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ABSTRACT 

PDDP, the parallel data distribution preprocessor, is a data parallel programming model 
for distributed memory parallel computers. PDDP implements high-performance Fortran
compatible data distribution directives and parallelism expressed by the use of Fortran 
90 array syntax, the l<~ORALL statement, and the WHERE construct. Distributed data objects 
belong to a global name space; other data objects are treated as local and replicated 
on each processor. PDDP allows the user to program in a shared memory style and 
generates codes that ore portable to a variety of parallel machines. For interprocessor 
communication, PDDP uses the fastest communication primitives on each platform. 
© 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

In order to achieve utilization by a large percentage 
of the scientific community .. today's high-perfor
mance computers require a high-level program
ming modeL In particular, a shared memory 
programming environment permits users to con
centrate on the algorithms of the code rather than 
on the details of data communication. The alterna
tive, message passing, has been described as the 
assembly language of parallel computers. 

In 1992, members of the :Massively Parallel 
Computing Initiative project at Lawrence Liver
more National Laboratory (LLNL) proposed writ
ing an experimental trans Ia tor that would allow the 
user to code in a high-level Fortran-based SP:MD 
language. The resulting code would make efficient 
use of :Ml:MD computers with nonuniformly acces
sible memories. The project goals were to examine 
the technology involved and to investigate the mer-
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its of such a language, including whether such an 
architecture-independent language could indeed 
be used efficiently on any parallel computer with 
distributed memory. A valuable additional benefit 
for both implementors and users would be to gain 
experience in parallel processing with a high-level 
programming model. 

In this article, we present the resulting language 
model, PDDP, the parallel data distribution pre
processor. "' e present the syntax and semantics 
of PDDP, describe its implementation, discuss 
portability issues, and present data on its perfor· 
Inance. 

2 BACKGROUND 

PDDP is a hybrid of PFP [1], a parallel Fortran 
preprocessor used at LLNL, and Fortran D [2], a 
research compiler from Rice university. Fortran D 
provides an extensive set of declarations for dis· 
tributing data across processor memories and also 
serves as a base for the high-performanee Fortran 
(HPF) [3] distribution directives. Over the past 2 
years, the High-Performance Fortran Forum has 
focused on the need for a high-level Fortran paral· 
lel programming modeL The resulting HPF Ian-
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guage specification is a published model ready for 
implementation [3 J. Because PDDP contains a 
subset of HPF, PDDP codes are easily converted 
to HPF. 

Its other predecessor, PFP, is a task-oriented 
parallel Fortran programming language. In the 
PFP programming model, all of the processors, 
requested at run-time and referred to as a team, 
enter the main routine in parallel. The user directs 
this team through the application with the option 
of dividing the team into sub teams to perform tasks 
in parallel. PFP offers the familiar shared memory 
programming model elements, including barriers 
and shared and private storage attributes for vari
ables. In a similar manner, all of the processors 
requested at run-time execute each statement of 
a PDDP code except for master blocks and parallel 
code segments. The processors execute the code 
statements, in a semisynchronous manner. unin
hibited bv implicit synchronization in any of the 
constmcts. This multithreading aspect avoids the 
explicit forking of the processors for eaeh parallel 
loop. PFP provides a synchronization tool, the 
barrier statement. This construct allows the user 
to explicitly synchronize the processors and avoids 
unnecessary implicit barriers. Currently, PDDP 
does not implement team splitting for parallel 
tasks: rather parallelism is expressed in the HPF 
FORALL, the Fortran 90 array syntax, and 
WHERE statements. 

3 PDDP SYNTAX 

PDDP consists of a one-pass parser-translator and 
a run-time library. The parser accepts a superset of 
Fortran 77 statements. For each source statement. 
the parser builds a parse tree used to generate 
Fortran 77 code. Gser dedarations include a sub
set of HPF TEMPLATE, and ALIGN specification 
directives. The parser builds a symbol table of de
dared scalars, arrays, templates, common blocks, 
and subroutines. For array and template declara
tions, it records the number of dimensions and 
extents. It recognizes array-slice and whole-array 
svntax as well as individual-distributed arrav ac
c~sses.lt recognizes distributed arrays used in. sub
routine arguments and common statements. The 
use of Fortran 90 [4] array syntax, the WHERE eon
stmcL and the HPF FORALL statement imply par
allel execution bv the members of the team. 

The PDDP pa~ser recognizes the following HPF 
distribution specification directives: TEMPLATE, 
DISTRIBUTE, and ALIGN. Together they indicate 

the mapping of the data to the processor memories. 
An abstract array is first declared using the TEM
PLATE statement. It is partitioned among the pro
cessors using the DISTRIBUTE statement along 
with an HPF data disuibution type for eaeh di
mension: 

1. BLOCK places successive array elements on 
the same processor, moving to the next pro
cessor when the block size, equal to the ex
tent divided by the number of processors, 
has been used up. 

2. CYCLIC causes successive elements of the 
array to be placed on successive processors 
in the system, wrapping around after the 
last processor. 

3. The degenerate distribution "*" leaves the 
entire dimension on a single processor. 

Actual arrays are associated with the abstract tem
plate using the ALIGI'\ statement. 

Distributed arrays are globally accessible and 
are distributed across the processor memory re
gions. For communication purposes, PDDP also 
provides global objects that are not distributed but 
may be accessed by all processors. They are lo
cated in the memory of processor 0 and are referred 
to as "shared-only" objects. Their names do not 
occur in ALIGN statements. There are two PDDP 
storage class modifiers: shared and private. 
The shared modifier must be used in all declara
tions of distributed and shared-only objects. By 
default, nondistrihuted objects, or those declared 
using the attribute, private, are replicated in lo
cal memories and will be referred to as "local" ob
jects. 

To indicate execution by only one processor, 
the user places statements within the following 
construct: 

MASTER 
END MASTER 

To svnchronize the team of processors, the 
BARRIER statement is available. 

PDDP recognizes the Fortran 90 WHERE con
struct with an optional ELSEWHERE: 

WHERE logical-array expression 
assignment statement 

ELSEWHERE 
ossignment statement 

END WHERE 



The PDDP FORALL statement is similar to the 
HPF FORALL. It takes the form 

FORALL (index specifirations [, 
scalar-mask expression}) 
assignment statement 

where index specifications takes the form: 

index-name = subscript : subscript [: stride} 

FORALL may be used for a scatter operation 
if the expression used to designate the resulting 
location is entirely local. For example, in the fol
lowing statement, index ( i) , must be a local 
array: 

FORALL (i = 1:100) (x(index(i)) = i**2 

PDDP recognizes the Fortran 90 syntax for 
the global reduction functions max, min, sum, 
product, any, all. For each, it generates inline 
code that causes each processor to calculate its 
local result and store it in a shared-only array. 
After a barrier, processor 0 calculates the result as 
a global scalar. Each processor then makes a local 
copy. PDDP also recognizes the cshift function. 

Following is a sample PDDP subroutine. Argu
ments a and msk are distributed arrays. Array c 
is local. Distributed array x is communicated to 
the subroutine through a common statement. 

subroutine sub(a, c, msk) 
integer nx,ny,nz 
parameter (nx= 12, ny= 12, nz = 12) 
template t1(5,nx,ny,nz) 
distribute t1(*,*,block,block) 
template t2(nx,ny,nz) 
distribute t2(*,block,block) 

shared real*8 x(nx,ny,nz) 
shared real*8 a(5,nx,ny,nz) 
shared logical msk(nx,ny,nz) 

align x, msk with t2 
align a with t1 

real*8 c(13,5) 
common Icc/ x 

X = 0. 
forall (i=2:nx-1, j =2:ny-1, k=2:nz-1) 

> x(i,j,k) = i+j+k 
barrier 

do m = 1, 5 
where (msk) 

a(m,:,:,:) 
endwhere 

end do 
barrier 
return 
end 
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c(1,m) + c(2,m)*x 

A PDDP code converts easily to HPF. The pro
grammer should preface master, endmas ter, 
and barrier statements with the column 1 tag 
11 CPDDP$ 11 so that HPF will ignore them. The 
shared and private attributes used in declara
tions can easily be removed with the use of macros. 
Then HPF will compile the source code. Parallel
ism in both models occurs chiefly through the use 
of array syntax and the FORALL loop. Because all 
of the PDDP processors execute the sequential sec
tions, code that has global or side effects (such as 
file accessing or the altering of global data with 
local data) may alter the semantics from a strict 
HPF interpretation. The user should place state
ments with such side effects within a master block. 
Alternatively, all sequential sections may be 
guarded with the master block. 

4 PDDP SEMANTICS 

Generated code consists of Fortran 77 statements. 
PDDP translates each distribution and TEMPLATE 
declaration into a call to a library routine that as
signs to the distribution an ID tag and writes a local 
table of the necessary information. Distributed 
arrays must be dynamically allocated on the local 
heap. Shared-only arrays used as subroutine argu
ments or in common statements must also be allo
cated. For each distributed array, PDDP translates 
the appropriate ALLOCATE statement executed by 
each processor into calls to library routines. These 
routines give the array an ID tag, allocate the ap
propriate amount of local memory, and build a 
local database linking the array to its distribution 
information and to an address map. The address 
map gives the starting address of the memory allo
cated in each processor's memory. The processors 
use these addresses for requesting remote data (see 
Table 1 ). 

PDDP codes use the "owner-computes" rule 
for parallel execution of assignment statements: 
The owner of the left-hand side element executes 
the assignment for that element. PDDP initially 
assumes that the right-hand side is remote; how
ever, it will not issue a get on distributed memory 
machines if the processor number of the requested 
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Table 1. Array Database 

Array Data 

ARRAY TAG 
DISTRIBLTIO:\ TAG 
:\umber bvtes/ element 
Rank 
Global bounds 
Local bounds 
ADDRESS .\fAP PTR 

Distribution 

DISTRIB TAG 
rank 
extent/dim 
distrib type/ dim 
no. procs/ dim 

Address .\lap 

Proc AddreHs 

0 Ox000200 
1 Ox000120 
2 Ox000040 
:3 Ox000220 
'i Ox000120 

address is the same as the requesting processor. 
Generated declarations include the pointers and 
variables needed by PDDP to express a Fortran 
90 array statement as do loops whose bounds are 
the indices for the local portion of the left-hand 
side arrav. There is no restriction to the number 
of seven possiblt> dimensions that can be distrib
uted or the extent of anv distributed dimension. 
For multidimensional left-hand side arravs. the do 
loops are nested with the leftmost dimension being 
the outermost loop. 

Because the left-hand side owner is determined 
at run-time. PDDP allows dynamic array sizes and 
varying numbers of processors. For a left-hand 
side scalar reference to a distributed object. PDDP 
simply inserts a call to routines that determine the 
owning processor. Only the owning processor exe
cutes the statement. J'\ote that this is substantiallv 
different from a scalar reference to a nondistrib
uted data item. ln the first case, the statement i;; 
executed via owner-computes. In the latter case, 
all team members execute the statement. The user 
must he careful with statements that contain data 
dependency between left- and right-hand sides. 
For example. in order to achieve the Fortran 90 
implied result;; for the ;;tatement .. A (2: 10) 
A ( 1: 9) . the array ;;hould first be stored in a hufft~r 
from which the right-hand ;;ide value;; are taken. 

Subroutine linkage in PDDP ensures consis
tency acros;; subroutine boundaries. With the ex
ception of local routine;; (see SectionS), array slice;; 
are not allowed as arguments in subroutine calls. 
To pass entire distributed arrays to other modules, 

PDDP recognizes the use of whole arrav svntax 
used in subroutine calls or in common statements. 
The ealled subroutine must align a distributed ar
gument to a template with the same distribution 
as specified in the calling routine. Automatic n·dis
tribution on subroutine entry is not supported. 
Rather than sending a valid address as the argu
ment to a routine, PDDP actually passes the ID 
tag associated with the array. (The tag is created 
in the allocation process.) Similarly. it is the ID tag 
that is actually used in a common block. In the 
receiving routine. the lD tag allows the module to 
access information on the data object by using the 
run-time support routines (see Section 5 ). The tag 
is selected so as to cause a fault if referenced with
out proper declaration and query of the run-time 
routines. This helps to reduce the number of errors 
that can be made l:w new users. 

4.1 Optimizations 

Becau;;e PDDP is a source-to-source language 
translator, it is limited in the range of possible opti
mizations. It is dependent on the backend compiler 
optimizer for many performance improvements. 

The PDDP parser recognizes matching array 
syntax and distribution for left- and right -hand 
expressions and avoids the time-consuming calcu
lation of the owner. It also avoids divisions involv
ing a stride of 1. If the rank of the left-hand and 
right-hand arrays is unequal and the extra dimen
sion;; have a degenerate distribution, the parser 
also omits generating eode that performs calcula
tion of the owner. 

There is a tradeoff between prefetching all of 
the data for a loop and PDDP's fetch on demand. 
On machine;; with a quick remote memory acces;; 
such as the Cray T~5D. the om~-word fetch may 
prove to be fa;;ter because it doe;; not periodically 
overload the network and there is no false data 
fetching. The method would certainly be superior 
if the fetching were overlapped with calculations. 

5 RUN-TIME LIBRARY 

As Nitzberg and Lo [S] point out. a u;;eful distrib
uted shared memory system must automatically 
transform shared n1emory access into interprocess 
communication. To achieve this. it is necessary for 
each processor to have knowledge of the mappings 
of the di;;tributed array;; ;;o that nonloeal memory 
may be accessed and the owner of array elements 
may be determined. As mentioned above .. the 



PDDP parser generates calls to the run-time library 
routines that build and access linked tables that 
make up a local database. The number of proces
sors is a run-time parameter. The data are used 
to determine the run-time owner. the bounds for 
the generated do loops, and the location of each 
right-hand-side distributed object in terms of 
processor number and offset from the starting ad
dress on that processor. 

Given the global iterat.ion set specified by the 
user in array syntax and the knowledge of the resi
dent elements from the database. PDDP uses Eu
clid's extended algorithm [6] to calculate the inter
section, a set of local loop indices for a processor. 
For block distribution. the run-time module takes 
shortcuts in calculation of the owner. The local 
array address map allows PDDP to express the 
actual assignment statement in terms of pointers 
and offsets, and optional processor numbers for 
the right-hand side. 

To demonstrate the use of the database and 
nm-time libraries, consider the following PDDP 
code. Different distributions are used on left- and 
right-hand sides to demonstrate the use of the li
brary: 

integer nx 
real x(nx), y(nx) 
template t1(nx) 
distribute tl(block) 
align x with tl 
template t2(nx) 
distribute t2(cyclic) 
align y with t2 

X = y 

Below is the PDDP generated pseudo code: 

pointer (ptrO, local_meml 
pointer (ptr_rh, remote_mem) 
integer address_map_x(no_procsl 
integer address_map_y(no_procs) 

c loop setup: 
ptrO address_map_X (myprocl 
lo_indx 1 
hi_indx = nx 
stride ~ 1 
call get_local_indx(X-id, 

> lo_indx, hi_indx, stride) 
c lo_indx. hi_indx. stride are now local bounds 

stride-rh = stride 
lo_indx_rh = lo_indx 
do indxl lo_indx, hi_indx, stride 

offset modrindxl. no_procs) 
proc_no_rh = mod(lo_indx_rh, no_procsl 

PDDP 323 

offset_rh 
ptr_rh 

div(lo_indx_rh, no_procs) 
address_map_Y(proc_no_rhl 

c assignment statement: 
local_mem(offsetl = 

> get(proc_no_rh, remote_mem(off_set_rh)J 
lo_indx_rh = lo_indx_rh + stride_rh 

end do 

~ote that if the two arrays had the same distribu
tion. the generated code would be: 

c loop setup: 
ptro = address_map_X (rnyproc) 
ptr _rh = address_map_Y rrnyprocl 
lo_index = 1 
hi_indx = nx 
stride = 1 
call get_local-indx(X-id, 

> lo_indx, hi_indx, stridel 
c lo_indx, hi_indx, stride are now local bounds 

do indxl ·= lo_indx, hi_indx, stride 
offset mod(indxl, no_procsJ 

c assignment statement: 
local_mem(offsetJ = remote_mem(off_setl 

end do 

In addition to supplying routines that are called 
by the generated code to calculate the owner. the 
run-time library supplies routines for the user and 
debugging tool,;; to query the databast:•. Inquiry 
functions give the rank and global and local 
hounds of a distributt>d arr<:~Y a,; well as the siz•? in 
terms of the number of elements of the local block 
of memory. and the starting address of tlw local 
block of mem<WY. 

One of the library routines gives the starting ad
dress and size of the local arrav block and thus 
allows the user to pass the local array ~eetion to 

local routines. Other routineo> supply the processor 
number and total number of processor>;. 

61/0 

PDDP does not offer parallel input/ output. \\-rite 
and read statements must be placed within 
master. endmaster blocks, and the variables 
used must either be local or shared only (i.e .. not 
distributed). This i,; obviously awkward und a 
definite weakness in most high-level parallel pro
gramming languages. 

7 USER INTERFACE 

PDDP accepts tiles with the suffix . pddp. as well 
as . PDDP •. F .. f. and . o. It passes options other 
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than those directed to the parser on to the compiler 
and loader [7]. For example: 

pddp -o code.x -g obj.o code.pddp 

In the above example, PDDP translates the file 
code. pddp into code. f, which is passed to the 
Fortran 77 compiler along with the option -g. 
Then PDDP passes the resulting code. o along 
with obj. o to the loader. The option -barrier 
may be used to place a barrier after each array 
svntax statement translation to test for race condi
tions. This puts PDDP into a SIYID-like mode for 
array operations only. 

Use of the -nodist option causes PDDP to 
ignore data distributions statements, substituting 
shared memory declarations. The resulting code 
is a shared memory program that can be used for 
timing and debugging. 

Debuggers can display the generated Fortran 
77 code or, in the case that the native compiler 
recognizes lines beginning with "#[line]'', the de
bugger can display the original user code. This 
was advantageous for PDDP users on the BBN 
TC2000. They were able to use the Totalview X
'Vindow debugger to easily debug their PDDP 
codes. In either case, the run-time library provides 
debugging functions to display the values of a dis
tributed array, array slice, or designated array ele
ment. Indices, bounds, and resident processor 
may also be printed. To see the memory configu
ration of a given distributed array, pddp_config 
displays the processor number, local lower and 
upper bounds, stride, and distribution type of the 
entire array. 

8 PORTABILITY 

One of the most important characteristics ofPDDP 
is its portability. It is designed to generate code for 
any parallel computer with shared or disttibuted 
memory that has the capability, either in hardware 
or software, for one processor to request and re
ceive data located in another processor's memory. 

When porting PDDP to the various platforms, 
we had to consider several issues besides the major 
one of internodal communication. These included 
the peculiarities of the native Fortran 77 compiler. 
For example, cf77 does not allow "#[line]" line di
rectives. 

For shared memory machines, we had to decide 
how to implement distributed memory, and on 
those machines with only distributed memory we 

had to decide how to implement shared -only mem
ory. Because all of the processors execute the entire 
code, we had to arrange for all of the processors to 
be forked and ready to execute the first statement. 

8. 1 Platforms 

On architectures with hardware support for remote 
memory references, such as the BBJ\" TC2000 and 
the CRI T3D, the task of writing a compiler for the 
data parallel programming model is greatly simpli
fied. With the owner-computes mle in effect, the 
processor that handles the computation for a sec
tion of an array receives the remote data that it 
needs through the use of remote memory reference 
support. The nature of the compiler is that of a 
finite-state engine that handles all of the actions 
for the processor that is performing the work. To 
perform efficiently on other architectures, PDDP 
uses the fastest available means of communication 
to obtain remote data. 

PDDP was initially developed on the BBN 
TC2000, a computer with distributed but globally 
addressable memory. PDDP currently is available 
on the CRl T3D, the Meiko CS-2 .. and the SGI 
Power Challenge. 

Each BBN processor had a 12-Mbyte low
latency "local" memory and thus resembled a dis
tributed memory architecture. Each processor also 
contributed 4 Mbytes to an interleaved shared 
memory wherein successive cache lines were 
placed on successive processors and wrapped 
around. Because there was a single address space, 
it also resembled shared memory. The hardware 
handled nonlocal accesses, so there was no need 
for explicit message passing. On the BBK, a mn
time library module called ''niam" started first; 
this routine forked the necessary processors and 
then called the user's main program. When the 
main program returned, niam terminated the other 
processors and then itself exited. 

On the T3D and Meiko CS-2, the system takes 
care of starting up all of the requested processors. 
On these two platforms, processor 0 serves as the 
resident of shared-only objects. On the Meiko this 
is much less efficient than the interleaved shared 
memory on the BBN. 

Each node on the Meiko has 128 Mbyte of mem
ory. The Meiko has a 70-:YIHz multistage fat tree 
interconnect, an Elite network switch, and an Elan 
communications processor. The Elite switch is an 
eight-way crossbar switch allowing input/ output 
pairing without contention. Lsable bandwidth is 
50 Mbyte/ s/link in each direction. To read remote 



data, PDDP uses fetch from the Elan Widget 
Library. The Elan Widget communications library 
views the address spaces of processors as distrib
uted global memory and explicitly addresses non
local memory by network D~A operations. 

Memory on the CRI T3D is globally accessible 
and physically distributed, 64 Mbyte per proces
sor. Remote memory referencing is done with a 
replicated virtual memory address space and sepa
rate tracking of processor indices. The 128 proces
sors of the T3D are linked with a 3D torus commu
nications network capable of low-latency data 
transfers of over 140 Mbyte/s node to node. Peak 
per processor performance is 150 Mflop. In a man
ner similar to PDDP, the CRI data parallel pro
gramming model, CRAFT [8], allows the user to 
view the distributed memory as logically shared 
and sets the default storage type to private. How
ever, CRAFT restricts the user to powers of two in 
the distributed dimensions. On the T3D, PDDP 
allocates memory on the shared memory heap and 
uses shmei!Lget from the SHMEYllibrary to ac
cess right-hand side data. shmei!Lget does a 
blocking transfer of data from the remote address 
into the local address using remote loads. It would 
be advantageous to do a put instead, but that is 
not compatible with the owner-computes rule. To 
avoid 3egmentation violation errors when access
ing remote addresses on the T3D, we allocate the 
same amount of memory on each processor for a 
distributed array regardless of whether it is used. 

Although the PDDP model is directed to non
uniform access distributed memory architectures, 
it can also be used on computers with a single 
shared memory. PDDP was ported to the SCI com
puter to provide a developmental platform for mas
sively parallel computer users. On the SCI, it forks 
the desired number of processors, which executes 
the code as a team. It ignores the shared and pri
vate attributes and translates the use of Fortran 
90 syntax, FORALL, and WHERE statements, into 
do loops in which the indices are interleaved 
among the processors in a wrap around manner. 

8.2 Performance 

To demonstrate the performance of PDDP, we 
present results obtained from four codes in our 
benchmarking suite (see Tables 2, 3, 4, and 5 ). 
The Gaussian nonpivoting elimination solver uses 
a CYCLIC distribution for the second dimension 
of the matrix. The highly parallel shallow water 
code is a two-dimensional finite difference algo
rithm on a 512 X 512 grid. The second dimension 
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Table 2. Gaussian Elimination Algorithm 
(Nonpivoting) 1,024 X 1,024 

Time (s) 

T3D T3D T3D .'VIEIKO MEIKO 
N* PDDP CRAFT PVM PDDP PGHPF 

16 48 22 17 85 678 
32 32 17 12 173 1,160 
64 26 16 12 353 2,780 

128 23 19 12 

* :'I/ umber of proressors. 

is distributed in a blockwise manner across the 
processors. For the Gaussian and shallow water 
codes, we include times from the CRl CRAFT 
model and the Portland Group HPF, version 
1.1-1. We also include PV~ numbers on the 
CRA Y T3D for the Gaussian code, the smallest of 
the group. 

LU, the l\AS benchmark implicit POE solver 
for five coupled, nonlinear partial differential 
equations, uses a BLOCK distribution in the last 
two dimensions. The data in the quantum lattice 
gauge (QLG) code are four and six-dimensional 
arrays of complex variables representing 3 X 3 
arrays in four-dimensional space. The arrays are 
distributed BLOCK, BLOCK, BLOCK in the three 
right-most dimensions. A large portion of the cal
culation is the multiplication of 3 X 3 matrices. 
The early PGHPF and Craft compilers were unable 
to handle our versions of the LC and QLG codes. 

On platforms that do not efficiently support re
mote memory referencing, e.g., the Meiko, latency 
of short messages can be a limiting factor. The 
read bandwidth on the T3D is 2 ns versus 30 ns 
on the Meiko. On a platform such as the ~eiko, if 
one cannot repackage communications into long 
messages and transmit them prior to need, perf or-

Table 3. Shallow Water (512 x 512) 50 
Iterations 

Time (s) 

T3D T3D MEIKO 
N* PDDP CRAFT PDDP 

16 30.0 9.3 82 
32 16.7 4.8 64 
64 10.2 2.5 54 

128 7.0 1.4 47 

* ;\lumber of processors. 

MEIKO 
PGHPF 

13 
11 
15 
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Table 4. LU (64 X 64) 

Time (s) 

T3D :YIEIKO 
~* POOP PDDP 

16 4.480 9.285 
32 2,367 5.811 
64 1.235 3.635 

128 773 2.646 
256 421 

* :\umber of proce~sors. 

mance suffers. To date, this prefetch has been a 
task treated by hand in programs using the mes
sage-passing programming model. In the case of 
high-levellanguages, it would be advantageous to 
accomplish this transparently under control of the 
compiler. \Villiam Carlson from SHC has n~eently 
developed an AC compiler [9] for the T3D that 
does a prefetch and shows good results. 

Cnder the control of PDDP, processors act as 
a vector unit for the duration of the loop and conse
quently would greatly benefit from having the per
formance characteristics of a conventional vector 
processor. 

9 CONCLUSIONS 

It is evident from our numbers that some form of 
hardware support for accessing remote memory is 
necessary for PDDP codes to run well. This may 
also be necessary to achieve good performance 
from high-level parallel programming languages in 
general. lf this support is not present, then some 
form of a prefeteh mechanism is necessary. PDDP 
is unique in its utilization of hardware support for 

Table 5. Quantum Lattice Gauge Code 1 Loop 
for 2,048 Elements 

Tim.:' 

T3D :\IEIKO 
~* PDDP PDDP 

2 150.6 194.0 
4 79.3 139.0 
8 -1:3.6 1H.8 

1() 24.:3 89.8 
32 21. 130. 
6-1: 11. 12:3. 

* l\urnbcr of pnH'Pssors. 

accessing remote addresses. Implementation of a 
shared memory programming style itself has 
proven to be a fundamental feature of massively 
parallel programming environments. Vendors are 
striving to place this functionality in the hard
ware itself. 

In evaluating a model such as PDDP .. we need 
to consider the effort required to write a code in a 
language such as PDDP and compare it to that of 
porting a code written in message passing, analyz
ing its performance on the target architecture, and 
tuning it in some eases via assembly language to 
obtain reasonable performance. These latter tasks 
take considerable time and effort and require in
depth knowledge of the target architecture. 

A reasonable fraction of this performance can 
be achieved by using a high-level programming 
model such as PDDP. \V'hile the code does not 
perform as well as vendor-specialized software, 
scientists prefer the portability trade-off gained. 
PDDP users can attain reasonable performance 
with considerably less work than is required today 
on massively parallel systems. In addition, porta
bility gives application programmers the benefit of 
single-source maintenance. 

PDDP is a research vehicle and a simple lan
guage. Nevertheless, we have shown that it is possi
ble to program codes for parallel computers in a 
high-level language, avoiding the complexities of 
message passing and achieving satisfactory perfor
mance with one source code on multiple parallel 
platforms. 
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