
Implementing O(N) N-Body Algorithms
Efficiently in Data-Parallel Languages

YU HU 1 AND S. LENNART JOHNSSON 1
•
2 ·*

1Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138
2University of Houston, Houston, TX 77204-3475; e-mail: johnsson@cs.uh.edu

ABSTRACT

The optimization techniques for hierarchical O(N) N-body algorithms described here
focus on managing the data distribution and the data references, both between the
memories of different nodes and within the memory hierarchy of each node. We
show how the techniques can be expressed in data-parallel languages, such as High
Performance Fortran (HPF) and Connection Machine Fortran (CMF). The effectiveness
of our techniques is demonstrated on an implementation of Anderson's hierarchical O(N)
N-body method for the Connection Machine system CM-5/5E. Of the total execution time,
communication accounts for about 10-20% of the total time, with the average efficiency
for arithmetic operations being about 40% and the total efficiency (including communica­
tion) being about 35%. For the CM-5E, a performance in excess of 60 Mflop/s per node
(peak 160 Mflop/ s per node) has been measured. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

Achieving high efficiency in hierarchical methods
on massively parallel architectures is an important
problem. Hierarchical methods are the only feasi­
ble methods for large-scale computational prob­
lems involving many-body interactions, such as
astrophysical simulations and molecular dynamics
simulations including long-range forces. This
artiele examines techniques for achieving high
efficiency in implementing nonadaptive O(N)
N-body algorithms on massively parallel proces­
sors (MPPs). It also provides Connection ~a chine
Fortran (CMF) [1] code fragments that illustrate

*\li.ork conducted when author was with Thinkinl! .\fachines
Corporation and Harvard llniwrsitv. Cmnhrid!(P . .\la>isachu-
setts.

Rereiv~erl October 199~
Revised December 1995

© 1996 John Wilcv lx Sons. Inc.

Scientific Programmin!(. \ol. S. pp. :l:l"?-:lo~ (1996)

CCC 1 058-9244/96/04CJ:3:3: -28

how to express the techniques in a data-parallel
language.

CMF was chosen because no High Performance
Fortran (HPF) [2] compiler was available at the
time of this project. The techniques we discuss
result in high performance by

1. Reducing the need for data motion be­
tween nodes.

2. A voiding local memory copying by specifying
operations such that state-of-the-art com­
pilers can pass arrays in place.

3. Reducing the need for memory bandwidth
by organizing computations for a high degree
of register reuse without a need for interpro­
cedural analvsis.

4. Increasing vector length and/ or reducing the
number of DRA~ page faults and TLB
thrashing by aggregating computations for
collective function calls, increasing the de­
grees of freedom in scheduling operations
for the function execution.

338 HL A:\"D JOI 1:\"SSO:\"

Efficient memory management is the most chal­
lenging issue in high-performance computing.
Techniques for the automatic determination of
data distributions with balanced load and efficient
communication have been the focus of parallel
compiler research in the last several years [3-5J.
However, no general technique that balances
load and generates efficient communication has
emerged so far. User inputs in the form of data
distribution directives and careful structuring of
the code based on knowledge of the memory archi­
tecture play a much more important role in obtain­
ing high performance in programming distributed
memory machines in a high-level language than
in programming uniprocessors. The added fea­
tures in HPF, relative to Fortran 90. is a step to­

ward giving users the ability to provide helpful in­
formation to the compiler.

The hierarchical O(iV) N-body algorithms we
consider consist of near-field and far-field int.erac­
tions. For the former. the interaction between
groups of particles is handled by the direct, classi­
cal N -body algorithm. Far-field interactions are
handled through a hierarchy of computational ele­
ments corresponding to subdomains, ''boxes.''
with parent and children boxes having the obvious
meaning. Part of the far-field dose to a box is
known as the interactive-field. The computations
on the box hierarchy are carried out through three
translation operators. two of which are used in
parent-child interactions, while the third is used
in handling the interactive-field. These terms are
defined precisely in the next st'ction. Our novel
contributions are techniques, expressed in C:VIF.
for

1. Yery limited data motion m parent-child
interactions.

2. Limited data motion in neighbor inter­
actions for interactive-field computations.

:3. Trading off redundant computation vs.
communication.

4. Representing translation operations as
matrix-vector multiplications.

o. Aggregating multiple independt'nt transla­
tion operations intn multiple instances of
matrix-matrix multiplications.

6. Reducing the number of translation opera­
tions through a novel use of supernodes.

.., Efficiency in memory usage.

By using a careful allocation of the hierarchy of
boxes. the data motion between a parent and its
children is largely turned into local memory refer-

ences instead of internode communication. ~We use
one arrav for the leaf-level boxes and one arrav
for all other boxes. All boxes not at the leaf-lev~!
are packed into one array of the same size as the
array for leaf-level boxes. Our packing guarantees
that once there is at least one box per processing
node. then a'] its children boxes a!le assigned to the
same processing node. The packing is described in
"The Hierarchy of Boxes.'' a subsection in Sec­
tion ;3.

The virtual machine model provided by C:VIF
(and HPF) with a global address space easily
results in excessivE' data motion. For instance. per­
forming a circular shift on an array causes most
compilers to issue instructions that move everv ele­
ment as specified by the shift instruction. A ~nore
efficient way of dealing with shift instructions is to
move data between processing nodes as required.
but to eliminate the local memorv moves bv modi­
fying subsequent local memory .reference~ to ac­
count for the speciGed move (that was not carried
out). This issue is of particular importance in gath­
ering boxes for the interactive-Geld computations.
In Section 6 we show how to use array sectioning
and array aliasing to implement an effective gath­
ering of nonlocal interactive-field boxes. On the
Connection ::via chine systems CYI -5/5E [6:. the
communication time for the straightforward use
of CMF for interactive-field computations is more
than one order of magnitude higher than the com­
munication time for the technique we use.

ln Anderson's version of the fast multipole
method, all translation operators can be repre­
sented by matrices acting on vectors. ~1oreover.
the translation matrices are scale invariant and
only depend on the relative locations of the sources
and destinations. Hence, the matrices are the same
for aU levels of the hierarchy. and all source desti­
nation pairs with the same r·elative locations use
the same matrices at any level in the hierarchy.
Thus, all matrices can be precomputed. The trans­
lation operators in fast multi pole methods l8-1 OJ
can also be viewed as matrix-vector multiplica­
tions [111. ~We discuss this arithmetic optimization
in Section 7. By representing the translation opera­
tions as matrix-vector multiplications and aggre­
gating the matrix-vector multiplications into mul­
tiple-instance matrix-matrix multiplications.
many of the translation operations can be per­
formed at an efficiency of about 80tYo of peak .. or
at a rate of 127 .\Hlop/s per node of a GVl-5E
using the Connection :\lachine Scientific Software
Library. C:VISSL [12 J. Recognizing and aggrega t­
ing BLAS operations and using library functions

O(N) N-BODY ALGORITHMS 339

Table 1. Efficiencies of Various Parallel Implementations of Hierarchical N-Body Methods

Author Programming Model
%of Peak
Efficiencv Machine

Salmon. Warren-Salmon [13-15]
Liu-Bhatt [16. 1 ?]
Leathrum-Board et al. [19. 20]
Elliott-Board [21]

F7? + message passing 24-28%
30%
20%
14%
12%

512-node Intel Data
256-node C~-5
32-node KSR-1
32-node KSR-1
256-node (8k) CM-2
256-node CM-5/5E

C + message passing + assembly
F??

Zhao-Johnsson [18]
Hu-Johnsson [this article J

F??
*Lisp + assembly
01F

can significantly improve the performance of the
computations on most architectures, including
uniprocessor architectures.

For parent-child interactions three-dimen­
sional problems require eight translation matrices
in the upward and downward traversals of the hier­
archy of grids. In addition, a large number of trans­
lation matrices are required for neighbor inter­
actions in the downward traversal. For hierarchies
with at least four levels, each processing node con­
taining leaf-level boxes distant four from domain
boundaries requires a copy of all matrices. \Ve
discuss the trade-off between replication and re­
dundant computation in Section 8.

Although our implementation reported in this
article is in G\1F, all the CYIF constructs used.
with one exception, are available in HPF. The
exception-array aliasing-can be achieved
straightforwardly using extrinsic procedures in
HPF, as described in Section 3. The array-aliasing
feature has the clear advantage over extrinsic pro­
cedures that a programmer can express the optimi­
zations in the data-parallel programming model
instead of resorting to the message-passing SP.\1D
(single program, multiple data) style programming
model. An array-aliasing mechanism is being con­
sidered for inclusion in HPF II [13].

Most of our optimization techniques apply to
any distributed memory machine. However, the
relative merit of the techniques depend on machine
metrics. We report on the performance trade-offs
on the C~I-5/5E.

To our knowledge, this work represents the first
implementation of Anderson's method on a paral­
lel machine as well as the first implementation of
an O(N) N-body algorithm in a data-parallellan­
guage. Table 1 summarizes the efficiencies of sev­
eral parallel implementations, including the results
reported in this article. The efficiency numbers
should be viewed with some caution since the vari­
ous implementations used different algorithms.
different problem sizes, and parameters control-

2?-35%

ling the accuracies. The Barnes-Hut O(N log N)
algorithm has been implemented using the mes­
sage-passing programming paradigm by Salmon
and Warren [14-16] on the Intel Touchstone
Delta and bv Liu and Bhatt [17, 18] on the
CM-5. Both groups used assembly language for
time critical kernels and achieved efficiencies in
the range 24%-28% and 30%, respectively. Zhao
and Johnsson [19] developed a data-parallel im­
plementation of Zhao's method on the CYI-2, and
achieved an efficiency of 12%, for expansions in
Cartesian coordinates that results in more costlv
multipole expansion calculations. Leathrum and
Board et al. [20, 21] and Elliott and Board [22]
achieved efficiencies in the range 14%-20% in
implementing Greengard-Rokhlin's method [23]
on the KSR-1. Schmidt and Lee [24] vectorized
this method for the Cray Y-YIP and achieved an
efficiency of 39% on a single processor. Singh et
al. [25. 26] have implemented both O(N log N)
and O(N) methods on the Stanford DASH ma­
chine. but no measures of the achieved efficiency
are available. 1\"vland et al. [27] discussed how
to express the three-dimensional (3-D) adaptive
version of the Greengard-Rokhlin method in a
data-parallel subset of the Proteus language.
which is still under implementation.

This article is organized as follows. Section 2
describes the computational structure of hierarchi­
cal methods, and details the computational ele­
ments of Anderson's method. Section 3 brieflv
summarizes new features in HPF and describes the
array-aliasing mechanism in CMF that currently
is not included in HPF. Section 4 presents the
architecture of the Connection Machine systems
CY1-5/5E. The optimization techniques for pro­
gramming hierarchical methods in CMF (HPF) are
presented in Sections 5-9. Section 10 reports
some performance results of our implementation.
Additional performance data can be found [see
37]. Section 11 discusses load-balancing issues
and Section 12 summarizes the article.

340 HU AND JOHNSSOJ\'

2 HIERARCHICAL N-BODY METHODS

Hierarchical methods [7, 8, 9, 28] for theN-body
problem exploit the linearity of the potential field
by partitioning the field into two parts,

1> total = 1> near-field + 1> far-field ' (1)

where 1>near-field is the potential due to nearby parti­
cles and ¢>Jar-field is the potential due to faraway
particles. The near-field is evaluated through the
classical N-body technique of pair-wise interac­
tions between all particles in the near-field. Hierar­
chical methods achieve their arithmetic efficiency
by evaluating the far-field potential hierarchically:

1. The field induced by a cluster of particles
sufficiently far away from an evaluation
point is modeled by a single computational
element, called far-field potential represen­
tation.

2. Computational elements for small domains
are hierarchically combined into elements
for large domains.

3. The far-fields due to computational ele­
ments at different levels in the hierarchy are
evaluated hierarchically.

The hierarchy of computational elements is es­
tablished through a hierarchy of grids (see Fig. 1).
Grid level 0 represents the entire domain. Grid
level l + 1 in a nonadaptive decomposition is ob­
tained from Ievell by subdividing each region into
four (in two dimensions) or eight (in three dimen­
sions) equally sized subregions. The number of
distinct boxes at mesh level l is equal to 41 and 81

for two and three dimensions, respectively. Sub-

LevelO

Levell

Level2

domains that are not further decomposed are
leaves. In two dimensions, the near-field contains
those subdomains that share a boundary point
with the considered subdomain. In three dimen­
sions, Greengard-Rokhlin's formulation [29] de­
fines the near-field to contain nearest neighbor
subdomains which share a boundary point with
the considered subdomain and second nearest
neighbor subdomains which share a boundary
point with the nearest neighbor subdomains. Th~
far-field of a subdomain is the entire domain ex­
cluding the subdomain, the target subdomain, and
its near-field subdomains. The far-field is said to
be well separated from the target subdomain with
respect to which it is defined. In the following,
we often refer to a (sub)domain as a "box." The
interactive-field of a target box at level/ is the part
of the far-field that is contained in the near-field
of the target box's parent. In three dimensions, the
number of subdomains in the near-field is 124 (a
5 X 5 X 5 subdomain excluding the target box)
and the number of subdomains in the interactive­
field is 875 (a 10 X 10 X 10 subdomain excluding
the near-field and the target box). In two dimen­
sions, the near-field contains eight subdomains
and the interactive-field contains 27 subdomains.
respectively. A discussion of a less stringent defi­
nition of the near-field in three dimensions can be
found in [30].

The idea of the hierarchical combining and
evaluation used in the O(N) algorithms is illus­
trated in Figure 2. At level 2 of the hierarchy, the
two subdomains marked with "i" are well sepa­
rated from subdomain B. Thus, the computational
elements for those two subdomains can be evalu­
ated at the particles in subdomain B. At level 3,
15 new subdomains marked with "i" are well sep-

FIGURE 1 Recursive domain decompositions and the near-field and interactive-fields

in two dimensions.

O(N) N-BODY ALGORITHMS 341

[!] i

i

Levell Level2

B

Level3 Level4 (leaf-level)

FIGURE 2 Interactive-fields for a hierarchical method.

arated from sub domain B and their computational
elements can also be evaluated at the particles in
subdomain B. At level4 there are 27 new computa­
tional elements that are well separated from the
particles in subdomain B. At any of the levels, the
domains marked with "i" define the interactive­
field at that level. If domain B would have been
smaller, then it is easy to see that for all levels
beyond level 4, the interactive-field will always
have 27 computational elements, which is the
maximum for any subdomain. The above process
continues until the leaf-level is reached, at which
point the far-field potential of the particles in B
has been computed.

For uniform particle distributions and a hierar­
chy depth of log N, the total number of computa­
tional elements in the hierarchy is O(N) and there
are only a few particles (0(1)) in each leaf-level
computational element. For a hierarchy depth of
log N, the total number of computational elements
evaluated at each particle is O(log N) and the eval­
uation of all particles' far-field potential requires
O(N log N) operations. The reduction in the com­
plexity of the interactive-field evaluation to O(N)
is achieved by introducing a local-field potential
representation-a second kind of computational
element-to combine the evaluation of computa­
tional elements that are "far away" from clusters of
particles. This element approximates the potential
field in a "local" domain due to particles in the far
domain. The new type of computational element
allows contributions from different interactive-

field domains to be combined for the far- field eval­
uation with respect to all subdomains making up
the new computational element. Conversion from
the far-field potential representation (of the far do­
mains) to the local-field potential representation
(of the subdomain under consideration) is needed.

In practice, computational elements are ap­
proximated by finite length series. The accuracy
is controlled by the number of terms included in
the expansion. Estimates of the approximation er­
rors as a function of the number of terms in the
expansion have been derived for the different
methods [7, 9, 10], and are not discussed here.

Hierarchical methods compute 4>far-tield of (1) in
two hierarchy-traversing passes. In an upward
pass, the far-field potential of computational ele­
ments is combined (T1) to form <t>l by shifting the
far-field potential representation of child boxes
from their respective centers to the center of their
parent box, and adding the resulting representa­
tions (coefficients). 4>; is the contribution of subdo­
main i at level L to the potential field in domains
in its far-field. In a downward pass, the far-field
potential of interactive-field boxes is converted
into local-field potentials (T2) which are combined
with the local-field passed from a parent to its
children by shifting the parent's local-field repre­
sentation to the centers of its child boxes (T3). Let
w; represent the contribution to the potential field
in subdomain i at level/ due to particles in the far­
field of subdomain i, i.e., the local-field potential
in subdomain i at level/. Then, the computational

342 HL Al\D JOH:\'SSO'\

structure is described in the recursive formulation
by Katzenelson [31]:

Algorithm: (A generic hierarchical method)

1. Compute <I>;' for all boxes i at the leaf-level h.
2. Cpward pass: for l = h - L h - 2

2. compute

<1>~, = 2: T1 (<1>!+ 1
).

iE{rhi/dren:n,}

3. Downward pass: forl = 2. 3, h .. com­
pute

'I'!= T,('I'~~~~PTII:i, + 2: . T2(<1>)).
JE{inleratil'e-field i }

4. Far-field: evaluate local potential at parti­
cles inside every leaf-level subdomain.

5. !'\ear-field: evaluate the potential field due
to the particles in the near-field of leaf-level
subdomains. using a direct evaluation of the
1'\ewtonian interactions with nearby parti­
cles.

~k neor·/ield = 2: . C;(k).
jE{rwur-fie/d'k :}

where G is the potential function in an ex­
plicit Newtonian formulation.

For N. uniformly distributed particles and a hi­
erarchy of depth h having JIJ = 8h leaf-level boxes.
the total number of operations required for the
above generic hierarchical method is

Ttotat(N.JJ.p) = O(Np) + O(j1(p);\J)

+ O((N,nt· /2(p) + fo(p))J'f)

+ O(N) + 0 (N2
) . p Jt .

where p is the number of coefficients in the field
representation for a computational element: f 1 (p).
fAp). and f,(p) are the operation counts for T 1 .

T2. and T.~. respectively: and N 1" 1 is the number
of interactive-field boxes for interior nodes. The
five terms correspond to the operation counts for
the five steps of the hierarchical methods. The

minimum value of Ttotal is of order O(N) for Jf =

c · N. i.e .. the number of leaf-level boxes for the
optimum depth of the hierarchy is proportional to
the number of particles. Since the terms linear in
AJ represent the operation counts in traversing the
hierarchv. and the term O(N 2 /JJ) represents the
operatio~ counts in the direct evaluation in the
near-field. the optimal hierarehy depth balances
the cost of these two phases. Thus. it is equally
important to efficiently perform the hierarchical
computations and the direct evaluations at the
leaf-level in the hierarehical methods.

Moreover. it is worth noting that because of the
large constant in the complexity of hierarchieal
methods, direct methods outperform Anderson· s
method up to about 4,500 particles. the Barnes­
Hut algorithm up to about 6,000 particles. and
the Greengard-Rokhlin method for up to about
9.000 particles in three dimensions and with an
accuracy of an error decay rate of four in them ulti­
pole methods.

2.1 Anderson's Multipole Method
without Multipoles

Anderson [7] used Poisson's formula to represent
solutions of Laplace equation. Letg(x.y .. z) denote
potential values on a sphere of radius a and denote
by 'I' the harmonic function external to the sphere
with these boundarv values. Given a sphere of ra-_,
dius a and a point x with spherical coordinates (r.
0. ~) outside the sphere, let X:, = (cos(O)sin(~).
sin(O)sin(~). cos(~)) be the point on the unit
~here along the vector fr2m the origin to the point
x. The potential value at x is (Equation 14 of [7])

[i: (2n + 1) (9_)n+l P"(S', ·X:,)] g(a;)ds. (2)
n~O r

where the integration is carried out over 5 2 •

the surface of the unit sphere. and P" is the nth
Legendre function.

Given a numerical formula for integrating func­
tions on the surface of the sphere with K integration
points 8', and weights w 1• the following formula
(Equation 15 of [71) is used to approximate the ___, -

potential at x :

This approximation is called an outer-spherP
approximation. :\ote that in this approximation
the series is truncatpd and the integral is evaluated
with a finite number of terms.

The approximation used to represent potentials
inside a given region of radius o is (Equation 16
of [7])

and is called an inner-sphere approximation.
The outer-sphere and thP inner-sphere approx­

imations define the computational elements in An­
derson · s hierarchical method. Outer-sphere ap­
proximations are first constructed for clusters of
particles in leaf-level boxes. During the upward
pass. outer-sphere approximations of child boxes
are combined into a single outer-sphere approxi­
mation of their parent box (T1) by evaluating the
potential induced by the component outer-sphere
approximations at the integration points of the
parent outer-sphere approximation. as ,;hown in
Figure 3. The situation is similar for the other two
translations used in the method. which are shifting
a parent box's inner-sphere approximation to add
to its children·s inner-sphere approximations (7'.1)

and converting the outer-sphere approximations
of a box·s interactive-field boxes (T2) to add to the
box· s inner-sphere approximation.

3 HIGH PERFORMANCE FORTRAN

Since no HPF compiler was available when this
work was initiated. we used the C~IF language [1]
for our implementation. All CMF constructs used,
except the array-aliasing mechanism. are available
in HPF. Below. we briefly summarize the new fea­
ILires in HPF. \V~ e then present the array-aliasing

0(.\) .\-BODY ALGORITII:\lS :343

mechanism in C~lF. which providPs an elegant
way to avoid excess data nwtion. and compare it
to the use of extrinsic procedures for the same
purpose.

HPF consists of Fortran 90 with extensions
mainlv for data management. The main exten­
Sions are:

1. Data distribution directives. which describe
data aggregation, such as cyclic and block
aggregation. and the partitioning of data
among memory regions.

2. Parallel FORALL statements and constructs.
which allow fairly general array sectioning
and specifications of parallel computations.

:3. Extrinsic procedures (local procedures).
which define interfaces to procedures written
in other programming paradigms. such as
explicit mes,;age-passing SP~lD styles.

'-±. A set of extended intrinsic functions. includ­
ing mapping inquiry intrinsic subroutines
that allow a program to know the exact map­
ping of an array at run-time.

HPF supports data-parallel programming with
a global address space. Programs can be written
without any knowledge of the architecture of the
memory systen1. The consequence is that moo;t
compilers often generate excess data moven1ent.
Cyclic shifts are a good example already discussed
in the introduction. One sensible way of avoiding
excess data moven1ent is to restructure the pro­
gram in a way that even a not-so-sophisticated
compiler is able to generate efficient code. This
goal can be achieved by exposing the local memory
and processor address spaces and giving a pro­
grammer explicit control over data allocation and
data references.

In C~F. separation of the local and processor
address spaces is elegantly achieved through array

0'

(a) Translations Tl and T3 (b) Translation T2

FIGURE 3 Translations as evaluations of the approximations.

344 HC A~D JOHl\"SSO~

•••

FIGURE 4 Overview of the C~1-5/5E system.

sectioning and array aliasing within the global pro­
gramming paradigm. Array sectioning is part of
Fortran 90 and HPF, hut array aliasing is not. The
array-aliasing mechanism allows a user to address
memory already allocated for an array, as if it were
of a different type, shape. or layout. No data mo­
tion occurs. For example, let A be an n-dimen­
sional arrav with extents L 1 X . . . X L". Assume
that after ~1apping A onto the physical machine,
there are pi nodes used for axis i. resulting in a
subgrid of lengths, within eaeh node for axis i, i.e ..
Li s, X p 1• Lsing array aliasing, we can create
an array alias Aatius' which has extents s 1 X . . . X

s" X p 1 X . . . X p,. with the first n axes local to
each node and the last n axes purely off-node. In
this way. we have explicitly separated the local
address space from the processor address space.
This subgrid equivalencing feature in C:YlF pro­
vides a means of managing memory accesses simi­
lar to that of the EQCIVALE.\"CE statement in
Fortran 77. It is heavily used in the optimization
techniques discussed in the rest of this article.

In the current version of HPF, a separation of
local and proeessor address spaces can only be
achieved through the use of extrinsic (local) proce­
dures. \Vithin a local procedure, a pro~ram can
access directly only the memory local to a node.
Access to other parts of the global memory must
either he made through explicit message passing,
or by returnin~ to the global program. Hence,
within HPF, optimizations Lased on separation of
address spaces cannot be achieved within the lan­
guage itself. but only bv mixing programming mod­
els (data parallel and message passing). ~Ioreover,
mixing programming models and using procedure
calls increase the difficulty of many forms of com­
piler optimizations and array aliasing is being con­
sidered for inclusion in HPF.

4 CM-5/SE ARCHITECTURE

A C~I-5/5E system contains up to 16,384 parallel
processing nodes (the largest configuration avail­
able today has L024 nodes), each with its own
memory (see Fig. 4). A collection of nodes, known
as a "partition," is supervised by a control proces­
sor called partition manager., although the nodes
may operate independently in a multiple instrnc­
tion, multiple data mode (:YIIMD). Each node is
connected to two low-latency. high-bandwidth in­
terconnection networks, the Data and the Control
1'\etworks. The Data 1'\etwork is generally used for
point-to-point internode communication, and the
Controll'\etwork for operations sueh as synchroni­
zation. broadcasting. and parallel prefix opera­
tions. A third network .. the Diagnostics 1'\etwork. is
ust;d to en surA the proper operation of the system.

Figure 5 illustrates the architecture of a single
node of a C~I-5/5E. Each node is a SPARC micro­
processor. with four virtual vecwrunits (VUs) emu­
lated by two physical VCs for enhanced floating­
point performanee.ln the following we alwnys refer
to the virtual VUs simply as VLs. The VCs are
memory mapped into the SPARC address space.
The SPARC serves as a controller and coordinator
for the four \Ts. Each VC consists of an .VI-bus
interface and an instruction decoder as well as
an ALC. Each VC has its own Register File. The
assemblv instruction set contains vector instruc­
tions for a four-stage pipeline. The ALL can per­
form a floating-point or integer multiply-add or
multiplv-subtract operation on 64-bit operands
per dock cycle. The ALCs also support 32-bit op­
erations. but the computational rate is the same
as in 64-bit precision. Each VC ean addres;.;
up to 128 MB of memory, giving a maximum of
512 MB/Pl'\ (Pl'\ =node). The path between each

SPARC
Micro­
processor

FIGURE 5 Overview of the CM-5/5E node with vec­
tor units.

YC and its memory is 64-bit wide, and the pipe­
lined VCs can access memory on each clock cvcle.
The clock frequency of the n~de processor ami the
two physical VLs is 40 ~1Hz for the C\I-5E (32
MHz for the CYI-5). The four VUs run at half this
clock frequency, and so do the four memory banks,
one for each of the four VUs. Thus, the peak per­
formance of a VL is 40 Ylflop/ sand the peak per­
formance of a node is 160 Ylflop/ s. The maximum
bandwidth to memory is 640 YIB/s/Pl\.

The VL memory is dynamic RA~1 (DRAY!), with
a DRAM page size of 8 KB for 4-Yibit memorv
chips and 16 KB for 16-::\Ibit memory chips. Th~
memory per VL is 8 and 32 MB respectively, for
4- and 16-::\1bit memory chips. If the VL accesses
two successive memory locations which are not on
the same DRA\I page, a page fault occurs. lf a
DRAM page fault occurs, the pipeline i,; stalled for
5 VL cycles. and hence it is desirable to organize
the scheduling of operations such that the number
of DRAM page faults is minimized. In addition,
only 64 DRA.\1 pages are mapped into the SPARC
address space at all times. Hence, the order in
which DRA\1 pages are traversed may have a sig­
nificant impact on performance through TLB
thrashing.

5 DATA STRUCTURES AND
DATA DISTRIBUTION

We start the discussion of our techniques for pro­
gramming hierarchical methods in data -parallel
languages with the data struetures used and how
they are distributed across the memories. We often

0(/V) N-BODY ALGORITHMS 345

refer to the distribution of array data across memo­
ries as the data or array layout.

5.1 Data Structures and Their Layout

There are two main data structures in a hierarchi­
cal method: one for storing the potential field in
the hierarchy and the other for storing particle in­
formation.

The Hierarchy of Boxes

Data Representation. Far-field potentials are
stored for all levels of the hierarchy, since theY
are computed in the upward pass and used in th~
downward pass. We embed the hierarchy of far­
field potentials in one 5-D array that effectively
consists of two 4-D arrays with the same lavou~.
Three of the axes represent the organization ~f the
boxes in the three spatial dimensions. while the
fourth axis is used to represent data local to a box.
The 5-D array representation of the potential field
is quite effective with respect to memory utilization.
yet can easily be made to guarantee locality in
traversing the hierarchy. Moreover, the 5-D array
representation is easy to use for any depth of the
hierarchy: only the extent of the three spatial axes
depends on the depth of the hierarchy. Represent­
ing each level of the hierarchy as a separate array
can dearly be made more memory efficient. but
the number of arrays depends on the depth of
the hierarchy. Using arrays with one of the axes
representing the levels of the hierarchy would re­
quire ragged arrays for space efficiency. But.
ragged arrays are neither supported in CMF nor
in HPF.

The declaration of the far-field potential array
in CMF is*:

REAL*8 FAR_POT(2,K,L,M,Nl

CMF$LAYOUT FAR_POT (: SERIAL, : SERIAL, , :)

The compiler directive above specifies that the
rightmost three axes are parallel axes and that the
two leftmost are local to each VU (specified through
the attribute : SERIAL OR * in HPF). The right
most three axes represent the subdomains at the
leaf-level of the hierarchy along the z-, y-. and
x-coordinates, respectively. The local axis of ex­
tent K is used to store the potential field values at
the integration points of a subdomain in Ander­
son's method (or the coefficients of a multipole

*All the code examples in this article will be in CMF.

346 HU A~D JOHI'>SSO~

expansion in Greengard-Rokhlin's method). The
leaf-level of the potential field is embedded in one
layerofthe5-Darray,FAR_POT(l,:,:,:,
:) , and levels (h - i) are embedded in FAR_POT
(2' : ' 2i-1 : L : 2i' 2i-1 : M : 2i' 2i-1 :

N : 2i) (see Fig. 6). The embedding preserves
localitv between a box and its descendants in the
hierar~hv. If at some level there is at least one box
per VC, then for each box all its descendants will
be on the same VU as the box itself.

At any step during the downward pass of the
hierarchy, it suffices to store the local-field poten­
tial for two adjacent levels, since the goal is to
compute only leaf-level local-field potentials. The
data structure for local-field potentials is as
follows:

REAL*8 LOCAL_POT(K,L,M,N)

CMF$LAYOUT LOCAL_POT (: SERIAL, : , : , :)

Layout. Given an array declaration with compiler
directives that only specifies whether an axis is
distributed among VLs or local to a \T .. the Con­
nection Machine Run-Time System (C:MRTS) as a
default attempts to balance subgrid extents and
minimize the surface-to-volume ratio. Since com­
munication is minimized for nonadaptive hierar­
chical methods when the surface-to-volume ratio
of the subgrids is minimized, the default layout
is ideal.

The extents of the three parallel axes of the
potential array. L. M. and K respectively. are equal
to the number of leaf-level boxes along the three
spatial dimensions. and hence are powers of 2 for
a nonadaptive method. The global address hasp
bits for P = '2!' VC s and m bits for JJ = 2m local
addresses. For a multidimensional array. such as
LOCAL_POT. the VU address field and the local
memorv address field are each broken into seg-

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 2 2 2 2

3 3 3 3 3 3 3 3 1 1

3 3 3 3 3 3 3 3 2 2 2 2

3 3 3 3 3 3 3 3 0

3 3 3 3 3 3 3 3 2 2 2 2

3 3 3 3 3 3 3 3 I 1

3 3 3 3 3 3 3 3 2 2 2 2

Leaf level Nonleaf levels

FIGURE 6 Embedding of a hierarchy of grids in two
4-D arrays.

axis extent VU address local memory address

bp+n-lbp+n-2•••bn bn-lbn-2···bo

0 K b .. b

1 L b .. b b .. b

2 M b .. b b .. b

3 N b .. b b .. b

FIGURE 7 The allocation of the local potential arrays
LOCAL_POT to vTs.

ments, one segment for each axis. for a block map­
ping that minimizes the surface-to-volume ratio.
Since the first axis is local, it is entirely allocated
to local memory. For the parallel axes .. both the
number of VC s and the number of boxes are pow­
ers of 2. Thus. in considering the representation
of the arrav allocation it suffices to consider their
address bi~s. The address fields of the potential
array are shown in Figure 7.

Particle Representation

The input to the program consists of a bounding
box and relevant particle data. The particle infor­
mation is given in the form of a collection of 1-D
arrays: one array for each particle attribute. such
as charge. mass. velocity, and coordinates.

Particle data are used in particle-box interac­
tions in forming the far-field potential for leaf-level
boxes before traversing the hierarchy, and in eval­
uating the local-field potential of leaf-level boxes
at the particles inside these boxes after traversing
the hierarchv. To maximize the localitv in these . -
computations it is desirable to allocate particles to
the same Vl' as the leaf-level box to which they
belong. For this reason, we also use 4-D arrays for
each particle attribute. with a layout equal to that
of LOCAL_POT and FAR_POT. The declaration
of the 4-D array for the X- coordinates of the parti­
cles is

REAL*8 X_4D(B,L,M,N)
CMF$LAYOUT X_4D (: SERIAL, : , : , :)

l\'ote that the particle-particle interactions are de­
fined by the collection of boxes defining the near­
field. The direct evaluation can be efficiently per­
formed using the same data structures and layouts
as used in computing particle-box interactions ..
as detailed in Sections 6. 2 and 9.

6 OPTIMIZING COMMUNICATION

By using the optimization techniques described in
this section, all communication amounts to 1 O'Yo
of the total execution time for a sample run of 100
million particles on a 256-node C.\;I-5E, using
K = 72 in the field approximations on the spheres
(Equations 3 and 4).

The O(N) methods require three kinds of com­
munication:

1. Particle-box: Particle-box interactions are
required in forming the leaf-level boxes' far­
field representation before the upward tra­
versal of the hierarchy. They are also re­
quired in evaluating the local-field at the
particles after the downward pass of the hier­
archv.

2. Box-box: During the upward pass, the com­
bining of far-field potentials of child boxes
to form the far-field potential of the parent
box requires parent-child box-box interac­
tions. During the downward pass, converting
the local-field potentials for parent boxes to
that for child boxes also requires parent­
child (box-box) interactions. In addition,
the downward pass requires neighbor (box­
box) interactions for the conversion of the
far-field potential of interactive-field boxes
to local-field potentials.

3. Particle-particle: The evaluation of the
near-field requires particle-particle interac­
tions among groups of particles contained in
the near-field boxes.

We show that by maximizing the locality in allo­
cating child boxes to the same VC as their parent.
and by avoiding unnecessary local memory moves
through the use of the array-aliasing feature, ex­
cessive data movement can be avoided and a
high degree of communication efficiency can be

jyuyO 00 01 10 11

xllxO 00 0 2 8 10

01 1 3 9 11

10 4 6 12 14

11 5 7 13 15

box addresses: xllxO,yllyO keys in sorting: y1xlly0x0

FIGURE 8 Sorting particles for maximum locality in
reshaping particle arrays.

O(!V) N-BODY ALGORITHMS 347

achieved on box-box interactions. The efficiencv
in particle-box interactions for uniform, or almost
uniform. particle distributions is achieved by an
efficient remapping of the 1-D input arrays for
particle attributes to 4-D arrays with the same lay­
out as the leaf-level boxes of the potential arrays.
This layout is also used for efficient computation
(see Section 9) and communication (see Section
6.2) in the partiele-particle interactions.

6.1 Maximizing the Locality in
Particle-Box Interactions

Mapping of 1-D Particle Arrays to
4-DArrays

The mapping of the 1-D input arrays for particle
attributes to 4-D arravs is determined as follows.
First. to which box a particle belongs is determined
based on its coordinates and the number of boxes
along different coordinate axes. Second. the parti­
cles in each box are ranked. The rank and the box
number give a unique location in the 4-D array.
The length of the local axis of this array is equal
to the maximum number of particles in any box.
The ranking of the particles in each box is made
through a segmented +-scan on a 1-D input array
after the particles have been sorted such that parti­
cles in the same box appear together. \Ve use a
coordinate sort (see Fig. 8) for the particle sort.
The keys for the coordinate sort are determined so
that for a uniform distribution of particles the
sorted particles in the 1-D array are allocated to the
same VL as the leaf-level boxes (in the potential
arrays) to which they belong.

Algorithm: (Coordinate sort)

1. Find the layout of the 4-D potential arrays
using intrinsic mapping functions, e.g., the
number of bits for the VL address and the
local memory address for each axis.

2. For each particle, generate the coordinates
of the box to which it belongs, denoted by
xx .. x. yy .. y, and zz ... z.

3. Split the box coordinate,; into VC address
and local memory address. written as
x .. xj x .. x .. y.yjy.y, z .. zjz .. z, according to
the layout of the potential arrays.

4. Form keys for sorting by concatenating the
VL: addresses with local memorv addresses,
written as z .. zy .. yx .. xjz .. zy . .y:X .. x.

o. Sort.

348 HC AND JOHNSSO:"'

After sorting, particles belonging to the same
box are ordered before any particle in any higher­
ordered box. Furthermore, for a uniform particle
distribution, if there is at least one box per VU.
each particle in the coordinate-sorted 1-D particle
array will be allocated to the same VU as the leaf­
level box in the 4-D array of local-field potentials
to which the particle belongs. Therefore, no com­
munication will be needed in assigning the parti­
cles in the 1-D arrays sorted by the coordinate
sort to the 4-D arrays with the same layout as
the potential arrays. For a near-uniform particle
distribution, it is expected that the coordinate sort
will leave most particles in the same VU memory
as the leaf-level boxes to which they belong. .

Particle-Box Interactions

To compute the leaf-level particle-box interac­
tions before traversing the hierarchy, the contribu­
tions of all particles in a box to each of the integra­
tion points on the sphere corresponding to the box
in Anderson's method (or to each coefficient of
the multipole expansion for the box in Greengard­
Rokhlin's method) must be accumulated. Different
boxes have different numbers of particles. There­
fore. the number of terms added varies with the
leaf-level box. Once the particles are sorted such
that all particles belonging to the same box are
ordered together, a segmented +-scan is a conve­
nient way of adding in parallel the contributions
of all the particles within each of the boxes. The
segmented +-scan can be performed on either the
sorted 1-D or 4-D arrays after the remapping. On
the 4-D array the segmented scans are guaranteed
to be local to a VC, and fast. Thus, we perform
all scans required for the particle-box interactions
on the 4-D arrays.

6.2 Particle-Particle Interactions

The direct evaluation in the near-field can also be
carried out very conveniently using the 4-D particle
arravs: Each box interacts with its 124 near-field
neighbor boxes and each neighbor box-box inter­
action involves all-to-all interactions between par­
ticles in one box and particles in the other. If the
symmetry of interaction (Newton's third law) is
used. then the total number of interactions per
target box is 62. This idea of reducing communica­
tion and computation in the direct evaluation in
the near-field via exploiting symmetry is shown in
a 2-D example in Figure 9. As box 0 traverses
boxes 1-4. the interactions between box 0 and

4 3 2

"\. +
5 ~0 1 ,- -

I

16 7 8
I.e- --<- --

FIGURE 9 Exploiting symmetry in the direct evalua­
tion in the near-field.

each of the four boxes will be computed. The inter­
actions from the four boxes to box 0 are accumu­
lated and communicated along with box 0. Using
data-parallel programming. while box 0 traverses
boxes 1-4. boxes 5-8 will traverse box 0 and
the interactions between them and box 0 will be
computed. The interactions from these four boxes
to box 0 will be accumulated and stored in box
0. Finally, the two contributions to box 0 will be
combined with interactions among particles in box
0. Exploiting symmetry saves almost a factor of 2
in both communication and computation. The
idea of exploiting symmetry is similar to the idea
used for the linear orrery by Applegate et al. [32].
Here, a linear ordering is imposed on the 62 neigh­
bor boxes in 3-D, which contain partially or­
dered particles.

6.3 Box-Box Interactions

Excessive data movement can easily happen in
programs written in data-parallellanguages, such
as HPF, which provide a global address space.
Below, we show how to avoid excessive data move­
ment in parent-child interactions and in neighbor
interactions using the array-aliasing feature of
C~F, instead of using extrinsic procedures in HPF
which require the low-level, and thus more diffi­
cult, message-passing SPMD style programming.

Parent-child box-box interactions are re­
quired both in combining far-field potentials in the
upward pass through the hierarchy and in local­
field evaluations in the downward pass.

Neighbor box-box interactions are required for
the far-field evaluation of interactive-field boxes
in the downward pass of the hierarchy. and for the
direct evaluation of the near-field using the 4-D
array representation of the particles. In our imple­
mentation of interactive-field computations (which
does not exploit the parallelism among the boxes

' ,.
r'\ /

I "' " I I"

(a) indvidual CSHIFfs

I ' ·- --------,-

: i .___ ~
: ~
'. ':

O(N) N-BODY ALGORITH.\1S 349

r:::;::::r::::::::!:::r:i ""
t:::J::::. ~ ·~-. -_-. _-_. -_- _:

::::r:: ~- _-_ -_- _-_ -_- _:
·- - -- - -- "

- ---- ---- .J

(b) CSHFITs with unit offset

subgrids _

on VUs
Sl

S2
' --------- -·

(c) excessive data movement (d) stencil communication

FIGURE 10 Optimizing communication in neighbor interactions. Examplcs are in two
dimensions.

in the interactive-field), each target box needs to
fetch the potential vectors of its 375 neighbor
boxes (if supernodes [10] are not used).

Interactive-Field Box-Box
Communication

In CMF, the simplest way to express the fetching
of neighbor potential vectors for a target box uses
individual CSHIFTs, one for each neighbor, as
shown in Figure 1 Oa. In the C:\1RTS, composite
CSHIFTs are implemented as a sequence of inde­
pendent shifts, one for each axis.

A better way to structure the CSHIFTs is to im­
pose a linear ordering on the interactive-field
boxes, as shown in Figure 1 Ob. The potential vec­
tors of neighbor boxes are shifted through each
target box, using a CSHIFT with unit offset at every
step. The three axes using different bits in their
VU addresses. The rightmost axis uses the lowest­
order bits and the leftmost axis uses the highest­
order bits in the default axes ordering. Nodes that
differ in their lowest-order bits are adjacent in
many networks. In such networks, the best linear
ordering should use CSHIFTs along the rightmost
axis most often. Due to the construction of the fat­
tree network on the CM-5/5E and the array layout,
this shift order is advantageous in our implemen­
tation.

Unfortunately, the scheme just outlined results

in excessive data motion. Assume that every VC
has an 51 X 52 sub grid of boxest two dimensions,
and that the CSHIFTs are made most often along
the _v-axis. Every CSHIFT with unit offset involves
a physical shift of boundary elements off-VC and
a local copying of the remaining elements. After
shifting six steps along they-axis in Figure 1 Oc,
the CSHIFT makes a turn and moves along the x­
axis in the next step, followed by a sequence of
steps along the _y-axis in the opposite direction.
All the elements in a VC, except the ones in the
last row before the turn, are moved back through
the same VUs during the steps after making the
turn. Thus, this seemingly efficient way of express­
ing neighbor communication in CMF involves ex­
cessive communication in addition to the local data
movement. 1\"evertheless, on a 32-node CM-5E it
improved upon the aforementioned alternative by
a factor of 7. 4 for a sub grid with axes extents 16
and K = 12.

In order to eliminate excess data movement, we
explicitly identify for all boxes in the local suhgrid
the interactive-field boxes that are nonlocal, then
structure the communication to fetch only those
boxes. Figure 11 shows a plane through a target
box and its near- and interactive-field boxes in
3-D. For a child box on the boundarv of the sub-

t We ignore the local axis in this section since communica­

tion only happens on parallel axes.

350 I IC Al\'D JOH~SSO~

grid in a VU, the interactive-field box furthest away
from it is at distance four along the axis normal to
the boundary of the subgrid. Hence, the ·'ghost"
region is four boxes deep on each face of the sub­
grid. Using the array-aliasing feature of CMF, the
ghost boxes can be easily addressed by creating
an array alias that separates the VC address from
the local memorv address. Assume the declaration
for the potential array is

REAL*S POT(K,L,M,N)
CMF$LAYOUT POT (: SERIAL, :

and that the subgrid of boxes has extents 51 X

52 X 53. Then. the declarations

grid local to a VC. The drawback with this ap­
proach is more complex control in the interactive­
field evaluation. and lower arithmetic efficiency
because of shorter vectors and fewer instances for
each vector operation compared to using a single
subgrid. The excess storage for a single array is
relatively modest; for a 8 X 8 X 8 subgrid. the
ghost region alone contains 3.584 boxes compared
to 512 boxes for the local subgrid. On a 256-node
CM-5E with 32 Mbyte/VC. the deepest hierarchy
forK = 12 has depth eight. The largest subgrid
has extents 32 X 32 X 16, and the corresponding
subgrid for ghost boxes has extents 40 X 40 X

24. In this case, the relative memory waste due to
redundant storage of the local subgrid is only
5.3%.

REAL*8 POT_ALIAS(K,Sl,S2,S3,Pl,P2,P3)
CMF$LAYOUT POT_ALIAS (: SERIAL, : SERIAL, : SERIAL, : SERIAL,

REAL*8 NBR_POT (K, Sl +8, S2+8, S3+8, Pl, P2, P3)
CMF$LAYOUT NBR_POT (: SERIAL, : SERIAL, : SERIAL, : SERIAL, , : , :)

identify the subgrids and allocate a new array
NBR_POT for storing the local subgrid and the
ghost boxes in a (51 + 8) X (82 + 8) X (5~3 + 8)
subgrid. Alternatively. the ghost boxes can be
stored in a separate array. The benefits of using a
separate array for the boxes fetched from other
VCs are that copying of the local sub grid is avoided
and storage is saved by not storing twice the sub-

FIGURE 11 A plane of the near- and interactive-fields
in three dimensions.

With the sub grids identified explicitly. fetching
boxes in ghost regions requires that 6 surface re­
gions, 12 edge regions. and 8 corner regions be
fetched in three dimensions. These regions can be
fetched either directly, using array sections and
CSHIFTs, or by creating a linear ordering through
all the VCs containing ghost boxes and using
CSHIFTs to move whole subgrids. Array sectioning
is performed after subgrids are moved to the desti­
nation VC. Moving whole sub grids is necessary in
order to keep the continuity of the linear ordering
of the subgrids. Although some redundant data
motion takes place, it is considerably reduced
compared to using a linear ordering on the un­
aliased arrav. Table 2 summarizes the data motion
requirements for the four methods for 51 = 52 =

53= 8.
The memory requirements can be reduced by

prefetching fewer ghost boxes at one time. For ex­
ample, instead of prefetching all the ghost boxes
required by all interactive-field computations. a
column of (51 + 8) X 52 X 53 ghost boxes can
be fetched and used for interactive-field computa­
tions with some fixed offsets along the }··-axis and
the z-axis, but different offsets along the x-axis.
As the offset along they-axis or the z-axis changes
by 1. most ghost boxes fetched in the previous step
can be reused. However. since in prefetching all
the ghost boxes at once, the memory requirement
in traversing the hierarchy is about the same as in

O(N) N-BODY ALGORITHYIS 351

Table 2. Comparison of Data Motion Needs for Interactive-Field Evaluation on a 32-Node CM-5E

1'\umber of Relative Time
:'\umber of '\"onlocal Local Box ~umber of

Method Boxes Fetched Y1oves CSIIIFTS K = 12 K = '?2

Direct on unfactored arrays 169 1:8
Linearized unfactored arrays 85.888 596.608 1.3:33 19.'-l 18.2
Direct on factored arrays 3.58'-l :.680 54 1.6:3 1.48
Linearized factored arravs 4 .. '352 6.400 10 1 1

NOTE: The local subgrid is of extent 8 and ghost boxes are stored in a 16 X 16 X 16 subgrid whPn using factored arrays. The
unfactored and factored arrays refer to the original arrays and their aliascd countPrparts. respectivelY.

the direct evaluation in the near-field. we did not
explore the partial prefetching approach (the max­
imum storage needs would not be reduced).

1'\ote that for subgrid extents smaller than 4

along any axis, communication beyond nearest­
neighbor VCs is required.

Near-Field Box-Box Communication

For the direct evaluation in the near-field, the
fetching of near neighbor boxes can also be opti­
mized through factored arrays as described in the
previous section. which essentially trades memory
requirement for efficient communication. Section
9 discusses another optimization which trades
memory requirement for arithmetic efficiency also
for the near-field direct evaluation. Either optimi­
zation requires similar extra memory, and makes
the direct evaluation stage a memory bottleneck.
but the increase in performance with the second
one is much higher. To save memory, we only keep
the second optimization. Thus, fetching particles
in neighbor boxes is performed by using CSHIFTs
on unfactored arrays with a linear ordering. 1'\ote
that for the near-field the depth of the ghost region
is two boxes in each direction of all axes.

Parent-Child Box-Box interaction

C sing the embedding described in Section 5, the
far-field potentials of boxes at all levels of the hier­
archy are embedded in two layers of a 4-D array,
called the base potential array. During traversal of

REAL*8 POT_ALIAS(2,K,S1,S2,S3,P1,P2,P3)

the hierarchy. temporary arrays of a size equal to
the number of boxes at the current level of the
hierarchy are used in the computation.

We abstract two generic functions Mul tigrid­
embed andMul tigrid-extract for embedding/
extracting a temporary array of potential vectors
corresponding to some level of the hierarchy into/
from the base potential array. The reduction oper­
ator used in the upward pass is abstracted as
Mul tigrid-reduce operator. The distribution
operator used in the downward pass is abstracted
as a Mul tigrid-distribute operator. The way
to implement these four functions in C\1F is to use
array sectioning. For example, using the embed­
ding described in Section 5, Mul tigrid-embed
at level (h - i) can be expressed in CMF as

FAR_PQT(2,: ,2**(I-1): L: 2**I,
2** (I-1) : M: 2**I, 2** (I-1) : N: 2**I)
= TMP.

Unfortunately, the current CMF compiler gener­
ates a send comrnunication for this expression,
even though the corresponding boxes are allocated
to the same VC for most levels.

We use Multi grid- embed to illustrate how the
compiler-generated send can be avoided. If the
array TMP, which stores the potential vectors for
boxes at level i of the hierarchy, has at least one
box per VU, Mul tigrid-embed only involves
data movement within VCs and no communication
is needed. The send is avoided as follows

CMF$LAYOUT FAR_POT_ALIAS (: SERIAL, : SERIAL, : SERIAL, : SERIAL, : SERIAL, , :)

REAL*8 TMP_ALIAS(K,R1,R2,R3,P1,P2,P3)
CMF$LAYOUT TMP_ALIAS (: SERIAL, : SERIAL, : SERIAL, : SERIAL, : , : , :)

FAR_POT_ALIAS(2,: ,2**(I-1): S1: 2**I,2**(I-1): S2: 2**I,2*(I-1): S3: 2**I, TMP_ALIAS

352 HC A-""D JOH:"SSO!'\

In the above code, we first create array aliases for
the two arrays to separate their loc~l addresses
from the physical addresses. Array sectioning is
then performed on the local axes and no send com­
munication is generated.

If array TMP corresponds to a level of the hierar­
chy which has fewer boxes than the number of
VUs, then Mul tigrid-embed is performed in two
~teps. First, a temporary array TMP2, correspond­
mg to the level of the hierarchy that has the least
number of boxes larger than tlle number of VCs.
i.e., at least one box on each VC, is allocated.
~he~, TMP ifi embedded into TMP2 using array sec­
uonmg, followed by embedding TMP2 into the base
potential array via local copying as in the ease
requiring no communication. The embeddina of

. 0
TMP mto TMP2 requires a send communication.
But this communication is much more efficient
than the communication in embedding TMP di­
rectly into the much larger base potential arrav,
although the actual amount of communication is
the same. The improved efficiency is due to the
smaller overhead in computing s.end addresses
which is about linear in the array size. For array
sectioning, the overhead mav do~1inate the actu~l
communication, which is pr~portional to the num­
ber of elements selected.

On the CYI-5E, the performance of Multi­
grid-embed is improved by a factor of up to two
orders of magnitude using the local copying or the
two step-scheme. as shown in Figure 12.

10.---.----.---.----r---~--~

Use send in CMF -+-
Local copying or two-step scheme ~

0.1

O.Ql

0.001

0.0001 L...---...1--__,L __ ..____...~.-_ __,L _ _J

64 512 4K 32K 256K 2M 16M
Boxes in the temporaty array

FIGURE 12 Performance improvement of Multi­
grid_embed usinl! array seetioninl! and aliasing for a
depth-eight 3-D hierarchy on a 256-node CM-5E. The
two-step scheme was used for the first two cases and
the remaining cases used only local copying.

7 OPTIMIZING COMPUTATION

Our techniques for optimizing the computations
in hierarchy traversal result in an overall efficiency
of 40% forK= 12 and a depth-eiaht hierarch~
and 69% forK= 72 and a depth-se~en hierarch~
during the upward and downward hierarchy tra~
versaL excluding communication. The peak ~rith­
metic efficiency at the leaf-level of about 74% for
K = 12 and 85% for K = 72 is degraded due
to th~ following four kinds of overheads: copying,
maskmg, overheads for the higher levels of the hi­
erarchy. and poor vectorization in the direct evalu­
ation in the near-field.

In Anderson's variant of the fast multipole
method, each of the three translation operators
~sed in traversing the hierarchy can be aggregated
mto matrices, and their actions on the potential
field further aggregated into multiple-instance ma­
trix-matrix multiplication. Since there is no other
computation in the hierarchv. the entire hierarchi­
cal part takes the form of a. collection of matrix­
matrix multiplications, which is implemented
efficiently on most computers as part of the
basic linear algebra subroutines (BLAS) [33-35].
Multiple-instance BLAS forms a part of the
CMSSL [12].

ForK= 12 and a depth-eight hierarchv on a
256-node CM-5/5E, the use of CMSSL res.ults in
an efficiency of 54% and 74%, (87 and 119 YHiop/
s per node) for the translation operations T 1 (T:3)

and T2 at the leaf-level, respectivelv. Including the
overhead of copying. the translatit;n operatio~1 T.2

achieve an efficiency of 60'Yo. Including the over­
head of both copying and masking, thf~ efficiency
of translation operations T2 drops to 44%. Fo.r
K = 72 and a depth-seven hierarchv on a 256-
node CM -5/ SE, the use of C\ISSL ~esults in an
efficiency of 60% and 85°/,, (96 and 136 Mflop/
s per node) for T 1 (T3) and T2 at the leaf-leveL
respectively. The efficiency in translation opera­
tions 72 drops to 79% and 74% when the overhead
of copying and the overhead of both copying and
masking are included, respectively. The efficienc­
ies are summarized in Table 3.

7.1 Translations as BLAS Operations

The translation operators evaluate the approxima­
tions of the source spheres at the integration points
of the destination spheres (see Fig. 3). A sphere
approximation (Equation 3 or 4) is defined by

K
___,~-!Jo-t ----1

<I>(xi)= L. .. J(s1• X;)· g(asi),j
i=1 .

1,K,

Table 3. Leaf-Level Arithmetic Efficiencies on a
256-Node CM-5E

Operation

T 1, T:l: arithmetic
T2 : arithmetic

arithmetic incl. copy
arithmetic incl. copy

and masking

K= 12,
h = 8

54%
74%
60%
44%

K= 72.
h = 7

60%
85%
79%
74%

:"'OTE: The a!(!(regation of T2 translations involves copying
.and maskin!(.

where /(1. 7) represents the inner summation in
' J ~ ~

the original approximation. f(s 1 , x1) is a function
of the unit vector S: from the origin of the source
~here to its ith integration point and the vector
x1 from the origin of the source sphere to the jth
integration point on the destination sphere. Due
to the construction of the hierarchv of boxes and . __, ~
the approximation formulas used, f(s 1 , x1) is
unique to each child of a parent. but is location
and level independent. It is preferably precom­
puted. The translation of the integration points of
a child to each integration point of the parent is
an innerproduct computation. The translation of
the integration points of the child to all of the inte­
gration points of the parent constitutes a matrix­
vector multiplication, where the matrix is of shape
K X K. Thus, Equation 5 indeed defines a matrix­
vector multiplication.

Translation Matrices for T1 and T3

Since in three dimensions a parent has eight chil­
dren, each of the translation operators T 1 and T3

can be represented by eight matrices, one for each
of the different parent-child translations. The
same matrices can be used for all levels, and for the
translations between any parent and its children
irrespective of location. In fact, the eight matrices
required to represent T 1 are permutations of each
other. One matrix can be obtained through suit­
able row and column permutations of another
matrix.

Let the potential vectors of eight child boxes of
a parent box be / 1 , . . . , / 8 • and the translation
matrix from one of the child boxes to the parent
box be M. In matrix form, the application of T 1

can be written as

O(S) .V-BODY ALGORlTHYIS 353

where f is the potential vector of the parent box.
and P1, P; . 2 :S i :S 8 are suitable permutation rna­
trices.

Similarly, let the potential vector of a parent box
be f. and the translation matrix from the parent
box to one of the child boxes be lvf. The application
of T,, to compute the potential vectors of child
boxes can be expressed as

If the permutation property is exploited. it suffices
to store one matrix for T 1 and one for T3 in each
VC, since the matrices for T 1 and T:3 are shared
bv all the boxes at all levels. Equation 6 can be
e~aluated by first permuting the potential vectors
of seven of the eight child boxes, i.e., generating
Pf/2 • PT/3 • etc .. then performing a matrix-matrix
multiplication of the matrix M and a matrix with
the eight potential vectors of the children as col­
umns, followed by permutations of the columns of
the product matrix which then are added to form
f. For T3 . seven different permutations off are
generated first, then a matrix-matrix multiplica­
tion is performed as for T 1 , followed by permuta­
tions of the columns of the product matrix. No
reduction is required. This approach reduces the
amount of computation and the storage of transla­
tion matrices and may achieve better arithmetic
efficiency through the aggregated matrix-matrix
multiplication. However, on the CM-5E, the time
for the permutations exceeds the gain in arithmetic
efficiency. In our code we store all eight matrices
for each of T 1 and T3 .

Even though permutations are not used in
applying the translation operators to the potential
field thev could be used in the precomputation
pha~e. Si~ce the permutations depend on K, the
number of integration points in a nontrivial fash­
ion. using permutations in the precomputation
stage would require storage of the permutations for
all different Ks. To conserve memory, we explicitly
compute all matrices at run-time (when K is
known). We discuss redundant computation-com­
munication trade-offs in Section 8.

Translation Matrices for T2

The interactive-field computations dominate the
hierarchical parts of the code. In three dimensions
the interactive-field contains no boxes inside a
5 X 5 X 5 subgrid centered at the target box.
Depending on which child box of a parent is the
target, the interactive-field extends two or three

354 Ht Al'iD JOHl'iSSOl'i

boxes at the level of the child box in the positive
and negative direction along each axis. Together,
the target box and its near-field and interative­
field boxes form a 10 X 10 X 10 subgrid. This
sub grid is centered at the center of the parent, and
is the same for all children of the parent, although
the near-field and interactive-fields of siblings
differ.

Each box. except boxes sufficiently close to the
boundmies. has 875 boxes in its interactive-Geld.
Though each of the eight children of a parent re­
quires 875 matrices, the siblings share many ma­
trices. The interactive-field boxes of the eight sib­
lings have offsets in the range [- 5 + i, 4 + i] X

[-5 + j, 4 +j] X [-5 + k, 4 + k]\[-2., 21 X

[-2, 2] X [-2, 2], i, j, k E {0, 1}, respectively.
For illustration, see Figure 11. Each offset corres­
ponds to a different translation matrix. The union
of the interactive-fields of the eight siblings has
11 X 11 X 11 ;) X S X ."> 1,206 boxes with
1,206 offsets in the range [-5., 5] X [-5, 5] X

5]\[-2, 2] X [-2, 2] X 2]. For ease of
indexing, we also generate the translation matrices
for the 125 subdomains excluded from the inter­
active-field, or a total of 11 x 11 X 11 = 1 ,3~11
matrices. Different ways of precomputing the
translation matrices and the trade-offs are dis­
cussed in detail in Section 8.

7.2 Aggregation of Translations

Aggregation of computations lowers the overheads
in computations. In addition, the aggregation of
computations may allow for additional optimiza­
tions by increasing the degree of freedom in sched­
uling operations at a given time. The goal in aggre­
gating translations in Anderson's method is to
combine lower-level BLAS into higher-level ones,.
and to aggregate the highest-level BLAS that can
be used into multiple-instance calls to the C~ISSL
BLAS. Aggregation exploits the fact that the trans­
lation matrices are the same for the corresponding
child of each parent in all parent-child transla­
tions. Similarly. aggregation makes use of the fact
that the matrices used for the far-field to local­
field potential conversion in the interactive-field
only depend on the relative locations of the source
and destination boxes.

Parent-Child Interactions

Below we show how to use aggregation for an effi­
cient implementation of the translation operator
T1 . Assume that at some level of the hierarchy.

the subgrid of the temporary potential array is of
shape 51 X 52 X 5:3,. with 51, 52, 53 2:: 2, as
shown in Figure 1:3. Each box in the subgrid stores
a potential vector and must perform a matrix­
vector multiplication. As discussed in Section
7 .1.1. only one copy of each translation matrix is
stored. and it is shared by all the boxes on each
vr. Thus, explicit looping over the boxes on each
VL is needed. The loop structure is shown by the
pseudo-code fragment

DO I 1, 2
DO J=l, 2

DO K=l, 2

DOII=l, Sl, 2

END DO

DO JJ=l, 52.2
DO KK=l, 53,2

CALL MATRIX-VECTOR­
MULTIPLY (...)

Each of the eight child boxes of a parent needs
to use a different translation matrix. The choice
of translation matrix (child) is controlled bv the
outer three DO loops. The inner three loops iterate
through every other box along the three axes-the
same child box of each parent box. The loop bodv
contains a call to the matrix-vector multiplicatio~
subroutine with the matrix of shape K X K. Since
the same translation matrix is used in the inner
three loops, these loops could in principle be com­
bined into a single matrix-matrix multiplication
for one matrix of shape K X K and the other of
shape K X 51/2 · 52/2 · 53/2. However, such
combining is possible only if the stride for the axis
of length 5112 · 52/2 · 53/2 is constant. This
condition does not hold, as shown in Figure 14.
The largest number of columns that can be treated
with a fixed stride is max(51/2, 52/2, 53/2).

~ S2 /
X' x• X' XI _.J __ _ J __ _ _~ __

_J __

' ' ' I
I I I r--:-

X' x~ x• X' _ .J __ _ J __ _.J __ - ..J __
I I I I

Sl I I I

T. x• X' X' _ J __ _.J __ _ ,J __ _J __
I I I I
' I I c........!.._ .

X' x~ x• ·Pf _.J __
_ ,., __

-.J- ... -:--I I I
I I I

FIGURE 13 The subgrid of boxes of potential arrays
on a VU.

h :x: I lx :x: I s s I I

------------- ------------- ------------- -------------s s, s s,
Sz Sz

s,

FIGURE 14 The layout of the subgrid of boxes of
potentials arrays in each VU.

In aggregating matrix-vector operations into
matrix-matrix operations, not only is the number
of vectors being aggregated of interest, but also the
stride between successive vectors. since it affects
the number of DRAM page faults and TLB entry
replacements in the multiple-instance matrix­
matrix multiplication. With cubic or close to cubic
subgrids for minimum communication, either the
extents of the subgrid axes are the same or they
differ by a factor of 2. For relatively small sub grids,
the difference in size of the multiplicand due to
the difference in subgrid axes extents has a larger
impact on performance than DRAM page faults
and TLB thrashing. Hence, we choose to aggregate
vectors into a matrix along the axis with the largest
local extent. If two or all three axes are of the same
length. the vectors are aggregated along the axis
with the largest local extent and with the smallest
stride. For relatively large subgrids. vectors are ag­
gregated along the axis with the smallest stride.

The remaining two loops of the three innermost
loops define multiple-instance matrix-matrix
multiplication, which is supported by CMSSL. The
CMSSL routines fold all axes that can be folded
into a single axis with constartt stride for the multi­
ple-instance computations. All such folded in­
stance-axes are considered together with the prob­
lem-axes in determining blocking and loop orders
for maximum performance.

DO I=O, 1
DO J=O, 1

DO K=O, 1
DO I1 = - 4 , - I , 5- I

DO Jl=-4-J, 5-J
DO K1=-4-K, 5-K

DO II=l, Sl, 2
DO JJ=l, S2, 2

DO KK=l, S3, 2

O(N) N-BODY ALGORITHMS 355

Since the two instance-axes in Anderson's
method cannot be folded into a single axis with
constant stride due to the array layout (see Fig.
14), the aggregation of the matrix-vector multipli­
cations into multiple-instance matrix-matrix mul­
tiplication is implemented as

DO I=l, 2

DO J=l, 2
DO K=l, 2

DO II=l, Sl, 2

CALL MATRIX-MULTIPLY-MI(...)

END DO

The performance of the T 1 and T;3 translations
improves from 58 to 87 Mflop/s/PN forK= 12
and subgrid of extents 32 X 32 X 16 by replacing
the first loop stn1cture with the loop structure
above. The matrices are of shape 12 X 12 and
12 X 8 with 16 such instances handled in a single
call. For K = 72 and a sub grid of extents 16 X

16 X 8, the performance improves from 95 to 96
Mflop/s/PK

Far-Field to Local-Field Conversion

The conversion of the far-field to local-field poten­
tial of the boxes in the interactive-field is made
using the array NBR_POT with subgrid of shape
(51 + 8) X (52 + 8) X (53 + 8). For each of the
eight sibling boxes of a parent box, 875 applica­
tions of the translation matrix for T2 are required.
We use three nested loops with a total of 1,000
iterations to accomplish the 875 matrix-vector
multiplications; the 125 undesired iterations are
skipped by a conditional test. ln the loop nest be­
low, all operations on the subgrid for a given trans­
lation matrix are performed before any operation
for anv other translation matrix.

if ((Il,J1,Kl) in interactive-field)
CALL MATRIX-VECTOR(...)

END DO

356 HU AND JOH:\ISSOI'>

S3/2

~
D

TMP

FIGURE 15 Aggregation ofBLAS operations in neigh­
bor interactions.

For parent-child interactions, aggregation of
matrix-vector multiplications into multiple-in­
stance matrix-matrix multiplications was carried
out on two of the three innermost loops. For inter­
active-field computations we choose to copy the
vectors of the array (51 + 8) X (52 + 8) X (53 +
8) referenced by the three innermost loops into a
new array such that a single-instance matrix­
matrix multiplication with matrices of shape K X

K and K X 51/2 · 52/2 · 83/2 is performed. The
copying is illustrated in Figure 15. The loop struc­
ture for the approach using copying is shown in
the following code fragment:

DO I=1, 2
DO J=O, 1

DO K=O, 1
DOil=-4-I, 5-I

DO J1=-4-J, 5-J
DO K1=-4-K, 5-K

TMP =

performance of the translation is 85 ~flop/ s/PN.
For 81 = 16. 52 = 16, 83 = 8, and K = 72, the
execution rate of the 12 X 12 by 12 X 256 matrix
multiplication is 136 ~flop/ s/Pl\'. Including the
cost of copying, the measured performance is 124
Mflop/ s/PN.

The copying cost can be reduced by copying a
whole column block of (51 + 8) X 52/2 X 53/2
boxes into two linear memory blocks outside the
DO-K1 loop; one for even slices of the column.
and the other for odd slices. Since the axis indexed
by K1 has unit stride, a sectioning with stride 2
on that axis will reside in a consecutive block of
memory in one of the two temporary arrays. Each
local column can be used on average 8.75 times
in the DO-K1loop. The cost of copying is therefore
reduced to 4 · 100/875 ·(51+ 8)/(51 · K) of that
of matrix multiplication, assuming no page faults.
Including the cost of copying, the performance of
translations in neighbor interactions reaches 96
and 127 Mflop/s/PN forK= 12 and K = 72.
respectively.

Copying of sections of subgrids to allow for a
K X Kby aK X 81/2 · 82/2 · 53/2 matrix multipli­
cation can also be used in parent-child interac­
tions, but the copying cost is relatively higher. In
estimating the copying cost for the interactive-field
computations, we ignored the small copying back
cost after the accumulation. With this cost in­
cluded, the total copying cost for operator T2 is
2K + 2K/875 cycles per matrix-vector multiplica­
tion. For parent-child interactions the total copy-

NBR_POT(:, Il+I+5: Il+I+S1+4: 2,J1+J+5: J1+J+S2+4: 2,K1+K+5: K1+K+S3+4: 2,: , :)
CALL MATRIX-MULTIPLY(...)

END DO

For 81 = 32, 52 = 32, 53 = 16, and K = 12.
the execution rate of the 12 X 12 by 12 X 2,048
matrix multiplication is 119 Mflop/ s/Pl\. If there
are no DRAM page faults, the copying requires 2K
cycles for a potential vector for which the matrix
multiplication ideally takes K 2 cycles. Thus, the
relative time for copying is 2/ K. This amounts to
about 17% forK= 12 and less than 4% forK= 72.
With the cost of copying included, the measured

ing cost is 2K + 2K/8 cycles, ideally, perK X K
matrix-vector multiplication. The copying cost for
parent-child interactions is about 10°/c, higher
than that for the interactive-field computations.
By using copying in parent-child interactions. the
performance for the T 1 and T.3 matrix operations
drops from 87 to 82 Mflop/s/PN forK= 12. but
increases from 96 to 123 Mflop/s/PN forK= 72,
due to the lower cost of copying relative to that of

matrix multiplication in the latter case. Since the
time for parent-child interactions accounts for
only a couple of percent of the total time for the
hierarchy traversaL we did not carry out the K­
dependent optimization of copying in parent­
child interactions.

7.3 Uniformity-Avoiding Masking

In the calls to the BLAS in the above loop-nest
for neighbor interactions, masking is needed since
boundary boxes have smaller interactive-fields
than interior boxes. Masking is needed at all levels
of the hierarchy. In C.\1F, the masking is handled
as an unconditional matrix multiplication followed
by a masked assignment, and the masked assign­
ment is noticeably slower than an unmasked as­
signment.

The masking can be avoided by adding two lay­
ers of empty boxes on all sides of the domain. We
evaluate this option for the leaf-level. With h levels,
each axis of the physical domain is extended by a
factor of 2" I (2" - 4) to create two empty boxes at
each side of each axis of the domain. Using empty
boxes increases the cost for the direct evaluation in
the near-field. For a given hierarchy depth, using
empty boxes to avoid masking at the leaf-level re­
quires putting all the particles in the inner (2" -
4) X (2" - 4) X (2" - 4) boxes. The maximum
number of particles per box increases by a factor
of f3 = [N I (2" - 4)3

] I [N I 8"], and the cost of direct
evaluation is increased in proportion to {3 2

. For a
uniform distribution and K = 12, there are 4-16
particles per leaf-level box for the optimal hierar­
chy depth. The increase in the cost of the direct
evaluation for these cases is shown in Table 4.

In our implementation on the CM-5E, the cost
of masking at the leaf-level of a depth-eight hierar­
chy is about 18% of the total cost of traversing
the hierarchy forK = 12 and depth eight. As K
increases, the cost of matrix multiplication in­
creases as K 2 and the cost of masking grows as K.
Thus, the cost of masking becomes less significant.
For example, forK= 72 and depth seven, the cost
of masking is less than 4% of the cost of traversing

O(N) N-BODY ALGORlTR\18 357

the hierarchy. The increase in the direct evalua­
tion, on the other hand, decreases slowly.

We conclude that on the CM-5E, by adding
ghost boxes at the leaf-level of the hierarchy, the
gain in avoiding masking in traversing the hierar­
chy is not large enough to offset the loss in the
direct evaluation when using optimal hierarchy
depth. Obviously, adding ghost boxes to higher
levels implies adding more ghost boxes to the leaf­
level and will increase the cost of the direct evalua­
tion further. On other machines and with different
compilers, the relative cost of masked assignments
will most likely be different and the technique dis­
cussed here must be reevaluated.

8 REDUNDANT COMPUTATION
VERSUS REPLICATION

All translation matrices are precomputed. Since
the translation matrices are shared by all boxes at
all levels, only one copy of each matrix is needed
on each V1.~. Two extreme ways of computing these
translation matrices are:

1. Compute all the translation matrices on
every VU.

2. Compute each translation matrix only once
with different VCs computing different ma­
trices, followed by a spread to all other VUs
as a matrix is needed.

In the first method the computations are em­
barrassingly parallel and no communication is
needed. However, redundant computations are
performed. In the other method there is no redun­
dant computation, but replication is required. lf
there are fewer matrices to be computed than there
are VUs, then VCs can be partitioned into groups
with as many VCs in a group as there are matrices
to be computed. Each group computes the entire
collection of matrices, followed by spreads within
groups when a matrix is needed. The replication
may also be performed as an all-to-all broadcast
[36]. The load-balance with this amount ofredun-

Table 4. The Increase in the Direct Evaluation Cost at Optimal Hierarchy Depth Using Ghost Boxes

Particles/Box at Optimal
K = 12 K= 72

Depth without Ghost Boxes 4 8 16 16 32 64

{32 (h = 7) 1.56 1.27 1.27 1.27 1.27 1.23
{32 (h = 8) 1.56 1.27 1.13 1.13 1.13 1.13

358 Hli A:'IJD JOII:'IJSSOI'\

dant computation is the same as with no redun­
clancy, but the communication cost may be re­
duced.

Let the cost of computing a translation matrix
on a VU be t1 and the cost of replicating it across
P VUs be t2 (P). The total cost for the above two
extreme ways of computing N matrices on P VC s
with each VU storing all N matrices is

T1(N.P) =N· t 1

T2(N, P) = r ~ l· t1 + N · t2(P)

Here we assume that t1 is independent of the num­
her of matrices being computed on a VU, though
in practice computations often are more efficient
when more matrices are computed on each VC.
because of more efficient vectorization. On the
CM -5E, for K varying from 12 to 72, replicating a
K X K translation matrix is about 3-12 times faster
than computing it. Thus, computing the matrices
in parallel followed by replication is always a win­
ning choice.

For T 1 and T"> we also implemented grouping
computations and replication among eight VUs in
addition to the two extreme methods. Figure 16
shows the performance of the three methods. The
cost of computing the matrices in parallel followed
by replication without grouping is 66-24% of that
of computing all matrices on each VL, asK varies
from 12 to 72. With grouping, the computation
cost is the same as without grouping. but the cost
of replication is reduced by a factor of 1. 75-1.26
as K varies from 12 to 72. The reason for the

0.8

0.7

0.6
';;)'

0.5 '0 .::
0
u
<l.l 0.4 ~

8 0.3
f=

0.2

0.1

0

compute 8 matrices on each VU -+­
compute + replicate w/o grouping -+--­

compute+ replicate w/ grouping --e---­
replicate portion w/o grouping _ _,._ __

replicate portion w/ grouping -•--

12 24 32 50
Number of integration points on the sphere

72

FIGURE 16 Computation versus replication in pre­
computingtranslation for T 1 (7'3) on a 256-node CM-5E.

120 rr----.---.-------,.--------,

compute 1331 matrices on every VU -+--
100 compute in parallel+ replicate on 256PN -+---

';;)' 80
'g
8
~ 60

8
f= 40

12 24 32 50 72
Number of integration points on the sphere

FIGURE 17 Computation versus replication in pre­
computing translation matrices for T2 on the C:\1-.SE.

decrease of the difference as K increases is that
for larger K. the replication time is dominated by
bandwidth. while for small K. latency and over­
head dominate.

For T2 , computing one copy of each of the 1,331
translation matrices and replicating them is up to
an order of magnitude faster than computing all
on every VU, as shown in Figure 17 for a 256-node
CM -5E. The time for computing 1,331 matrices in
parallel decreases on larger CM-5Es. as shown in
Figure 18, while the replication time, which domi­
nates the total time. increases about 10-20% for
large K as the number of nodes doubles. As a re­
sult. the total time for the method increases at most
62% as the number of nodes changes from 32
to 512.

12

10

';;)' 8
'0 .::
0
u
<l.l 6 ~
<l.l e
f= 4

2

0

replicate on 256PN -+­
replicate on 64PN -+--­
replicate on 32PN --G .. -

compute in parallel on 32PN . .,..
compute in parallel on 64PN -•---­

compute in parallel on 256PN -•---

12 24 32 50 72
Number of integration points on the sphere

FIGURE 18 Compute in parallel and replicate in pre­
computing translation matrices for T 2 on various sized
CM-5Es.

Storing all 1,331 translation matrices in double
precision on each VC requires (L331 · 8 · K 2)

bytes of memory .. i.e .. 1.5~3 "1B for K = 12 and
53.9 MB for K = 12. Therefore. replication of a
matrix is delayed until it is needed. The replication
is made through one-to-all broadcast rather than
all-to-all broadcast. The total number of replica­
tions is L331 · (h - 1). where h is the depth of
the hierarchy. since the T.2 translations are used
first at level two.

9 DIRECT EVALUATION IN
THE NEAR-FIELD

Since the optimal hierarchy depth that minimizes
the total FLOP count of an O(N)N-body method
balances the amount of computation in the hierar­
chy traversal and in the direct evaluation in the
near-field, the efficiency in the direct evaluation
is crucial to the overall performance. In this sec­
tion, we discuss how to use the 4-D arrays of parti­
cle attributes. used for efficient particle-box inter­
actions. for efficient evaluation of the near-field
potentials.

The near-field is evaluated as a sequence of
particle-particle interactions ordered with respect
to the boxes to which they belong. The 124 neigh­
bor boxes of a target box can be ordered linearly
and brought to the target box through 124 single­
step CSHIFTs. Another way is to fetch nonlocal
near-field boxes from other VCs using 4-D arrays
factored into local subgrids through array aliasing.
much in the same way as in fetching nonlocal inter­
active-field boxes. The first method requires less
temporary storage, and is used for the near-field
evaluations. The CSHIFTs aceount for about 10-
15% of the time for the direct evaluation.

Once a neighbor box has been brought to the
target box. an all-to-all interaction between the
particles in the two boxes is required. \V e investi­
gated three alternatives for the all-to-all interac­
tion. The simplest way is to loop through the parti­
cles in both boxes using two nested loops.
enrolling the inner loop can improve the perfor­
mance of a compiler-generated code by 25% on
the CYI-5E. The vectorization can be further im­
proved by replicating each particle in the neighbor
box to every particle in the target box, followed by
element-wise particle interactions. But the broad­
cast operation for each neighbor particle is rela­
tively time consuming. A third approach, called
"duplicate-and-slide," duplicates the target box,
i.e., a new 4-D array with a local axis of twice the

O(;V) N-BODY ALGORITH~1S 359

length of the original array is created. The original
4-D particle array is copied to both the first and
the second half of the new array. One sequential
loop over the particles in the neighbor box is used.
Let b be the length of the serial axis of the original
4-D particle array, i.e., the maximal number of
particles per leaf-level box. At the ith iteration. an
element-wise interaction between the neighbor box
and a b-long segment along the local axis of the
new array starting at the ith element is evaluated.
It is easy to see that the looping covers all particle
interactions between the two boxes. The duplicate­
and-slide approach duplicates particles once and
the computations inside the loop are perfectly vec­
torized on each VC. On the CM-5E it is the fastest
of all three approaches. However, it requires 33%
more memory than the other alternatives, or a total
of 4N memory locations for each particle attribute:
N locations for the input 1-D array, 2N locations
for the 4-D duplicated target, and N locations for
the 4-D neighbor.

10 PERFORMANCE RESULTS

Our CMF implementation of Anderson':-; method
with K = 12 integration points on the sphere per­
forms the potential evaluation for 100 million par­
ticles uniformly distributed in a eubic region in
180 s on a 256-node CM-5E. The evaluation for
a system of 100 million uniformly distributed parti­
cles is estimated to take around 60 s on a 1.024-
node CM-5E. The overall efficiency is about 27%,
and is fairly independent of machine size. With K =

72 integration points on the sphere, the efficiency
improves to 3.5%. We first give a summary of the
timings breakdown in computing the potential field
for 100 million uniformly distributed particles on
a 256-node CM-5E, then demonstrate the scala­
bility of the implementation. A more detailed anal­
ysis of the effectiveness of the techniques is given
in [37].

In considering the execution times, it should be
mentioned that our implementation uses the idea
of supernodes. Zhao [10] made the observation
that of the 875 boxes in the interactive-field, in
many eases all eight siblings of a parent are in­
cluded in the interactive-field. By converting the
far-field of the parent box instead of the far-fields
of all eight siblings, the number of far-field to local­
field conversions is reduced to 189 from 875. The
supernode idea must be modified somewhat for
Anderson's method, but the same reduction in
computational complexity can be achieved [37].

360 HC AND JOH!\'SSO!\'

Table 5. Weights for Floating-Point Operations
in Our Three Methods for FLOP Counts

Method

I Native
II Hennessy and Patterson

[38]
III C\1-5E/VC normalized

FLOP Count

Always 1
ADD, SCR MUL T - 1
DIY, SQRT- 4
ADD, SUB, MCL T - 1
DIV- 5
SQRT- 8

For gravitational and Coulombic fields, division
and square roots represent a significant fraction
of the arithmetic time. We report floating-point
rates for three different weights of these operations
as specified in Table 5.

The timings breakdown for the potential field
calculation of 100 million particles on a 256-node
CM-5E is shown in Table 6 forK= 12 and K =

72. The hierarchy depths are 8 and 7, respectively.
The predicted optimal hierarchy depths based only

on the number of floating-point (FLOP) operations
using Method III are 7.97 and 7.10. Thus, for
K = 12, the FLOP counts for the hierarchy and
for the direct evaluation are very balanced. In fact,
they differ by about 10%. Furthermore, the FLOP
rates forK = 12 using Method III are 55.6 and
46.8 Mflop/s/PN, respectively. The overall FLOP
rate is 43.7 ~flop/s/Pl'l, with sorting accounting
for most of the degradation in the overall FLOP
rate. ForK = 72, the FLOP rates for traversing
the hierarchy, the direct evaluation, and overall are
81.8, 52.9, and 56.6 Mflop/s/PN, respectively.

The communication time forK= 12 is 22.3%,
of the total running time and 10% forK = 72,
demonstrating that our techniques for reducing
and managing data motion are very effective. The
communication time includes the time for sorting
the input particles, reshaping 1-D particle arrays
to 4-D particle arrays, the multigrid functions in
parent-child and neighbor interactions, the fetch­
ing of ghost boxes in neighbor interactions at all
levels, replicating translation matrices for T2 at ev-

Table 6. The Breakdown of the Communication and Computation Time for 100 Million Particles on a
256-Node CM-5E

K = 12 K = 72

Breakdown Time (s) %of Total Time (s) %of Total

Communication 39.75 22.3 89.01 9.99
Sort 19.60 11.0 16.04 1.80
Reshape 2.618 1.47 2.482 0.28
Upward pass - multigrid in T1 0.107 0.06 0.092 0.01
Downward pass 8.410 4.71 56.39 6.33

Multigrid in T:3 0.215 0.12 0.162 0.02
Multip-id in T2 0.484 0.27 0.385 0.04
Fetching ghost boxes in T2 5.160 2.89 8.610 0.97
Replicate (T2) 2.550 1.43 47.23 5.30

!\'ear-field CSHIFTs 9.013 5.05 14.01 1.57
Computation 138.6 77.7 802.2 90.01

Precompute 7\ matrices 0.006 0.00 0.575 0. 06
Precompute T:> matrices 0.005 0.00 0.572 0.06
Precompute T2 matrices 0.003 0.00 0.235 0.03
!nit-potential 2.506 1.40 14.01 1.57
Upward pass-BLAS for T 1 0.783 0.44 3.459 0.39
Downward pass 63.62 3'" 7 0. ' 166.5 18.7

BLAS for T3 0.601 0.34 4.320 0.48
BLAS for T2 34.98 19.6 141.6 15.9
Copy in T2 12.90 7.23 9.990 1.12
Masking in T2 15.14 8.49 10.53 1.18

Far-field 4.678 2.62 90.74 10.2
!\'ear-field-direct evaluation 65.63 36.8 525.2 58.9
Near-field -masking 1.371 0.77 0.952 0.11

Total 178.4 100 891.2 100

~

~ c:
0
u
Q)

~
Q) a

E=

80

70

60

50

40

30

20

10

64 K particles/PN -+-
32K particles/PN -+---·

+--------... ----------+---------+---------+

32 64 128 256 512
Number of nodes

FIGURE 19 Scalarability on the CM-5s.

ery level, and the CSHIFTs in the near-field direct
evaluation for fetching particles in the near-field
boxes.

The computation time is 77.7% of the total run­
ning time forK= 12 and 90% forK= 72. In the
computation time we include the time for forming
the far-field potential for leaf-level boxes, the
BLAS operations for the T 1 , T2 , and T,3 transla­
tions, the copying in the aggregation ofBLAS oper­
ations for better arithmetic efficiency in T2 , the
masking in distinguishing boundary boxes from
interior boxes in T2 , the evaluation of the potential
due to particles in the far-field, and finally the
direct evaluation in the near-field.

5000
Method III -+­
Method II -+---·
Method! ·G···

0 ~--~----~----~----~--~-J
1K 8K 64K 512K 4M 32M

Number of particles

I I I I I I I I I I I I I I I I I
23334445556667778

Optimal hierarchy depth

FIGURE 20 FLOP count per particle for optimal hier­
archy depth, K = 12.

O(N) N-BODY ALGORITHMS 361

Figure 19 shows that the speed of our code
scales linearlv with the number of nodes and num­
ber of particles. The timings are collected on
CM-5s due to the unavailability of a variety of con­
figurations of CM-5E systems. All cases use uni­
form particle distribution in a 3-D cubic domain,
12 integration points per sphere, and optimal hier­
archy depths. It is clear from Figure 10 that for a
fixed number of particles per node, the efficiency
remains independent of the number of nodes. The
slight fluctuation is mainly due to the fluctuation
in the number of FLOPs per particle for the optimal
hierarchy depth, as shown in Figure 20.

11 DISCUSSION

Nonadaptive hierarchical methods exhibit abun­
dant data parallelism. We have demonstrated that
exploiting parallelism within each level of the hier­
archy can yield high efficiency (and good load­
balance). Below, we also discuss the use of a
nonadaptive code for near-uniform particle distri­
butions. For highly nonuniform particle distribu­
tions such as in typical simulations in astrophysics,
an adaptive hierarchical method is needed in order
to achieve good performance.

11.1 Load-Balancing Issues in
Nonadaptive Hierarchical Methods

Nonadaptive hierarchical methods use nonadap­
tive domain decomposition, and the hierarchy of
recursively decomposed domains is balanced.
There are three sources of parallelism in traversing
the hierarchy. First, the computations in parent­
child interactions for all boxes at the same level
can be performed in parallel in the upward pass
and the downward pass of the hierarchy. Second,
at every level of the downward pass of the hierar­
chy, the conversion of the far-field potential of
each box's interactive-field boxes into the local­
field potential of that box can be performed in
parallel. Third, since neighbor interactions are be­
tween boxes at the same level, the neighbor inter­
actions at all levels can be performed in parallel.

We only exploit parallelism among boxes at the
same level of the hierarchy, which potentially could
result in poor load-balance due to the limited par­
allelism at levels close to the root. However, hierar­
chical methods are advantageous compared to di­
rect methods only when more than a few thousand
particles are considered. Since for the optimal
depth of the hierarchy there only are a few particles

362 Ht A"iD JOHI"SSO:'\

per leaf-level box, the number of leaf-level boxes
is at least about 100. For large-scale simulations.
there may be several million leaf-level boxes.
Hence, for most interesting simulations there is
excess parallelism even for the largest of .\1PPs.
not only at the leaf-level but also for several levels
close to the leaf-level. At levels of the hierarchy
close to the root, there are much fewer boxes per
level, and the cost of computation is already insig­
nificant. Hence, though the load may be unbal­
anced, improved load-balance will not affect the
total execution time significantly. Also, a program
that traverses the hierarchy level by level and se­
quentializes neighbor interactions requires much
simpler data and control structures than one that
exploits parallelism beyond just among boxes.

11.2 Nonadapative Hierarchical
Methods with Near-Uniform
Distributions

The simulations described in this article use uni­
form particle distribution as input data. In prac­
tice, nonuniform distributions are much more
important. For simulations where the partide dis­
tributions are near uniform, for example in compu­
tational chemistry. a nonadaptive code may still
outperform an adaptive one. A nonadaptive code
may yield a more efficient implementation due to
its simpler computational structure compared to
an adaptive code. A nonadaptive code performs
excess computations:

1. In traversing the hierarchy, excess computa­
tions are performed since the same amount
of computation is carried out regardless of
the number of particles a box represents.

2. In the partide-box interactions at the leaf­
leveL the reshaping of the 1-D particle arrays
into 4-D arrays following the coordinate sort
can result in extensive communication and
load-imbalance because of the uneven num­
ber of particles per box. Furthermore. the
memory utilization may be poor. since some
boxes may contain far fewer partides than
the others, but all of them occupy the same
amount of memorv on each node. In con­
trasL using 1-D arrays fot partide-box in­
teractions results in more balanced compu­
tations, since 1-D arrays will always be laid
out across the processing nodes evenly. This
also implies balanced memory usage. How­
ever, such an approach relies highly on effi­
cient scan operations.

3. In the direct evaluation in the near-field. us­
ing the 4-D array representation for partides
obviously leads to excess computations be­
cause the particle-particle interactions are
turned into uniform computations on the
boxes. but boxes mav contain different
number of particles. L sing 1-D array repre­
sentation again relies highly on efficient
scan operations.

As part of the future work. we plan to investigate
the impact of the uniformity of particle distribu­
tions on the efficiency of nonadaptive data struc­
tures used in this article.

12 CONCLUSIONS

We have presented optimization techniques for
programming O(N) JV-body algorithms for MPPs
and have shown how the techniques can be ex­
pressed in data-parallel languages, such as C.\IF
and HPF. The optimizations mainly focus on min­
imizing the data movement through careful man­
agement of the data distribution and the data
references and on improving arithmetic effi­
ciency through aggregating translation opera­
tions into high-level BLAS operations. The most
performance critical language features are the
FORALL statement. array sectioning. array alias­
ing. CSHlFT. SPREAD. and array inquiry intrin­
sics. All these features, except array aliasing, are
included in HPF. But. this feature is considered
for inclusion in tiPF -11.

The effectiveness of our techniques is demon­
strated on an implementation in the CMF of
Anderson's hierarchical O(N) N-body method.
The evaluation of the potential field of 100 million
uniformly distributed particles and K = 12 integra­
tion points on the sphere takes 180 s on a 256-
node CM-5E. with an efficiencv of about 27% of
the peak performance. For K = 72 integration
points, the efficiency is about 35%. The amount of
memory required for a particle at optimal hierarchy
depth is about 230 bytes. independent of the error
rate of the method.

For highly clustered particle distributions, an
adaptive version of N-body methods is needed in
order to retain O(N) arithmetic complexity. We
are currently investigating issues in an efficiency
implementation of adaptive O(N) algorithms in
HPF.

ACKNOWLEDGMENTS

We thank Christopher Anderson for providing us with
the sequential program and for many helpful discus­
sions. \Ve also thank the :\"ational Center for Supercom­
puter Applications at the Lnivcrsity of Illinois at Cr­
bana/Champaign, the :\'avy Research Laboratory.
Washington, DC. and the Massachusetts Institute of
Technology for providing Connection Machine system
CM-5/5E access. The support of the Office of 1'\aval
Research through grant :'1100014-93-1-0192 and the
Air Force Office of Scientific Research through grant
F49620-93-1-0480 is gratefully acknowledged. Finally.
we thank the anonymous referees whose detailed com­
ments improved the quality of the presentation.

REFERENCES

[1] Thinking Machines Corporation. CH Fortran Ref­
erence :'v!arwal, Version 2.1. Thinking Machines
Corp .. 1993.

[2] High Performance Fortran Forum. ··High Perfor­
mance Fortran language specification:· Sci.
Prog., vol. 2. pp. 1-170. 1993.

[3] J. M. Anderson and yf. S. Lam. ·'Global optimiza­
tions for parallelism and locality on scalable paral­
lel machines:' in Proc. ACivl SICPLAN '93 Con­
ference on Programming Languages Design and
Implementation. 1993.

r 4] J. Li and M. Chen. ·'Generating explicit communi­
cation from shared-memory program refer­
ences." in Proc. Supercomputing '90, 1990.

[.5] l\1. E. Wolf and M.S. Lam, ·'A data locality opti­
mizing algorithm,'· in Proc. AClH S!GPLAN '91
Conference on Programming Languages Design
and implementation. 1991.

[6] Thinking Machines Corporation. CJJ-5 Technical
Summary. Thinking Ylachines Corp., 1991.

[7] C. R. Anderson. ''An implementation of the fast
multipole method without multipoles,'· SIAM].
Sci. Stat. Comp .. Vol. 1:3, pp. 92:3-947 . July
1992.

[8] L. Greengard and V. Rokhlin. "A fast algorithm
for particle simulations.··./. Comput. Phy·sics, Vol.
73.pp. 325-348,1987.

[9] L. Greengard and W. D. Gropp. "A parallel ver­
sion of the fast multipole method, .. in Parczllel
Processing for Scientific Computing. SIAM. 1989.
pp. 213-222.

[10] F. Zhao. '·An 0(:'\) algorithm for three-dimen­
sional !\'-body simulations:' AI Memo 995, Al
Lab. MIT, Oct. 1987.

[111 K. 1\'abors and J. White, "Fastcap: A multipole
accelerated 3-d capacitance extraction program."
Boston, MA, MIT Department of Electrical Engi­
neering and Computer Science. Tech. Rep., 1991.

[12] Thinking Machines Corporation, Cl!ISSL for C'vf
Fortran, Version 3.1. Thinking Y1achines Corp ..
1993.

O(N) N-BODY ALGORITHMS 363

[13] R. G. Brickner, personal communication.
[14] J. K. Salmon, "Parallel hierarchicaLV-body meth­

ods.•· California Institute of Technology, Tech.
Rep. CRPC-90-14, 1990.

[15] M. Warren and]. Salmon. ·'Astrophysical~-bodv
simulations using hierarchical tree data struc­
ttues,'' in Pro c. Supercomputing '92. 1992.

[16] M. Warren and j. Salmon, '·A parallel hashed oct­
tree 1'\ -body algorithm." in Pro c. Supercomputing
'93. 1993.

[17] P. Liu and S. Y Bhatt. "Experiences with parallel
N-bodv simulation ... in Proc. 6th Annual ACM
,~vmposium on Parallel Algorithms and Architec­
ture. 1994.

[18] P. Liu. "The parallel implementation of 1'\-body
algorithms,., PhD thesis. Yale Lniversity. 1994.

[19 1 F. Zhao and S. L. Johnsson. "The parallel multi­
pole method on the Connection Machine,'' SIAM
]. Stat. Sci. Comp., Vol. 12, pp. 1420-1437.
1991.

[20] J. F. Leathrum. '·The parallel fast multipole
method in three dimensions ... PhD thesis. Duke
Lniversitv. 1992.

[21] J. A. Board, Jr., Z. S. Hakura. W. D. Elliott.
D. C. Gray, W. J. Blanke. and J. F. Leathrum Jr.,
'·Scalable implementations of multipole-acceler­
ated algorithms for molecular dynamics,·' in Pro c.
Scalable High Performance Computing Conf
SHPCC9..J. 1994.

[221 W. D. Elliott and J. A. Board, "Fast Fouricrtrans­
form accelerated fast multi pole algorithm, .. De­
partment of Electrical Engineering, Duke Lniver­
sity. Tech. Rep. 94-001. 1994.

[23] L. Greengard and V. Rokhlin, ·'On the efficient
implementation of the fast multipolc method,''
Department of Computer Science, Yale C niversity.
1\'ew Haven, CT. Tech. Rep. YALEL/DCS/RR-
602, Feb. 1988.

[24] K. E. Schmidt and M.A. Lee. "Implementing the
fast multipole method in three dimensions,"].
Stat. Phy., Vol. 63, pp. 1223-1235, 1991.

[25] .1. P. Singh. C. Holt. T. Ttsuka. A. Gupta, and
J. L. Hennessey. ''Load balancing and data local­
ity in hierarchical 1\'-body methods,'' Stanford
University. Tech. Rep. CSL-TR-92-505, 1992.

[26] J. P. Singh, C. Holt. J. L. Hennessey, and A.
Gupta, '·A parallel adaptive fast multipole
method." in Proc. Supercomputing '98, pp.
54-65.

[27] L. S. :\'yland, .1. F. Prins. and .1. H. ReiL "A data­
parallel implementation of the adaptive fast multi­
pole algorithm," in Pro c. DA GS '98 S.ympo­
sium. 1993.

[28] J. Barnes and P. Hut, "A hierarchical O(Nlog N)
force calculation algorithm," Nature. Vol. 324,
pp. 446-449, 1986.

[29] L. Greengard and V. Rokhlin, ·'Rapid evaluation
of potential fields in three dimensions,,. Depart­
ment of Computer Science, Yale University, New

364 Hli A:"o/D JOHNSSON

Haven, CT. Tech. Rep. YALEU/DCS/RR-515.
Feb. 1987.

[30] Y. Hu and S. L. Johnsson, "On the error in Ander­
son's fast :"oo-body algorithm,'' Harvard L niversity,
Division of Applied Sciences. Tech. Rep., 1995.

[31] J. Katzenelson. ·'Computational structure of the
N-body problem,., S!Al'vf]. Sci. Statist. Comput ..
Vol. 4. pp. 787-815, 1989.

[32] J. H. Applegate, M. R. Douglas, Y. Curse!. P.
Hunter, C. L. Seitz, and G. J. Sussman, "A digital
orrery:· IE£'E Trans. Comput., Vol. C-34, pp.
822-832, Sept. 1985.

[33] J. J. Dongarra. J.D. Croz, I. Duff and S. Hammar­
ling, ·'A set of level3 basic linear algebra subpro­
grams,'' Argonne National Laboratories, Mathe­
matics and Computer Science Division, Tech.
Rep. Reprint :"ooo. 1, Aug. 1988.

[34] J. J. Dongarra, J. Du Croz, S. Hammarling. and
R. J. Hanson, "An extended set of Fortran basic

linear algebra subprograms," Argonne National
Laboratories, .\1athematics and Computer Science
Division, Tech. Rep. Technical Memorandum 41,
Nov. 1986.

[35] C. L. Lawson, R. J. Hanson. D. R. Kincaid, and
F. T. Krogh, "Basic linear algebra subprograms
for Fortran usage," ACM TOMS. Vol. 5, pp. 308-
323, Sept. 1979.

[36] S. L. Johnsson and C.-T. Ho, ·'Spanning graphs
for optimum broadcasting and personalized com­
munication in hypercubes," IEEE Trans. Com­
put .. Vol. 38, pp. 1249-1268, r.;;ept. 1989.

[37] Y. Hu and S. L. Johnsson, "A data parallel imple­
mentation of hierarchical N-body methods," Int.
]. Supercomput. Appl., Vol. 10, 1996.

[38] J. L. Hennessy and D. A. Patterson, "Computer
Architecture: A Quantative Approach." San
Mateo, CA: Morgan Kaufmann Publishers Inc.,
1990.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

