
PDDP, A Data Parallel Programming Model

KAREN H. WARREN
Lawrence Livermvre National Laboratory, Livermore, CA 94551; e-mail: kwarren@tazdevil.llnl.gov

ABSTRACT

PDDP, the parallel data distribution preprocessor, is a data parallel programming model
for distributed memory parallel computers. PDDP implements high-performance Fortran
compatible data distribution directives and parallelism expressed by the use of Fortran
90 array syntax, the l<~ORALL statement, and the WHERE construct. Distributed data objects
belong to a global name space; other data objects are treated as local and replicated
on each processor. PDDP allows the user to program in a shared memory style and
generates codes that ore portable to a variety of parallel machines. For interprocessor
communication, PDDP uses the fastest communication primitives on each platform.
© 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

In order to achieve utilization by a large percentage
of the scientific community .. today's high-perfor
mance computers require a high-level program
ming modeL In particular, a shared memory
programming environment permits users to con
centrate on the algorithms of the code rather than
on the details of data communication. The alterna
tive, message passing, has been described as the
assembly language of parallel computers.

In 1992, members of the :Massively Parallel
Computing Initiative project at Lawrence Liver
more National Laboratory (LLNL) proposed writ
ing an experimental trans Ia tor that would allow the
user to code in a high-level Fortran-based SP:MD
language. The resulting code would make efficient
use of :Ml:MD computers with nonuniformly acces
sible memories. The project goals were to examine
the technology involved and to investigate the mer-

Received June 1995
Revised Deeember 1995

© 1996 John \Viley & Sons, Inc.
Scientifie Programming, Vol. 5, pp. 319-327 (1996)
CCC 1 058-9244/96/040~ 19-09

its of such a language, including whether such an
architecture-independent language could indeed
be used efficiently on any parallel computer with
distributed memory. A valuable additional benefit
for both implementors and users would be to gain
experience in parallel processing with a high-level
programming model.

In this article, we present the resulting language
model, PDDP, the parallel data distribution pre
processor. "' e present the syntax and semantics
of PDDP, describe its implementation, discuss
portability issues, and present data on its perfor·
Inance.

2 BACKGROUND

PDDP is a hybrid of PFP [1], a parallel Fortran
preprocessor used at LLNL, and Fortran D [2], a
research compiler from Rice university. Fortran D
provides an extensive set of declarations for dis·
tributing data across processor memories and also
serves as a base for the high-performanee Fortran
(HPF) [3] distribution directives. Over the past 2
years, the High-Performance Fortran Forum has
focused on the need for a high-level Fortran paral·
lel programming modeL The resulting HPF Ian-

320 WARREN

guage specification is a published model ready for
implementation [3 J. Because PDDP contains a
subset of HPF, PDDP codes are easily converted
to HPF.

Its other predecessor, PFP, is a task-oriented
parallel Fortran programming language. In the
PFP programming model, all of the processors,
requested at run-time and referred to as a team,
enter the main routine in parallel. The user directs
this team through the application with the option
of dividing the team into sub teams to perform tasks
in parallel. PFP offers the familiar shared memory
programming model elements, including barriers
and shared and private storage attributes for vari
ables. In a similar manner, all of the processors
requested at run-time execute each statement of
a PDDP code except for master blocks and parallel
code segments. The processors execute the code
statements, in a semisynchronous manner. unin
hibited bv implicit synchronization in any of the
constmcts. This multithreading aspect avoids the
explicit forking of the processors for eaeh parallel
loop. PFP provides a synchronization tool, the
barrier statement. This construct allows the user
to explicitly synchronize the processors and avoids
unnecessary implicit barriers. Currently, PDDP
does not implement team splitting for parallel
tasks: rather parallelism is expressed in the HPF
FORALL, the Fortran 90 array syntax, and
WHERE statements.

3 PDDP SYNTAX

PDDP consists of a one-pass parser-translator and
a run-time library. The parser accepts a superset of
Fortran 77 statements. For each source statement.
the parser builds a parse tree used to generate
Fortran 77 code. Gser dedarations include a sub
set of HPF TEMPLATE, and ALIGN specification
directives. The parser builds a symbol table of de
dared scalars, arrays, templates, common blocks,
and subroutines. For array and template declara
tions, it records the number of dimensions and
extents. It recognizes array-slice and whole-array
svntax as well as individual-distributed arrav ac
c~sses.lt recognizes distributed arrays used in. sub
routine arguments and common statements. The
use of Fortran 90 [4] array syntax, the WHERE eon
stmcL and the HPF FORALL statement imply par
allel execution bv the members of the team.

The PDDP pa~ser recognizes the following HPF
distribution specification directives: TEMPLATE,
DISTRIBUTE, and ALIGN. Together they indicate

the mapping of the data to the processor memories.
An abstract array is first declared using the TEM
PLATE statement. It is partitioned among the pro
cessors using the DISTRIBUTE statement along
with an HPF data disuibution type for eaeh di
mension:

1. BLOCK places successive array elements on
the same processor, moving to the next pro
cessor when the block size, equal to the ex
tent divided by the number of processors,
has been used up.

2. CYCLIC causes successive elements of the
array to be placed on successive processors
in the system, wrapping around after the
last processor.

3. The degenerate distribution "*" leaves the
entire dimension on a single processor.

Actual arrays are associated with the abstract tem
plate using the ALIGI'\ statement.

Distributed arrays are globally accessible and
are distributed across the processor memory re
gions. For communication purposes, PDDP also
provides global objects that are not distributed but
may be accessed by all processors. They are lo
cated in the memory of processor 0 and are referred
to as "shared-only" objects. Their names do not
occur in ALIGN statements. There are two PDDP
storage class modifiers: shared and private.
The shared modifier must be used in all declara
tions of distributed and shared-only objects. By
default, nondistrihuted objects, or those declared
using the attribute, private, are replicated in lo
cal memories and will be referred to as "local" ob
jects.

To indicate execution by only one processor,
the user places statements within the following
construct:

MASTER
END MASTER

To svnchronize the team of processors, the
BARRIER statement is available.

PDDP recognizes the Fortran 90 WHERE con
struct with an optional ELSEWHERE:

WHERE logical-array expression
assignment statement

ELSEWHERE
ossignment statement

END WHERE

The PDDP FORALL statement is similar to the
HPF FORALL. It takes the form

FORALL (index specifirations [,
scalar-mask expression})
assignment statement

where index specifications takes the form:

index-name = subscript : subscript [: stride}

FORALL may be used for a scatter operation
if the expression used to designate the resulting
location is entirely local. For example, in the fol
lowing statement, index (i) , must be a local
array:

FORALL (i = 1:100) (x(index(i)) = i**2

PDDP recognizes the Fortran 90 syntax for
the global reduction functions max, min, sum,
product, any, all. For each, it generates inline
code that causes each processor to calculate its
local result and store it in a shared-only array.
After a barrier, processor 0 calculates the result as
a global scalar. Each processor then makes a local
copy. PDDP also recognizes the cshift function.

Following is a sample PDDP subroutine. Argu
ments a and msk are distributed arrays. Array c
is local. Distributed array x is communicated to
the subroutine through a common statement.

subroutine sub(a, c, msk)
integer nx,ny,nz
parameter (nx= 12, ny= 12, nz = 12)
template t1(5,nx,ny,nz)
distribute t1(*,*,block,block)
template t2(nx,ny,nz)
distribute t2(*,block,block)

shared real*8 x(nx,ny,nz)
shared real*8 a(5,nx,ny,nz)
shared logical msk(nx,ny,nz)

align x, msk with t2
align a with t1

real*8 c(13,5)
common Icc/ x

X = 0.
forall (i=2:nx-1, j =2:ny-1, k=2:nz-1)

> x(i,j,k) = i+j+k
barrier

do m = 1, 5
where (msk)

a(m,:,:,:)
endwhere

end do
barrier
return
end

PDDP 321

c(1,m) + c(2,m)*x

A PDDP code converts easily to HPF. The pro
grammer should preface master, endmas ter,
and barrier statements with the column 1 tag
11 CPDDP$ 11 so that HPF will ignore them. The
shared and private attributes used in declara
tions can easily be removed with the use of macros.
Then HPF will compile the source code. Parallel
ism in both models occurs chiefly through the use
of array syntax and the FORALL loop. Because all
of the PDDP processors execute the sequential sec
tions, code that has global or side effects (such as
file accessing or the altering of global data with
local data) may alter the semantics from a strict
HPF interpretation. The user should place state
ments with such side effects within a master block.
Alternatively, all sequential sections may be
guarded with the master block.

4 PDDP SEMANTICS

Generated code consists of Fortran 77 statements.
PDDP translates each distribution and TEMPLATE
declaration into a call to a library routine that as
signs to the distribution an ID tag and writes a local
table of the necessary information. Distributed
arrays must be dynamically allocated on the local
heap. Shared-only arrays used as subroutine argu
ments or in common statements must also be allo
cated. For each distributed array, PDDP translates
the appropriate ALLOCATE statement executed by
each processor into calls to library routines. These
routines give the array an ID tag, allocate the ap
propriate amount of local memory, and build a
local database linking the array to its distribution
information and to an address map. The address
map gives the starting address of the memory allo
cated in each processor's memory. The processors
use these addresses for requesting remote data (see
Table 1).

PDDP codes use the "owner-computes" rule
for parallel execution of assignment statements:
The owner of the left-hand side element executes
the assignment for that element. PDDP initially
assumes that the right-hand side is remote; how
ever, it will not issue a get on distributed memory
machines if the processor number of the requested

322 WARRE:\

Table 1. Array Database

Array Data

ARRAY TAG
DISTRIBLTIO:\ TAG
:\umber bvtes/ element
Rank
Global bounds
Local bounds
ADDRESS .\fAP PTR

Distribution

DISTRIB TAG
rank
extent/dim
distrib type/ dim
no. procs/ dim

Address .\lap

Proc AddreHs

0 Ox000200
1 Ox000120
2 Ox000040
:3 Ox000220
'i Ox000120

address is the same as the requesting processor.
Generated declarations include the pointers and
variables needed by PDDP to express a Fortran
90 array statement as do loops whose bounds are
the indices for the local portion of the left-hand
side arrav. There is no restriction to the number
of seven possiblt> dimensions that can be distrib
uted or the extent of anv distributed dimension.
For multidimensional left-hand side arravs. the do
loops are nested with the leftmost dimension being
the outermost loop.

Because the left-hand side owner is determined
at run-time. PDDP allows dynamic array sizes and
varying numbers of processors. For a left-hand
side scalar reference to a distributed object. PDDP
simply inserts a call to routines that determine the
owning processor. Only the owning processor exe
cutes the statement. J'\ote that this is substantiallv
different from a scalar reference to a nondistrib
uted data item. ln the first case, the statement i;;
executed via owner-computes. In the latter case,
all team members execute the statement. The user
must he careful with statements that contain data
dependency between left- and right-hand sides.
For example. in order to achieve the Fortran 90
implied result;; for the ;;tatement .. A (2: 10)
A (1: 9) . the array ;;hould first be stored in a hufft~r
from which the right-hand ;;ide value;; are taken.

Subroutine linkage in PDDP ensures consis
tency acros;; subroutine boundaries. With the ex
ception of local routine;; (see SectionS), array slice;;
are not allowed as arguments in subroutine calls.
To pass entire distributed arrays to other modules,

PDDP recognizes the use of whole arrav svntax
used in subroutine calls or in common statements.
The ealled subroutine must align a distributed ar
gument to a template with the same distribution
as specified in the calling routine. Automatic n·dis
tribution on subroutine entry is not supported.
Rather than sending a valid address as the argu
ment to a routine, PDDP actually passes the ID
tag associated with the array. (The tag is created
in the allocation process.) Similarly. it is the ID tag
that is actually used in a common block. In the
receiving routine. the lD tag allows the module to
access information on the data object by using the
run-time support routines (see Section 5). The tag
is selected so as to cause a fault if referenced with
out proper declaration and query of the run-time
routines. This helps to reduce the number of errors
that can be made l:w new users.

4.1 Optimizations

Becau;;e PDDP is a source-to-source language
translator, it is limited in the range of possible opti
mizations. It is dependent on the backend compiler
optimizer for many performance improvements.

The PDDP parser recognizes matching array
syntax and distribution for left- and right -hand
expressions and avoids the time-consuming calcu
lation of the owner. It also avoids divisions involv
ing a stride of 1. If the rank of the left-hand and
right-hand arrays is unequal and the extra dimen
sion;; have a degenerate distribution, the parser
also omits generating eode that performs calcula
tion of the owner.

There is a tradeoff between prefetching all of
the data for a loop and PDDP's fetch on demand.
On machine;; with a quick remote memory acces;;
such as the Cray T~5D. the om~-word fetch may
prove to be fa;;ter because it doe;; not periodically
overload the network and there is no false data
fetching. The method would certainly be superior
if the fetching were overlapped with calculations.

5 RUN-TIME LIBRARY

As Nitzberg and Lo [S] point out. a u;;eful distrib
uted shared memory system must automatically
transform shared n1emory access into interprocess
communication. To achieve this. it is necessary for
each processor to have knowledge of the mappings
of the di;;tributed array;; ;;o that nonloeal memory
may be accessed and the owner of array elements
may be determined. As mentioned above .. the

PDDP parser generates calls to the run-time library
routines that build and access linked tables that
make up a local database. The number of proces
sors is a run-time parameter. The data are used
to determine the run-time owner. the bounds for
the generated do loops, and the location of each
right-hand-side distributed object in terms of
processor number and offset from the starting ad
dress on that processor.

Given the global iterat.ion set specified by the
user in array syntax and the knowledge of the resi
dent elements from the database. PDDP uses Eu
clid's extended algorithm [6] to calculate the inter
section, a set of local loop indices for a processor.
For block distribution. the run-time module takes
shortcuts in calculation of the owner. The local
array address map allows PDDP to express the
actual assignment statement in terms of pointers
and offsets, and optional processor numbers for
the right-hand side.

To demonstrate the use of the database and
nm-time libraries, consider the following PDDP
code. Different distributions are used on left- and
right-hand sides to demonstrate the use of the li
brary:

integer nx
real x(nx), y(nx)
template t1(nx)
distribute tl(block)
align x with tl
template t2(nx)
distribute t2(cyclic)
align y with t2

X = y

Below is the PDDP generated pseudo code:

pointer (ptrO, local_meml
pointer (ptr_rh, remote_mem)
integer address_map_x(no_procsl
integer address_map_y(no_procs)

c loop setup:
ptrO address_map_X (myprocl
lo_indx 1
hi_indx = nx
stride ~ 1
call get_local_indx(X-id,

> lo_indx, hi_indx, stride)
c lo_indx. hi_indx. stride are now local bounds

stride-rh = stride
lo_indx_rh = lo_indx
do indxl lo_indx, hi_indx, stride

offset modrindxl. no_procs)
proc_no_rh = mod(lo_indx_rh, no_procsl

PDDP 323

offset_rh
ptr_rh

div(lo_indx_rh, no_procs)
address_map_Y(proc_no_rhl

c assignment statement:
local_mem(offsetl =

> get(proc_no_rh, remote_mem(off_set_rh)J
lo_indx_rh = lo_indx_rh + stride_rh

end do

~ote that if the two arrays had the same distribu
tion. the generated code would be:

c loop setup:
ptro = address_map_X (rnyproc)
ptr _rh = address_map_Y rrnyprocl
lo_index = 1
hi_indx = nx
stride = 1
call get_local-indx(X-id,

> lo_indx, hi_indx, stridel
c lo_indx, hi_indx, stride are now local bounds

do indxl ·= lo_indx, hi_indx, stride
offset mod(indxl, no_procsJ

c assignment statement:
local_mem(offsetJ = remote_mem(off_setl

end do

In addition to supplying routines that are called
by the generated code to calculate the owner. the
run-time library supplies routines for the user and
debugging tool,;; to query the databast:•. Inquiry
functions give the rank and global and local
hounds of a distributt>d arr<:~Y a,; well as the siz•? in
terms of the number of elements of the local block
of memory. and the starting address of tlw local
block of mem<WY.

One of the library routines gives the starting ad
dress and size of the local arrav block and thus
allows the user to pass the local array ~eetion to

local routines. Other routineo> supply the processor
number and total number of processor>;.

61/0

PDDP does not offer parallel input/ output. \\-rite
and read statements must be placed within
master. endmaster blocks, and the variables
used must either be local or shared only (i.e .. not
distributed). This i,; obviously awkward und a
definite weakness in most high-level parallel pro
gramming languages.

7 USER INTERFACE

PDDP accepts tiles with the suffix . pddp. as well
as . PDDP •. F .. f. and . o. It passes options other

324 W ARREl'i

than those directed to the parser on to the compiler
and loader [7]. For example:

pddp -o code.x -g obj.o code.pddp

In the above example, PDDP translates the file
code. pddp into code. f, which is passed to the
Fortran 77 compiler along with the option -g.
Then PDDP passes the resulting code. o along
with obj. o to the loader. The option -barrier
may be used to place a barrier after each array
svntax statement translation to test for race condi
tions. This puts PDDP into a SIYID-like mode for
array operations only.

Use of the -nodist option causes PDDP to
ignore data distributions statements, substituting
shared memory declarations. The resulting code
is a shared memory program that can be used for
timing and debugging.

Debuggers can display the generated Fortran
77 code or, in the case that the native compiler
recognizes lines beginning with "#[line]'', the de
bugger can display the original user code. This
was advantageous for PDDP users on the BBN
TC2000. They were able to use the Totalview X
'Vindow debugger to easily debug their PDDP
codes. In either case, the run-time library provides
debugging functions to display the values of a dis
tributed array, array slice, or designated array ele
ment. Indices, bounds, and resident processor
may also be printed. To see the memory configu
ration of a given distributed array, pddp_config
displays the processor number, local lower and
upper bounds, stride, and distribution type of the
entire array.

8 PORTABILITY

One of the most important characteristics ofPDDP
is its portability. It is designed to generate code for
any parallel computer with shared or disttibuted
memory that has the capability, either in hardware
or software, for one processor to request and re
ceive data located in another processor's memory.

When porting PDDP to the various platforms,
we had to consider several issues besides the major
one of internodal communication. These included
the peculiarities of the native Fortran 77 compiler.
For example, cf77 does not allow "#[line]" line di
rectives.

For shared memory machines, we had to decide
how to implement distributed memory, and on
those machines with only distributed memory we

had to decide how to implement shared -only mem
ory. Because all of the processors execute the entire
code, we had to arrange for all of the processors to
be forked and ready to execute the first statement.

8. 1 Platforms

On architectures with hardware support for remote
memory references, such as the BBJ\" TC2000 and
the CRI T3D, the task of writing a compiler for the
data parallel programming model is greatly simpli
fied. With the owner-computes mle in effect, the
processor that handles the computation for a sec
tion of an array receives the remote data that it
needs through the use of remote memory reference
support. The nature of the compiler is that of a
finite-state engine that handles all of the actions
for the processor that is performing the work. To
perform efficiently on other architectures, PDDP
uses the fastest available means of communication
to obtain remote data.

PDDP was initially developed on the BBN
TC2000, a computer with distributed but globally
addressable memory. PDDP currently is available
on the CRl T3D, the Meiko CS-2 .. and the SGI
Power Challenge.

Each BBN processor had a 12-Mbyte low
latency "local" memory and thus resembled a dis
tributed memory architecture. Each processor also
contributed 4 Mbytes to an interleaved shared
memory wherein successive cache lines were
placed on successive processors and wrapped
around. Because there was a single address space,
it also resembled shared memory. The hardware
handled nonlocal accesses, so there was no need
for explicit message passing. On the BBK, a mn
time library module called ''niam" started first;
this routine forked the necessary processors and
then called the user's main program. When the
main program returned, niam terminated the other
processors and then itself exited.

On the T3D and Meiko CS-2, the system takes
care of starting up all of the requested processors.
On these two platforms, processor 0 serves as the
resident of shared-only objects. On the Meiko this
is much less efficient than the interleaved shared
memory on the BBN.

Each node on the Meiko has 128 Mbyte of mem
ory. The Meiko has a 70-:YIHz multistage fat tree
interconnect, an Elite network switch, and an Elan
communications processor. The Elite switch is an
eight-way crossbar switch allowing input/ output
pairing without contention. Lsable bandwidth is
50 Mbyte/ s/link in each direction. To read remote

data, PDDP uses fetch from the Elan Widget
Library. The Elan Widget communications library
views the address spaces of processors as distrib
uted global memory and explicitly addresses non
local memory by network D~A operations.

Memory on the CRI T3D is globally accessible
and physically distributed, 64 Mbyte per proces
sor. Remote memory referencing is done with a
replicated virtual memory address space and sepa
rate tracking of processor indices. The 128 proces
sors of the T3D are linked with a 3D torus commu
nications network capable of low-latency data
transfers of over 140 Mbyte/s node to node. Peak
per processor performance is 150 Mflop. In a man
ner similar to PDDP, the CRI data parallel pro
gramming model, CRAFT [8], allows the user to
view the distributed memory as logically shared
and sets the default storage type to private. How
ever, CRAFT restricts the user to powers of two in
the distributed dimensions. On the T3D, PDDP
allocates memory on the shared memory heap and
uses shmei!Lget from the SHMEYllibrary to ac
cess right-hand side data. shmei!Lget does a
blocking transfer of data from the remote address
into the local address using remote loads. It would
be advantageous to do a put instead, but that is
not compatible with the owner-computes rule. To
avoid 3egmentation violation errors when access
ing remote addresses on the T3D, we allocate the
same amount of memory on each processor for a
distributed array regardless of whether it is used.

Although the PDDP model is directed to non
uniform access distributed memory architectures,
it can also be used on computers with a single
shared memory. PDDP was ported to the SCI com
puter to provide a developmental platform for mas
sively parallel computer users. On the SCI, it forks
the desired number of processors, which executes
the code as a team. It ignores the shared and pri
vate attributes and translates the use of Fortran
90 syntax, FORALL, and WHERE statements, into
do loops in which the indices are interleaved
among the processors in a wrap around manner.

8.2 Performance

To demonstrate the performance of PDDP, we
present results obtained from four codes in our
benchmarking suite (see Tables 2, 3, 4, and 5).
The Gaussian nonpivoting elimination solver uses
a CYCLIC distribution for the second dimension
of the matrix. The highly parallel shallow water
code is a two-dimensional finite difference algo
rithm on a 512 X 512 grid. The second dimension

PDDP 325

Table 2. Gaussian Elimination Algorithm
(Nonpivoting) 1,024 X 1,024

Time (s)

T3D T3D T3D .'VIEIKO MEIKO
N* PDDP CRAFT PVM PDDP PGHPF

16 48 22 17 85 678
32 32 17 12 173 1,160
64 26 16 12 353 2,780

128 23 19 12

* :'I/ umber of proressors.

is distributed in a blockwise manner across the
processors. For the Gaussian and shallow water
codes, we include times from the CRl CRAFT
model and the Portland Group HPF, version
1.1-1. We also include PV~ numbers on the
CRA Y T3D for the Gaussian code, the smallest of
the group.

LU, the l\AS benchmark implicit POE solver
for five coupled, nonlinear partial differential
equations, uses a BLOCK distribution in the last
two dimensions. The data in the quantum lattice
gauge (QLG) code are four and six-dimensional
arrays of complex variables representing 3 X 3
arrays in four-dimensional space. The arrays are
distributed BLOCK, BLOCK, BLOCK in the three
right-most dimensions. A large portion of the cal
culation is the multiplication of 3 X 3 matrices.
The early PGHPF and Craft compilers were unable
to handle our versions of the LC and QLG codes.

On platforms that do not efficiently support re
mote memory referencing, e.g., the Meiko, latency
of short messages can be a limiting factor. The
read bandwidth on the T3D is 2 ns versus 30 ns
on the Meiko. On a platform such as the ~eiko, if
one cannot repackage communications into long
messages and transmit them prior to need, perf or-

Table 3. Shallow Water (512 x 512) 50
Iterations

Time (s)

T3D T3D MEIKO
N* PDDP CRAFT PDDP

16 30.0 9.3 82
32 16.7 4.8 64
64 10.2 2.5 54

128 7.0 1.4 47

* ;\lumber of processors.

MEIKO
PGHPF

13
11
15

326 WARRE:\

Table 4. LU (64 X 64)

Time (s)

T3D :YIEIKO
~* POOP PDDP

16 4.480 9.285
32 2,367 5.811
64 1.235 3.635

128 773 2.646
256 421

* :\umber of proce~sors.

mance suffers. To date, this prefetch has been a
task treated by hand in programs using the mes
sage-passing programming model. In the case of
high-levellanguages, it would be advantageous to
accomplish this transparently under control of the
compiler. \Villiam Carlson from SHC has n~eently
developed an AC compiler [9] for the T3D that
does a prefetch and shows good results.

Cnder the control of PDDP, processors act as
a vector unit for the duration of the loop and conse
quently would greatly benefit from having the per
formance characteristics of a conventional vector
processor.

9 CONCLUSIONS

It is evident from our numbers that some form of
hardware support for accessing remote memory is
necessary for PDDP codes to run well. This may
also be necessary to achieve good performance
from high-level parallel programming languages in
general. lf this support is not present, then some
form of a prefeteh mechanism is necessary. PDDP
is unique in its utilization of hardware support for

Table 5. Quantum Lattice Gauge Code 1 Loop
for 2,048 Elements

Tim.:'

T3D :\IEIKO
~* PDDP PDDP

2 150.6 194.0
4 79.3 139.0
8 -1:3.6 1H.8

1() 24.:3 89.8
32 21. 130.
6-1: 11. 12:3.

* l\urnbcr of pnH'Pssors.

accessing remote addresses. Implementation of a
shared memory programming style itself has
proven to be a fundamental feature of massively
parallel programming environments. Vendors are
striving to place this functionality in the hard
ware itself.

In evaluating a model such as PDDP .. we need
to consider the effort required to write a code in a
language such as PDDP and compare it to that of
porting a code written in message passing, analyz
ing its performance on the target architecture, and
tuning it in some eases via assembly language to
obtain reasonable performance. These latter tasks
take considerable time and effort and require in
depth knowledge of the target architecture.

A reasonable fraction of this performance can
be achieved by using a high-level programming
model such as PDDP. \V'hile the code does not
perform as well as vendor-specialized software,
scientists prefer the portability trade-off gained.
PDDP users can attain reasonable performance
with considerably less work than is required today
on massively parallel systems. In addition, porta
bility gives application programmers the benefit of
single-source maintenance.

PDDP is a research vehicle and a simple lan
guage. Nevertheless, we have shown that it is possi
ble to program codes for parallel computers in a
high-level language, avoiding the complexities of
message passing and achieving satisfactory perfor
mance with one source code on multiple parallel
platforms.

ACKNOWLEDGMENTS

Other contributors to the PDDP project have b.:'en Brent
Gorda, Andrew Ingalls . .Tames Stichnoth, Alan Riddk ..
Bor Chan, and Paul Lu. \'rork performed under the
auspices of the U.S. Dt>partment of En<>rgy by the Law
rence Livermore :'\ational Laboratorv under contract
:'\o. \'r-7405-Eng--±8.

REFERENCES

[1] K. H. Warren. B. Gorda. and E. D. Brooks III. '·Pro
gramming in PFP:' Lawrence Livermore :\ational
Laboratory. Livermore. CA. Tech. Rep. UCRL
\1A-1 07028. 1991.

[2] G. Fox. S. Iliranandani, K. Kennedy, C. Koelbel.
L. Kremer. C. Tseng, and \1. Wu. ""Fortran D Lan
guage specification.'· Department of Computer Sci
ence, Rice t:niversitv. Tech. Rep. TR90-1"t1,
Dec. 1990.

[3] High Performance Fortran Forum. ··High perfor
mance Fortran language specification.·· Rice l"ni
versitv. Houston. TX. Version 1.1. :\"ovember 10.
1994.

[4] ISO. ··Fortran 90_ .. \fay 1991. [lSO/IEC 1:539:
1991 (E)].

[5] B. :\"itzberg andY. Lo. ··Distributed shared mem

ory: A survey of issues and algorithm."" Computer,
pp. :52-60.Aug. 1991.

r 6 J D. E. Knuth. --The art of computer programming ...
in Fundumenta/ Algorithms, vol. 1, R. S. \"arga and

PDDP 327

\1. A. Harrison. Eds. Reading, MA: Addison
Wesley. 1973. pp. 14-17.

[7] K. Warren. "PDDP: A parallel data distribution
preprocessor. .. Lawrence Livermore l\ational Lab
oratory. Livermore. CA. pp. 42-51 in MPCI Yearly
Report 1992: Harnessing the Killer \licro, Tech.
Rep. CCRL-ID-107022-1992.

[8] Cray Research Inc .. Cray :HPP Fortran Reference
Jlanual. Cray Research. Inc. SR-2:504 6.1. 1994.

[9] v;·. Carlson and J. Draper. Distributed Datu Access
in AC. Bowie, \1D: IDA Supercomputing Research
Center. December 14, 1994.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

