
Software Tools for High-Perfonnance
Computing: Survey and Reconunendations

BILL APPELBE 1 AND DONNA BERGMARK2

1College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280
2Cornell Theory Center, Cornell University, Ithaca, NY 14853-3801

ABSTRACT

Applications programming for high-performance computing is notoriously difficult. Al­
though parallel programming is intrinsically complex, the principal reason why high­
performance computing is difficult is the lack of effective software tools. We believe
that the lack of tools in turn is largely due to market forces rather than our inability to
design and build such tools. Unfortunately, the poor availability and utilization of parallel
tools hurt the entire supercomputing industry and the U.S. high performance computing
initiative which is focused on applications. A disproportionate amount of resources is
being spent on faster hardware and architectures, while tools are being neglected. This
article introduces a taxonomy of tools, analyzes the major factors that contribute to this
situation, and suggests ways that the imbalance could be redressed and the likely
evolution of tools. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

This article represents contributions from users,
vendors, and tool builders; it is based on discus­
sions among participants from the 1993 Workshop
on Parallel Computing Systems in Keystone, Colo­
rado, the 1994 Workshop on Debugging and Per­
formance Tuning for Parallel Computing Systems
in Chatham, Ylassachusetts, and the 1994 and

Received November 1994
Revised October 1995

Many attendees at the May 1993 Workshop on Parallel
Computing Systems, at Keystone, Colorado. contributed to this
article. especially Gail A. Alverson from Tera Corp. and Wayne
Smith from Intel. The article also includes discussions from
the October 1994 Workshop on Debugging and Performance
Tuning for Parallel Computer Systems, at Chatham, Massachu­
setts.

© 1996 John Wiley & Sons. Inc.

Scientific Programming, Vol. 5. pp. 239-249 (1996)
CCC 1058-9244/96/030239-11

1995 Ptools consortium meetings m Ylountain
View, California. There have been several other
workshops on this topic, such as the Pasadena
Workshop on System Software and Tools for High
Performance Computing documents [6], and pro­
posals such as the National Software Exchange.
This article is an attempt to summarize the conclu­
sions of these meetings, and to suggest courses of
action. The authors' experiences ranges from tool
building and maintaining, to programming, advis­
ing users, and managing parallel systems.

Few scientists willingly undertake the arduous
task of parallelizing their programs. Until fairly re­
cently, the majority of scientists did not need to
bother-few had access to paralllel computers,
and the fastest computers (supercomputers or
high-performance computers) were primarily vec­
tor versions of parallel architectures.

Today, all the high-performance computer ven­
dors are marketing massively parallel computers,
and for ''grand challenge'' problems parallel com-

240 APPELBE A:\"D BERGMARK

puters are indispensable. The architecture of par­
allel computers varies widely, from parallel and
distributed architectures to networks of work­
stations. To utilize the potential performance of
such parallel computer systems, a range of new
and enhanced software tools are needed. Parallel
programming is not just more difficult, it is also
"chaotic" in nature. Small changes in the size of
the problem, the number of processors, and so on
often lead to dramatic changes in performance,
sometimes in the "wrong direction." Rerunning
the same program with the same data often
produces significantly different performance
results.

Despite these challenges, many parallel com­
puter users and vendors doubt the value of tools
[8]. Users try to debug their programs with print
statements, and they avoid run -time software
monitoring of programs because of its overhead
or side effects. Early high-performance computers
came with almost no tools, and programmers often
resorted to assembler language. For example, orig­
inally floating point systems thought that a Fortran
compiler was unnecessary for their system.

In fact, it is almost always possible to develop
programs without using tools. However, we believe
that the lack of usable tools has greatly inhibited
the effective use of modern high -performance
computers: Either scientists are "turned off" from
solving problems these computers are capable of,
or shared resources are wasted.

The majority of scientists working on grand
challenge problems are aware of the need for tools.
The report from the Pasadena Workshop on Sys­
tem Software and Tools for High Performance
Computing documents these needs in detail [6,
chapters 3, 4].

Unfortunately, the current tools (other than
compilers) are very limited in their capabilities and
often do not meet the needs of scientists. Vendors
supply few tools, and the tools available from re­
search laboratories and universities are generally
only prototypes.

Supercomputers have polarized the scientific
and engineering programming community into two
groups, each with its own set of unmet tool
needs [7]:

1. "TeraGeeks": These are scientists, turned
programmers, who will stop at nothing to
achieve peak performance and solve bigger
problems. They want to know exactly what is
happening at the machine level, but disdain
any tools that "get in the way," such as par-

allelizing compilers and multiuser operating
systems. ~ost teraGeeks do insist on basic
UNIX tools on all processors, such as dbx
[6]. They regard squeezing the last MFLOP
out of even the most recalcitrant architecture
as another grand challenge. The Gordon Bell
award has been established to reward
these pioneers.

2. Scientists: Scientists first and foremost want
to solve their problem and share their results
with the community. They have no time to
waste learning tools or rewriting and tuning
their programs (which they may not have
written themselves). They just want their
"dusty decks" to run faster.

Of course, most high -performance computer users
are not at these two fictional extremes. However,
the polarization is real. The majority of potential
users fit into the scientist category.

There is another important community that is
often neglected, the tool developers. Tool develop­
ers build tools for other users (sometimes targeted
at TeraGeeks, sometimes at scientists). Some tool
developers are employed by vendors (which we call
vendor tool groups), but the vendor tool groups
are generally relatively small (we are not classifying
compilers or operating systems or other essential
software as tools).

As explained below, vendors generally do not
supply any significant resources for tool builders
because they see no economic incentive. Hence,
the burden of experimental tool development falls
almost entirely upon groups such as academic re­
searchers and third-party tool vendors. Academic
researchers often adopt the philosophy of "build
a tool and they will come." Unfortunately, this
approach almost never works. Academic research­
ers often understand little about the applications
communities need and frequently never even try to
use their tools for real applications. The successful
tools from academia and research laboratories are
invariably built by teams that include applica­
tions developers.

The needs of tool developers are similar to the
TeraGeeks, except that the interface that tool de­
velopers need is at a library level rather than a tool
level. For example, a TeraGeek might need a tool
that will monitor the message traffic in a distributed
memory multiprocessor. By comparison, a tool de­
veloper building a tool to visualize hot spots needs
a library call that will return detailed information
about message traffic.

The fundamental problem can be stated as
follows:

There is a serious lack of effective soft­
ware tools, which leads to wasted com­
puter resources and inhibits the use of
high-performance parallel computers
by scientists.

There are many factors contributing to this situ­
ation, some of which are listed below. Some of
these, such as the limited market for high-perfor­
mance computers and the limited financial re­
sources of most vendors, are unavoidable. How­
ever, some of these problems are being tackled,
and this article concludes with some realistic ap­
proaches that could significantly improve the over­
all situation.

Most programmers are used to the "edit, com­
pile, run, debug" cycle of typical program develop­
ment. The same cycle applies to parallel program­
ming, but the process is more complex. Creating
an efficient parallel program is far more difficult
and machine dependent than creating efficient se­
quential programs. On some massively parallel
systems, efficient programs can be hundreds of
times faster than an inefficient program. Hence,
new tools (that were not needed for sequential pro­
grams) are needed to help programmers transform
and tune their parallel programs for efficiency.

The major reasons why parallel programming
tools lag so far behind peak performance are dis­
cussed below. 1\"ot all the reasons are as important
as others, and some reasons are largely mythical:

1. Typically, hardware vendors supply very
limited tools.

True. The reason is that there is very little
economic incentive to supply better tools.
For example, requests for proposals (RFPs)
rarely specify tools. Most RFPs specify a bare
minimum of software, such as a compiler.
Emphasis on RFPs is on reaching peak per­
formance levels on local benchmarks (to
which manufacturers devote considerable
effort). Software tools are not needed to sell
machines. Of course, this could be viewed
as a "chicken and egg problem." RFPs do
not specify tools because nobody has them.

2. The majority of available tools are not pro­
duction quality.

SOFTWARE TOOLS 241

This is unfortunately true. The majority of
available tools crash readily, have poor user
interfaces, and severe limitations. This is be­
cause the majority of tools are developed as
prototypes by academic and research orga­
nizations (rather than provided as products
by vendors). However, even vendor tools are
often buggy. The reason for this is the limited
budget of the vendor's tool groups, the push
to market products ASAP, and the stress that
large, high-performance applications put on
software tools.

3. There is too much diversity, and too few
standards, in high-performance computing.

This is unfortunately true, but an improving
situation. Diversity is not necessarily bad:
Every different architecture or programming
language is "best" for some application.
However, diversity hurts tool availability.
The race in the market is for maximum meg­
aflops, which has led to a plethora of widely
different architectures. Most tools are appli­
cable only for a limited range of environ­
ments. Until recently, every vendor had its
own parallel programming dialects. Now,
finally, there are some emerging standards,
such as PVM and MPI for distributed com­
puting, and high-performance Fortran
(HPF) and Fortran 90 for parallel comput­
ers. Unfortunately, standards such as HPF
are complex and will require considerable
tool development effort. A further problem
is the continuing evolution of architectures.
Widespread standardization is not going to
happen until and unless "the dust settles."
The recent shake out in parallel computing
vendors, including Thinking Machine's and
Kendall Square's bankruptcy, may result in
a reduced range of architectures and better
tool support for those that remain.

4. Users are uninterested in using the available
tools.

This is largely true, and is a basic problem.
It is hard to blame the users for this situation,
but ignoring tools is a basic human trait.*
Users are often uninterested in learning to
use tools, no matter how "friendly" the in­
terface.

Pessimistic tool builders and vendors claim

* Recall Aesop's fable of a wood-cutter furiously chopping
away with a blunt axe.

242 APPELBE AND BERGMARK

that some scientists will not use a tool unless:
(1) it is absolutely necessary, as in learning
a parallel Fortran dialect; (2) it is obvious
what the benefits or uses of the tool are;
(3) the learning curve is outweighed by the
perceived benefits; and (4) the tool is indus­
trial strength.

Even if users can be convinced to try a tool,
they soon abandon it when it is difficult to
learn, or use, or crashes. Once users have
abandoned tools they are very reticent to try
them again even if later releases of the tool
have fixes and improvements.

Cnlike compilers, which are considered
mandatory, most tools merely improve the
productivity of scientists or resource utiliza­
tion, so there is little incentive to use them.
The obvious solution is to make these tools
easier to use, and substantially higher qual­
ity. However, this requires substantial effort
and a change in the way that tools are devel­
oped, as decribed later.

5. Available tools have poor user interfaces, or
do not give users what they want.

True. Unfortunately. many amateur and
professional tool builders equate better user
interfaces with "more and fancier win­
dows." We recall a vendor at SuperComput­
ing '92 proudly displaying a user interface
so cluttered with overlapping windows, wid­
gets, and controls that even compiler experts
could not comprehend what the interface
displayed. Users might be in awe, but they
would hardly want to use the tool.

It seems as though some tool builders want
to cram everv conceivable feature into their
tools, without evaluating what users need.
Most developers have little clue as to what
users need or want, so they follow the strat­
egy "when in doubt, add more features."

6. We do not know how to build the tools, or
the tools are too difficult to build.

This is largely a myth. For example, the soft­
ware and human factor technology for build­
ing useful, effective performance monitors,
analyzers, and debuggers is fairly well un­
derstood.

There are a few tools that we do not have
the current software technology to build, and
may not in the foreseeable future. For exam­
ple, we do not know how to automatically

compile any sequential program into effi­
cient code for a distributed memory multi­
processor [1, 11]. However, for alternative
approaches such as user-supplied directives
and interactive compilers, we have the soft­
ware technology we need to build prototypes.
In many cases, the tools that are needed are
very simple (such as highly accurate timer
library routines), yet unavailable.

2 A TAXONOMY OF PARALLEL
PROGRAMMING TOOLS

:vlany different parallel programming tools have
been developed or proposed, either with the goal of
improving programmer productivity or computer
utilization. The simplest classification of tools is
by their functionality. The list below (adapted from
[3]) gives the major classes of tools, together with
some representative examples in parentheses:

Compilers: :vlost vendors of parallel systems sup­
ply compilers for parallel dialects of C and Fortran.
Sometimes they are integrated with parallelizers:
The input to the compiler can be either a sequential
or a parallel program.

Program Restructurers and Parallelizers: Re­
structuring tools convert sequential, or partially
parallel, programs into efficient parallel programs
(comparable to that of a hand-parallelized pro­
gram written by an expert programmer). Cnlike
compilers, parallelizers transform source code into
source code rather than generate object code
(KAP). There are several different classes of paral­
lelizers, depending on the target architecture: in­
struction-level parallelism, vector and single in­
struction multiple data (SIMD) parallelism, and
task-level parallelism. General task level parallel­
ism is beyond the scope of production parallelizers.

Program Specification and Construction:
Specification tools are used to construct parallel
programs, usually by composing sequential code
fragments (HeNCE).

Static Analyzers: Static analysis of a program can
detect both potential bugs (such as race condi­
tions) and poor resource utilization (e.g., proces­
sor, memory, or cache). Static analysis can include
predicting, or simulating, the execution of a
program.

Parallel Debuggers: Parallel debuggers extend
traditional debuggers, such as gdb, with the ability

to control and monitor execution of individual
tasks. Parallel debuggers should be capable of de­
tecting parallel errors at run-time, such as race
conditions (Xmdb).

Execution and Performance Analyzers: Execu­
tion analyzers tell the user what happened during
the execution of a program. Unlike debuggers, they
are post-mortem and are consequently less intru­
sive. Performance analyzers determine resource
bottlenecks, and may suggest source code modifi­
cations to remove these. Performance analyzers
can include tools to automatically instrument pro­
grams to gather trace data for later analysis. Ex­
amples of such tools are xpvm (for PVM) and
Pablo, from the University of Illinois.

Libraries: Canned parallel libraries and packages
can greatly reduce development effort (BLAS).

The above list is not exhaustive. For example,
tools that generally can be used equally well with
parallel and sequential programs (such as config­
uration control) have been omitted. Also, the list
excludes tools used primarily by systems adminis­
trators (such as load monitors).

Some tools provide functionality from different
categories. For example, FORGE [10] provides
both static analysis and profiling (performance
monitoring). Some of these tools have graphical
user interfaces (GUis).

Tools can also be classified by other attributes,
such as:

• Level of abstraction

Does the tool work at the application, algo­
rithm, language/ program model, operating
system I run- time library, or machine (instruc­
tions, cache, memory) level? Scientists usu­
ally want tools that work primarily at the ap­
plication or program level. TeraGreeks and
tool developers want lower level tools and in­
terfaces.

• Portability I adaptability

What range of environments or platforms can
the tool operate in?

• Level of integration

When tools provide several functions, an im­
portant issue is how well are these integrated
(e.g., by using a program database and com­
mon interfaces).

• Level of presentation

Level of presentation measures the presenta-

SOFTWARE TOOLS 243

tion quality of the user interface. A few years
ago, the majority of tools were batch and
dumb terminal oriented. Interactive user in­
terfaces and workstation clients were only
slowly adopted by high-performance com­
puter users. However, the use of such systems
has become widespread. Hence, most recent
tools have adopted X-Windows I Motif-based
interfaces. Unfortunately, the usability of
such interfaces by scientists tends to be low,
as noted earlier.

2.1 Parallel Programming Tool Status

As noted earlier, the majority of current tools are:

• Limited in availability and applicability
• Not robust (crash easily)
• Generally only usable by the tool developer, or

experts with a computer science background
(which excludes the overwhelming majority of
scientists) because they have poor interfaces

• Poorly integrated (do not work well with
other tools)

For each of the classes of tools above we can
summarize their status using the following metrics:

Quality:
Research, prototypes, or production.

What is the overall yuality of the tool? Is it "pro­
duction quality," implying good performance,
high functionality, and/ or ease of use?
Availability:

Good, fair, or poor.

Are there prototype tools that show promise of
going into production fairly soon? Is the market
push strong? Do we know how to build such tools?

Of course, Table 1 is subjective, but it does
indicate where problems lie and where research
and prototype development is needed. Following
the table we discuss some of the reasons for the
classification.

There are several bright spots in tools. Almost
all parallel computers now come with parallel de­
buggers. Vendors of ''classic'' supercomputers
(primarily IBM and Cray) have more mature tools
(e.g., Cray's ATExpert for performance analysis
[5]). However, good tools are less available for the
massively parallel and distributed computers.
SIMD computers need somewhat fewer tools, and
the tools are simpler because SIMD computers are

244 APPELBE A;\'D BERG.\1ARK

Table 1. Parallel Programming Tool Status

Class

Compilers
Program specification and construction
Program restructurers and parallelizers
Static analyzers
Parallel debuggers
Execution and performance analyzers
Libraries

deterministic. Unfortunately, SIMD computers
have been largely relegated to specialized applica­
tions.

Most vendors have interactive performance
analysis tools, with varying levels of maturity and
capabilities. Tools that create, transform, and an­
alyze source code (from compilers to static ana­
lyzers) are in the worst shape. Although most ven­
dors have parallel Fortran and C dialects, there are
no production tools that will consistently transform
sequential to efficient parallel code. There are tools
that will parallelize source code for some parallel
computers, but they usually do not incorporate a
performance model. Thus parallelizing tools tend
to choose transformations in an ad-hoc manner.
Again, traditional shared memory multiprocessors
have the best parallelizers.

The situation is bleakest for distributed memory
multiprocessors. The advent of HPF should im­
prove this situation, but it is too soon to tell whether
HPF compilers and parallelizers will be effective.
Since HPF was announced a few years ago, there
has been a lot of interest by programmers, but
production compilers have only begun to emerge.
HPF tools are in early development stages by vari­
ous research groups. It remains to be seen whether
HPF is too complex (for implementors and users)
to be a successful standard.

By contrast, PVM is widely available, has been
used for several years with C and Fortran bindings,
and is accompanied by a growing range of tools.
(MPI is now growing in popularity and availability
as well.) Unlike HPF, PVM and MPI take the ap­
proach that the programmer must completely
specify the distribution of data and all communica­
tion. The goal of HPF is to make distributed mem­
ory programs portable, yet specifiable in a high­
level language. By contrast, the goal of PVM is to
provide a simple, portable parallel programming
library that can be used by a skilled programmer.
Although the PVM library is portable, there is no
implication that a PVM program's performance

Quality

Production
Prototypes
Production I prototypes
Prototypes
Production
Prototypes I production
Prototypes/ production

Availability

Fair
Fair
Fair
Fair
Good
Good
Good

will be portable without redesign or repro­
gramming.

Because PVM is much simpler and more porta­
ble than HPF, PVM has a wide and growing user
base, despite its performance problems for com­
munication-intensive distributed applications.
Message-passing libraries are probably at too low
a level for most scientists, but it is being used as a
target language by tools such as APR's distributed
memory parallelizer.

The PVM vs. HPF debate hinges on a deep but
unresolved question: Is it practical to build a com­
piler that can automatica/{y determine the optimal
distribution of data and computation for most se­
quential (or HPF) programs for a specific distrib­
uted memory architecture?

Experience has shown that some obvious com­
piler chores are impraetical. For example, in the
1970s, there was considerable interest in compil­
ers that did not just detect syntax and semantic
errors, but also fixed them with sufficient accuracy
to be able to generate a "correct program." Such
error-correcting compilers have largely vanished,
as the corrected programs rarely were what the
programmer intended.

The HPF vs. PVM debate will largely depend
on whether the HPF community can deliver usable
HPF compilers that deliver good performance for
a wide range of applications.

2.2 Tool Interfaces

A serious impediment to tool developers is the lack
of support provided by manufacturers. Tool devel­
opers are often faced with building their tools from
scratch, and reverse engineering the performance
characteristics of parallel computers. Conse­
quently, the prototype tools developed by universi­
ties and research laboratories are often severely
limited in functionality. Alternatively, researchers
are discouraged from even developing tools be­
cause of the immense cost of developing proto-

types. For example, parallelizing tools are a fruitful
research area (in program transformations, perfor­
mance prediction, and so on). Yet there are only
a few public domain tools capable of parallelizing
full Fortran-77, and these are limited in function­
ality. To parallelize Fortran, tool developers must
build yet another Fortran compiler front-end
(scanning, parsing, semantic analysis) from
scratch.

Because no vendor is going to document and
deliver their compiler technology and source code
into the public domain, other approaches are
needed. One approach would be a national com­
piler infrastructure, a funded effort to develop an
open, public domain, multisource/target parallel­
izing compiler (or at least a front-end for such
a compiler). Indeed, a meeting was convened by
funding agencies to address just this topic. How­
ever, the effort foundered before it got off the
ground due to the difficulty of the task and the
probability that it might end up as yet another
government-funded large software disaster (as
happened with the Department of Defense [DOD]­
funded Ada programming environments, the ALS
and AlE).

A much better, bottom-up approach, would be
for compiler, tool developers, and vendors to agree
on a minimal set of simple compiler interface stan­
dards that everyone could support for sequential
programming languages such as C and Fortran.
Common interface standards have proved their
worth in other tool domains such as debuggers.

The reason why vendors do not supply interface
support is both economic and competitive. The
most effective way that vendors could support tool
developers would be by providing applications
programming interfaces to their compilers and
tools, but this is a costly undertaking. Vendors fear
that allowing tool developers access to perfor­
mance characteristics and compiler internals
could put them at a competitive disadvantage.

Another reason why vendors to not supply inter­
face support is that they do not want to be bound
to a documented interface. They fear that some
customers will complain if locally developed tools
break because an interface changed from out be­
neath the tool. This problem would be greatly
ameliorated by standard interface declarations,
because vendors would (presumably) become ea­
ger to supply the standard interface. This situation
may also be changing due to pressure by develop­
ers and recognition by vendors of the usefulness
of tools.

The following section summarizes the interfaces

SOFTWARE TOOLS 245

needed by tool developers. Many of these are also
useful to users, as noted earlier.

Accurate Timers and Resource Statistics

Both tool builders and users need access to librar­
ies that provide accurate information about the
system resource utilization of program tasks, such
as memory, central processing unit (CPU), and
run-time library statistics. Tool builders typically
obtain such information by using wrapper func­
tions around library calls, and calls to the system
clock or event counters. For timers, what is really
needed is one call, something like

CALL TIME(ElapsedUserSec,ElapsedUserNanoSec)

which returns two floating-point numbers for
elapsed user-based CPU time (i.e., time spent on
THIS job). The first is seconds since the start of a
job, and other is the nanoseconds remainder. This
way you can count up hours without overflow, or
fine-tune on the nanosecond basis with high reso­
lution.

Another very important statistic is cache hit rate.
Poor cache utilization is often the cause of anoma­
lous performance results. On most computers it is
almost impossible to determine cache statistics.
In general, some standard interfaces to hardware
performance monitors would be helpful.

Trace Data Collection

Once run-time libraries have been instrumented,
it is often necessary to save this information in
trace files. The 1/0 overhead of gathering traces
can be prohibitive if it is not provided by the run­
time library itself. Ideally, vendors should provide
a standard, extensible trace file format and library
calls to selectively enable tracing at relatively low
overhead. If the overhead of tracing can be kept
below 10%, then tracing can be the default.

Ideally, trace data formats can be standardized
across platforms, or tools can use trace specifica­
tions. Some effort has been devoted to trace stan­
dardization, but it has not gone far [9]. We note,
however, that there is a small trend toward convert­
ing trace files into SDDF format [2] for inter­
changeable tool use.

Syntax Analysis and Program
Instrumentation

Tools such as performance monitors and execu­
tion analyzers are far more effective if their inter-

246 APPELBE AND BERGMARK

face is at the program level. That is, performance
is reported in terms of source program structure
and constructs, and these also serve as the refer­
ence point for insertion of instrumentation. Any
tool whose interface is at the program level requires
syntax and semantic analysis of the source pro­
gram. Ideally, this can be provided by interfaces
supported by the vendor's compiler to data struc­
tures such as intermediate code (e.g., expression
trees), symbol tables, and call graph and flow
graphs. Ideally, each of a vendor's compilers
should provide this information in an easily acces­
sible format with efficient lookup. As noted earlier,
vendors have generally not been willing to do this,
and no standard format for this compiler informa­
tion even if vendors were to supply access to it.

Currently, tool developers who want to provide
a source program interface are thus usually faced
with two unpleasant choices: (1) Simulate syntax
analysis and parsing using simple tools such as
perf, yacc, and lex. These are inaccurate, and
hence only useful in a prototype. (2) Build or adapt
a compiler front-end. This is a major undertaking,
especially if the front-end is going to parse exactly
the same programming language dialect as the
vendor's compiler.

Even if compilers do not provide interfaces to
their data structures, they should provide informa­
tion about optimizations that were made, related
to the source, so that subsequent tools can relate
to source. In addition, debugging should be possi­
ble on optimized code. On some systems the de­
bugging option for the compiler (which tells the
compiler to generate information needed by the
source debugger) cannot be used with the optimi­
zation option. This further discourages users from
using the debugger.

Simulators and Performance Data

The ability to "predict" the performance of a pro­
gram is critical for tools such as performance moni­
tors and parallelizers. Performance monitors can
use prediction to determine the causes of poor re­
source utilization, whereas parallelizers can use
prediction to determine the quantitative benefits
of source program transformations.

Predicting the performance of a parallel pro­
gram, or progrm fragment, is extremely difficult. It
requires a detailed model of the architecture along
with instruction-level timings. Even then, effects
such as cache misses and processor scheduling
make accuracy difficult to achieve. Consequently,
very few tool builders have attempted performance

prediction. Even obtaining accurate timings for in­
structions and run-time libraries is difficult, al­
though portable low-level benchmarks or training
sets are useful.

The most accurate performance prediction usu­
ally comes from simulators. Although most ven­
dors develop these when designing and prototyping
their systems, they are typically not available to
users or other tool builders.

Integrated Environments vs. Toolkits

Few will question the usefulness and effectiveness
of integrated programming environments. For ex­
ample, PC-based programming environments,
such as Borland's C++ and Microsoft's Visual
C++, put most workstation environments and all
high-performance computing environments to
shame.

Integration comes at different levels. Tight inte­
gration, typical of PC programming environments,
implies tools that share a common program data­
base and CUI interface. Loose integration implies
that tools cooperate and intemperate.

Although integration is a laudable goal, there
are several caveats that make toolkit integration
unlikely or infeasible for high-performance com­
puting in the near future:

1. Integration of tools can be helpful only if
the tools are already mature with standard
interfaces. From a user viewpoint, it makes
no sense to be a guinea pig for a prototype
integration of a prototype performance ana­
lyzer with a prototype debugger.

2. Integration must have clear-cut goals, and
must start with well-defined interfaces be­
tween the components.

3. Synergy must result from the integration;
tools should make use of each other so that
the tools together are better than they are
apart. At the very least, integration should
mean that tools have a common interface.

Integration should not mean closed systems, espe­
cially in the evolving environment of high-perfor­
mance computing. Ideally, an integrated environ­
ment would allow a plug and play" approach to
tools: Combining the best performance analyzer
with the most appropriate debugger, and so on.

This leads to a fundamental rule on tool integra­
tion: Before commencing to integrate tools for a
production quality toolkit, it is vital that the inter­
faces between the tools be well defined, well un­
derstood, and preferably standardized.

2.3 Vendor Support

The overall lack of support by vendors for tool
developers should not be taken as a blanket con­
demnation of the high-performance computer in­
dustry. As noted, they are merely responding to

market demands and pressure. Vendors will sup­
ply and develop whatever tools a majority of poten­
tial buyers demand. Unfortunately, once a ma­
chine is delivered users generally have far less
clout.

There are some examples of high-quality tools
provided by vendors, such A TExpert from Cray
Research (a performance analysis tool). Also, ven­
dors occasionally provided interfaces and tools for
developers, such as the trace facility provided by
IBM's Parallel Environment for the SP1/2 [4].
However, as far as we know, there is no consistent
or systematic attempt by a vendor to provide sup­
port for third-party tool developers or to make their
systems easier to develop tools for.

3 IMPROVING THE STATUS QUO

Although the current state of production quality
software tools for high-performance computing is
dismal at best, the situation is not without hope.
Some of the bright signs are:

1. Growing acceptance of workstation technol­
ogy and standard GUis among scientists.

2. Growing market for high-performance com­
puters, and access to high-performance
computers by potential tool builders.

3. Increasingly successful efforts at language
standardization.

4. Emergence of user groups, such as Ptools,
(WWW home page: http://www. llnl.
gov /ptools/ptools. html).

5. The availability of high-quality software
tools for commercial software development.
PC-based tools such as Visual Basic and
PowerBuilder put most high-performance
computing tools to shame.

However, we believe that a lot could be done to
improve the availability and effectiveness of pro­
duction -quality software tools for a relatively mod­
est investment of resources. Such an investment
would be more than repaid by the improvements
in utilization of high-performance computers.

SOFTWARE TOOLS 247

3.1 Improved Funding for
Prototype Tools

Universities and research laboratories develop
dozens of interesting and potentially useful parallel
programming tools every year. Yet there is no
mechanism in place to convert these tools to useful
prototypes and perhaps eventually to production
software (adoption by vendors).

A major problem is that there is relatively little
funding available from agencies such as the Na­
tional Science Foundation for the purpose of con­
verting prototype to production tools. A great deal
of funding is available for research, but little for
converting research into production. Given the
current US political climate, it is more likely that
government funding will decline, rather than ex­
pand, in the near future. Industry, on the other
hand, is unwilling to invest in tools that are not
proven to be useful.

Tools can be classified in three levels [6 J :

Research prototypes

These are typically the product of a doctoral
dissertation or research laboratory project. They
are primarily "proofs on concept," are only us­
able by a skilled person, have very limited appli­
cation, and little documentation. Usually the
source code is freely available to encourage oth­
ers to tinker with the tool.

Beta-version tools

These result from spending considerable time
fixing and enhancing the research prototypes.
Often little functionalitv needs to be added. The
effort is devoted to making the tool more reli­
able, robust, easier to use, and so on. Neverthe­
less, these tools still often have many undocu­
mented limitations, and have not been
subjected to an intensive testing and evaluation
process. Also, such tools have very little support
(help and fixes available if something goes
wrong).

Production tools

These are commercial-strength tools typically
sold by vendors or third parties. They have
support.

Typically it takes an order of magnitude more
effort to go from one level to the next. Vendors

248 APPELBE Al"D BERGMARK

are willing to make the effort to convert successful
beta-version tools into production tools. What is
needed is funding to convert research prototypes
into beta-version tools. Part of the Federal HPC
initiative should be spent to fund and support the
conversion of promising research prototypes into
beta-version tools.

3.2 Supercomputer Purchasers Insisting
on Tools

No informed consumer would purchase a car
based largely upon its maximum speed. Yet, high­
performance computer purchases are largely
based on performance (as opposed to usability).
Until this changes, vendors have little incentive
to devote resources away from benchmarks and
toward tools. Buyers of parallel systems should in­
sist on tools as a purchase requirement.

3.3 Improved Tool Interfaces Provided
by Vendors

As noted earlier, vendors provide relatively little
support for tool developers. There is no financial
incentive to do so, and providing access to details
of machine performance could be embarrassing if
used by competitors.

L"nfortunately, such a view is short-sighted, and
the high-performance computer business is very
much driven by market and short-term goals. As
noted earlier, the interfaces that tool developers
need overlap those needed by many users (such
as more accurate resource statistics). "'1ore active
user-groups and more support by vendors for in­
ternal tool development would improve this situ­
ation.

3.4 Improved Usability and User
Interfaces

Currently, the human-computer interface (HCI)
community has shown relatively little interest in
parallel computing. Part of this is due to the rela­
tively small size of the parallel computing commu­
nity, and part due to the lack of understanding and
interaction between the two communities. What is
needed are more HCI experts within the vendor's
tool groups, and the involvement ofHCI facilitators
between users and developers (at the stage of con­
versiOn of research prototypes into beta-version
tools).

3.5 Standardization

The emergence of standards, and the insistence
of the user-community upon vendors supporting
these standards, will significantly improve the
quality and portability of tools. As noted earlier,
the situation with regard to standardization is im­
proving, although the industry is still rapidly
evolving.

4 CONCLUSION

ln summary, it is fairly obvious that the lack of
effective software tools has seriously impeded the
effective use of high-performance computers by
scientists and researchers. What is not so obvious
is what, if anything, can be done to improve the
situation. Market forces and maturity are gradually
leading to better tools, but the status quo leads to a
great deal of frustration among high-performance
computer users and wasted resources. Each group
bears some responsibility for the situation.

Funding agencies need a coordinated plan to
carefully target funding at tool development (in­
cluding transitioning research tools into industrial­
strength tools), and studies of tool effectiveness,
as discussed earlier. It is not enough merely to fund
applications development and the development of
new parallel computers, in the expectation that
tools will either materialize or are not necessarv.

Vendors need to support open interfaces to their
tools, such as compilers, debuggers, and simula­
tors, and devote more of their budgets to tools.
Those who purchase high-performance computers
need to place more emphasis on tools and tool
quality in RFPs and contracts.

Tool developers need to focus on the usability
of their tools rather than publishability.

Csers need to let tool developers and vendors
know what they want, and be willing to try new
tools.

Everyone needs to be more aware of others'
needs, e.g., by joining consortia such as Ptools.

REFERENCES

[1] B. Appelbe, C. YlcDowell, and K. Smith, "Start/
Pat: a parallel-programming toolkit, IEEE Soft­
ware Vol. 6, pp. 29-33, July 1939.

[2] R. Aydt, The Pablo Self-Defining Data Format,
1993, Cniversity of Illinois, Department of Com­
puter Science.

[3] D. Bergmark, "L'pdate on tools for parallel pro­
gramming at the C:"'SF," Cornell Cniversity,
Ithaca, :"'Y, Tech. Rep., 1994.

[4] IBM, AIX Parallel Environment Parallel Program­
ming Operation and Use. Austin, TX: IBM. June
1994.

[5] J. Kohn, and W. Williams, "ATExpert,'']. Paral­
lel Distrib. Comput., vol. 14, May 1993.

[6] P. Messina, and T. Sterling, Eds., "'System soft­
ware and tools for high performance computing
environments," SIAM (Philadelphia), 1993, Are­
port on the findings of the Pasadena Workshop
April14-16, 1992.

[7] C. Pancake, "Where are we headed?" Commun.
ACM vol. 34, pp. 53-64,1'\ov. 1991.

[8] C. Pancake, and C. Cook, "What users need in
parallel tool support: Survey results and analysis,''

SOFTWARE TOOLS 249

m Proceedings of Scalable High-Performance
Computing Conference (Knoxville, TN) (May 23-
25 1994), IEEE Computer Society, pp. 40-
47. http:lwww.cs.orst.edu/ pancake/surveys/
surveys.html.

[9] C. ,\1, Pancake, P. S. Utter, D. Bergmark, and D.
Gannon, "Supercomputing '90 BOF session on
standardizing parallel trace for mats,·· Cornell
Theory Center, Tech. Rep. TC91 TR53, March
1991.

[10] A. P. Research, FORGE Explorer User's Guide.
550 Main Street, Suite I, Placerville, CA 95667,
Jan. 1995.

[11] H. Zima, and B. Chapman. Supercompilers for
Parallel and Vector Computers. New York: ACM
Press, 1990.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

