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ABSTRACT 

The optimization techniques for hierarchical O(N) N-body algorithms described here 
focus on managing the data distribution and the data references, both between the 
memories of different nodes and within the memory hierarchy of each node. We 
show how the techniques can be expressed in data-parallel languages, such as High 
Performance Fortran (HPF) and Connection Machine Fortran (CMF). The effectiveness 
of our techniques is demonstrated on an implementation of Anderson's hierarchical O(N) 
N-body method for the Connection Machine system CM-5/5E. Of the total execution time, 
communication accounts for about 10-20% of the total time, with the average efficiency 
for arithmetic operations being about 40% and the total efficiency (including communica­
tion) being about 35%. For the CM-5E, a performance in excess of 60 Mflop/s per node 
(peak 160 Mflop/ s per node) has been measured. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Achieving high efficiency in hierarchical methods 
on massively parallel architectures is an important 
problem. Hierarchical methods are the only feasi­
ble methods for large-scale computational prob­
lems involving many-body interactions, such as 
astrophysical simulations and molecular dynamics 
simulations including long-range forces. This 
artiele examines techniques for achieving high 
efficiency in implementing nonadaptive O(N) 
N-body algorithms on massively parallel proces­
sors (MPPs). It also provides Connection ~a chine 
Fortran (CMF) [1] code fragments that illustrate 
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how to express the techniques in a data-parallel 
language. 

CMF was chosen because no High Performance 
Fortran (HPF) [2] compiler was available at the 
time of this project. The techniques we discuss 
result in high performance by 

1. Reducing the need for data motion be­
tween nodes. 

2. A voiding local memory copying by specifying 
operations such that state-of-the-art com­
pilers can pass arrays in place. 

3. Reducing the need for memory bandwidth 
by organizing computations for a high degree 
of register reuse without a need for interpro­
cedural analvsis. 

4. Increasing vector length and/ or reducing the 
number of DRA~ page faults and TLB 
thrashing by aggregating computations for 
collective function calls, increasing the de­
grees of freedom in scheduling operations 
for the function execution. 
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Efficient memory management is the most chal­
lenging issue in high-performance computing. 
Techniques for the automatic determination of 
data distributions with balanced load and efficient 
communication have been the focus of parallel 
compiler research in the last several years [3-5J. 
However, no general technique that balances 
load and generates efficient communication has 
emerged so far. User inputs in the form of data 
distribution directives and careful structuring of 
the code based on knowledge of the memory archi­
tecture play a much more important role in obtain­
ing high performance in programming distributed 
memory machines in a high-level language than 
in programming uniprocessors. The added fea­
tures in HPF, relative to Fortran 90. is a step to­

ward giving users the ability to provide helpful in­
formation to the compiler. 

The hierarchical O(iV) N-body algorithms we 
consider consist of near-field and far-field int.erac­
tions. For the former. the interaction between 
groups of particles is handled by the direct, classi­
cal N -body algorithm. Far-field interactions are 
handled through a hierarchy of computational ele­
ments corresponding to subdomains, ''boxes.'' 
with parent and children boxes having the obvious 
meaning. Part of the far-field dose to a box is 
known as the interactive-field. The computations 
on the box hierarchy are carried out through three 
translation operators. two of which are used in 
parent-child interactions, while the third is used 
in handling the interactive-field. These terms are 
defined precisely in the next st'ction. Our novel 
contributions are techniques, expressed in C:VIF. 
for 

1. Yery limited data motion m parent-child 
interactions. 

2. Limited data motion in neighbor inter­
actions for interactive-field computations. 

:3. Trading off redundant computation vs. 
communication. 

4. Representing translation operations as 
matrix-vector multiplications. 

o. Aggregating multiple independt'nt transla­
tion operations intn multiple instances of 
matrix-matrix multiplications. 

6. Reducing the number of translation opera­
tions through a novel use of supernodes. 

.., Efficiency in memory usage. 

By using a careful allocation of the hierarchy of 
boxes. the data motion between a parent and its 
children is largely turned into local memory refer-

ences instead of internode communication. ~We use 
one arrav for the leaf-level boxes and one arrav 
for all other boxes. All boxes not at the leaf-lev~! 
are packed into one array of the same size as the 
array for leaf-level boxes. Our packing guarantees 
that once there is at least one box per processing 
node. then a'] its children boxes a!le assigned to the 
same processing node. The packing is described in 
"The Hierarchy of Boxes.'' a subsection in Sec­
tion ;3. 

The virtual machine model provided by C:VIF 
(and HPF) with a global address space easily 
results in excessivE' data motion. For instance. per­
forming a circular shift on an array causes most 
compilers to issue instructions that move everv ele­
ment as specified by the shift instruction. A ~nore 
efficient way of dealing with shift instructions is to 
move data between processing nodes as required. 
but to eliminate the local memorv moves bv modi­
fying subsequent local memory .reference~ to ac­
count for the speciGed move (that was not carried 
out). This issue is of particular importance in gath­
ering boxes for the interactive-Geld computations. 
In Section 6 we show how to use array sectioning 
and array aliasing to implement an effective gath­
ering of nonlocal interactive-field boxes. On the 
Connection ::via chine systems CYI -5/5E [ 6:. the 
communication time for the straightforward use 
of CMF for interactive-field computations is more 
than one order of magnitude higher than the com­
munication time for the technique we use. 

ln Anderson's version of the fast multipole 
method, all translation operators can be repre­
sented by matrices acting on vectors. ~1oreover. 
the translation matrices are scale invariant and 
only depend on the relative locations of the sources 
and destinations. Hence, the matrices are the same 
for aU levels of the hierarchy. and all source desti­
nation pairs with the same r·elative locations use 
the same matrices at any level in the hierarchy. 
Thus, all matrices can be precomputed. The trans­
lation operators in fast multi pole methods l8-1 OJ 
can also be viewed as matrix-vector multiplica­
tions [ 111. ~We discuss this arithmetic optimization 
in Section 7. By representing the translation opera­
tions as matrix-vector multiplications and aggre­
gating the matrix-vector multiplications into mul­
tiple-instance matrix-matrix multiplications. 
many of the translation operations can be per­
formed at an efficiency of about 80tYo of peak .. or 
at a rate of 127 .\Hlop/s per node of a GVl-5E 
using the Connection :\lachine Scientific Software 
Library. C:VISSL [ 12 J. Recognizing and aggrega t­
ing BLAS operations and using library functions 
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Table 1. Efficiencies of Various Parallel Implementations of Hierarchical N-Body Methods 

Author Programming Model 
%of Peak 
Efficiencv Machine 

Salmon. Warren-Salmon [13-15] 
Liu-Bhatt [16. 1 ?] 
Leathrum-Board et al. [19. 20] 
Elliott-Board [21] 

F7? + message passing 24-28% 
30% 
20% 
14% 
12% 

512-node Intel Data 
256-node C~-5 
32-node KSR-1 
32-node KSR-1 
256-node (8k) CM-2 
256-node CM-5/5E 

C + message passing + assembly 
F?? 

Zhao-Johnsson [18] 
Hu-Johnsson [this article J 

F?? 
*Lisp + assembly 
01F 

can significantly improve the performance of the 
computations on most architectures, including 
uniprocessor architectures. 

For parent-child interactions three-dimen­
sional problems require eight translation matrices 
in the upward and downward traversals of the hier­
archy of grids. In addition, a large number of trans­
lation matrices are required for neighbor inter­
actions in the downward traversal. For hierarchies 
with at least four levels, each processing node con­
taining leaf-level boxes distant four from domain 
boundaries requires a copy of all matrices. \Ve 
discuss the trade-off between replication and re­
dundant computation in Section 8. 

Although our implementation reported in this 
article is in G\1F, all the CYIF constructs used. 
with one exception, are available in HPF. The 
exception-array aliasing-can be achieved 
straightforwardly using extrinsic procedures in 
HPF, as described in Section 3. The array-aliasing 
feature has the clear advantage over extrinsic pro­
cedures that a programmer can express the optimi­
zations in the data-parallel programming model 
instead of resorting to the message-passing SP.\1D 
(single program, multiple data) style programming 
model. An array-aliasing mechanism is being con­
sidered for inclusion in HPF II [ 13]. 

Most of our optimization techniques apply to 
any distributed memory machine. However, the 
relative merit of the techniques depend on machine 
metrics. We report on the performance trade-offs 
on the C~I-5/5E. 

To our knowledge, this work represents the first 
implementation of Anderson's method on a paral­
lel machine as well as the first implementation of 
an O(N) N-body algorithm in a data-parallellan­
guage. Table 1 summarizes the efficiencies of sev­
eral parallel implementations, including the results 
reported in this article. The efficiency numbers 
should be viewed with some caution since the vari­
ous implementations used different algorithms. 
different problem sizes, and parameters control-

2?-35% 

ling the accuracies. The Barnes-Hut O(N log N) 
algorithm has been implemented using the mes­
sage-passing programming paradigm by Salmon 
and Warren [ 14-16] on the Intel Touchstone 
Delta and bv Liu and Bhatt [17, 18] on the 
CM-5. Both groups used assembly language for 
time critical kernels and achieved efficiencies in 
the range 24%-28% and 30%, respectively. Zhao 
and Johnsson [19] developed a data-parallel im­
plementation of Zhao's method on the CYI-2, and 
achieved an efficiency of 12%, for expansions in 
Cartesian coordinates that results in more costlv 
multipole expansion calculations. Leathrum and 
Board et al. [20, 21] and Elliott and Board [22] 
achieved efficiencies in the range 14%-20% in 
implementing Greengard-Rokhlin's method [23] 
on the KSR-1. Schmidt and Lee [24] vectorized 
this method for the Cray Y-YIP and achieved an 
efficiency of 39% on a single processor. Singh et 
al. [25. 26] have implemented both O(N log N) 
and O(N) methods on the Stanford DASH ma­
chine. but no measures of the achieved efficiency 
are available. 1\"vland et al. [27] discussed how 
to express the three-dimensional (3-D) adaptive 
version of the Greengard-Rokhlin method in a 
data-parallel subset of the Proteus language. 
which is still under implementation. 

This article is organized as follows. Section 2 
describes the computational structure of hierarchi­
cal methods, and details the computational ele­
ments of Anderson's method. Section 3 brieflv 
summarizes new features in HPF and describes the 
array-aliasing mechanism in CMF that currently 
is not included in HPF. Section 4 presents the 
architecture of the Connection Machine systems 
CY1-5/5E. The optimization techniques for pro­
gramming hierarchical methods in CMF (HPF) are 
presented in Sections 5-9. Section 10 reports 
some performance results of our implementation. 
Additional performance data can be found [see 
37]. Section 11 discusses load-balancing issues 
and Section 12 summarizes the article. 
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2 HIERARCHICAL N-BODY METHODS 

Hierarchical methods [7, 8, 9, 28] for theN-body 
problem exploit the linearity of the potential field 
by partitioning the field into two parts, 

1> total = 1> near-field + 1> far-field ' (1) 

where 1>near-field is the potential due to nearby parti­
cles and ¢>Jar-field is the potential due to faraway 
particles. The near-field is evaluated through the 
classical N-body technique of pair-wise interac­
tions between all particles in the near-field. Hierar­
chical methods achieve their arithmetic efficiency 
by evaluating the far-field potential hierarchically: 

1. The field induced by a cluster of particles 
sufficiently far away from an evaluation 
point is modeled by a single computational 
element, called far-field potential represen­
tation. 

2. Computational elements for small domains 
are hierarchically combined into elements 
for large domains. 

3. The far-fields due to computational ele­
ments at different levels in the hierarchy are 
evaluated hierarchically. 

The hierarchy of computational elements is es­
tablished through a hierarchy of grids (see Fig. 1 ). 
Grid level 0 represents the entire domain. Grid 
level l + 1 in a nonadaptive decomposition is ob­
tained from Ievell by subdividing each region into 
four (in two dimensions) or eight (in three dimen­
sions) equally sized subregions. The number of 
distinct boxes at mesh level l is equal to 41 and 81 

for two and three dimensions, respectively. Sub-

LevelO 

Levell 

Level2 

domains that are not further decomposed are 
leaves. In two dimensions, the near-field contains 
those subdomains that share a boundary point 
with the considered subdomain. In three dimen­
sions, Greengard-Rokhlin's formulation [29] de­
fines the near-field to contain nearest neighbor 
subdomains which share a boundary point with 
the considered subdomain and second nearest 
neighbor subdomains which share a boundary 
point with the nearest neighbor subdomains. Th~ 
far-field of a subdomain is the entire domain ex­
cluding the subdomain, the target subdomain, and 
its near-field subdomains. The far-field is said to 
be well separated from the target subdomain with 
respect to which it is defined. In the following, 
we often refer to a (sub )domain as a "box." The 
interactive-field of a target box at level/ is the part 
of the far-field that is contained in the near-field 
of the target box's parent. In three dimensions, the 
number of subdomains in the near-field is 124 (a 
5 X 5 X 5 subdomain excluding the target box) 
and the number of subdomains in the interactive­
field is 875 (a 10 X 10 X 10 subdomain excluding 
the near-field and the target box). In two dimen­
sions, the near-field contains eight subdomains 
and the interactive-field contains 27 subdomains. 
respectively. A discussion of a less stringent defi­
nition of the near-field in three dimensions can be 
found in [30]. 

The idea of the hierarchical combining and 
evaluation used in the O(N) algorithms is illus­
trated in Figure 2. At level 2 of the hierarchy, the 
two subdomains marked with "i" are well sepa­
rated from subdomain B. Thus, the computational 
elements for those two subdomains can be evalu­
ated at the particles in subdomain B. At level 3, 
15 new subdomains marked with "i" are well sep-

FIGURE 1 Recursive domain decompositions and the near-field and interactive-fields 

in two dimensions. 
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[!] i 

i 

Levell Level2 

B 

Level3 Level4 (leaf-level) 

FIGURE 2 Interactive-fields for a hierarchical method. 

arated from sub domain B and their computational 
elements can also be evaluated at the particles in 
subdomain B. At level4 there are 27 new computa­
tional elements that are well separated from the 
particles in subdomain B. At any of the levels, the 
domains marked with "i" define the interactive­
field at that level. If domain B would have been 
smaller, then it is easy to see that for all levels 
beyond level 4, the interactive-field will always 
have 27 computational elements, which is the 
maximum for any subdomain. The above process 
continues until the leaf-level is reached, at which 
point the far-field potential of the particles in B 
has been computed. 

For uniform particle distributions and a hierar­
chy depth of log N, the total number of computa­
tional elements in the hierarchy is O(N) and there 
are only a few particles ( 0(1)) in each leaf-level 
computational element. For a hierarchy depth of 
log N, the total number of computational elements 
evaluated at each particle is O(log N) and the eval­
uation of all particles' far-field potential requires 
O(N log N) operations. The reduction in the com­
plexity of the interactive-field evaluation to O(N) 
is achieved by introducing a local-field potential 
representation-a second kind of computational 
element-to combine the evaluation of computa­
tional elements that are "far away" from clusters of 
particles. This element approximates the potential 
field in a "local" domain due to particles in the far 
domain. The new type of computational element 
allows contributions from different interactive-

field domains to be combined for the far- field eval­
uation with respect to all subdomains making up 
the new computational element. Conversion from 
the far-field potential representation (of the far do­
mains) to the local-field potential representation 
(of the subdomain under consideration) is needed. 

In practice, computational elements are ap­
proximated by finite length series. The accuracy 
is controlled by the number of terms included in 
the expansion. Estimates of the approximation er­
rors as a function of the number of terms in the 
expansion have been derived for the different 
methods [7, 9, 10], and are not discussed here. 

Hierarchical methods compute 4>far-tield of ( 1) in 
two hierarchy-traversing passes. In an upward 
pass, the far-field potential of computational ele­
ments is combined (T1) to form <t>l by shifting the 
far-field potential representation of child boxes 
from their respective centers to the center of their 
parent box, and adding the resulting representa­
tions (coefficients). 4>; is the contribution of subdo­
main i at level L to the potential field in domains 
in its far-field. In a downward pass, the far-field 
potential of interactive-field boxes is converted 
into local-field potentials (T2 ) which are combined 
with the local-field passed from a parent to its 
children by shifting the parent's local-field repre­
sentation to the centers of its child boxes (T3 ). Let 
w; represent the contribution to the potential field 
in subdomain i at level/ due to particles in the far­
field of subdomain i, i.e., the local-field potential 
in subdomain i at level/. Then, the computational 
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structure is described in the recursive formulation 
by Katzenelson [31]: 

Algorithm: (A generic hierarchical method) 

1. Compute <I>;' for all boxes i at the leaf-level h. 
2. Cpward pass: for l = h - L h - 2 ..... 

2. compute 

<1>~, = 2: T1 (<1>!+ 1
). 

iE{rhi/dren:n,} 

3. Downward pass: forl = 2. 3, .... h .. com­
pute 

'I'!= T,('I'~~~~PTII:i, + 2: . T2(<1>)). 
JE{inleratil'e-field i } 

4. Far-field: evaluate local potential at parti­
cles inside every leaf-level subdomain. 

5. !'\ear-field: evaluate the potential field due 
to the particles in the near-field of leaf-level 
subdomains. using a direct evaluation of the 
1'\ewtonian interactions with nearby parti­
cles. 

~k neor·/ield = 2: . C;(k). 
jE{rwur-fie/d'k :} 

where G is the potential function in an ex­
plicit Newtonian formulation. 

For N. uniformly distributed particles and a hi­
erarchy of depth h having JIJ = 8h leaf-level boxes. 
the total number of operations required for the 
above generic hierarchical method is 

Ttotat(N.JJ.p) = O(Np) + O(j1(p);\J) 

+ O((N,nt· /2(p) + fo(p))J'f) 

+ O(N ) + 0 (N2
) . p Jt . 

where p is the number of coefficients in the field 
representation for a computational element: f 1 (p ). 
fAp ). and f,(p) are the operation counts for T 1 . 

T2. and T.~. respectively: and N 1" 1 is the number 
of interactive-field boxes for interior nodes. The 
five terms correspond to the operation counts for 
the five steps of the hierarchical methods. The 

minimum value of Ttotal is of order O(N) for Jf = 

c · N. i.e .. the number of leaf-level boxes for the 
optimum depth of the hierarchy is proportional to 
the number of particles. Since the terms linear in 
AJ represent the operation counts in traversing the 
hierarchv. and the term O(N 2 /JJ) represents the 
operatio~ counts in the direct evaluation in the 
near-field. the optimal hierarehy depth balances 
the cost of these two phases. Thus. it is equally 
important to efficiently perform the hierarchical 
computations and the direct evaluations at the 
leaf-level in the hierarehical methods. 

Moreover. it is worth noting that because of the 
large constant in the complexity of hierarchieal 
methods, direct methods outperform Anderson· s 
method up to about 4,500 particles. the Barnes­
Hut algorithm up to about 6,000 particles. and 
the Greengard-Rokhlin method for up to about 
9.000 particles in three dimensions and with an 
accuracy of an error decay rate of four in them ulti­
pole methods. 

2.1 Anderson's Multipole Method 
without Multipoles 

Anderson [7] used Poisson's formula to represent 
solutions of Laplace equation. Letg(x.y .. z) denote 
potential values on a sphere of radius a and denote 
by 'I' the harmonic function external to the sphere 
with these boundarv values. Given a sphere of ra-_, 
dius a and a point x with spherical coordinates (r. 
0. ~) outside the sphere, let X:, = (cos(O )sin(~). 
sin(O)sin(~). cos(~)) be the point on the unit 
~here along the vector fr2m the origin to the point 
x. The potential value at x is (Equation 14 of [ 7]) 

[ i: (2n + 1) (9_)n+l P"(S', ·X:,)] g(a;)ds. (2) 
n~O r 

where the integration is carried out over 5 2 • 

the surface of the unit sphere. and P" is the nth 
Legendre function. 

Given a numerical formula for integrating func­
tions on the surface of the sphere with K integration 
points 8', and weights w 1• the following formula 
(Equation 15 of [ 71) is used to approximate the ___, -

potential at x : 



This approximation is called an outer-spherP 
approximation. :\ote that in this approximation 
the series is truncatpd and the integral is evaluated 
with a finite number of terms. 

The approximation used to represent potentials 
inside a given region of radius o is (Equation 16 
of [7]) 

and is called an inner-sphere approximation. 
The outer-sphere and thP inner-sphere approx­

imations define the computational elements in An­
derson · s hierarchical method. Outer-sphere ap­
proximations are first constructed for clusters of 
particles in leaf-level boxes. During the upward 
pass. outer-sphere approximations of child boxes 
are combined into a single outer-sphere approxi­
mation of their parent box (T1 ) by evaluating the 
potential induced by the component outer-sphere 
approximations at the integration points of the 
parent outer-sphere approximation. as ,;hown in 
Figure 3. The situation is similar for the other two 
translations used in the method. which are shifting 
a parent box's inner-sphere approximation to add 
to its children·s inner-sphere approximations (7'.1 ) 

and converting the outer-sphere approximations 
of a box·s interactive-field boxes (T2 ) to add to the 
box· s inner-sphere approximation. 

3 HIGH PERFORMANCE FORTRAN 

Since no HPF compiler was available when this 
work was initiated. we used the C~IF language [ 1] 
for our implementation. All CMF constructs used, 
except the array-aliasing mechanism. are available 
in HPF. Below. we briefly summarize the new fea­
ILires in HPF. \V~ e then present the array-aliasing 
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mechanism in C~lF. which providPs an elegant 
way to avoid excess data nwtion. and compare it 
to the use of extrinsic procedures for the same 
purpose. 

HPF consists of Fortran 90 with extensions 
mainlv for data management. The main exten­
Sions are: 

1. Data distribution directives. which describe 
data aggregation, such as cyclic and block 
aggregation. and the partitioning of data 
among memory regions. 

2. Parallel FORALL statements and constructs. 
which allow fairly general array sectioning 
and specifications of parallel computations. 

:3. Extrinsic procedures (local procedures). 
which define interfaces to procedures written 
in other programming paradigms. such as 
explicit mes,;age-passing SP~lD styles. 

'-±. A set of extended intrinsic functions. includ­
ing mapping inquiry intrinsic subroutines 
that allow a program to know the exact map­
ping of an array at run-time. 

HPF supports data-parallel programming with 
a global address space. Programs can be written 
without any knowledge of the architecture of the 
memory systen1. The consequence is that moo;t 
compilers often generate excess data moven1ent. 
Cyclic shifts are a good example already discussed 
in the introduction. One sensible way of avoiding 
excess data moven1ent is to restructure the pro­
gram in a way that even a not-so-sophisticated 
compiler is able to generate efficient code. This 
goal can be achieved by exposing the local memory 
and processor address spaces and giving a pro­
grammer explicit control over data allocation and 
data references. 

In C~F. separation of the local and processor 
address spaces is elegantly achieved through array 

0' 

(a) Translations Tl and T3 (b) Translation T2 

FIGURE 3 Translations as evaluations of the approximations. 
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FIGURE 4 Overview of the C~1-5/5E system. 

sectioning and array aliasing within the global pro­
gramming paradigm. Array sectioning is part of 
Fortran 90 and HPF, hut array aliasing is not. The 
array-aliasing mechanism allows a user to address 
memory already allocated for an array, as if it were 
of a different type, shape. or layout. No data mo­
tion occurs. For example, let A be an n-dimen­
sional arrav with extents L 1 X . . . X L". Assume 
that after ~1apping A onto the physical machine, 
there are pi nodes used for axis i. resulting in a 
subgrid of lengths, within eaeh node for axis i, i.e .. 
Li s, X p 1• Lsing array aliasing, we can create 
an array alias Aatius' which has extents s 1 X . . . X 

s" X p 1 X . . . X p,. with the first n axes local to 
each node and the last n axes purely off-node. In 
this way. we have explicitly separated the local 
address space from the processor address space. 
This subgrid equivalencing feature in C:YlF pro­
vides a means of managing memory accesses simi­
lar to that of the EQCIVALE.\"CE statement in 
Fortran 77. It is heavily used in the optimization 
techniques discussed in the rest of this article. 

In the current version of HPF, a separation of 
local and proeessor address spaces can only be 
achieved through the use of extrinsic (local) proce­
dures. \Vithin a local procedure, a pro~ram can 
access directly only the memory local to a node. 
Access to other parts of the global memory must 
either he made through explicit message passing, 
or by returnin~ to the global program. Hence, 
within HPF, optimizations Lased on separation of 
address spaces cannot be achieved within the lan­
guage itself. but only bv mixing programming mod­
els (data parallel and message passing). ~Ioreover, 
mixing programming models and using procedure 
calls increase the difficulty of many forms of com­
piler optimizations and array aliasing is being con­
sidered for inclusion in HPF. 

4 CM-5/SE ARCHITECTURE 

A C~I-5/5E system contains up to 16,384 parallel 
processing nodes (the largest configuration avail­
able today has L024 nodes), each with its own 
memory (see Fig. 4). A collection of nodes, known 
as a "partition," is supervised by a control proces­
sor called partition manager., although the nodes 
may operate independently in a multiple instrnc­
tion, multiple data mode (:YIIMD). Each node is 
connected to two low-latency. high-bandwidth in­
terconnection networks, the Data and the Control 
1'\etworks. The Data 1'\etwork is generally used for 
point-to-point internode communication, and the 
Controll'\etwork for operations sueh as synchroni­
zation. broadcasting. and parallel prefix opera­
tions. A third network .. the Diagnostics 1'\etwork. is 
ust;d to en surA the proper operation of the system. 

Figure 5 illustrates the architecture of a single 
node of a C~I-5/5E. Each node is a SPARC micro­
processor. with four virtual vecwrunits (VUs) emu­
lated by two physical VCs for enhanced floating­
point performanee.ln the following we alwnys refer 
to the virtual VUs simply as VLs. The VCs are 
memory mapped into the SPARC address space. 
The SPARC serves as a controller and coordinator 
for the four \Ts. Each VC consists of an .VI-bus 
interface and an instruction decoder as well as 
an ALC. Each VC has its own Register File. The 
assemblv instruction set contains vector instruc­
tions for a four-stage pipeline. The ALL can per­
form a floating-point or integer multiply-add or 
multiplv-subtract operation on 64-bit operands 
per dock cycle. The ALCs also support 32-bit op­
erations. but the computational rate is the same 
as in 64-bit precision. Each VC ean addres;.; 
up to 128 MB of memory, giving a maximum of 
512 MB/Pl'\ (Pl'\ =node). The path between each 
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FIGURE 5 Overview of the CM-5/5E node with vec­
tor units. 

YC and its memory is 64-bit wide, and the pipe­
lined VCs can access memory on each clock cvcle. 
The clock frequency of the n~de processor ami the 
two physical VLs is 40 ~1Hz for the C\I-5E (32 
MHz for the CYI-5). The four VUs run at half this 
clock frequency, and so do the four memory banks, 
one for each of the four VUs. Thus, the peak per­
formance of a VL is 40 Ylflop/ sand the peak per­
formance of a node is 160 Ylflop/ s. The maximum 
bandwidth to memory is 640 YIB/s/Pl\. 

The VL memory is dynamic RA~1 (DRAY!), with 
a DRAM page size of 8 KB for 4-Yibit memorv 
chips and 16 KB for 16-::\Ibit memory chips. Th~ 
memory per VL is 8 and 32 MB respectively, for 
4- and 16-::\1bit memory chips. If the VL accesses 
two successive memory locations which are not on 
the same DRA\I page, a page fault occurs. lf a 
DRAM page fault occurs, the pipeline i,; stalled for 
5 VL cycles. and hence it is desirable to organize 
the scheduling of operations such that the number 
of DRAM page faults is minimized. In addition, 
only 64 DRA.\1 pages are mapped into the SPARC 
address space at all times. Hence, the order in 
which DRA\1 pages are traversed may have a sig­
nificant impact on performance through TLB 
thrashing. 

5 DATA STRUCTURES AND 
DATA DISTRIBUTION 

We start the discussion of our techniques for pro­
gramming hierarchical methods in data -parallel 
languages with the data struetures used and how 
they are distributed across the memories. We often 
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refer to the distribution of array data across memo­
ries as the data or array layout. 

5.1 Data Structures and Their Layout 

There are two main data structures in a hierarchi­
cal method: one for storing the potential field in 
the hierarchy and the other for storing particle in­
formation. 

The Hierarchy of Boxes 

Data Representation. Far-field potentials are 
stored for all levels of the hierarchy, since theY 
are computed in the upward pass and used in th~ 
downward pass. We embed the hierarchy of far­
field potentials in one 5-D array that effectively 
consists of two 4-D arrays with the same lavou~. 
Three of the axes represent the organization ~f the 
boxes in the three spatial dimensions. while the 
fourth axis is used to represent data local to a box. 
The 5-D array representation of the potential field 
is quite effective with respect to memory utilization. 
yet can easily be made to guarantee locality in 
traversing the hierarchy. Moreover, the 5-D array 
representation is easy to use for any depth of the 
hierarchy: only the extent of the three spatial axes 
depends on the depth of the hierarchy. Represent­
ing each level of the hierarchy as a separate array 
can dearly be made more memory efficient. but 
the number of arrays depends on the depth of 
the hierarchy. Using arrays with one of the axes 
representing the levels of the hierarchy would re­
quire ragged arrays for space efficiency. But. 
ragged arrays are neither supported in CMF nor 
in HPF. 

The declaration of the far-field potential array 
in CMF is*: 

REAL*8 FAR_POT(2,K,L,M,Nl 

CMF$LAYOUT FAR_POT (: SERIAL, : SERIAL, , : ) 

The compiler directive above specifies that the 
rightmost three axes are parallel axes and that the 
two leftmost are local to each VU (specified through 
the attribute : SERIAL OR * in HPF). The right 
most three axes represent the subdomains at the 
leaf-level of the hierarchy along the z-, y-. and 
x-coordinates, respectively. The local axis of ex­
tent K is used to store the potential field values at 
the integration points of a subdomain in Ander­
son's method (or the coefficients of a multipole 

*All the code examples in this article will be in CMF. 
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expansion in Greengard-Rokhlin's method). The 
leaf-level of the potential field is embedded in one 
layerofthe5-Darray,FAR_POT(l,:,:,:, 
: ) , and levels (h - i) are embedded in FAR_POT 
(2' : ' 2i-1 : L : 2i' 2i-1 : M : 2i' 2i-1 : 

N : 2i) (see Fig. 6). The embedding preserves 
localitv between a box and its descendants in the 
hierar~hv. If at some level there is at least one box 
per VC, then for each box all its descendants will 
be on the same VU as the box itself. 

At any step during the downward pass of the 
hierarchy, it suffices to store the local-field poten­
tial for two adjacent levels, since the goal is to 
compute only leaf-level local-field potentials. The 
data structure for local-field potentials is as 
follows: 

REAL*8 LOCAL_POT(K,L,M,N) 

CMF$LAYOUT LOCAL_POT (: SERIAL, : , : , : ) 

Layout. Given an array declaration with compiler 
directives that only specifies whether an axis is 
distributed among VLs or local to a \T .. the Con­
nection Machine Run-Time System (C:MRTS) as a 
default attempts to balance subgrid extents and 
minimize the surface-to-volume ratio. Since com­
munication is minimized for nonadaptive hierar­
chical methods when the surface-to-volume ratio 
of the subgrids is minimized, the default layout 
is ideal. 

The extents of the three parallel axes of the 
potential array. L. M. and K respectively. are equal 
to the number of leaf-level boxes along the three 
spatial dimensions. and hence are powers of 2 for 
a nonadaptive method. The global address hasp 
bits for P = '2!' VC s and m bits for JJ = 2m local 
addresses. For a multidimensional array. such as 
LOCAL_POT. the VU address field and the local 
memorv address field are each broken into seg-

3 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 2 2 2 2 

3 3 3 3 3 3 3 3 1 1 

3 3 3 3 3 3 3 3 2 2 2 2 

3 3 3 3 3 3 3 3 0 

3 3 3 3 3 3 3 3 2 2 2 2 

3 3 3 3 3 3 3 3 I 1 

3 3 3 3 3 3 3 3 2 2 2 2 

Leaf level Nonleaf levels 

FIGURE 6 Embedding of a hierarchy of grids in two 
4-D arrays. 

axis extent VU address local memory address 

bp+n-lbp+n-2•••bn bn-lbn-2···bo 

0 K b .. b 

1 L b .. b b .. b 

2 M b .. b b .. b 

3 N b .. b b .. b 

FIGURE 7 The allocation of the local potential arrays 
LOCAL_POT to vTs. 

ments, one segment for each axis. for a block map­
ping that minimizes the surface-to-volume ratio. 
Since the first axis is local, it is entirely allocated 
to local memory. For the parallel axes .. both the 
number of VC s and the number of boxes are pow­
ers of 2. Thus. in considering the representation 
of the arrav allocation it suffices to consider their 
address bi~s. The address fields of the potential 
array are shown in Figure 7. 

Particle Representation 

The input to the program consists of a bounding 
box and relevant particle data. The particle infor­
mation is given in the form of a collection of 1-D 
arrays: one array for each particle attribute. such 
as charge. mass. velocity, and coordinates. 

Particle data are used in particle-box interac­
tions in forming the far-field potential for leaf-level 
boxes before traversing the hierarchy, and in eval­
uating the local-field potential of leaf-level boxes 
at the particles inside these boxes after traversing 
the hierarchv. To maximize the localitv in these . -
computations it is desirable to allocate particles to 
the same Vl' as the leaf-level box to which they 
belong. For this reason, we also use 4-D arrays for 
each particle attribute. with a layout equal to that 
of LOCAL_POT and FAR_POT. The declaration 
of the 4-D array for the X- coordinates of the parti­
cles is 

REAL*8 X_4D(B,L,M,N) 
CMF$LAYOUT X_4D ( : SERIAL, : , : , : ) 

l\'ote that the particle-particle interactions are de­
fined by the collection of boxes defining the near­
field. The direct evaluation can be efficiently per­
formed using the same data structures and layouts 
as used in computing particle-box interactions .. 
as detailed in Sections 6. 2 and 9. 



6 OPTIMIZING COMMUNICATION 

By using the optimization techniques described in 
this section, all communication amounts to 1 O'Yo 
of the total execution time for a sample run of 100 
million particles on a 256-node C.\;I-5E, using 
K = 72 in the field approximations on the spheres 
(Equations 3 and 4). 

The O(N) methods require three kinds of com­
munication: 

1. Particle-box: Particle-box interactions are 
required in forming the leaf-level boxes' far­
field representation before the upward tra­
versal of the hierarchy. They are also re­
quired in evaluating the local-field at the 
particles after the downward pass of the hier­
archv. 

2. Box-box: During the upward pass, the com­
bining of far-field potentials of child boxes 
to form the far-field potential of the parent 
box requires parent-child box-box interac­
tions. During the downward pass, converting 
the local-field potentials for parent boxes to 
that for child boxes also requires parent­
child (box-box) interactions. In addition, 
the downward pass requires neighbor (box­
box) interactions for the conversion of the 
far-field potential of interactive-field boxes 
to local-field potentials. 

3. Particle-particle: The evaluation of the 
near-field requires particle-particle interac­
tions among groups of particles contained in 
the near-field boxes. 

We show that by maximizing the locality in allo­
cating child boxes to the same VC as their parent. 
and by avoiding unnecessary local memory moves 
through the use of the array-aliasing feature, ex­
cessive data movement can be avoided and a 
high degree of communication efficiency can be 

jyuyO 00 01 10 11 

xllxO 00 0 2 8 10 

01 1 3 9 11 

10 4 6 12 14 

11 5 7 13 15 

box addresses: xllxO,yllyO keys in sorting: y1xlly0x0 

FIGURE 8 Sorting particles for maximum locality in 
reshaping particle arrays. 
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achieved on box-box interactions. The efficiencv 
in particle-box interactions for uniform, or almost 
uniform. particle distributions is achieved by an 
efficient remapping of the 1-D input arrays for 
particle attributes to 4-D arrays with the same lay­
out as the leaf-level boxes of the potential arrays. 
This layout is also used for efficient computation 
(see Section 9) and communication (see Section 
6.2) in the partiele-particle interactions. 

6.1 Maximizing the Locality in 
Particle-Box Interactions 

Mapping of 1-D Particle Arrays to 
4-DArrays 

The mapping of the 1-D input arrays for particle 
attributes to 4-D arravs is determined as follows. 
First. to which box a particle belongs is determined 
based on its coordinates and the number of boxes 
along different coordinate axes. Second. the parti­
cles in each box are ranked. The rank and the box 
number give a unique location in the 4-D array. 
The length of the local axis of this array is equal 
to the maximum number of particles in any box. 
The ranking of the particles in each box is made 
through a segmented +-scan on a 1-D input array 
after the particles have been sorted such that parti­
cles in the same box appear together. \Ve use a 
coordinate sort (see Fig. 8) for the particle sort. 
The keys for the coordinate sort are determined so 
that for a uniform distribution of particles the 
sorted particles in the 1-D array are allocated to the 
same VL as the leaf-level boxes (in the potential 
arrays) to which they belong. 

Algorithm: (Coordinate sort) 

1. Find the layout of the 4-D potential arrays 
using intrinsic mapping functions, e.g., the 
number of bits for the VL address and the 
local memory address for each axis. 

2. For each particle, generate the coordinates 
of the box to which it belongs, denoted by 
xx .. x. yy .. y, and zz ... z. 

3. Split the box coordinate,; into VC address 
and local memory address. written as 
x .. xj x .. x .. y.yjy.y, z .. zjz .. z, according to 
the layout of the potential arrays. 

4. Form keys for sorting by concatenating the 
VL: addresses with local memorv addresses, 
written as z .. zy .. yx .. xjz .. zy . .y:X .. x. 

o. Sort. 
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After sorting, particles belonging to the same 
box are ordered before any particle in any higher­
ordered box. Furthermore, for a uniform particle 
distribution, if there is at least one box per VU. 
each particle in the coordinate-sorted 1-D particle 
array will be allocated to the same VU as the leaf­
level box in the 4-D array of local-field potentials 
to which the particle belongs. Therefore, no com­
munication will be needed in assigning the parti­
cles in the 1-D arrays sorted by the coordinate 
sort to the 4-D arrays with the same layout as 
the potential arrays. For a near-uniform particle 
distribution, it is expected that the coordinate sort 
will leave most particles in the same VU memory 
as the leaf-level boxes to which they belong. . 

Particle-Box Interactions 

To compute the leaf-level particle-box interac­
tions before traversing the hierarchy, the contribu­
tions of all particles in a box to each of the integra­
tion points on the sphere corresponding to the box 
in Anderson's method (or to each coefficient of 
the multipole expansion for the box in Greengard­
Rokhlin's method) must be accumulated. Different 
boxes have different numbers of particles. There­
fore. the number of terms added varies with the 
leaf-level box. Once the particles are sorted such 
that all particles belonging to the same box are 
ordered together, a segmented +-scan is a conve­
nient way of adding in parallel the contributions 
of all the particles within each of the boxes. The 
segmented +-scan can be performed on either the 
sorted 1-D or 4-D arrays after the remapping. On 
the 4-D array the segmented scans are guaranteed 
to be local to a VC, and fast. Thus, we perform 
all scans required for the particle-box interactions 
on the 4-D arrays. 

6.2 Particle-Particle Interactions 

The direct evaluation in the near-field can also be 
carried out very conveniently using the 4-D particle 
arravs: Each box interacts with its 124 near-field 
neighbor boxes and each neighbor box-box inter­
action involves all-to-all interactions between par­
ticles in one box and particles in the other. If the 
symmetry of interaction (Newton's third law) is 
used. then the total number of interactions per 
target box is 62. This idea of reducing communica­
tion and computation in the direct evaluation in 
the near-field via exploiting symmetry is shown in 
a 2-D example in Figure 9. As box 0 traverses 
boxes 1-4. the interactions between box 0 and 

4 3 2 

"\. + 
5 ~0 1 ,- -

I 

16 7 8 
I.e- --<- --

FIGURE 9 Exploiting symmetry in the direct evalua­
tion in the near-field. 

each of the four boxes will be computed. The inter­
actions from the four boxes to box 0 are accumu­
lated and communicated along with box 0. Using 
data-parallel programming. while box 0 traverses 
boxes 1-4. boxes 5-8 will traverse box 0 and 
the interactions between them and box 0 will be 
computed. The interactions from these four boxes 
to box 0 will be accumulated and stored in box 
0. Finally, the two contributions to box 0 will be 
combined with interactions among particles in box 
0. Exploiting symmetry saves almost a factor of 2 
in both communication and computation. The 
idea of exploiting symmetry is similar to the idea 
used for the linear orrery by Applegate et al. [32]. 
Here, a linear ordering is imposed on the 62 neigh­
bor boxes in 3-D, which contain partially or­
dered particles. 

6.3 Box-Box Interactions 

Excessive data movement can easily happen in 
programs written in data-parallellanguages, such 
as HPF, which provide a global address space. 
Below, we show how to avoid excessive data move­
ment in parent-child interactions and in neighbor 
interactions using the array-aliasing feature of 
C~F, instead of using extrinsic procedures in HPF 
which require the low-level, and thus more diffi­
cult, message-passing SPMD style programming. 

Parent-child box-box interactions are re­
quired both in combining far-field potentials in the 
upward pass through the hierarchy and in local­
field evaluations in the downward pass. 

Neighbor box-box interactions are required for 
the far-field evaluation of interactive-field boxes 
in the downward pass of the hierarchy. and for the 
direct evaluation of the near-field using the 4-D 
array representation of the particles. In our imple­
mentation of interactive-field computations (which 
does not exploit the parallelism among the boxes 
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FIGURE 10 Optimizing communication in neighbor interactions. Examplcs are in two 
dimensions. 

in the interactive-field), each target box needs to 
fetch the potential vectors of its 375 neighbor 
boxes (if supernodes [10] are not used). 

Interactive-Field Box-Box 
Communication 

In CMF, the simplest way to express the fetching 
of neighbor potential vectors for a target box uses 
individual CSHIFTs, one for each neighbor, as 
shown in Figure 1 Oa. In the C:\1RTS, composite 
CSHIFTs are implemented as a sequence of inde­
pendent shifts, one for each axis. 

A better way to structure the CSHIFTs is to im­
pose a linear ordering on the interactive-field 
boxes, as shown in Figure 1 Ob. The potential vec­
tors of neighbor boxes are shifted through each 
target box, using a CSHIFT with unit offset at every 
step. The three axes using different bits in their 
VU addresses. The rightmost axis uses the lowest­
order bits and the leftmost axis uses the highest­
order bits in the default axes ordering. Nodes that 
differ in their lowest-order bits are adjacent in 
many networks. In such networks, the best linear 
ordering should use CSHIFTs along the rightmost 
axis most often. Due to the construction of the fat­
tree network on the CM-5/5E and the array layout, 
this shift order is advantageous in our implemen­
tation. 

Unfortunately, the scheme just outlined results 

in excessive data motion. Assume that every VC 
has an 51 X 52 sub grid of boxest two dimensions, 
and that the CSHIFTs are made most often along 
the _v-axis. Every CSHIFT with unit offset involves 
a physical shift of boundary elements off-VC and 
a local copying of the remaining elements. After 
shifting six steps along they-axis in Figure 1 Oc, 
the CSHIFT makes a turn and moves along the x­
axis in the next step, followed by a sequence of 
steps along the _y-axis in the opposite direction. 
All the elements in a VC, except the ones in the 
last row before the turn, are moved back through 
the same VUs during the steps after making the 
turn. Thus, this seemingly efficient way of express­
ing neighbor communication in CMF involves ex­
cessive communication in addition to the local data 
movement. 1\"evertheless, on a 32-node CM-5E it 
improved upon the aforementioned alternative by 
a factor of 7. 4 for a sub grid with axes extents 16 
and K = 12. 

In order to eliminate excess data movement, we 
explicitly identify for all boxes in the local suhgrid 
the interactive-field boxes that are nonlocal, then 
structure the communication to fetch only those 
boxes. Figure 11 shows a plane through a target 
box and its near- and interactive-field boxes in 
3-D. For a child box on the boundarv of the sub-

t We ignore the local axis in this section since communica­

tion only happens on parallel axes. 
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grid in a VU, the interactive-field box furthest away 
from it is at distance four along the axis normal to 
the boundary of the subgrid. Hence, the ·'ghost" 
region is four boxes deep on each face of the sub­
grid. Using the array-aliasing feature of CMF, the 
ghost boxes can be easily addressed by creating 
an array alias that separates the VC address from 
the local memorv address. Assume the declaration 
for the potential array is 

REAL*S POT(K,L,M,N) 
CMF$LAYOUT POT (: SERIAL, : 

and that the subgrid of boxes has extents 51 X 

52 X 53. Then. the declarations 

grid local to a VC. The drawback with this ap­
proach is more complex control in the interactive­
field evaluation. and lower arithmetic efficiency 
because of shorter vectors and fewer instances for 
each vector operation compared to using a single 
subgrid. The excess storage for a single array is 
relatively modest; for a 8 X 8 X 8 subgrid. the 
ghost region alone contains 3.584 boxes compared 
to 512 boxes for the local subgrid. On a 256-node 
CM-5E with 32 Mbyte/VC. the deepest hierarchy 
forK = 12 has depth eight. The largest subgrid 
has extents 32 X 32 X 16, and the corresponding 
subgrid for ghost boxes has extents 40 X 40 X 

24. In this case, the relative memory waste due to 
redundant storage of the local subgrid is only 
5.3%. 

REAL*8 POT_ALIAS(K,Sl,S2,S3,Pl,P2,P3) 
CMF$LAYOUT POT_ALIAS (: SERIAL, : SERIAL, : SERIAL, : SERIAL, 

REAL*8 NBR_POT (K, Sl +8, S2+8, S3+8, Pl, P2, P3) 
CMF$LAYOUT NBR_POT (: SERIAL, : SERIAL, : SERIAL, : SERIAL, , : , : ) 

identify the subgrids and allocate a new array 
NBR_POT for storing the local subgrid and the 
ghost boxes in a (51 + 8) X (82 + 8) X (5~3 + 8) 
subgrid. Alternatively. the ghost boxes can be 
stored in a separate array. The benefits of using a 
separate array for the boxes fetched from other 
VCs are that copying of the local sub grid is avoided 
and storage is saved by not storing twice the sub-

FIGURE 11 A plane of the near- and interactive-fields 
in three dimensions. 

With the sub grids identified explicitly. fetching 
boxes in ghost regions requires that 6 surface re­
gions, 12 edge regions. and 8 corner regions be 
fetched in three dimensions. These regions can be 
fetched either directly, using array sections and 
CSHIFTs, or by creating a linear ordering through 
all the VCs containing ghost boxes and using 
CSHIFTs to move whole subgrids. Array sectioning 
is performed after subgrids are moved to the desti­
nation VC. Moving whole sub grids is necessary in 
order to keep the continuity of the linear ordering 
of the subgrids. Although some redundant data 
motion takes place, it is considerably reduced 
compared to using a linear ordering on the un­
aliased arrav. Table 2 summarizes the data motion 
requirements for the four methods for 51 = 52 = 

53= 8. 
The memory requirements can be reduced by 

prefetching fewer ghost boxes at one time. For ex­
ample, instead of prefetching all the ghost boxes 
required by all interactive-field computations. a 
column of (51 + 8) X 52 X 53 ghost boxes can 
be fetched and used for interactive-field computa­
tions with some fixed offsets along the }··-axis and 
the z-axis, but different offsets along the x-axis. 
As the offset along they-axis or the z-axis changes 
by 1. most ghost boxes fetched in the previous step 
can be reused. However. since in prefetching all 
the ghost boxes at once, the memory requirement 
in traversing the hierarchy is about the same as in 
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Table 2. Comparison of Data Motion Needs for Interactive-Field Evaluation on a 32-Node CM-5E 

1'\umber of Relative Time 
:'\umber of '\"onlocal Local Box ~umber of 

Method Boxes Fetched Y1oves CSIIIFTS K = 12 K = '?2 

Direct on unfactored arrays 169 1:8 
Linearized unfactored arrays 85.888 596.608 1.3:33 19.'-l 18.2 
Direct on factored arrays 3.58'-l :.680 54 1.6:3 1.48 
Linearized factored arravs 4 .. '352 6.400 10 1 1 

NOTE: The local subgrid is of extent 8 and ghost boxes are stored in a 16 X 16 X 16 subgrid whPn using factored arrays. The 
unfactored and factored arrays refer to the original arrays and their aliascd countPrparts. respectivelY. 

the direct evaluation in the near-field. we did not 
explore the partial prefetching approach (the max­
imum storage needs would not be reduced). 

1'\ote that for subgrid extents smaller than 4 

along any axis, communication beyond nearest­
neighbor VCs is required. 

Near-Field Box-Box Communication 

For the direct evaluation in the near-field, the 
fetching of near neighbor boxes can also be opti­
mized through factored arrays as described in the 
previous section. which essentially trades memory 
requirement for efficient communication. Section 
9 discusses another optimization which trades 
memory requirement for arithmetic efficiency also 
for the near-field direct evaluation. Either optimi­
zation requires similar extra memory, and makes 
the direct evaluation stage a memory bottleneck. 
but the increase in performance with the second 
one is much higher. To save memory, we only keep 
the second optimization. Thus, fetching particles 
in neighbor boxes is performed by using CSHIFTs 
on unfactored arrays with a linear ordering. 1'\ote 
that for the near-field the depth of the ghost region 
is two boxes in each direction of all axes. 

Parent-Child Box-Box interaction 

C sing the embedding described in Section 5, the 
far-field potentials of boxes at all levels of the hier­
archy are embedded in two layers of a 4-D array, 
called the base potential array. During traversal of 

REAL*8 POT_ALIAS(2,K,S1,S2,S3,P1,P2,P3) 

the hierarchy. temporary arrays of a size equal to 
the number of boxes at the current level of the 
hierarchy are used in the computation. 

We abstract two generic functions Mul tigrid­
embed andMul tigrid-extract for embedding/ 
extracting a temporary array of potential vectors 
corresponding to some level of the hierarchy into/ 
from the base potential array. The reduction oper­
ator used in the upward pass is abstracted as 
Mul tigrid-reduce operator. The distribution 
operator used in the downward pass is abstracted 
as a Mul tigrid-distribute operator. The way 
to implement these four functions in C\1F is to use 
array sectioning. For example, using the embed­
ding described in Section 5, Mul tigrid-embed 
at level (h - i) can be expressed in CMF as 

FAR_PQT(2,: ,2**(I-1): L: 2**I, 
2** (I-1) : M: 2**I, 2** (I-1) : N: 2**I) 
= TMP. 

Unfortunately, the current CMF compiler gener­
ates a send comrnunication for this expression, 
even though the corresponding boxes are allocated 
to the same VC for most levels. 

We use Multi grid- embed to illustrate how the 
compiler-generated send can be avoided. If the 
array TMP, which stores the potential vectors for 
boxes at level i of the hierarchy, has at least one 
box per VU, Mul tigrid-embed only involves 
data movement within VCs and no communication 
is needed. The send is avoided as follows 

CMF$LAYOUT FAR_POT_ALIAS (: SERIAL, : SERIAL, : SERIAL, : SERIAL, : SERIAL, , : ) 

REAL*8 TMP_ALIAS(K,R1,R2,R3,P1,P2,P3) 
CMF$LAYOUT TMP_ALIAS (: SERIAL, : SERIAL, : SERIAL, : SERIAL, : , : , : ) 

FAR_POT_ALIAS(2,: ,2**(I-1): S1: 2**I,2**(I-1): S2: 2**I,2*(I-1): S3: 2**I, TMP_ALIAS 
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In the above code, we first create array aliases for 
the two arrays to separate their loc~l addresses 
from the physical addresses. Array sectioning is 
then performed on the local axes and no send com­
munication is generated. 

If array TMP corresponds to a level of the hierar­
chy which has fewer boxes than the number of 
VUs, then Mul tigrid-embed is performed in two 
~teps. First, a temporary array TMP2, correspond­
mg to the level of the hierarchy that has the least 
number of boxes larger than tlle number of VCs. 
i.e., at least one box on each VC, is allocated. 
~he~, TMP ifi embedded into TMP2 using array sec­
uonmg, followed by embedding TMP2 into the base 
potential array via local copying as in the ease 
requiring no communication. The embeddina of 

. 0 
TMP mto TMP2 requires a send communication. 
But this communication is much more efficient 
than the communication in embedding TMP di­
rectly into the much larger base potential arrav, 
although the actual amount of communication is 
the same. The improved efficiency is due to the 
smaller overhead in computing s.end addresses 
which is about linear in the array size. For array 
sectioning, the overhead mav do~1inate the actu~l 
communication, which is pr~portional to the num­
ber of elements selected. 

On the CYI-5E, the performance of Multi­
grid-embed is improved by a factor of up to two 
orders of magnitude using the local copying or the 
two step-scheme. as shown in Figure 12. 

10.---.----.---.----r---~--~ 

Use send in CMF -+-
Local copying or two-step scheme ~ 

0.1 

O.Ql 

0.001 

0.0001 L...---...1--__,L __ ..____...~.-_ __,L _ _J 

64 512 4K 32K 256K 2M 16M 
Boxes in the temporaty array 

FIGURE 12 Performance improvement of Multi­
grid_embed usinl! array seetioninl! and aliasing for a 
depth-eight 3-D hierarchy on a 256-node CM-5E. The 
two-step scheme was used for the first two cases and 
the remaining cases used only local copying. 

7 OPTIMIZING COMPUTATION 

Our techniques for optimizing the computations 
in hierarchy traversal result in an overall efficiency 
of 40% forK= 12 and a depth-eiaht hierarch~ 
and 69% forK= 72 and a depth-se~en hierarch~ 
during the upward and downward hierarchy tra~ 
versaL excluding communication. The peak ~rith­
metic efficiency at the leaf-level of about 74% for 
K = 12 and 85% for K = 72 is degraded due 
to th~ following four kinds of overheads: copying, 
maskmg, overheads for the higher levels of the hi­
erarchy. and poor vectorization in the direct evalu­
ation in the near-field. 

In Anderson's variant of the fast multipole 
method, each of the three translation operators 
~sed in traversing the hierarchy can be aggregated 
mto matrices, and their actions on the potential 
field further aggregated into multiple-instance ma­
trix-matrix multiplication. Since there is no other 
computation in the hierarchv. the entire hierarchi­
cal part takes the form of a. collection of matrix­
matrix multiplications, which is implemented 
efficiently on most computers as part of the 
basic linear algebra subroutines (BLAS) [33-35]. 
Multiple-instance BLAS forms a part of the 
CMSSL [12]. 

ForK= 12 and a depth-eight hierarchv on a 
256-node CM-5/5E, the use of CMSSL res.ults in 
an efficiency of 54% and 74%, (87 and 119 YHiop/ 
s per node) for the translation operations T 1 (T:3) 

and T2 at the leaf-level, respectivelv. Including the 
overhead of copying. the translatit;n operatio~1 T.2 

achieve an efficiency of 60'Yo. Including the over­
head of both copying and masking, thf~ efficiency 
of translation operations T2 drops to 44%. Fo.r 
K = 72 and a depth-seven hierarchv on a 256-
node CM -5/ SE, the use of C\ISSL ~esults in an 
efficiency of 60% and 85°/,, (96 and 136 Mflop/ 
s per node) for T 1 (T3 ) and T2 at the leaf-leveL 
respectively. The efficiency in translation opera­
tions 72 drops to 79% and 74% when the overhead 
of copying and the overhead of both copying and 
masking are included, respectively. The efficienc­
ies are summarized in Table 3. 

7.1 Translations as BLAS Operations 

The translation operators evaluate the approxima­
tions of the source spheres at the integration points 
of the destination spheres (see Fig. 3). A sphere 
approximation (Equation 3 or 4) is defined by 

K 
___,~-!Jo-t ----1 

<I>( xi)= L. .. J(s1• X;)· g(asi ),j 
i=1 . 

1,K, 



Table 3. Leaf-Level Arithmetic Efficiencies on a 
256-Node CM-5E 

Operation 

T 1, T:l: arithmetic 
T2 : arithmetic 

arithmetic incl. copy 
arithmetic incl. copy 

and masking 

K= 12, 
h = 8 

54% 
74% 
60% 
44% 

K= 72. 
h = 7 

60% 
85% 
79% 
74% 

:"'OTE: The a!(!(regation of T2 translations involves copying 
.and maskin!(. 

where /(1. 7) represents the inner summation in 
' J ~ ~ 

the original approximation. f(s 1 , x1 ) is a function 
of the unit vector S: from the origin of the source 
~here to its ith integration point and the vector 
x1 from the origin of the source sphere to the jth 
integration point on the destination sphere. Due 
to the construction of the hierarchv of boxes and . __, ~ 
the approximation formulas used, f(s 1 , x1 ) is 
unique to each child of a parent. but is location 
and level independent. It is preferably precom­
puted. The translation of the integration points of 
a child to each integration point of the parent is 
an innerproduct computation. The translation of 
the integration points of the child to all of the inte­
gration points of the parent constitutes a matrix­
vector multiplication, where the matrix is of shape 
K X K. Thus, Equation 5 indeed defines a matrix­
vector multiplication. 

Translation Matrices for T1 and T3 

Since in three dimensions a parent has eight chil­
dren, each of the translation operators T 1 and T3 

can be represented by eight matrices, one for each 
of the different parent-child translations. The 
same matrices can be used for all levels, and for the 
translations between any parent and its children 
irrespective of location. In fact, the eight matrices 
required to represent T 1 are permutations of each 
other. One matrix can be obtained through suit­
able row and column permutations of another 
matrix. 

Let the potential vectors of eight child boxes of 
a parent box be / 1 , . . . , / 8 • and the translation 
matrix from one of the child boxes to the parent 
box be M. In matrix form, the application of T 1 

can be written as 
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where f is the potential vector of the parent box. 
and P1, P; . 2 :S i :S 8 are suitable permutation rna­
trices. 

Similarly, let the potential vector of a parent box 
be f. and the translation matrix from the parent 
box to one of the child boxes be lvf. The application 
of T,, to compute the potential vectors of child 
boxes can be expressed as 

If the permutation property is exploited. it suffices 
to store one matrix for T 1 and one for T3 in each 
VC, since the matrices for T 1 and T:3 are shared 
bv all the boxes at all levels. Equation 6 can be 
e~aluated by first permuting the potential vectors 
of seven of the eight child boxes, i.e., generating 
Pf/2 • PT/3 • etc .. then performing a matrix-matrix 
multiplication of the matrix M and a matrix with 
the eight potential vectors of the children as col­
umns, followed by permutations of the columns of 
the product matrix which then are added to form 
f. For T3 . seven different permutations off are 
generated first, then a matrix-matrix multiplica­
tion is performed as for T 1 , followed by permuta­
tions of the columns of the product matrix. No 
reduction is required. This approach reduces the 
amount of computation and the storage of transla­
tion matrices and may achieve better arithmetic 
efficiency through the aggregated matrix-matrix 
multiplication. However, on the CM-5E, the time 
for the permutations exceeds the gain in arithmetic 
efficiency. In our code we store all eight matrices 
for each of T 1 and T3 . 

Even though permutations are not used in 
applying the translation operators to the potential 
field thev could be used in the precomputation 
pha~e. Si~ce the permutations depend on K, the 
number of integration points in a nontrivial fash­
ion. using permutations in the precomputation 
stage would require storage of the permutations for 
all different Ks. To conserve memory, we explicitly 
compute all matrices at run-time (when K is 
known). We discuss redundant computation-com­
munication trade-offs in Section 8. 

Translation Matrices for T2 

The interactive-field computations dominate the 
hierarchical parts of the code. In three dimensions 
the interactive-field contains no boxes inside a 
5 X 5 X 5 subgrid centered at the target box. 
Depending on which child box of a parent is the 
target, the interactive-field extends two or three 



354 Ht Al'iD JOHl'iSSOl'i 

boxes at the level of the child box in the positive 
and negative direction along each axis. Together, 
the target box and its near-field and interative­
field boxes form a 10 X 10 X 10 subgrid. This 
sub grid is centered at the center of the parent, and 
is the same for all children of the parent, although 
the near-field and interactive-fields of siblings 
differ. 

Each box. except boxes sufficiently close to the 
boundmies. has 875 boxes in its interactive-Geld. 
Though each of the eight children of a parent re­
quires 875 matrices, the siblings share many ma­
trices. The interactive-field boxes of the eight sib­
lings have offsets in the range [- 5 + i, 4 + i] X 

[-5 + j, 4 +j] X [-5 + k, 4 + k]\[-2., 21 X 

[-2, 2] X [ -2, 2], i, j, k E {0, 1}, respectively. 
For illustration, see Figure 11. Each offset corres­
ponds to a different translation matrix. The union 
of the interactive-fields of the eight siblings has 
11 X 11 X 11 ;) X S X ."> 1,206 boxes with 
1,206 offsets in the range [ -5., 5] X [ -5, 5] X 

5]\[-2, 2] X [-2, 2] X 2]. For ease of 
indexing, we also generate the translation matrices 
for the 125 subdomains excluded from the inter­
active-field, or a total of 11 x 11 X 11 = 1 ,3~11 
matrices. Different ways of precomputing the 
translation matrices and the trade-offs are dis­
cussed in detail in Section 8. 

7.2 Aggregation of Translations 

Aggregation of computations lowers the overheads 
in computations. In addition, the aggregation of 
computations may allow for additional optimiza­
tions by increasing the degree of freedom in sched­
uling operations at a given time. The goal in aggre­
gating translations in Anderson's method is to 
combine lower-level BLAS into higher-level ones,. 
and to aggregate the highest-level BLAS that can 
be used into multiple-instance calls to the C~ISSL 
BLAS. Aggregation exploits the fact that the trans­
lation matrices are the same for the corresponding 
child of each parent in all parent-child transla­
tions. Similarly. aggregation makes use of the fact 
that the matrices used for the far-field to local­
field potential conversion in the interactive-field 
only depend on the relative locations of the source 
and destination boxes. 

Parent-Child Interactions 

Below we show how to use aggregation for an effi­
cient implementation of the translation operator 
T1 . Assume that at some level of the hierarchy. 

the subgrid of the temporary potential array is of 
shape 51 X 52 X 5:3,. with 51, 52, 53 2:: 2, as 
shown in Figure 1:3. Each box in the subgrid stores 
a potential vector and must perform a matrix­
vector multiplication. As discussed in Section 
7 .1.1. only one copy of each translation matrix is 
stored. and it is shared by all the boxes on each 
vr. Thus, explicit looping over the boxes on each 
VL is needed. The loop structure is shown by the 
pseudo-code fragment 

DO I 1, 2 
DO J=l, 2 

DO K=l, 2 

DOII=l, Sl, 2 

END DO 

DO JJ=l, 52.2 
DO KK=l, 53,2 

CALL MATRIX-VECTOR­
MULTIPLY ( ... ) 

Each of the eight child boxes of a parent needs 
to use a different translation matrix. The choice 
of translation matrix (child) is controlled bv the 
outer three DO loops. The inner three loops iterate 
through every other box along the three axes-the 
same child box of each parent box. The loop bodv 
contains a call to the matrix-vector multiplicatio~ 
subroutine with the matrix of shape K X K. Since 
the same translation matrix is used in the inner 
three loops, these loops could in principle be com­
bined into a single matrix-matrix multiplication 
for one matrix of shape K X K and the other of 
shape K X 51/2 · 52/2 · 53/2. However, such 
combining is possible only if the stride for the axis 
of length 5112 · 52/2 · 53/2 is constant. This 
condition does not hold, as shown in Figure 14. 
The largest number of columns that can be treated 
with a fixed stride is max(51/2, 52/2, 53/2). 

~ S2 / 
X' x• X' XI _.J __ _ J __ _ _~ __ 

_J __ 

' ' ' I 
I I I r--:-

X' x~ x• X' _ .J __ _ J __ _.J __ - ..J __ 
I I I I 

Sl I I I 

T. x• X' X' _ J __ _.J __ _ ,J __ _J __ 
I I I I 
' I I c........!.._ . 

X' x~ x• ·Pf _.J __ 
_ ,., __ 

-.J- ... -:--I I I 
I I I 

FIGURE 13 The subgrid of boxes of potential arrays 
on a VU. 
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FIGURE 14 The layout of the subgrid of boxes of 
potentials arrays in each VU. 

In aggregating matrix-vector operations into 
matrix-matrix operations, not only is the number 
of vectors being aggregated of interest, but also the 
stride between successive vectors. since it affects 
the number of DRAM page faults and TLB entry 
replacements in the multiple-instance matrix­
matrix multiplication. With cubic or close to cubic 
subgrids for minimum communication, either the 
extents of the subgrid axes are the same or they 
differ by a factor of 2. For relatively small sub grids, 
the difference in size of the multiplicand due to 
the difference in subgrid axes extents has a larger 
impact on performance than DRAM page faults 
and TLB thrashing. Hence, we choose to aggregate 
vectors into a matrix along the axis with the largest 
local extent. If two or all three axes are of the same 
length. the vectors are aggregated along the axis 
with the largest local extent and with the smallest 
stride. For relatively large subgrids. vectors are ag­
gregated along the axis with the smallest stride. 

The remaining two loops of the three innermost 
loops define multiple-instance matrix-matrix 
multiplication, which is supported by CMSSL. The 
CMSSL routines fold all axes that can be folded 
into a single axis with constartt stride for the multi­
ple-instance computations. All such folded in­
stance-axes are considered together with the prob­
lem-axes in determining blocking and loop orders 
for maximum performance. 

DO I=O, 1 
DO J=O, 1 

DO K=O, 1 
DO I1 = - 4 , - I , 5- I 

DO Jl=-4-J, 5-J 
DO K1=-4-K, 5-K 

DO II=l, Sl, 2 
DO JJ=l, S2, 2 

DO KK=l, S3, 2 
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Since the two instance-axes in Anderson's 
method cannot be folded into a single axis with 
constant stride due to the array layout (see Fig. 
14 ), the aggregation of the matrix-vector multipli­
cations into multiple-instance matrix-matrix mul­
tiplication is implemented as 

DO I=l, 2 

DO J=l, 2 
DO K=l, 2 

DO II=l, Sl, 2 

CALL MATRIX-MULTIPLY-MI( ... ) 

END DO 

The performance of the T 1 and T;3 translations 
improves from 58 to 87 Mflop/s/PN forK= 12 
and subgrid of extents 32 X 32 X 16 by replacing 
the first loop stn1cture with the loop structure 
above. The matrices are of shape 12 X 12 and 
12 X 8 with 16 such instances handled in a single 
call. For K = 72 and a sub grid of extents 16 X 

16 X 8, the performance improves from 95 to 96 
Mflop/s/PK 

Far-Field to Local-Field Conversion 

The conversion of the far-field to local-field poten­
tial of the boxes in the interactive-field is made 
using the array NBR_POT with subgrid of shape 
(51 + 8) X (52 + 8) X (53 + 8). For each of the 
eight sibling boxes of a parent box, 875 applica­
tions of the translation matrix for T2 are required. 
We use three nested loops with a total of 1,000 
iterations to accomplish the 875 matrix-vector 
multiplications; the 125 undesired iterations are 
skipped by a conditional test. ln the loop nest be­
low, all operations on the subgrid for a given trans­
lation matrix are performed before any operation 
for anv other translation matrix. 

if ((Il,J1,Kl) in interactive-field) 
CALL MATRIX-VECTOR( ... ) 

END DO 
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FIGURE 15 Aggregation ofBLAS operations in neigh­
bor interactions. 

For parent-child interactions, aggregation of 
matrix-vector multiplications into multiple-in­
stance matrix-matrix multiplications was carried 
out on two of the three innermost loops. For inter­
active-field computations we choose to copy the 
vectors of the array (51 + 8) X (52 + 8) X (53 + 
8) referenced by the three innermost loops into a 
new array such that a single-instance matrix­
matrix multiplication with matrices of shape K X 

K and K X 51/2 · 52/2 · 83/2 is performed. The 
copying is illustrated in Figure 15. The loop struc­
ture for the approach using copying is shown in 
the following code fragment: 

DO I=1, 2 
DO J=O, 1 

DO K=O, 1 
DOil=-4-I, 5-I 

DO J1=-4-J, 5-J 
DO K1=-4-K, 5-K 

TMP = 

performance of the translation is 85 ~flop/ s/PN. 
For 81 = 16. 52 = 16, 83 = 8, and K = 72, the 
execution rate of the 12 X 12 by 12 X 256 matrix 
multiplication is 136 ~flop/ s/Pl\'. Including the 
cost of copying, the measured performance is 124 
Mflop/ s/PN. 

The copying cost can be reduced by copying a 
whole column block of (51 + 8) X 52/2 X 53/2 
boxes into two linear memory blocks outside the 
DO-K1 loop; one for even slices of the column. 
and the other for odd slices. Since the axis indexed 
by K1 has unit stride, a sectioning with stride 2 
on that axis will reside in a consecutive block of 
memory in one of the two temporary arrays. Each 
local column can be used on average 8.75 times 
in the DO-K1loop. The cost of copying is therefore 
reduced to 4 · 100/875 ·(51+ 8)/(51 · K) of that 
of matrix multiplication, assuming no page faults. 
Including the cost of copying, the performance of 
translations in neighbor interactions reaches 96 
and 127 Mflop/s/PN forK= 12 and K = 72. 
respectively. 

Copying of sections of subgrids to allow for a 
K X Kby aK X 81/2 · 82/2 · 53/2 matrix multipli­
cation can also be used in parent-child interac­
tions, but the copying cost is relatively higher. In 
estimating the copying cost for the interactive-field 
computations, we ignored the small copying back 
cost after the accumulation. With this cost in­
cluded, the total copying cost for operator T2 is 
2K + 2K/875 cycles per matrix-vector multiplica­
tion. For parent-child interactions the total copy-

NBR_POT(:, Il+I+5: Il+I+S1+4: 2,J1+J+5: J1+J+S2+4: 2,K1+K+5: K1+K+S3+4: 2,: , :) 
CALL MATRIX-MULTIPLY( ... ) 

END DO 

For 81 = 32, 52 = 32, 53 = 16, and K = 12. 
the execution rate of the 12 X 12 by 12 X 2,048 
matrix multiplication is 119 Mflop/ s/Pl\. If there 
are no DRAM page faults, the copying requires 2K 
cycles for a potential vector for which the matrix 
multiplication ideally takes K 2 cycles. Thus, the 
relative time for copying is 2/ K. This amounts to 
about 17% forK= 12 and less than 4% forK= 72. 
With the cost of copying included, the measured 

ing cost is 2K + 2K/8 cycles, ideally, perK X K 
matrix-vector multiplication. The copying cost for 
parent-child interactions is about 10°/c, higher 
than that for the interactive-field computations. 
By using copying in parent-child interactions. the 
performance for the T 1 and T.3 matrix operations 
drops from 87 to 82 Mflop/s/PN forK= 12. but 
increases from 96 to 123 Mflop/s/PN forK= 72, 
due to the lower cost of copying relative to that of 



matrix multiplication in the latter case. Since the 
time for parent-child interactions accounts for 
only a couple of percent of the total time for the 
hierarchy traversaL we did not carry out the K­
dependent optimization of copying in parent­
child interactions. 

7.3 Uniformity-Avoiding Masking 

In the calls to the BLAS in the above loop-nest 
for neighbor interactions, masking is needed since 
boundary boxes have smaller interactive-fields 
than interior boxes. Masking is needed at all levels 
of the hierarchy. In C.\1F, the masking is handled 
as an unconditional matrix multiplication followed 
by a masked assignment, and the masked assign­
ment is noticeably slower than an unmasked as­
signment. 

The masking can be avoided by adding two lay­
ers of empty boxes on all sides of the domain. We 
evaluate this option for the leaf-level. With h levels, 
each axis of the physical domain is extended by a 
factor of 2" I (2" - 4) to create two empty boxes at 
each side of each axis of the domain. Using empty 
boxes increases the cost for the direct evaluation in 
the near-field. For a given hierarchy depth, using 
empty boxes to avoid masking at the leaf-level re­
quires putting all the particles in the inner (2" -
4) X (2" - 4) X (2" - 4) boxes. The maximum 
number of particles per box increases by a factor 
of f3 = [N I (2" - 4 )3

] I [ N I 8"], and the cost of direct 
evaluation is increased in proportion to {3 2

. For a 
uniform distribution and K = 12, there are 4-16 
particles per leaf-level box for the optimal hierar­
chy depth. The increase in the cost of the direct 
evaluation for these cases is shown in Table 4. 

In our implementation on the CM-5E, the cost 
of masking at the leaf-level of a depth-eight hierar­
chy is about 18% of the total cost of traversing 
the hierarchy forK = 12 and depth eight. As K 
increases, the cost of matrix multiplication in­
creases as K 2 and the cost of masking grows as K. 
Thus, the cost of masking becomes less significant. 
For example, forK= 72 and depth seven, the cost 
of masking is less than 4% of the cost of traversing 
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the hierarchy. The increase in the direct evalua­
tion, on the other hand, decreases slowly. 

We conclude that on the CM-5E, by adding 
ghost boxes at the leaf-level of the hierarchy, the 
gain in avoiding masking in traversing the hierar­
chy is not large enough to offset the loss in the 
direct evaluation when using optimal hierarchy 
depth. Obviously, adding ghost boxes to higher 
levels implies adding more ghost boxes to the leaf­
level and will increase the cost of the direct evalua­
tion further. On other machines and with different 
compilers, the relative cost of masked assignments 
will most likely be different and the technique dis­
cussed here must be reevaluated. 

8 REDUNDANT COMPUTATION 
VERSUS REPLICATION 

All translation matrices are precomputed. Since 
the translation matrices are shared by all boxes at 
all levels, only one copy of each matrix is needed 
on each V1.~. Two extreme ways of computing these 
translation matrices are: 

1. Compute all the translation matrices on 
every VU. 

2. Compute each translation matrix only once 
with different VCs computing different ma­
trices, followed by a spread to all other VUs 
as a matrix is needed. 

In the first method the computations are em­
barrassingly parallel and no communication is 
needed. However, redundant computations are 
performed. In the other method there is no redun­
dant computation, but replication is required. lf 
there are fewer matrices to be computed than there 
are VUs, then VCs can be partitioned into groups 
with as many VCs in a group as there are matrices 
to be computed. Each group computes the entire 
collection of matrices, followed by spreads within 
groups when a matrix is needed. The replication 
may also be performed as an all-to-all broadcast 
[36]. The load-balance with this amount ofredun-

Table 4. The Increase in the Direct Evaluation Cost at Optimal Hierarchy Depth Using Ghost Boxes 

Particles/Box at Optimal 
K = 12 K= 72 

Depth without Ghost Boxes 4 8 16 16 32 64 

{32 (h = 7) 1.56 1.27 1.27 1.27 1.27 1.23 
{32 (h = 8) 1.56 1.27 1.13 1.13 1.13 1.13 
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dant computation is the same as with no redun­
clancy, but the communication cost may be re­
duced. 

Let the cost of computing a translation matrix 
on a VU be t1 and the cost of replicating it across 
P VUs be t2 (P). The total cost for the above two 
extreme ways of computing N matrices on P VC s 
with each VU storing all N matrices is 

T1(N.P) =N· t 1 

T2(N, P) = r ~ l· t1 + N · t2(P) 

Here we assume that t1 is independent of the num­
her of matrices being computed on a VU, though 
in practice computations often are more efficient 
when more matrices are computed on each VC. 
because of more efficient vectorization. On the 
CM -5E, for K varying from 12 to 72, replicating a 
K X K translation matrix is about 3-12 times faster 
than computing it. Thus, computing the matrices 
in parallel followed by replication is always a win­
ning choice. 

For T 1 and T"> we also implemented grouping 
computations and replication among eight VUs in 
addition to the two extreme methods. Figure 16 
shows the performance of the three methods. The 
cost of computing the matrices in parallel followed 
by replication without grouping is 66-24% of that 
of computing all matrices on each VL, asK varies 
from 12 to 72. With grouping, the computation 
cost is the same as without grouping. but the cost 
of replication is reduced by a factor of 1. 75-1.26 
as K varies from 12 to 72. The reason for the 
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FIGURE 16 Computation versus replication in pre­
computingtranslation for T 1 (7'3 ) on a 256-node CM-5E. 
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FIGURE 17 Computation versus replication in pre­
computing translation matrices for T2 on the C:\1-.SE. 

decrease of the difference as K increases is that 
for larger K. the replication time is dominated by 
bandwidth. while for small K. latency and over­
head dominate. 

For T2 , computing one copy of each of the 1,331 
translation matrices and replicating them is up to 
an order of magnitude faster than computing all 
on every VU, as shown in Figure 17 for a 256-node 
CM -5E. The time for computing 1,331 matrices in 
parallel decreases on larger CM-5Es. as shown in 
Figure 18, while the replication time, which domi­
nates the total time. increases about 10-20% for 
large K as the number of nodes doubles. As a re­
sult. the total time for the method increases at most 
62% as the number of nodes changes from 32 
to 512. 
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FIGURE 18 Compute in parallel and replicate in pre­
computing translation matrices for T 2 on various sized 
CM-5Es. 



Storing all 1,331 translation matrices in double 
precision on each VC requires (L331 · 8 · K 2 ) 

bytes of memory .. i.e .. 1.5~3 "1B for K = 12 and 
53.9 MB for K = 12. Therefore. replication of a 
matrix is delayed until it is needed. The replication 
is made through one-to-all broadcast rather than 
all-to-all broadcast. The total number of replica­
tions is L331 · (h - 1 ). where h is the depth of 
the hierarchy. since the T.2 translations are used 
first at level two. 

9 DIRECT EVALUATION IN 
THE NEAR-FIELD 

Since the optimal hierarchy depth that minimizes 
the total FLOP count of an O(N)N-body method 
balances the amount of computation in the hierar­
chy traversal and in the direct evaluation in the 
near-field, the efficiency in the direct evaluation 
is crucial to the overall performance. In this sec­
tion, we discuss how to use the 4-D arrays of parti­
cle attributes. used for efficient particle-box inter­
actions. for efficient evaluation of the near-field 
potentials. 

The near-field is evaluated as a sequence of 
particle-particle interactions ordered with respect 
to the boxes to which they belong. The 124 neigh­
bor boxes of a target box can be ordered linearly 
and brought to the target box through 124 single­
step CSHIFTs. Another way is to fetch nonlocal 
near-field boxes from other VCs using 4-D arrays 
factored into local subgrids through array aliasing. 
much in the same way as in fetching nonlocal inter­
active-field boxes. The first method requires less 
temporary storage, and is used for the near-field 
evaluations. The CSHIFTs aceount for about 10-
15% of the time for the direct evaluation. 

Once a neighbor box has been brought to the 
target box. an all-to-all interaction between the 
particles in the two boxes is required. \V e investi­
gated three alternatives for the all-to-all interac­
tion. The simplest way is to loop through the parti­
cles in both boxes using two nested loops. 
enrolling the inner loop can improve the perfor­
mance of a compiler-generated code by 25% on 
the CYI-5E. The vectorization can be further im­
proved by replicating each particle in the neighbor 
box to every particle in the target box, followed by 
element-wise particle interactions. But the broad­
cast operation for each neighbor particle is rela­
tively time consuming. A third approach, called 
"duplicate-and-slide," duplicates the target box, 
i.e., a new 4-D array with a local axis of twice the 

O(;V) N-BODY ALGORITH~1S 359 

length of the original array is created. The original 
4-D particle array is copied to both the first and 
the second half of the new array. One sequential 
loop over the particles in the neighbor box is used. 
Let b be the length of the serial axis of the original 
4-D particle array, i.e., the maximal number of 
particles per leaf-level box. At the ith iteration. an 
element-wise interaction between the neighbor box 
and a b-long segment along the local axis of the 
new array starting at the ith element is evaluated. 
It is easy to see that the looping covers all particle 
interactions between the two boxes. The duplicate­
and-slide approach duplicates particles once and 
the computations inside the loop are perfectly vec­
torized on each VC. On the CM-5E it is the fastest 
of all three approaches. However, it requires 33% 
more memory than the other alternatives, or a total 
of 4N memory locations for each particle attribute: 
N locations for the input 1-D array, 2N locations 
for the 4-D duplicated target, and N locations for 
the 4-D neighbor. 

10 PERFORMANCE RESULTS 

Our CMF implementation of Anderson':-; method 
with K = 12 integration points on the sphere per­
forms the potential evaluation for 100 million par­
ticles uniformly distributed in a eubic region in 
180 s on a 256-node CM-5E. The evaluation for 
a system of 100 million uniformly distributed parti­
cles is estimated to take around 60 s on a 1.024-
node CM-5E. The overall efficiency is about 27%, 
and is fairly independent of machine size. With K = 

72 integration points on the sphere, the efficiency 
improves to 3.5%. We first give a summary of the 
timings breakdown in computing the potential field 
for 100 million uniformly distributed particles on 
a 256-node CM-5E, then demonstrate the scala­
bility of the implementation. A more detailed anal­
ysis of the effectiveness of the techniques is given 
in [37]. 

In considering the execution times, it should be 
mentioned that our implementation uses the idea 
of supernodes. Zhao [10] made the observation 
that of the 875 boxes in the interactive-field, in 
many eases all eight siblings of a parent are in­
cluded in the interactive-field. By converting the 
far-field of the parent box instead of the far-fields 
of all eight siblings, the number of far-field to local­
field conversions is reduced to 189 from 875. The 
supernode idea must be modified somewhat for 
Anderson's method, but the same reduction in 
computational complexity can be achieved [37]. 
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Table 5. Weights for Floating-Point Operations 
in Our Three Methods for FLOP Counts 

Method 

I Native 
II Hennessy and Patterson 

[38] 
III C\1-5E/VC normalized 

FLOP Count 

Always 1 
ADD, SCR MUL T - 1 
DIY, SQRT- 4 
ADD, SUB, MCL T - 1 
DIV- 5 
SQRT- 8 

For gravitational and Coulombic fields, division 
and square roots represent a significant fraction 
of the arithmetic time. We report floating-point 
rates for three different weights of these operations 
as specified in Table 5. 

The timings breakdown for the potential field 
calculation of 100 million particles on a 256-node 
CM-5E is shown in Table 6 forK= 12 and K = 

72. The hierarchy depths are 8 and 7, respectively. 
The predicted optimal hierarchy depths based only 

on the number of floating-point (FLOP) operations 
using Method III are 7.97 and 7.10. Thus, for 
K = 12, the FLOP counts for the hierarchy and 
for the direct evaluation are very balanced. In fact, 
they differ by about 10%. Furthermore, the FLOP 
rates forK = 12 using Method III are 55.6 and 
46.8 Mflop/s/PN, respectively. The overall FLOP 
rate is 43.7 ~flop/s/Pl'l, with sorting accounting 
for most of the degradation in the overall FLOP 
rate. ForK = 72, the FLOP rates for traversing 
the hierarchy, the direct evaluation, and overall are 
81.8, 52.9, and 56.6 Mflop/s/PN, respectively. 

The communication time forK= 12 is 22.3%, 
of the total running time and 10% forK = 72, 
demonstrating that our techniques for reducing 
and managing data motion are very effective. The 
communication time includes the time for sorting 
the input particles, reshaping 1-D particle arrays 
to 4-D particle arrays, the multigrid functions in 
parent-child and neighbor interactions, the fetch­
ing of ghost boxes in neighbor interactions at all 
levels, replicating translation matrices for T2 at ev-

Table 6. The Breakdown of the Communication and Computation Time for 100 Million Particles on a 
256-Node CM-5E 

K = 12 K = 72 

Breakdown Time (s) %of Total Time (s) %of Total 

Communication 39.75 22.3 89.01 9.99 
Sort 19.60 11.0 16.04 1.80 
Reshape 2.618 1.47 2.482 0.28 
Upward pass - multigrid in T1 0.107 0.06 0.092 0.01 
Downward pass 8.410 4.71 56.39 6.33 

Multigrid in T:3 0.215 0.12 0.162 0.02 
Multip-id in T2 0.484 0.27 0.385 0.04 
Fetching ghost boxes in T2 5.160 2.89 8.610 0.97 
Replicate (T2 ) 2.550 1.43 47.23 5.30 

!\'ear-field CSHIFTs 9.013 5.05 14.01 1.57 
Computation 138.6 77.7 802.2 90.01 

Precompute 7\ matrices 0.006 0.00 0.575 0. 06 
Precompute T:> matrices 0.005 0.00 0.572 0.06 
Precompute T2 matrices 0.003 0.00 0.235 0.03 
!nit-potential 2.506 1.40 14.01 1.57 
Upward pass-BLAS for T 1 0.783 0.44 3.459 0.39 
Downward pass 63.62 3'" 7 0. ' 166.5 18.7 

BLAS for T3 0.601 0.34 4.320 0.48 
BLAS for T2 34.98 19.6 141.6 15.9 
Copy in T2 12.90 7.23 9.990 1.12 
Masking in T2 15.14 8.49 10.53 1.18 

Far-field 4.678 2.62 90.74 10.2 
!\'ear-field-direct evaluation 65.63 36.8 525.2 58.9 
Near-field -masking 1.371 0.77 0.952 0.11 

Total 178.4 100 891.2 100 



~ 

~ c: 
0 
u 
Q) 

~ 
Q) a 

E= 

80 

70 

60 

50 

40 

30 

20 

10 

64 K particles/PN -+-
32K particles/PN -+---· 

+--------... ----------+---------+---------+ 

32 64 128 256 512 
Number of nodes 

FIGURE 19 Scalarability on the CM-5s. 

ery level, and the CSHIFTs in the near-field direct 
evaluation for fetching particles in the near-field 
boxes. 

The computation time is 77.7% of the total run­
ning time forK= 12 and 90% forK= 72. In the 
computation time we include the time for forming 
the far-field potential for leaf-level boxes, the 
BLAS operations for the T 1 , T2 , and T,3 transla­
tions, the copying in the aggregation ofBLAS oper­
ations for better arithmetic efficiency in T2 , the 
masking in distinguishing boundary boxes from 
interior boxes in T2 , the evaluation of the potential 
due to particles in the far-field, and finally the 
direct evaluation in the near-field. 

5000 
Method III -+­
Method II -+---· 
Method! ·G··· 

0 ~--~----~----~----~--~-J 
1K 8K 64K 512K 4M 32M 

Number of particles 

I I I I I I I I I I I I I I I I I 
23334445556667778 

Optimal hierarchy depth 

FIGURE 20 FLOP count per particle for optimal hier­
archy depth, K = 12. 

O(N) N-BODY ALGORITHMS 361 

Figure 19 shows that the speed of our code 
scales linearlv with the number of nodes and num­
ber of particles. The timings are collected on 
CM-5s due to the unavailability of a variety of con­
figurations of CM-5E systems. All cases use uni­
form particle distribution in a 3-D cubic domain, 
12 integration points per sphere, and optimal hier­
archy depths. It is clear from Figure 10 that for a 
fixed number of particles per node, the efficiency 
remains independent of the number of nodes. The 
slight fluctuation is mainly due to the fluctuation 
in the number of FLOPs per particle for the optimal 
hierarchy depth, as shown in Figure 20. 

11 DISCUSSION 

Nonadaptive hierarchical methods exhibit abun­
dant data parallelism. We have demonstrated that 
exploiting parallelism within each level of the hier­
archy can yield high efficiency (and good load­
balance). Below, we also discuss the use of a 
nonadaptive code for near-uniform particle distri­
butions. For highly nonuniform particle distribu­
tions such as in typical simulations in astrophysics, 
an adaptive hierarchical method is needed in order 
to achieve good performance. 

11.1 Load-Balancing Issues in 
Nonadaptive Hierarchical Methods 

Nonadaptive hierarchical methods use nonadap­
tive domain decomposition, and the hierarchy of 
recursively decomposed domains is balanced. 
There are three sources of parallelism in traversing 
the hierarchy. First, the computations in parent­
child interactions for all boxes at the same level 
can be performed in parallel in the upward pass 
and the downward pass of the hierarchy. Second, 
at every level of the downward pass of the hierar­
chy, the conversion of the far-field potential of 
each box's interactive-field boxes into the local­
field potential of that box can be performed in 
parallel. Third, since neighbor interactions are be­
tween boxes at the same level, the neighbor inter­
actions at all levels can be performed in parallel. 

We only exploit parallelism among boxes at the 
same level of the hierarchy, which potentially could 
result in poor load-balance due to the limited par­
allelism at levels close to the root. However, hierar­
chical methods are advantageous compared to di­
rect methods only when more than a few thousand 
particles are considered. Since for the optimal 
depth of the hierarchy there only are a few particles 
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per leaf-level box, the number of leaf-level boxes 
is at least about 100. For large-scale simulations. 
there may be several million leaf-level boxes. 
Hence, for most interesting simulations there is 
excess parallelism even for the largest of .\1PPs. 
not only at the leaf-level but also for several levels 
close to the leaf-level. At levels of the hierarchy 
close to the root, there are much fewer boxes per 
level, and the cost of computation is already insig­
nificant. Hence, though the load may be unbal­
anced, improved load-balance will not affect the 
total execution time significantly. Also, a program 
that traverses the hierarchy level by level and se­
quentializes neighbor interactions requires much 
simpler data and control structures than one that 
exploits parallelism beyond just among boxes. 

11.2 Nonadapative Hierarchical 
Methods with Near-Uniform 
Distributions 

The simulations described in this article use uni­
form particle distribution as input data. In prac­
tice, nonuniform distributions are much more 
important. For simulations where the partide dis­
tributions are near uniform, for example in compu­
tational chemistry. a nonadaptive code may still 
outperform an adaptive one. A nonadaptive code 
may yield a more efficient implementation due to 
its simpler computational structure compared to 
an adaptive code. A nonadaptive code performs 
excess computations: 

1. In traversing the hierarchy, excess computa­
tions are performed since the same amount 
of computation is carried out regardless of 
the number of particles a box represents. 

2. In the partide-box interactions at the leaf­
leveL the reshaping of the 1-D particle arrays 
into 4-D arrays following the coordinate sort 
can result in extensive communication and 
load-imbalance because of the uneven num­
ber of particles per box. Furthermore. the 
memory utilization may be poor. since some 
boxes may contain far fewer partides than 
the others, but all of them occupy the same 
amount of memorv on each node. In con­
trasL using 1-D arrays fot partide-box in­
teractions results in more balanced compu­
tations, since 1-D arrays will always be laid 
out across the processing nodes evenly. This 
also implies balanced memory usage. How­
ever, such an approach relies highly on effi­
cient scan operations. 

3. In the direct evaluation in the near-field. us­
ing the 4-D array representation for partides 
obviously leads to excess computations be­
cause the particle-particle interactions are 
turned into uniform computations on the 
boxes. but boxes mav contain different 
number of particles. L sing 1-D array repre­
sentation again relies highly on efficient 
scan operations. 

As part of the future work. we plan to investigate 
the impact of the uniformity of particle distribu­
tions on the efficiency of nonadaptive data struc­
tures used in this article. 

12 CONCLUSIONS 

We have presented optimization techniques for 
programming O(N) JV-body algorithms for MPPs 
and have shown how the techniques can be ex­
pressed in data-parallel languages, such as C.\IF 
and HPF. The optimizations mainly focus on min­
imizing the data movement through careful man­
agement of the data distribution and the data 
references and on improving arithmetic effi­
ciency through aggregating translation opera­
tions into high-level BLAS operations. The most 
performance critical language features are the 
FORALL statement. array sectioning. array alias­
ing. CSHlFT. SPREAD. and array inquiry intrin­
sics. All these features, except array aliasing, are 
included in HPF. But. this feature is considered 
for inclusion in tiPF -11. 

The effectiveness of our techniques is demon­
strated on an implementation in the CMF of 
Anderson's hierarchical O(N) N-body method. 
The evaluation of the potential field of 100 million 
uniformly distributed particles and K = 12 integra­
tion points on the sphere takes 180 s on a 256-
node CM-5E. with an efficiencv of about 27% of 
the peak performance. For K = 72 integration 
points, the efficiency is about 35%. The amount of 
memory required for a particle at optimal hierarchy 
depth is about 230 bytes. independent of the error 
rate of the method. 

For highly clustered particle distributions, an 
adaptive version of N-body methods is needed in 
order to retain O(N) arithmetic complexity. We 
are currently investigating issues in an efficiency 
implementation of adaptive O(N) algorithms in 
HPF. 
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