
The Design of Data-Structure-Neutral
Libraries for the Iterative Solution of
Sparse Linear Systems

BARRY F. SMITH AND WILLIAM D. GROPP

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844; e-mail:
bsmith@mcs.anl.gov, gropp@mcs.anl.gov.

ABSTRACT

Over the past few years several proposals have been made for the standardization of
sparse matrix storage formats in order to allow for the development of portable matrix
libraries for the iterative solution of linear systems. We believe that this is the wrong
approach. Rather than define one standard (or a small number of standards) for matrix
storage, the community should define an interface (i.e., the calling sequences) for the
functions that act on the data. In addition, we cannot ignore the interface to the vector
operations because, in many applications, vectors may not be stored as consecutive
elements in memory. With the acceptance of shared memory, distributed memory, and
cluster memory parallel machines, the flexibility of the distribution of the elements of
vectors is also extremely important. This issue is ignored in most proposed standards.
In this article we demonstrate how such libraries may be written using data encapsulation
techniques. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

In the 1970s two extremely successful numerical
linear algebra software packages, EISPACK and
LINPACK, were introduced. They were designed
for portability, numerical robustness, and effi­
ciency. They were, however, restricted to dense
and banded matrices. The development of serial
numerical linear algebra software for dense and
banded matrices is greatly simplified by the fact
that there are very few natural ways of storing the

Received March 1995
Revised February 1996

© 1996 John Wiley & Sons, Inc.
Scientific Programming. Vol. 5. pp. 329-336 (1996)
CCC 1058-9244/96/040329-08

matrices. Thus, very little effort is needed in de­
signing the data structures used in the codes.

For sparse linear algebra, even on sequential
machines, the issues become much more compli­
cated. When one includes various parallel ma­
chines, the problems multiply even further. Not
only must one make decisions about the storage
of the sparse matrices, one must also decide on
storage formats for the vectors, since each vector
is probably distributed across the parallel proces­
sors. We also note that even on sequential ma­
chines, the natural storage format for a vector
could be dictated by the application. For instance,
an adaptive mesh refinement code may represent
the solution and other vectors with an octtree
data structure.

Software methodologies to overcome these
problems do exist; they involve data encapsulation

330 S:\1ITH A:\D GROPP

and object-oriented programming techniques. In
object-oriented programming, we abstract out of
a data type the actions that we wish to perform on
the data, independent of the underlying represen­
tation of the data. So. for instance. in the iterative
solution of linear svstems we need to be able to
multiply vectors by sparse matrices and their trans­
poses. In addition. we must be able to perform
scalings of vectors, calculate sums of vectors, etc.
These operations. not the particular representa­
tion of the matrices and vectors. are what define
the data. Thus. any storage format, with the corre­
sponding operations defined. should be immedi­
ately supported by the software library.

To someone used to prgramming in Fortran 77.
this may sound like a pipe dream. It is actually
relatively easily achieved in some programming
languages. In this article we describe an implemen­
tation using C, sinee many people are familiar with
this language and it is portable and available on
virtually all machines. Also. it is fairly easy to mix
Fortran 77. C. and C++ code in a single applica­
tion on most platforms.

l\ote that some people use the term object ori­
ented to rPfer to specifying a data type, operations
on that data type. and all of the details of the
internal formats (e.g .. thE' sparse matrix format to
use). \V e are using object oriented in a stronger
and purer sense: Only the operations are specified.
The choice of internal format (and hence, the
choice of the aetual code to implement the opera­
tions) is determined only at run-time rather than
at compile-time. Thi:-; is an important difference:
it changes object oriented from being simply a way
to organize a code and the argument lists of the
routines to a method for flexibly adapting to differ­
ent situations.

Several publications that discuss these issues in
the standard Fortran 77 framework are [1], [2L
and 13]. An alternative approach to ours that uses
C++ as the implementation language can be
found in [4].

2 PROGRAMMER-DEFINED DATA TYPES

In Fortran 77., a limited number of data types are
built into the language. essentially scalar integer
and floating-point numbers, and dense arrays of
integer and floating-point numbers. The language
contains no mechanism for the programmer to
construct additional data types. Hence. when
dealing with higher-level objects such as sparse
matrices, the programmer must choose a partieu-

lar storage format. which. in general. will involve
several separate array variables. All of these array
variables must be passed to the routines that oper­
ate on the spares matrices.

To explain this more fully, we give a particular
example. the well-known Yale Sparse .Vlatrix
Package (YS.VIP) storage scheme [5 ~. In YS:\IP,
the sparse matrix io; stored by using four variables:
n, the size of the matrix: a .. an array of floating­
point numbers that contain the nonzero entries in
the matrix: ia. an array of integers that contain
the locations in a of the beginning of each new
row; and j a. which contains the column number
of each entry in a. A variation of this storage format
is to store the diagonal entries separately in another
array, d.

If a programmer desired to write a general-pur­
pose iterative solver routine that used the YS.VIP
storage pattern. it could have a calling sequence
like GMRES (n, a, ia, j a, ...) . But if de­
sired to support both storage formats, something
like GMRES (n, a, ia, j a, d, flag, ...)
would be needed, where the value of a ilag indi­
cates which of the two formats io; being used. This
increases the complexity of the code and makes
the addition of a new stoarge format difficult: lt
may require not only rewriting the GMRES () code.
but also modifying all of the application codes that
use it, since the calling sequence of the GMRES ()
code has been changed.

Other programming languages such as C, C++.
and Fortran 90 provide a better and more flexible
alternative. The programming is free to introduce
new data types, called structures in C and classes
in C++. One feature that is useful about these
new data types is that pointers to the data may be
passed into a routine without the routine needing
to know what information thev contain and how it
is stored. (Fortran 90 has a much more limited
construct called derived data types.) In this way
the GMRES () routine need not know the storage
format of the matrix; only the matrix-multiply rou­
tine needs to know it. So, for instance. a program­
mer may introduce a new data type .. Mat, then
write GMRES routines like the following that will
support any matrix storage format.

int MatrixMultiply(Mat matrix, Vee x, Vee y);
int GMRES(Mat matrix, ...)

ierr Matri xMul tiply (matrix, x, y);

DATA-STRCCTl~RE-~EUTRAL LIBRARIES 331

typedef struct {
int (*create)(Vec,Vec*), I* Routine returns a single vector *I

(*destroy)(Vec), I* Free a single vector *I
(*dot)(Vec,Vec,Scalar*), I* z = x-H * y *I
(*scale)(Scalar *,Vee), I* X = alpha * x *I
(*axpy)(Scalar *,Vec,Vec), I* y y + alpha * X *I

} _VectorOps;

FIGURE 1 The vector operation~ structure.

By using a base abstract matrix objecL Mat, the
compiler can still do complete type checking of
arguments. If the sparse matrix storage format is
changed. only the MatrixMul tiply () routine
must be changed, not the GMRES () routine. ln
face we can do even better than this. Rather than
hardwiringinto the GMRES () code the matrix-mul­
tiply routine, we can pass a pointer to the matrix­
multiply routine into the GMRES () routine.

3. OUR APPROACH

Since we would like to support a variety of Krylov­
based solvers. we must first determine which vector
operations these require. A few of them are the
standard Level 1 BLAS operations. Others include
routines to generate and free vectors that are
needed for temporary or permanent workspace.
Since it would be cumbersome to individually pass
pointers to all of these routines into the solver rou­
tines, we bundle up all of the function pointers
and any additional data needed for a particular
implementation into a single data type. called a
Vee. In Figure 1 we give a part of our C structure
that defines the vector operations. For those read­
ers who are not fluent in C, this simply defines a
data structure whose entries are function pointers.
\Vhen a function call is needed. the correct func­
tion for the particular data storage format is ex­
tracted from the data structure and called. Since
the function pointers are part of the data structure,
the correct function is always called.

All higher-level routines that require access to
the vectors act on the vectors only through the
pointer. not by directly manipulating the data. The
object Vee is actually a pointer defined by
typedef struct_Vec* Vee. The definition of
the structure _Vee is private to the library and
not directly accessible to the application program­
mer. In this way the library may evolve without
requiring any changes to the application codes that

rely on it. If the application code had access to the
individual data structures in _Vee. there would
be no data encapsulation.

All of the vector implementations include a
pointer to a private, implementation -dependent
data structure that may contain the vector length
and layout. For a standard serial vector implemen­
tation, this can simply be a pointer to an integer
containing the lenerth of the vector. For a simple
parallel implementation it may be a pointer to two
integers, the first containing the length of the part
of the vector stored in local memory, the second
the length of the entire vector. A sample serial im­
plementation of the dot () routine is given in Fig­
ure 2.

Currently, our vector stn1cture provides the op­
erations from the Level 1 BLAS. plus the opera­
tions y +--- x + a.v and w +--- ax + .Y. along with
operations to create and free storage for vectors.
ln Table 1 we list the minimal vector operations
we believe must be defined. The pointers to Sca­
lar are also unspecified; the indication Scalar
is there simply to allow type checking of arguments
for those languages that support it. These calling
sequences will allow the same codes to be used
with single precision, double precision, complex,
multiple precision, and interval arithmetic. For er­
ror handling, all our functions return a nonzero
on error and a zero on success.

Remark

Unlike the standard Level 1 BLAS definitions,
there is no need to indicate stride information,
since the underlying storage format is left up to the
particular implementation of the vector opera­
tions. Sparse matrix operations may be stored sim­
ilarly. In addition to the obvious operations such
as matrix-vector product and triangular solve, we
include such operations as insert and extract row
and compute incomplete factorizations. Sparse

332 SMITH AND GROPP

static int VecDot_Seq(Vec xin, Vee yin, Scalar *z)
{

Vec_Seq *X = (Vec_Seq *) xin->data, *Y = (Vec_Seq *) yin->data;
int n = x->n;
Scalar sum = 0.0, *xx = x->array, *YY = y->array;
for (i=O; i<n; i++) {

}

sum+= xx[i]*yy[i];
}

*z = sum;
return 0;

FIGURE 2 Sample dot product.

matrices have a similar table, which, to keep this
article short, will not be displayed here.

An important feature of the data-hiding ap­
proach is that additional operations can be added
without disturbing existing code. For example, the
operation w ~ ax + y was added when it became
apparent that several Krylov methods could make
good use of it. The previously coded Krylov space
methods did not require any changes. If these rou­
tines were passed through argument lists (the only
portable mechanism available for Fortran 77 pro­
grammers), adding a routine would require modi­
fying each argument list for every routine that used
these vector routines.

The only technique available to Fortran pro­
grammers that approximates this flexibility is "re­
verse communication." In this method, for each
operation, the library routine sets a flag and returns
to the calling program with a request that an opera-

Table 1. Vector Operations

Name

VecDuplicate
VecDestrov
VecDuplicate Vecs
V ecDestroy V ecs
VecDot
VecNorm
VecMax
VecScale
VecCopy
VecSet
VecAXPY
VecAYPX
VecSwap
VecWAXPY
V ecSet Values

Description

a vector
a vector
n vectors
n vectors
Z ~ XH * y
z ~ VxH*x
z ~ max(Jxl)
x~ax

y~x

x 1 ~a, 'Vi
.Y~ax + y
y~ay+x

Swap x andy
w~ax+.Y

v(idx) = x

tion be performed. However, this method puts the
burden on the user. as well as requires a rather
unnatural style of programming. In addition, it is
difficult to nest routines implemented with reverse
communication. For example, if an iterative
method, implemented with reverse communica­
tion, asks the user to evaluate the preconditioner,
which itself makes use of an iterative method (per­
haps implementing a block-diagonal precondi­
tioner), implemented with reverse communication,
it is the user, not the library, that is responsible
for untangling what is happening.

It is extremely important to note that our ap­
proach supports both matrix-free as well as out­
of-core solvers. In both cases, only the required
matrix operations must be provided; no explicit
representation of the matrices (or vectors) is
needed.

Since the various Krylov-based solvers have

Calling Sequence

Vee in, Vee *out
Vee v
Vee in, int n, Vee **out
int n. Vee *v
Vee x, Vee y, Scalar *z
Vee x, Scalar *z
Vee x, Scalar *z, int *idx
Scalar *a, Vee x
Vecx, Vecy
Scalar *a, Vee x
Scalar *a, Vee x, Vee y
Scalar *a, Vee x, Vee y
Vee x. Vee y
Scalar *a, Vee x, Vee y, Vee w
Vee v,int n,int *idx,Scalar *x,int mode

for (k=O; k<maxit; k++) {
VecDot(r, z, &beta);
c = beta/betaold; betaold = beta;
VecAYPX(&c,z,p);
MatMult(ksp->A, p, z);
VecDot(p, z, &a);
a = beta/a; ma = -a;
VecAXPY(&a, p, u);
VecAXPY(&ma, z, r);
VecNorm(r, &rnorm);

DATA-STRCCTURE-;\/El.JTRAL LIBRARIES 333

I* beta <- r'z *I

I* p <- z + c* p *I
I* z <- A*p *'

I* a <- beta/p'z *I
I* u <- u + a*p *I
I* r <- r - a*z *I
I* rnorm <- llrll *I

if (CONVERGED(ksp, rnorm, k)) break;
PCApply(ksp->B,r, z);

}

FIGURE 3 Sample code for preconditioned conjugate gradient loop: Code prior to
entering the loop has been omitted.

many optional arguments, we use a context data
type, KSP, to store this information as well as the
location of the right-hand side and the solution.
The KSP has two parts: a public part, which is the
same for all Krylov space methods; and a private
part, which contains particular options and work­
space for each particular Krylov space method.
The distinction between the two parts is invisible
to the application programmer. The user may also
provide optional routines to replace the default
convergence tests and optional routines to print
out or plot the solution, residual, and error at each
iteration; these are also stored in the KSP.

Figure 3 shows an implementation of the inner
loop of a preconditioned conjugate gradient. This
implementation is portable and works correctly on
parallel computers regardless of the distribution of
data (all of the difficulty is handled by the specific
choices of functions for the vector and matrix oper­
ations). In facL, it is taken from the version that
we are currently using on both uniprocessors and
parallel computers such as the Cray T3D and
IBM SP.

Figure 4 gives a code fragment that will allow the

SLES sles;
Vee
Mat

X, b;
A·

' int its;
I* assemble or define matrix A and vector b *I
SLESCreate(&sles);
SLESSetOperators(sles,A,A,O);
SLESSetFromOptions(sles);
SLESSolve(sles,b,x,&its);

FIGURE 4 Sample code using Krylov solvers.

solution of a linear system by using the conjugate
gradient method, GMRES, Bi-CG-stab, CGS, or
two different versions of transpose-free QMR. In
the first line, a data structure, sles, to contain
the control information on the solution process is
created. We next set the matrix operator defining
the linear system (note that we support matrix-free
methods by passing in an abstract matrix object).
The next line checks the users command line for
solver options and finally the linear system is
solved.

The important point is that all of the different
methods have the same calling sequences. Op­
tional arguments are passed by calling additional
routines, which are ignored if the option is not
appropriate. In this way any of the methods in the
library may be used without changing the applica­
tion code at all. In addition, more Krylov space
methods may be added to the library without a
need for any changes to the application codes.
Of course, this flexibility is purchased at a price.
Adding a method requires following the object­
oriented approach. Further, any matrix vector
product or preconditioner provided by the user
must conform to the defined calling sequence. But
the user may choose any data structure appro­
priate for his or her application. It has been our
experience that the object-oriented design makes
this selection relatively easy.

Figure 5 shows the calling sequence for a conju­
gate gradient algorithm contained in a recent tech­
nical report. Within the constraints of Fortran 77
(as a language in which to implement this routine),
this is just about the best that can be done. We
contend that limiting the design of software to what
can be implemented in Fortran 77 severely limits

334 SMITH A:'IID GROPP

SUBROUTINE CG(M,DESCRA,AR,IA1,IA2,INFORM,DESCRL,LR,IL1,IL2,DESCRU,
* UR,IU1,IU2,DESCRAN,ARN,IAN1,IAN2,DESCRLN,LRN,ILN1,
* ILN2,DESCRUN,URN,IUN1,IUN2,VDIAG,B,X,EPS,ITMAX,
* ERR,ITER,IERROR,Q,R,S,W,P,PT1,IAUX,LIAUX,AUX,LAUX)

FIGURE 5 Calling sequence for a conjugate gradient routine in Fortran 77.

the flexibility and maintainability of the software.
However. this limitation (:loes not mean that the
libraries cannot be implemented in another lan­
guage and then used from either Fortran 77 or 90.
For instance, virtually all aspects of our libraries
may be used directly from C. C++, or Fortran.

We also point out that our approach is not in­
tended to duplicate the code in a package such as
SPARS KIT [3], but rather to provide an interface
that is more flexible and extensible. In fact, we can
use carefully crafted implementations of opera­
tions involving sparse matrices as the implementa­
tion of the operations that we support.

One major concern with object-oriented pro­
gramming in numerical computing is efficiency. In
our approach the "objects" (vectors and matrices)
are large grained; this means the OOP overhead
is small relative to the time for the numerical com­
putation. Thus, the overall computation time is
dictated by the efficiency of the numerical code.
In fact, using our package to solve a sparse linear
system with direct LU factorization is faster than
the Fortran 77 implementation in the YSYIP. In
Tables 2 and 3 we compare the performance of
the direct linear system solver in our package
PETSc) to the publicly available YSY[P for solving
nonsymmetric linear systems using LC factoriza­
tion and a nested dissection ordering. The first
problem is from an industrial oil reservoir simula­
tor and contains 1.501 unknowns and 26,1:31
nonzeros. The second is from a three-dimensional
compressible flow simulation with 15,360 un­
knowns and 496.,000 nonzeros. Runs were made
on a Digital Alpha workstation and on an IBM
RS6000/:370. Times are given in seconds.

The columns Default and Basic indicate the
PETSc default I-node version (a version that takes

Table 2. Oil Heservoir Simulation

Machine

Alpha
RS6000

Default

."f5

.57

PETSc

Basic

.5.3

.69

YSYIP

.60

.72

advantage of rows with identical nonzero structure)
and basic version, respectively. 1'\ote that the basic
version's performance is virtually the same as that
from the Fortran 77 YS:MP code. Our alpha work­
station did not have enough memory to perform
the factorization on the larger matrix.

We have chosen the C programming language
for our software libraries for a varietv of reasons.
It is simply not possible to perform true data encap­
sulation in Fortran 77 or Fortran 90. In addition.
the various object-oriented languages such as
Smalltalk and Eiffel are too far from the main­
stream of scientific computing to be considered.
C++ was rejected because it is a moving target.
Code that compiles with one compiler will not com­
pile with another; even slightly different genera­
tions of the compiler handle very different aspects
of the C++ language. We work in an environment
where we must maintain robust, high-quality eode
for a large variety of machines. \~·e can do this in
C; and sinee we ean do true data encapsulation
and polymorphism inC while supporting users who
program in both Fortran and C++, Cis dearly
the language of choice for our libraries. In many
numerical applications and libraries, C++ may be
the most appropriate ehoice.

4 RECOMMENDATIONS

Some readers may object that the object-oriented
approach merely hides the fact that users must still
write the routines to perform the vector operations
and the matrix-vector operations. To some degree
this objection is correct. The power of the object­
oriented approach is that once the vector and ma­
trix-vector routines are written, they need not be
touched, or even understood, to write a new Kry-

Table 3. Compressible Flow Simulation

PETSc

Machine Default Basic YSMP

RS6000 112 162 161

lov-based solver that utilizes them. The converse
is also true: One need never rewrite the Krvlov­
based solvers again when a new architecture comes
along. As soon as the vector and matrix-vector
operations are provided, the Krylov-based solvers
will automaticallv work on that machine-and as
efficiently as the underlying operators.

As an example of the flexibility that this ap­
proach gives. we mention one of our applications.
a magnetostatics code that solves a large, dense
linear system in its inner loop. w·e wished to use
iterative methods instead of direct methods to solve
this problem. To do this. we simply introduced a
new sparse matrix format called "dense." This
format uses the same matrix storage that the appli­
cation is using. and uses Level2 BLAB for matrix­
vector operations (thus providing good efficiency).
w· e were then able to use all of our iterative routines
without change. The same approach was used for
the parallel version of this application [6].

Another example is in the EAGLE code [T for
external two- and three-dimensional fluid dvnam­
ics. In this code. a linear svstem must be solved
within the inner loop. However, the matrix is repre­
sented implicitly as coefficients on a grid. The con­
ventional approach to interfacing this code to a
solver package is to reformat the matrix into some
explicit representation, such as the YS:YIP format.
With our package, we simply added a new sparse
matrix type. "Eagle." that is defined by the grid
coefficients and a few operations. This simplified
the task of using our package in an existing appli­
cation. Perhaps more importantly. it minimized
the amount of additional memorv needed. since
we did not have to make a separate copy of the
matrix elements. Both of these applications codes
are written in Fortran T?, demonstrating that the
advantages of true object-oriented design can be
made available to Fortran users.

w· e make the following recommendations for the
design of truly data -structure-neutral libraries:

1. Do not design the interface based on the
limitations of the target language. Just be­
cause you cannot implement an interface in
Fortran does not mean that you cannot pro­
vide that interface to Fortran programmers.

2. Do not assume any particular format in the
data structures. Do not assume that vectors
are contiguous in computer memory (this is
not true even in many serial applications
codes).

3. Design the interface so that routines that
solve the same problem in different ways are

DATA-STRCCTCRE-NELTRAL LIBRARIES 335

perfectly interchangeable. This approach
maximizes the upward compatibility of add­
ing new algorithms.

4. Remember that data-structure-neutral does
not mean that the format of the matrix is
unspecified: it means specifying vectors and
matrices and other objects by the operations
that are performed on them in such a way
that you can operate on them without know­
ing their internal structure.

5. Choose the operations carefully so that they
can be implemented efficiently. Often this
means providing aggregate operations. such
as one to set manv elements in a matrix.
rather than only providing an operation that
acts on a single element.

6. Provide implementations of the operations
for at least several interesting data struc­
tures. For example. our library implementa­
tion includes several kinds of sparse matrix
formats as well as a dense matrix format.

Developing the codes initially takes slightly longer
than writing use-once, data-structure-dependent
codes. but the payoff in code reuse more than com­
pensates. Our codes that use these techniques are
available via anonymous ftp from the site
info. mcs. anl. gov in the directory pub lpetsc.
(We will support "double" and '·double complex"'
as the Scalar.) These routines are callable from C.
C++. and Fortran 77 (and from Fortran 90 using
the Fortran 77 interface). The linear solvers are
part of a larger set of tools. PETSc 2.0 (Portable,
Extensible Tools for Scientific computing). that we
have been developing. The user's manual for
PETSc Version 2.0, [8: is also available at the ftp
site. In addition. an overview of PETSc mav be
obtained vm the W\VW at http: I I
www.mcs.anl.govlpetsclpetsc.html.

ACKNOWLEDGMENTS

The work of the first author was supported in part by
the Applied .Vlathematical Sciences subpro~ram of the
Office of Ener~ Research. C .S. Department of Ener~.
under Contract"; -31-109-En~-38 while the author was
at Ar~onne :\ational Laboratory. and by the Office of
:\aval Research under contract 01'\R N00014-90-J-
1695 while the author was at the Department of Mathe­
matics, Cniversity of California at Los Angeles. The work
of the second was supported by the Office of Scientific
Computing, C .S. Department of Enere,ry. under Contract
W-31-109-En~-38. We thank Rick Dean of Arco for
providin~ the oil reservoir simulation matrix, Lois Curf-

336 SMITH AND GROPP

man Mcinnes for providing the compressible flow ma­
nix. and Satish Balay for providing the I-node code used
in the numerical comparison.

REFERENCES

[1] I. S. Duff, M. Marrone, and G. Radicati, "A pro­
posal for user level sparse BLAS," Tech. Rep. TR/
PA/92/85. CERFACS, 1992, SPARKER Working
note #1.

[2] T. C. Oppe and D. R. Kincaid, "Are there iterative
BLAS?" Int. J. Sci. Comp. Modeling (in press).

[3] Y. Saad, "SPARSKIT: A basic toolkit for sparse
matrix computations,'' Center for Supercomputing
Research and Development, University of Hlinois at
Urbana-Champaign, Tech. Rep.1029,Aug.1990.

[4] A.M. Bruaset and H. P. Langtangen, ''Object ori-

en ted design of preconditioned iterative methods,''
Sintef, Oslo, Norway, Tech. Rep. STF33 A94036.

[5] S. C. Eisenstat, H. C. Elman, M. H. Schultz, and
A. H. Sherman, The (new) Yale Sparse Matrix Pack­
age, Department of Computer Science, Yale Univer­
sity, Tech. Rep. YALE/DCS/RR-265, Apr. 1983.

[6] L. Kettunen, K. Forsman, D. Levine, and W.
Gropp, "Computational electromagnetics and par­
allel dense matrix computations," in Proc. of the
SIAM Parallel Processing for Scientific Computing
Conference, 1995.
J. S. Mounts, D. M. Belk, and D. L. Whitfield, "Pro­
gram EAGLE user's manual, vol. IV: Multiblock
implicit, steady-state Euler code," Air Force Arm­
anent Laboratory (AFATL), Eglin Air Force Base,
Florida, Tech. Rep. TR-88-117, Sept. 1988.

[8] S. Balay, W. Gropp, L. Curfman Mcinnes, and B.
Smith, "PETSc 2.0 user's manual, Mathematics
and Computer Science Division, Argonne National
Laboratory, Argonne, IL, Tech. Rep. ANL-95/11.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

