other uses of range 
variables can yield considerable expressive power: 

i,j,k = 1. .10; 
c [ i, k1 = sum [j 1 : a [ i, j 1 * b [j , k1 

is a matrix multiplication program for lOX 10 ma
trices (note that the sum operator binds more 
tightly than addition, but less tightly than multipli
cation. We believe this generally corresponds to 
mathematical notation). 

In addition to summation, range variables can 
be used to find minimums and maximums, as well 
as the locations at which the extremum occurred: 

i = 1..10; j = 1..20; 

at max[i,j1: c[i,j1 
next c [ i , j 1 = 0 ; 



will replace the maximal element of c with zero 
(for more information on the next keyword, see 
Section 3.6 ). This construct more naturally ex
presses the programmer's intentions than would a 
loop like Fortran. Such a construct may be more 
elegant than using a location of maximum reduc
tion operator.§ 

We note that range variables cannot be used to 
define recurrences; statements such as 

x[i] = x[i-1] + 1; 

are considered circular (x is defined in terms of 
itself) and are not permitted in EQ. This behavior 
contrasts with the behavior of EPL' s subscript 
variables, where recurrences of this sort are legal, 
and in fact, are how all iterative computations must 
be specified. By avoiding statements such as these, 
an EQ compiler does not need to determine an 
appropriate order in which to loop through the 
range variable(s); any order (including fully paral
lel) will produce the correct results. When compu
tations involving recurrences are needed, they can 
be expressed in EQ using its "over" loops (see 
Section 3.9). 

3.5 Matrix Operations 

As in Matlab, EQ provides the matrix operations 
that correspond with those usually used in stan
dard mathematics. Thus, A * B, where A and B 

are two-dimensional matrices, represents a stan
dard matrix-matrix multiplication, not the ele
ment-by-element computation that it would in 
APL or Fortran 90. We believe element-by-ele
ment multiplication is more clearly expressed by 
using subscripting and range variables instead of 
a matrix operator: 

i = 1. . n; j = 1. . n; 
C[i,j] = A[i,j] * B[i,j]; 

Currently, EQ supports addition("+") subtrac
tion("-"), and multiplication("*") of matrices, 
in addition to transposition, which is represented 
by the postfix"-" operator. We plan to eventually 
support less computational operations (such as 
matrix inverse) efficiently. 

§ In order to use this sort of reduction stvle. tupl"s would 
have to be introduced. For example. the above example might 
read ''let (ii, jj) = maxloc (c [i,j] for i = 

1..10, j = 1..20) in ... ''. 
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3.6 Explicit Notations for Change 

In an unordered notation, each name can repre
sent only a single value: thus, a Fortran-style as
signment statement such as x = x + 1 is not 
meaningful in such a context. To express such 
relationships in EQ, we tum once again to notation 
used for writing down algorithms that have itera
tion as a major component. In areas such as nu
merical optimization, one often finds notation 
such as: 

X+ = xe + XP 

where the subscripts +, c, and p stand for the next 
value, current value, and previous value, respec
tively. EQ models this notation very closely: 

next x = x + prev x; 

is a statement that would be used in a program to 
compute a Fibonacci series. This notation corres
ponds more closely to the algorithmic ideas than 
Fortran code for the same computation, which 
would require a temporary to be introduced (and 
assignment statements carefully placed) to express 
this computation. 

We note that there is nothing special about the 
current time; the above statement could also be 
written 

x = prev x + prev prev x; 

or as 

next next x = next x + x; 

provided that the rest of the code is modified simi
larly. 

We expect that future EQ compilers will try to 
optimize away any extra storage associated with 
past copies of a variable. The issues are similar to 
those faced by the Sisal compiler, which has dealt 
with these issues successfully. We plan to use 
somewhat different techniques, which are dis
cussed briefly in Section 6.5. These ideas have the 
advantage that they generalize nicely to cover cases 
where multiple past values are referenced, in addi
tion to removing programmer-introduced storage 
inefficiencies. 

In general, the next and prev prefixes allow 
references to past and future values of a variable. 
For convenience, the notation x' can be used as 
an abbreviation for next X. Multiple prefixes can 
be used to reference values in the distant past or 
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future (although this is rarely done). We show how 
to use these constructs to build programs that rep
resent change in the following sections. 

3.7 Followed-by Operator 

In order to use the next and prev notations, there 
must be a way to move forward in time, so that 
the value that used to be called next x becomes 
x, x becomes prev x, and so on. EQ provides 
several mechanisms for incrementing the time 
step. The first is the followed- by operator "= > ", 
which combines two individual statements A and 
B into a new statement A => B. Notice that this 
contrasts, for example, with the "---" barrier 
statement from ld, where the barrier applies to all 
statements within a pair of braces, not just the 
immediately adjacent ones. Informally, the state
ment A = > B means to execute A, then move for
ward one unit in time and execute B. An example 
of this is: 

{x = 5; y = 2} => 
x = prev x * y; 

which computes the value x = 10. 
Generally, if we have the statement A => B, 

then the variables defined by A are accessible 
within B, but with one extra prev (or one fewer 
next) if B redefines that variable. Values defined 
by A but not redefined by B are accessed in B 
through their usual names (the variable y in the 
above example). The variables defined by A that 
are redefined by B are not accessible outside the 
followed-by statement (e.g., they appear either be
fore or after B); i.e., only the last (textually) defini
tion of a given variable is visible outside of the 
followed-by statement. In our example above, the 
value x=5 is not visible outside the followed-by 
statement, and could not be referenced in the sec
tions of code labeled " ... " in our example (uses 
ofx would give the value 10 instead). This property 
ensures the side-effect-free nature of EQ's seman
tics, because the first assignment to the doubly 
assigned variable (x in our example) is only visible 
within the followed-by statement itself. As a result, 
execution of the followed-by cannot modify vari
ables that are visible outside of the followed-by 
statement, only define new ones (such as x in our 
example, which has no other definition outside of 
the followed- by statement). 

One additional aspect of the followed- by opera-

tor is important. If the statements in B make a 
partial definition of a variable (either by only de
fining some elements of an array or by defining a 
variable in only one branch of a conditional), then 
the undefined portions of that variable default to 
the value defined in A for the variable. This rule 
allows the followed-by operation to be used when 
an array must be built up out of several parts, 
because multiple definitions of the same array are 
not allowed. For example, one way of defining an 
n-by-n identity matrix is: 

p = 1. . n; q = 1. . n; 

I [p, q] 0=> 
I[p,p] = 1; 

The first definition of I gives each element the 
value zero, and the second assigns ones to the 
diagonal. Since the second definition of I does not 
define all of I's elements, the values from the first 
definition are used to fill in the undefined spaces. 
1\'ote that for all statements outside of the followed
by statement, the zero matrix assigned to I in the 
first part of the followed-by statement is inacces
sible (although some of its zeros do "show 
through" the second definition). This notation (the 
partial assignment to I [a, a]) allows EQ to repre
sent the change of only part of an object (e.g., 
the diagonal), a computation that many functional 
languages have trouble expressing at the lan
guage level. 

The above example demonstrates in a practical 
example the contrast between EQ's range variables 
and subscripting with vectors, as is allowed in lan
guages such as APL and Sisal. If the variables a 
and b were treated as ordinar! vectors of integers, 
then I [a, a] would represent the entire matrix, 
not just its diagonal. 

The followed-by operator is right associative; 
this makes code such as 

a [1] 

a[2] 
a[3] 

1=> 
4 => 
5; 

have the correct behavior. 

3.8 Approximation Loops-the do 
Statement and once Clause 

Most loops in numerical codes iterate over a fixed 
set of integer values (like Fortran's DO loops). 
These loops are best described using EQ's range 
variables. Of the remaining loops in scientific com-



putation, almost all fall into the category of ap
proximation loops: these loops iterate, improving 
an initial approximation to some quantity on each 
execution of the loop, until either an adequate ap
proximation to the answer is achieved or the ap
proximation process fails. These loops often have 
multiple exit conditions, with different code that 
needs to be run for each exit case, and are not well 
modeled by standard while or repeat loops. 

EQ supports approximation loops directly with 
its do statement. Each iteration of the loop ad
vances time by one step. Consider the example: 

x = nl2; 
do { 

} 

next x (x + nix) I 2; 
once (lnext x - xl < 1e-7)) 
sqrt = next x; 

This program computes the square root of anum
ber x and stores it in the variable sqrt. The first 
line initializes our loop. The do statement contin
ues to compute values for next x and timeshifts 
them back into x until the boolean expression of 
the once statement becomes true (note the use of 
lxl to compute absolute value), and which time 
sqrt is assigned the last computed approxima
tion, which is next x (not x). Note that the once 
condition refers to both x and next x. In fact, 
any previous values of x can be referred to at any 
point within the loop body. For example, a state
ment such as 

ave = (x + next x) I 2; 

could be inserted anywhere inside the loop, includ
ing after the once statement, and the statement 
will compute the same values no matter where it 
is placed. This works because of EQ's unordered 
equations paradigm, and because the time-shift 
of next x into x does not occur until the loop 
itself iterates. 

In general, a do loop body consists of an unor
dered set of statements that include one or more 
once clauses. The do loop repeatedly executes its 
body until one of its once clauses is triggered (has 
its condition become true). When this happens, 
the body of the once clause is executed, and the 
loop is finished. Note that a once clause has no 
effect on the current loop body execution; it only 
determines whether another time-shift is called for. 

If multiple once clauses are used, their condi
tions are tested in order; the lexically first once 
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clause that has a true condition is the one that is 
used. This is the only case in EQ where the order of 
statements can change the semantics of a program. 
We understand that this presence of ordered once 
clauses within unordered equations can be confus
ing; we hope to eliminate this problem in future 
versions of EQ. 

3.9 Ordered Definite lterators: 
The over Statement 

Range variables cannot directly be used to write 
recurrences; code such as 

i = 3 .. 100; 
fib [1] 1 => 
fib [2] 1 => 
fib [ i l fib [i - 1] + fib [i - 2]; 

is illegal; the last statement will be flagged by the 
EQ compiler as circular, because the last line de
fines fib in terms of itself. These kind of computa
tions can be written using a do loop: 

fib [1] 
fib [2] 
{ 

l 3· 
' 

do { 

1 => 
1 => 

fib [i] = prev 
prev 

i + 1; i' = 

once (i = 100) 
} 

} 

fib [i 
fib [i 

{ } 

1] + 
2]; 

but the code is somewhat cumbersome. 
To allow such computations to be written ele

gantly, EQ provides the over statement. This 
statement can be used to write an ordered loop 
(similar to the do loop), but which automatically 
loops over the values of a range variable. This 
statement permits us to write our example above 
as: 

X = 3 .. 100; 
fib [1] 1 => 
fib [2] 2 => 
over x: 

fib [X] prev fib (X 1] + 
prev fib [x 2] ; 

which computes the first 1 00 elements of the Fibo
nacci sequence. The over statement runs its body 
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as if it were a do loop; after each iteration, a time
shift is done, and x is changed to the next value 
in the range. Within the over body, the range 
variable is treated as an ordinary scalar variable, 
with the built-in definition 

x = (initial value in range); 
do { 

} 

(body of the over statement) 
next x = x + 1; 
once (x >= (final value in range)) 

{ } 

In effect, the over statement "serializes" the im
plicitly parallel range variable. 

By default, the over statement loops through 
the values of the range variable from smallest to 
largest: to reverse this direction, the keyword rev 
is placed before the variable name. 

3.1 0 Summary 

In summary, EQ borrows features and properties 
from both imperative and functional languages in 
an attempt to support rapid and natural construc
tion of numerical programs. Its single-assignment 
nature and unordered definitions give it many of 
the advantages of functional programming, in
cluding a correspondence with standard mathe
matical notations. Range variable notation is an 
implicit looping construct that allows many com
putations on arrays to be expressed more simply 
than in systems that provide only element-wise or 
aggregate array operations. In addition to provid
ing simple "doall" functionality, it also naturally 
extends to other operations, such as summations, 
minimizations, and ordered definite iteration. At 
the same time, EQ's explicit support for change, 
particularly of parts of an array, enables it to ex
press algorithms that fundamentally involve the 
notion of updating values. The ability to easily de
scribe such algorithms is a property it shares with 
the imperative paradigm. 

4 EXAMPLE PROGRAMS 

We present three examples of EQ programs, with 
explanations and observations about the EQ eon
struets used. The first example emphasizes the 
use of range variables, the second demonstrates 
iteration, matrix operations, and unordered equa
tions, and the third leads into a discussion of de-

pendability. All three examples include statements 
not implemented in the current EQ prototype (see 
Section 5). These examples show that the EQ eon
struets given in Section 3 allow a range of numeri
cal algorithms to be expressed dearly and natu
rally. 

4.1 LU Decomposition Example 

The EQ in Figure 1 computes an Ll! decomposi
tion with partial pivoting. The input matrix a is of 
size 1. .n X 1. .n, and the decomposition is com
puted "in place." and therefore returned in a' 
(where a' is the abbreviation for next a). The 
vector of pivoting information is stored in p'. For 
simplicity of presentation, our algorithm contains 
no singularity detection. The lines have been num
bered so that we can refer to them. Line 1 sets up 
a range variable to loop over the entire matrix. 
Line 2 defines the initial state of the pivot vector 
p: Each row is in its original location. The assign
ment is done for each possible value of k. Line 3 
begins the main loop. The over statement loops 
through each of the values of the range variable 
k, going from 1 to n. Cnlike normal usage of a 
range variable, in an over statement the values 
are used sequentially. Each of lines 4 through 10 
is executed once for each value of k, starting with 
1 and going through n. These statements perform 
the pivoting and elimination steps. Lines 4 and 5 
set up needed range variables for the computations 
at a single iteration of the L C decomposition: pi v 
will be used to perform the pivot step, and i and 
j will perform the rank one update to a. Line 6 
searches for the proper row with which to pivot, 
using the at statement, which goes through all of 
the values of pi v, searching for the row with the 
biggest element in column k. Note the use of lxl to 

(1) k; 1- .n; 
(2) p[k] ; k; 

(3) over k: { 
(4) i, j ; k+l. .n; 

(5) piv ; k .. n; 

(6) at max [piv]: la[piv, k] I { 
(7) t1 ; p[k] ;) p' [k] ; p[piv] ;) p' [piv] ; t1; 
(8) t2; a[k,] ;) a' [k,] ; a[piv,] ;) a' [piv,] ; t2; 

} ;) 

(9) a' [i,k] f; a[k,k] ;) 
(10) a'[i,j] -; a[i,k] • a[k,j]; 

} 

FIGURE 1 LC decomposition example. 



calculate the absolute value of x. Lines 7 and 8 
perform the required exchanges, using the fixed 
value of pi v that was computed by the at state
ment. Line 7 exchanges the pivoting information, 
and line 8 exchanges rows of the matrix. The fol
lowed-by operator is used because each set of three 
steps must be done in the specified order. Line 9 
computes the multipliers, storing them in place. 
Note that this must be done after the pivoting, thus 
the followed-by operator is again used. Line 10 
does the rank one update. Range variables are 
used to perform this operation without the use of 
loops. Since this operation uses the multipliers, 
the followed-by operator is placed between it and 
line 9. 

This example makes very little use of one of 
the most important features of EQ, the ability to 
specify equations is an unordered manner. It does .. 
however, illustrate the simplicity that comes from 
the index range features of EQ. 

4.2 BFGS Example 

The EQ code given in Fig. 2 finds a local uncon
strained minimizer of ann -variable function, using 
a simple version of the popular BFGS quasi-1'\ew
ton method. It takes as inputs the function f ( ) 
and its gradient gradf ( ) , as well as an initial 
estimate to the solution, start_point. The algo
rithm updates the inverse hessian, H, and uses a 
simple quadratic interpolation line search. 

We note the heavy use of matrix notation in this 
algorithm. Lines 1 through 5 initialize the algo
rithm. The only use of range variables in this algo
rithm is in lines 5 and 6, to initialize H to the identity 
matrix. Lines 7 through 22 form the main loop, 
which produces better and better approximations 
to the minimizer of f. 

Lines 8 and 9 compute the BFGS update. Note 
that they can be written at this point because EQ 
uses unordered equations. These lines will be eval
uated by EQ only after the computations in line 
18 have been completed, since x' and gx' are used 
in line 8. 

Lines 10 through 18 form the line search which, 
like the loop within which it is nested, produces 
better and better approximations-this time to an 
acceptable step length lambda. Lines 12 and 13 
compute the x and fx values for our current step 
length. Lines 14 through 16 compute the new trial 
step length. Line 17 checks the termination condi
tion, and once the condition is satisfied, makes the 
trial values official in line 18. 

Finally, we have the termination conditions for 

(1) 

(2) 
(3) 
(4) 

(5) 

(6) 

(7) 

(8) 
(9) 

(10) 
(11) 

(12) 
(13) 

(14) 
(15) 

(16) 

(17) 

(18) 
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%Initialize the algorithm 
iter:;;; 1; 
x :;;; start_point; 
fx ~ f(x); 
gx ~ gradf(x); 

i:;;; t .. n; j = 1 .. n; 
H[i,j] ~ 0 ~> H[i,i] 1· 

do { 

Y. Inverse Hessian update 
s :;;; x' - x; y = gx' - gx; 
H' = H + ((s - H•y) • s· + s • (s - H•y)") I a·•y 

- s•s-•(s - H•y)·•yl(s"•y)"2; 

% Step length computation 
lambda = 1; 
do { 

trial_x = x - lambda•H•gx; 
trial_fx = f (trial_x); 

slope = -gx·•a•gx; 
trial_lambda = -lambda • slope I 

2 • (trial_fx- fx- lambda • slope); 
lambda' = max (trial_lambda, lambda I 10); 

once (trial_fx < fx + 1e-4 • slope) { 

} 
} 

x' = trial_x; fx' = trial_fx; gx' = gradf (x'); 

Y. Termination condi tiona 
(19) once (fx' - fx < 1e-8) { 
(20) answer= x'; success:;;; TRUE; 

} 

(21) iter' += 1; 
(22) once (iter > 500) { 

} 
} 

success = FALSE; 

FIGURE 2 BFGS unconstrained optimization ex
ample. 

our main loop, of which there are two. The first, 
at lines 19 and 20, checks for small changes in 
function value. Notice that both fx' and fx are 
available for this test; the definition of fx' has no 
effect on fx until a time shift occurs because of a 
followed-by operator or do loop. If the test suc
ceeds, the algorithm is successful, and we return 
our answer. The second termination test, in lines 
21 and 22, checks for excessive iterations. As men
tioned in Section 3.8, the once conditions are eval
uated in their lexical order at each iteration of 
the loop. 

This example illustrates the convenience and 
elegance of EQ's approximation loop facilities. Of 
particular note is the lack of temporary variables 
for holding "old'' values of variables; the program
mer was simply able to refer to x' and x at the 
same time. The example also shows the value of 
simple matrix operations, although that is not a 
feature unique to EQ. Finally, we have found that 
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the use of unordered features demonstrated here 
corresponds to the way that optimization experts 
describe this algorithm. The placement of lines 8 
and 9 early in the code highlights the heart of the 
algorithm, the BFGS update itself. 

4.3 Nelder-Meade Simplex Example 

We present EQ code for the Neider-Meade simplex 
algorithm for unconstrained minimization in Fig
ure 3. While somewhat less robust and slower than 
the BFGS algorithm, simplex algorithms do not 
require gradient information to be provided. In 
practice, simplex algorithms are used for some 
kinds of unconstrained minimization problems 
with small numbers of variables. Furthermore. 
they can also be useful in situations where compu
tation of the function itself involves significant er
ror. The routine in Figure 3 takes the dimension 
n, an n dimensional function f ( ) , and an initial 
set of n + 1 points s [ , i] , each of which is a vector 
of size n. The algorithm returns to its best approxi
mation to the minimizer in the variable result. 

The algorithm in a straightforward translation 
of the Nelder-Meade simplex algorithm. Line 1 
sets up an array of function values for each of the 
points in the simplex. This array is created (rather 
than simply calling f ( ) every time a function 
value is needed) for efficiency reasons. It is ex
tremely difficult to optimize away the extra func
tion calls in this program if this array is not pro
vided. This is also true of currently popular 
languages such as Fortran or C. 

Lines 2 through 33 are the major iteration. 
which attempts to improve the points in the sim
plex. Lines 4 through 9 compute the candidate 
points (reflect, expand, contract, reflect_ 
contract) to update the worst point of the sim
plex (which must be in array position n + 1 because 
the simplex is sorted by function value). One of 
these is chosen based on its function values in lines 
10 through 21. If none of these are a sufficient 
improvement, then the entire simplex is reduced 
in lines 22 through 24. 

Then the simplex is sorted, using an insertion 
sort in lines 25 through 28, so that the points in 
the simplex are once again arranged in order of 
function value. We note that for typical applica
tions, the number of variables (n) is very small, 
so the type of sort used does not affect perfor
mance significantly. 

The termination conditions are given in lines 29 
through 33. The first condition checks the largest 
difference between coordinates of the best point 

and the coordinates of all other simplex points. 
The second is a simple iteration limit. 

The code given, if naively compiled, will exhibit 
several inefficiencies. First, multiple calls to the 
function f would be made with the same argument 
value (e.g., f (reflect) in lines 10. 13, 15, 16. 
and 18). These extra function calls can be opti
mized away fairly easily, using standard tech
niques. Second, the values of variables such as 
contract do not need to be computed on every 
iteration of the loop; only when their values are 
actually used (the else clause at line 19 is exe
cuted) does this definition need to be evaluated. 
This style of programming is encouraged by the 
unorderedness of EQ statements, and allows a sig
nificantly shorter source program. The sort of 
transformations required to address the efficiency 
issue that this raises are not commonly addressed 
in current languages, but we believe that they can 
be handled automatically by an EQ compiler. For 
more information on these transformations, see 
Section 6. 

5 IMPLEMENTATION RESULTS 

A prototype compiler for the EQ language has been 
implemented, which translates an EQ program 
into an equivalent C program, for compilation us
ing a standard C compiler. We present some timing 
results comparing EQ programs wih hand-coded 
C versions of our LC, BFGS, and J\"elder-:Yieade 
algorithms. These measurements were taken on a 
DECstation 5000/260 using its standard cc com
piler, but we received similar performance ratios 
on other machines. The prototype EQ implemen
tation does not currently support all of the EQ 
constructs used within the examples (in particular, 
the at and over statements). As a result, we have 
been forced to use alternative versions of these 
examples. We plan to add these constructs to our 
prototype in the future. Note that the missing fea
tures are necessary only for syntactic convenience, 
and including their implementation in our proto
type should have no adverse impact on the perfor
mance measurements reported here. 

For the LC algorithm, we computed 100 50-
by-50 decompositions. For BFGS. we minimized 
a simple function of 64 variables-taking about 
150 iterations of the main loop. The Nelder-Meade 
example optimized a more complex function for 
problem sizes from two to eight variables, each 
done 1 0 times. 

In Table 1, we provide measurements of each 
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% Let fs be the value of the function at the simplex points 
(1) fs[i=1. .n+1] = f(s[,i]); 

% Begin the iteration 
(2) iter = 1; 
(3) do { 

% Define the relevant points 
(4) centroid= (sum[i=1 .. n]: s[,i]) In; 
(5) reflect = 2•centroid- worst; 
(6) expand = 2•reflect - centroid; 
(7) contract = (worst + centroid) I 2; 
(8) reflect_contract = (reflect + centroid) I 2; 
(9) worst= s[,n+1]; 

% Determine which point(s) to change in the simplex 
(10) if (f(reflect) < fs[1] a f(expand) < f(reflect)) { 
(11) s'[,n+1] expand; 
(12) fs'[n+1] = f(expand); 

} 

(13) else if (f(reflect) < fs[n]){ 
(14) s'[,n+1] reflect; 
(15) fs'[n+1] = f(reflect); 

} 

(16) else if (f(reflect) < fs[n+1] a f(reflect_contract) < f(reflect)) { 
(17) s'[,n+1] reflect_contract; 
(18) fs'[n+1] = f(reflect_contract); 

} 

(19) else if (f(reflect) >= fs[n+1] a f(contract) < fs[n+1]) { 
(20) s'[,n+1] contract; 
(21) fs'[n+1] = f(contract); 

} 

else { (22) 
(23") 

(24) 
s' [,i=2 .. n+1] 
fs' [i=2 .. n+1] 

} => 

( s [, 1] + s [, i] ) I 2; 
f(s' [,i]); 

(25) 
(26) 
(27) 

(28) 

% Once finished, sort them 
over i=2 .. n+1: 

at min [j=1 .. i]: fs[j] { 
t1 s[,i] => s'[,i] 
t2 = fs[i] => fs'[i] 

} 

s[,j] => s' [,j] 
fs [j] => fs' [j] 

t1; 
t2; 

% Check the termination conditions 
(29) new_best = s'[,1]; 
(30) once (max[i=1. .n, j=2 .. n+1]: Is' [i,j] - new_best[j] I <= 1e-8) 
(31) result = new_best; 

(32) iter' = iter + 1; 
(33) once (iter > 500) {} 

} 

FIGURE 3 ~elder-Meade simplex example. 

program compiled with optimization turned both 
on and off. The third column in the table contains 
the times of the EQ programs, while the fourth 
column shows the times of the hand-coded C im-

plementation. The fifth column indicates the ratio 
of the EQ to C execution times. As Table 1 shows, 
the EQ programs are slower by a factor of 1.3 
to 5. 9, which we believe is reasonable for a first 
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Table 1. Comparison of Execution Times of 
Example EQ Programs against Hand-Coded C 
Versions 

Problem Optimization EQ c Ratio 
(s) (s) (EQ/C) 

PLU OFF 9.0 3.4 2.6 
Ol'\ 4.7 0.8 5.9 

BFGS OFF 1.8 1.4 1.3 
ON 0.7 0.4 1.8 

Simplex OFF 34.1 13.6 2.5 
01\" 15.1 0.0 2.7 

implementation of a prototyping system. There is 
clearly room, however, for improvements in the 
efficiency of generated EQ programs. 

Further investigation revealed that a large 
amount of the additional time required by the EQ 
version was caused by the calls to memcpy( U 
which are produced by the EQ compiler. These 
calls are generated when a time step occurs in the 
EQ program (followed-by operations and do 
loops), and are used to copy the value of a variable 
into its previous variable. Many of these copies, 
however. were totally unnecessary and could be 
removed entirely. Others could be reduced in size 
to only one dimension. To examine the potential 
effects of copy elimination optimization, we re
moved the unnecessary memcpy( ) calls by hand 
from the code output by the EQ compiler. giving 
the results shown in Table 2. 

In the optimized ease, these EQ times are within 
30 to 40% of the handwrittren C code. These tim
ings are very promising for a first prototype con
taining very little optimization. The Nelder-Meade 
simplex algorithm is the worst of our test eases; 

Table 2. Comparison of Execution Times of 
Example EQ Programs with memcpy()'s Removed 
against Hand-Coded C Versions 

Problem Optimization EQ c Ratio 
(s) (s) (EQ/C) 

PLU OFF 4.8 3.4 1.4 
ON 1.0 0.8 1.3 

BFGS OFF 1.7 1.4 1.2 
0~ 0.5 0.4 1.3 

Simplex OFF 26.2 13.6 1.9 
ON 7.8 5.5 1.4 

II The C library function memcpv( ) copies a block of memorv 
from one location to another. 

we suspect this is because the EQ version of the 
code computes some values that are not used in 
the computation (see Section 6.6). OveralL these 
data suggest that EQ programs can execute with 
efficiency very close to that of optimized C code. 
provided that the problem of copy elimination can 
be suitably solved. We discuss this and other opti
mization issues in the next section. 

6 OPTIMIZATION AND DEPENDABILITY 

Traditionally, many issues of implementation are 
avoided in language definitions, at least explicitly. 
On the other hand, truly successful languages such 
as Fortran, C, and C++ are very carefully designed 
so that efficient implementations can be provided, 
and thus implementation and optimization issues 
are implicit in their design. Such implicit treatment 
of implementation issues has drawbacks, however. 
For example, because different compilers provide 
different levels of optimization, to achieve the best 
performance, programmers often have to experi
ment with code sequences and examine the gener
ated assembly instructions to achieve the best per
formance for a given compiler. Worse, because a 
programmer may not be able to rely on all compil
ers to provide a particular optimization (e.g., reus
ing a common subexpression), the programmer 
will be tempted to implement the optimization di
rectly in high-level code .. perhaps significantly in
creasing its complexity. 

In order to prevent users from changing from 
representation A of a program to a less understand
able representation B due to efficiency concerns. 
the language must guarantee that A and B will 
provide substantially the same performance for all 
implementations of the language. This leads us to 

propose the principle of language dependability
concrete guarantees of source program equiva
lences. 

To provide dependability, the language defini
tion must define explicitly what program equiva
lences the implementations of a language are re
quired to provide. An application of this principle 
is the requirement in Scheme that all implementa
tions perform tail-recursion elimination [2], thus 
making all tail-recursive programs equivalent to 
some nonrecursive program. at least to some de
gree. There are also similarities to the work of Skil
licorn on congruence [19]. Congruence represents 
a guarantee of predictable performance on parallel 
machines as you move between different parallel 
architectures and different numbers of processors. 



In other words, if the same source program is 
moved from one parallel machine to another, the 
performance changes are predictable. This is 
somewhat different from dependability. which 
guarantees equivalent performance of two differ
ent source programs on the same machine, but 
provides no cross-machine relationships. 

We are particularly interested in applying the 
principle of language dependability to EQ for the 
following reasons: 

1. Efficiency is a concern to scientific program
mers. If a language feature cannot be pro
vided along with some understanding of its 
expected performance consequences, then 
the feature is likely to remain unused by pro
grammers who are concerned with perfor
mance. 

2. EQ is intended to be used to compare proto
type implementations of complex numerical 
algorithms. Because such comparisons are 
intended to identify the algorithms with the 
best performance, language implementation 
overheads that are not well defined will ren
der such comparisons meaningless. Matlab 
[5] is an example of a language that does not 
meet this requirement. Efficiency of looping 
constructs in current implementations of 
.Vlatlab is significantly less than that of array 
constructs. As a result, computations that 
do not conveniently fit into array form are 
penalized. In some extreme cases we've seen 
in Matlab, the difference in performance be
tween array and nonarray programs for the 
same computation can be over a factor of 
100. 

To see how language dependability impacts the 
use of a language like EQ, consider the following 
code fragment from our Nelder-Meade example 
program: 

if (f(reflect) < fs[l] & 
f(expand) < f(reflect)) { 

} 

It is clear that a naive implementation of the pro
gram will run the function f three times. Two of 
these will be passed the same argument (reflect), 
and therefore compute the same value (since EQ 
contains no side effects). The extra function call is 
unnecessary, and can be optimized away. Another 
way of looking at a language that provides this 
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optimization in all cases is that it provides the pro
grammer with the following rule: 

:\Iultiple computations of the same value by applying 
the same function or operator to the same arguments 
will not hurt efficiency: it is exactly equivalent to a pro
gram using a temporary variable to hold the intermedi
ate value. 

By the nature of being a guarantee, dependability 
is generally not easy to provide. Our current goal 
with regard to this issue is to identify the impor
tance of this aspect of language design, and to do 
some preliminary investigations to determine how 
other language design decisions impact issues of 
dependability. While we see the principle of de
pendability as very important in the EQ design, we 
do not currently have sufficient experience with 
the implementation of EQ to definitively describe 
what source language equivalences EQ will be able 
to dependably provide. 

In the remainder of this section, we list language 
features and/ or programming styles that we hope 
to support in EQ, the optimizations that corre
spond to them, and our preliminary assessment of 
the viability of providing them dependably. ~ote 
that our focus here is on identifying what guaran
tees might be made to a programmer of the EQ 
language. We are not claiming that any of the sug
gested optimizations that support these depend
ability guarantees are new with this work. We only 
mention these optimizations to indicate that such 
guarantees can be provided with existing language 
and compiler implementation technology. 

6.1 Irrelevance of Redundant 
Computations 

As pointed out in the above example, the ability 
to reuse an expression rather than to create a tem
porary for it is an important language feature for 
prototyping. The full Nelder-Meade code becomes 
significantly more complex if the user must write 
temporaries for all of the appropriate function 
calls. Similar situations arise in many numerical al
gorithms. 

Fortunately, since expressions in EQ have no 
side effects, this language feature (expression re
use) can be provided by the well-known common 
subexpression elimination (CSE) optimization. 
This optimization can be performed in reasonable 
time and eliminates redundant computations in all 
cases where the equivalence of two expressions is 
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guaranteed by the equivalence of their parts.~ This 
guarantee is a property that EQ shares with the 
functional programming paradigm, but imperative 
languages such as Fortran must perform more 
complex (albeit fairly standard) analysis to deter
mine whether two expressions are actually redun
dant. As a result, the user of such a language may 
have difficulty recognizing when two expressions 
will be treated as redundant by any particular lan
guage or compiler. This implies that in these lan
guages, the user might have to carefully choose 
those expressions that should be given temporary 
storage, and declare that storage appropriately. 
Even in cases where common optimization tech
niques can typically eliminate the unnecessary 
storage (such as simple scalar temporaries) from 
imperative languages, the lack of a guarantee to 
do so, and the very syntax and semantics of the 
language itself (the presence of storage declara
tions), is likely to compel users to choose their vari
ables carefully. This extra user effort may occur 
even in cases where such decisions will not have 
any effect on the final output code. 

6.2 Irrelevance of Temporaries 

Irrelevance of temporaries means that replacing an 
expression with a temporary name, and defining 
that name elsewhere, does not have any effect on 
the efficiency or memory usage of the resulting 
executable. An example where this is a useful lan
guage property is given below (this time, taken from 
our BFGS example code): 

triaL lambda 

lambda' max 

-lambda * slope I 
2 * (triaLfx - fx -

lambda * slope); 
(triaL lambda, 
lambda I 10); 

Here, the variable trial_lambda was simply in
troduced to shorten up the expression for lambda' 
and to make the program more readable. It also 
serves as a comment on the meaning of this part 
of the computation of lambda'. Unfortunately, do
ing so in many languages will result in wasted mem
ory and slower execution. 

By using an intermediate representation that is 
data flow oriented, the intermediate representa-

~ This includes such cases as f (X) and f (y) • where x = 

y. This works because functions in EQ are side effect free. 

tions of programs that use temporaries will be ex
actly the same as those of equivalent programs that 
do not use temporaries. As a result, the final code 
produced will be the same for the two programs, 
and therefore, this optimization can be performed 
perfectly-the resulting executable will be exactly 
identical in the two cases. 

6.3 Irrelevance of Full or Partial Copies 

This property is in some ways a subset of the previ
ous optimization, but it has additional implica
tions. Consider the following code: 

i = 1. .n+1; 

fs[i] = f(s[,i]); 
best = s [, 1]; 
if (f(reflect) < f(best)) 

This example highlights the special problems of 
copies. Here, best is a partial copy of s. As a 
result, no storage is needed for best. Further, 
however, the expression f (best) is equal to 
f (s [, 1]), which has already been computed in 
f s [ 1] . Therefore, an en tire call to f can be 
avoided if the relationship between best and x 
is exploited. 

Our example in fact comes from an early version 
of the 1\'elder-Meade simplex algorithm. To avoid 
the need for this optimization, the sample code in 
Section 4.3 replaces f (best) with fs [1]. This 
shows that partial copies are an important concept 
which must be optimized properly. The elimina
tion of full copies (such as are created by the state
ment a = b; ) is a fairly simple optimization, and 
we believe it will be possible to generalize the algo
rithm to handle partial copies. Once the partial 
copies are removed, the remaining issue is to deal 
with the partial CSE (in our example above, 
f (best) was equivalent to part of the variable 
fs). An extension of the CSE algorithm which 
keeps track of which parts of two objects have the 
same value (rather than treating values in aggre
gate) should allow it to handle this sort of optimiza
tion for almost all cases; we plan to investigate this 
optimization more thoroughly in future work. 

6.4 Interchangeability of Matrix and 
Range Variable Notation 

This language property is an attempt to avoid the 
tendency toward one liners that affects prototyping 



languages that have significantly faster perfor
mance when using their built-in matrix operators, 
such as APL and Matlab. Users of these languages 
are often forced into matrix notations, even when 
the computation could be more clearly described 
using control structures, because of efficiency or 
memory usage considerations. 

To avoid this inefficiency, matrix notations 
should simply be a convenient shorthand for a 
scalar program involving looping notations (in the 
case of EQ, range variables). There should be no 
effect on speed or memory efficiency because of 
matrix notation, allowing users to choose the nota
tion that corresponds to their mental conception 
of the problem. 

EQ already handles this interchangeability by 
the simplest conceivable method; it translates all 
matrix operations into range variable notation dur
ing an early phase of the compilation process. Of 
course, it is still important to provide for the effi
cient execution of range variable notations. 

6.5 Irrelevance of Extra Matrix 
Dimensions 

Ylany times, a Fortran programmer will have a 
variable that conceptually has one or more dim en
sions, but will declare it to be of fewer dimensions. 
This can be done if the code can be arranged such 
that one part of the array is computed, its values 
are used, and then those parts of the array are no 
longer needed-so that they can be overwritten by 
the next section of the array. Examples of this are 
pervasive in many numerical codes (e.g., see [20]). 

The process of manually controlling this over
writing makes programs harder to write and under
stand, and makes them further removed from their 
mathematical underpinnings. Support for arrays 
and matrix operations becomes difficult to use ef
ficiently if these unnecessary matrix dimensions 
must be removed by the programmer. A good ex
ample of this is line 9 of the BFGS example in 
Section 4.2. The update to H' has been written in 
its natural matrix notation, but taken literally this 
will create several unnecessary n by n matrices. 
Writing the expression in a directly storage-effi
cient form, however, is difficult and unnatural, and 
obscures the mathematical meaning of the pro
gram. Thus, it is important for EQ to be able to 
optimize the temporary matrices created by such 
expressions down to their minimal sizes. 

We refer to reducing the number of dimensions 
of an array's storage in memory as a rank reduc-
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tion. This optimization cannot only improve stor
age efficiency, but can also produce execution 
speed improvements, if the storage for an array 
can be reduced to a scalar, and therefore be stored 
in a register. We give a simple example below: 

i 
a[i] 
b [i] 

1. . 100; 
sin (i); 
a [i] * i; 

In a naive implementation of this code, storage 
would be allocated for two 1 00-element real vec
tors. However, the storage for the array a is totally 
unnecessary; if we rewrite the code as 

i 1.. 100; 
over i { 

a = sin(i); 
b[i] = a* i; 

} 

the same computation can be performed, using 
only a scalar quantity a. Furthermore, since a has 
been fully rank reduced (to a scalar), it can now 
be stored in a register, rather than being written 
to memory. This produces a significant execution 
speed savings. 

This optimization can also be used as a major 
component of algorithms to ensure that statements 
such as 

next x [i] X [i] I 2; 

allow x to be updated in place, without creating a 
separate array next x. The basic idea is that the 
storage for next x will be rank reduced to a scalar. 
Once this occurs, standard register allocation tech
niques can be used to place it in a register, elimi
nating the extra memory requirement altogether. 

The rank reduction optimization is one of the 
key impediments to natural description languages 
for scientific computations that are array based, 
and is therefore an important problem to address. 
Unfortunately, the process of trying to choose 
which rank reductions to perform to achieve opti
mal results is very difficult, and is NP hard in the 
general case, as shown in EPL [17]. However, we 
hope to formulate some more restrictive rules un
der which a perfect optimization is feasible, such 
as reducing all objects that can be fully rank re
duced or minimizing the maximum number of di
mensions used by any array in the program. This 



298 DERBY, SCHJ'~,'ABEL, AND ZOR~ 

aspect of EQ optimization will be an interesting 
facet of future research. 

6.6 Irrelevance of Equation Placement 

This property may sound somewhat redundant, 
since EQ already offers unordered equations which 
allow users to group their equations in the most 
natural and convenient wav. However, the move
ment of equations into and ~ut of control structures 
can have an effect on efficiency, even when the 
semantics of the program are unchanged. For ex
ample, consider the following code fragment (taken 
from the Nelder-Meade simplex algorithm in Sec
tion 4.3): 

contract 

if . 
else if 
else if 

(worst + centroid) 1 2; 

else if (f(reflect) >= fx[n+l] & 
f(contract) < fs[n+l]) 

Here. the current implementation will evaluate 
contract on each iteration through the outer 
loop, even though it is only needed if the first three 
if clauses are false. The code could be more effi
ciently written as: 

if ... 
else if 
else if 
else { 

} 

contract = (worst + centroid) /2; 
if (f (reflect) >= fx [n+l] & 

f(contract) < fs[n+l]) 

This version solves the efficiency problem, but the 
code is more complex. Furthermore, it can be very 
cumbersome to do this optimization by hand i~ 
the general case. Another example of this sort of 
code movement is the lifting of invariant computa
tions out of loops, which is a classical optimiza
tion technique. 

We hope that future versions of EQ will make 
the placement of statements have as little effect on 
the speed or storage usage of compiled EQ pro
grams as possible. Traditional code-motion opti
mizations can be used to achieve some of these 
effects in imperative languages. It may also be pos
sible to extend these results to functional languages 

as well, in which case we will use them. We antici
pate that there may be more opportunities to per
form these optimizations in EQ code than in imper
ative languages due to EQ's single-assignment 
property and unordered semantics. 

7 FUTURE WORK 

The current prototype EQ implementation does 
not support syntactic conveniences such as the at 
and over operations. Correcting these deficiencies 
is one of the top priorities for our future work in 
this area. Once this is done, it will be possible to 
do further examples of EQ programming of a more 
lengthy and complex nature than those given here. 
We hope to use these experiences to continue to 
evolve and change the constructs of the EQ Ian
guage. 

Another area of interest is the efficient support 
for more complex matrix operations, such as ma
trix inversion, and support for some kinds of struc
tured matrices, such as triangular and diagonal 
matrices. We hope to be able to add these kinds 
of constructs to EQ, using compile-time analvsis 
to avoid any loss of efficiency. As an exampl~ of 
the sorts of issues that occur in providing matrix 
operators, consider an operator for inversion. 
While very nice from a mathematical point of view, 
very few scientific programs calculate an actual 
inverse matrix; instead, they use some sort of de
composition, such as an L U or Choleskv factoriza
tion. Then backsolves are used to co.mplete the 
computation. Thus, a good implementation of rna
trix inverse in EQ would only compute the actual 
inverse in those cases where it had to, and would 
simply use a factorization otherwise. 

Additionally, a study and implementation of 
specific transformations, including those dis
cussed in Section 6, are important both to obtain 
an understanding of the impact of the EQ language 
constructs on efficiency, and to determine the ef
fectiveness of language properties such as expres
sion reuse and invariance to statement placement. 
This work will involve examining the typical effec
tiveness of the transformations (i.e .. how much 
they improve performance) and looking at depend
ability issues. Due to its single assignment and un
ordered semantics, EQ is a rich environment for 
studying such techniques. 

Finally, a detailed study of the opportunities 
for parallelism in EQ is justified. EQ has much 



potential data parallelism exposed directly to the 
user of the language through its range variables. 
Furthermore, its unordered equations express 
functional parallelism. The inherently parallel na
ture of these features suggests that a parallel ver
sion of EQ could be quite natural and easy to un
derstand when compared with languages based on 
the basically nonparallel imperative paradigm. We 
plan to continue research into both implicit and 
explicit models of parallelism in EQ. 

8 CONCLUSION 

The purpose of this research is to propose and 
investigate a new programming language design 
based on identifying the abstractions used by nu
merical analysts when they solve problems. Our 
language, EQ, provides several important features 
that attempt to directly reflect the syntactic and 
semantic concepts expressed by numerical ana
lysts whom we interviewed. Specifically, we de
signed EQ to allow scientific programmers to rap
idly prototype complex new algorithms using a 
language that is both efficient (where optimizing 
transformations are applied in a dependable man
ner) and expressive. 

In particular, our language supports unordered 
equations, large-grained state transitions, and 
high-level matrix notation. Unordered equations 
support defining a set of values and their relations. 
Large-grain state transitions allow programmers 
to express a form of structured large-scale change 
that corresponds to the concept of iteration or re
currence. Our matrix notation supports range vari
ables, a powerful implicit looping construct. As a 
language, EQ falls in between the functional and 
imperative programming paradigms, providing 
elements of both. While EQ contains elements 
found in a number of diverse programming lan
guages, including Sisal, ld, and EPL, no other lan
guage brings these elements together in the same 
wav. 

In EQ we also introduce the general principle 
of language dependability. This principle states 
that language definitions should specify what pro
gram transformations the implementations of the 
language are required to perform. Dependability 
is necessary because without such a guarantee in 
the definition, programmers are unlikely to assume 
such transformations will be done, and will poten
tially greatly complicate their code in an effort to 
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make it more efficient. Dependability is especially 
important in a language like EQ because one goal 
of our design is to provide a high-level language 
that programmers can use to compare the perfor
mance of complex algorithms. 

While dependability is an important principle 
to support in design, the logistics of supporting it 
are quite difficult. In this article, we have identified 
a set of transformation guarantees that appear 
possible with existing implementation technology. 
In the future, we intend to investigate these issues 
more closely and completely specify which guaran
tees we are able to provide. 

We plan to refine the design of EQ and experi
ment more with its implementation. Our experi
ences with EQ have shown us the value of domain
specific language design and demonstrated that 
interesting new styles of expressing computations 
can arise from interacting with programmers in 
different application domains (e.g., that of numeri
cal computation). 
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