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ABSTRACT 

Over the past few years several proposals have been made for the standardization of 
sparse matrix storage formats in order to allow for the development of portable matrix 
libraries for the iterative solution of linear systems. We believe that this is the wrong 
approach. Rather than define one standard (or a small number of standards) for matrix 
storage, the community should define an interface (i.e., the calling sequences) for the 
functions that act on the data. In addition, we cannot ignore the interface to the vector 
operations because, in many applications, vectors may not be stored as consecutive 
elements in memory. With the acceptance of shared memory, distributed memory, and 
cluster memory parallel machines, the flexibility of the distribution of the elements of 
vectors is also extremely important. This issue is ignored in most proposed standards. 
In this article we demonstrate how such libraries may be written using data encapsulation 
techniques. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

In the 1970s two extremely successful numerical 
linear algebra software packages, EISPACK and 
LINPACK, were introduced. They were designed 
for portability, numerical robustness, and effi­
ciency. They were, however, restricted to dense 
and banded matrices. The development of serial 
numerical linear algebra software for dense and 
banded matrices is greatly simplified by the fact 
that there are very few natural ways of storing the 
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matrices. Thus, very little effort is needed in de­
signing the data structures used in the codes. 

For sparse linear algebra, even on sequential 
machines, the issues become much more compli­
cated. When one includes various parallel ma­
chines, the problems multiply even further. Not 
only must one make decisions about the storage 
of the sparse matrices, one must also decide on 
storage formats for the vectors, since each vector 
is probably distributed across the parallel proces­
sors. We also note that even on sequential ma­
chines, the natural storage format for a vector 
could be dictated by the application. For instance, 
an adaptive mesh refinement code may represent 
the solution and other vectors with an octtree 
data structure. 

Software methodologies to overcome these 
problems do exist; they involve data encapsulation 
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and object-oriented programming techniques. In 
object-oriented programming, we abstract out of 
a data type the actions that we wish to perform on 
the data, independent of the underlying represen­
tation of the data. So. for instance. in the iterative 
solution of linear svstems we need to be able to 
multiply vectors by sparse matrices and their trans­
poses. In addition. we must be able to perform 
scalings of vectors, calculate sums of vectors, etc. 
These operations. not the particular representa­
tion of the matrices and vectors. are what define 
the data. Thus. any storage format, with the corre­
sponding operations defined. should be immedi­
ately supported by the software library. 

To someone used to prgramming in Fortran 77. 
this may sound like a pipe dream. It is actually 
relatively easily achieved in some programming 
languages. In this article we describe an implemen­
tation using C, sinee many people are familiar with 
this language and it is portable and available on 
virtually all machines. Also. it is fairly easy to mix 
Fortran 77. C. and C++ code in a single applica­
tion on most platforms. 

l\ote that some people use the term object ori­
ented to rPfer to specifying a data type, operations 
on that data type. and all of the details of the 
internal formats (e.g .. thE' sparse matrix format to 
use). \V e are using object oriented in a stronger 
and purer sense: Only the operations are specified. 
The choice of internal format (and hence, the 
choice of the aetual code to implement the opera­
tions) is determined only at run-time rather than 
at compile-time. Thi:-; is an important difference: 
it changes object oriented from being simply a way 
to organize a code and the argument lists of the 
routines to a method for flexibly adapting to differ­
ent situations. 

Several publications that discuss these issues in 
the standard Fortran 77 framework are [1], [2L 
and 13]. An alternative approach to ours that uses 
C++ as the implementation language can be 
found in [4]. 

2 PROGRAMMER-DEFINED DATA TYPES 

In Fortran 77., a limited number of data types are 
built into the language. essentially scalar integer 
and floating-point numbers, and dense arrays of 
integer and floating-point numbers. The language 
contains no mechanism for the programmer to 
construct additional data types. Hence. when 
dealing with higher-level objects such as sparse 
matrices, the programmer must choose a partieu-

lar storage format. which. in general. will involve 
several separate array variables. All of these array 
variables must be passed to the routines that oper­
ate on the spares matrices. 

To explain this more fully, we give a particular 
example. the well-known Yale Sparse .Vlatrix 
Package (YS.VIP) storage scheme [5 ~. In YS:\IP, 
the sparse matrix io; stored by using four variables: 
n, the size of the matrix: a .. an array of floating­
point numbers that contain the nonzero entries in 
the matrix: ia. an array of integers that contain 
the locations in a of the beginning of each new 
row; and j a. which contains the column number 
of each entry in a. A variation of this storage format 
is to store the diagonal entries separately in another 
array, d. 

If a programmer desired to write a general-pur­
pose iterative solver routine that used the YS.VIP 
storage pattern. it could have a calling sequence 
like GMRES (n, a, ia, j a, ... ) . But if de­
sired to support both storage formats, something 
like GMRES (n, a, ia, j a, d, flag, ... ) 
would be needed, where the value of a ilag indi­
cates which of the two formats io; being used. This 
increases the complexity of the code and makes 
the addition of a new stoarge format difficult: lt 
may require not only rewriting the GMRES () code. 
but also modifying all of the application codes that 
use it, since the calling sequence of the GMRES () 
code has been changed. 

Other programming languages such as C, C++. 
and Fortran 90 provide a better and more flexible 
alternative. The programming is free to introduce 
new data types, called structures in C and classes 
in C++. One feature that is useful about these 
new data types is that pointers to the data may be 
passed into a routine without the routine needing 
to know what information thev contain and how it 
is stored. (Fortran 90 has a much more limited 
construct called derived data types.) In this way 
the GMRES () routine need not know the storage 
format of the matrix; only the matrix-multiply rou­
tine needs to know it. So, for instance. a program­
mer may introduce a new data type .. Mat, then 
write GMRES routines like the following that will 
support any matrix storage format. 

int MatrixMultiply(Mat matrix, Vee x, Vee y); 
int GMRES(Mat matrix, ... ) 

ierr Matri xMul tiply (matrix, x, y); 
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typedef struct { 
int (*create)(Vec,Vec*), I* Routine returns a single vector *I 

(*destroy)(Vec), I* Free a single vector *I 
(*dot)(Vec,Vec,Scalar*), I* z = x-H * y *I 
(*scale)(Scalar *,Vee), I* X = alpha * x *I 
(*axpy)(Scalar *,Vec,Vec), I* y y + alpha * X *I 

} _VectorOps; 

FIGURE 1 The vector operation~ structure. 

By using a base abstract matrix objecL Mat, the 
compiler can still do complete type checking of 
arguments. If the sparse matrix storage format is 
changed. only the MatrixMul tiply () routine 
must be changed, not the GMRES () routine. ln 
face we can do even better than this. Rather than 
hardwiringinto the GMRES () code the matrix-mul­
tiply routine, we can pass a pointer to the matrix­
multiply routine into the GMRES () routine. 

3. OUR APPROACH 

Since we would like to support a variety of Krylov­
based solvers. we must first determine which vector 
operations these require. A few of them are the 
standard Level 1 BLAS operations. Others include 
routines to generate and free vectors that are 
needed for temporary or permanent workspace. 
Since it would be cumbersome to individually pass 
pointers to all of these routines into the solver rou­
tines, we bundle up all of the function pointers 
and any additional data needed for a particular 
implementation into a single data type. called a 
Vee. In Figure 1 we give a part of our C structure 
that defines the vector operations. For those read­
ers who are not fluent in C, this simply defines a 
data structure whose entries are function pointers. 
\Vhen a function call is needed. the correct func­
tion for the particular data storage format is ex­
tracted from the data structure and called. Since 
the function pointers are part of the data structure, 
the correct function is always called. 

All higher-level routines that require access to 
the vectors act on the vectors only through the 
pointer. not by directly manipulating the data. The 
object Vee is actually a pointer defined by 
typedef struct_Vec* Vee. The definition of 
the structure _Vee is private to the library and 
not directly accessible to the application program­
mer. In this way the library may evolve without 
requiring any changes to the application codes that 

rely on it. If the application code had access to the 
individual data structures in _Vee. there would 
be no data encapsulation. 

All of the vector implementations include a 
pointer to a private, implementation -dependent 
data structure that may contain the vector length 
and layout. For a standard serial vector implemen­
tation, this can simply be a pointer to an integer 
containing the lenerth of the vector. For a simple 
parallel implementation it may be a pointer to two 
integers, the first containing the length of the part 
of the vector stored in local memory, the second 
the length of the entire vector. A sample serial im­
plementation of the dot () routine is given in Fig­
ure 2. 

Currently, our vector stn1cture provides the op­
erations from the Level 1 BLAS. plus the opera­
tions y +--- x + a.v and w +--- ax + .Y. along with 
operations to create and free storage for vectors. 
ln Table 1 we list the minimal vector operations 
we believe must be defined. The pointers to Sca­
lar are also unspecified; the indication Scalar 
is there simply to allow type checking of arguments 
for those languages that support it. These calling 
sequences will allow the same codes to be used 
with single precision, double precision, complex, 
multiple precision, and interval arithmetic. For er­
ror handling, all our functions return a nonzero 
on error and a zero on success. 

Remark 

Unlike the standard Level 1 BLAS definitions, 
there is no need to indicate stride information, 
since the underlying storage format is left up to the 
particular implementation of the vector opera­
tions. Sparse matrix operations may be stored sim­
ilarly. In addition to the obvious operations such 
as matrix-vector product and triangular solve, we 
include such operations as insert and extract row 
and compute incomplete factorizations. Sparse 
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static int VecDot_Seq(Vec xin, Vee yin, Scalar *z ) 
{ 

Vec_Seq *X = (Vec_Seq *) xin->data, *Y = (Vec_Seq *) yin->data; 
int n = x->n; 
Scalar sum = 0.0, *xx = x->array, *YY = y->array; 
for ( i=O; i<n; i++ ) { 

} 

sum+= xx[i]*yy[i]; 
} 

*z = sum; 
return 0; 

FIGURE 2 Sample dot product. 

matrices have a similar table, which, to keep this 
article short, will not be displayed here. 

An important feature of the data-hiding ap­
proach is that additional operations can be added 
without disturbing existing code. For example, the 
operation w ~ ax + y was added when it became 
apparent that several Krylov methods could make 
good use of it. The previously coded Krylov space 
methods did not require any changes. If these rou­
tines were passed through argument lists (the only 
portable mechanism available for Fortran 77 pro­
grammers), adding a routine would require modi­
fying each argument list for every routine that used 
these vector routines. 

The only technique available to Fortran pro­
grammers that approximates this flexibility is "re­
verse communication." In this method, for each 
operation, the library routine sets a flag and returns 
to the calling program with a request that an opera-

Table 1. Vector Operations 

Name 

VecDuplicate 
VecDestrov 
VecDuplicate Vecs 
V ecDestroy V ecs 
VecDot 
VecNorm 
VecMax 
VecScale 
VecCopy 
VecSet 
VecAXPY 
VecAYPX 
VecSwap 
VecWAXPY 
V ecSet Values 

Description 

a vector 
a vector 
n vectors 
n vectors 
Z ~ XH * y 
z ~ VxH*x 
z ~ max(Jxl) 
x~ax 

y~x 

x 1 ~a, 'Vi 
.Y~ax + y 
y~ay+x 

Swap x andy 
w~ax+.Y 

v(idx) = x 

tion be performed. However, this method puts the 
burden on the user. as well as requires a rather 
unnatural style of programming. In addition, it is 
difficult to nest routines implemented with reverse 
communication. For example, if an iterative 
method, implemented with reverse communica­
tion, asks the user to evaluate the preconditioner, 
which itself makes use of an iterative method (per­
haps implementing a block-diagonal precondi­
tioner), implemented with reverse communication, 
it is the user, not the library, that is responsible 
for untangling what is happening. 

It is extremely important to note that our ap­
proach supports both matrix-free as well as out­
of-core solvers. In both cases, only the required 
matrix operations must be provided; no explicit 
representation of the matrices (or vectors) is 
needed. 

Since the various Krylov-based solvers have 

Calling Sequence 

Vee in, Vee *out 
Vee v 
Vee in, int n, Vee **out 
int n. Vee *v 
Vee x, Vee y, Scalar *z 
Vee x, Scalar *z 
Vee x, Scalar *z, int *idx 
Scalar *a, Vee x 
Vecx, Vecy 
Scalar *a, Vee x 
Scalar *a, Vee x, Vee y 
Scalar *a, Vee x, Vee y 
Vee x. Vee y 
Scalar *a, Vee x, Vee y, Vee w 
Vee v,int n,int *idx,Scalar *x,int mode 



for (k=O; k<maxit; k++) { 
VecDot(r, z, &beta); 
c = beta/betaold; betaold = beta; 
VecAYPX(&c,z,p); 
MatMult(ksp->A, p, z ); 
VecDot(p, z, &a); 
a = beta/a; ma = -a; 
VecAXPY(&a, p, u ); 
VecAXPY(&ma, z, r ); 
VecNorm( r, &rnorm ); 
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I* beta <- r'z *I 

I* p <- z + c* p *I 
I* z <- A*p *' 

I* a <- beta/p'z *I 
I* u <- u + a*p *I 
I* r <- r - a*z *I 
I* rnorm <- llrll *I 

if (CONVERGED( ksp, rnorm, k)) break; 
PCApply( ksp->B,r, z ); 

} 

FIGURE 3 Sample code for preconditioned conjugate gradient loop: Code prior to 
entering the loop has been omitted. 

many optional arguments, we use a context data 
type, KSP, to store this information as well as the 
location of the right-hand side and the solution. 
The KSP has two parts: a public part, which is the 
same for all Krylov space methods; and a private 
part, which contains particular options and work­
space for each particular Krylov space method. 
The distinction between the two parts is invisible 
to the application programmer. The user may also 
provide optional routines to replace the default 
convergence tests and optional routines to print 
out or plot the solution, residual, and error at each 
iteration; these are also stored in the KSP. 

Figure 3 shows an implementation of the inner 
loop of a preconditioned conjugate gradient. This 
implementation is portable and works correctly on 
parallel computers regardless of the distribution of 
data (all of the difficulty is handled by the specific 
choices of functions for the vector and matrix oper­
ations). In facL, it is taken from the version that 
we are currently using on both uniprocessors and 
parallel computers such as the Cray T3D and 
IBM SP. 

Figure 4 gives a code fragment that will allow the 

SLES sles; 
Vee 
Mat 

X, b; 
A· 

' int its; 
I* assemble or define matrix A and vector b *I 
SLESCreate(&sles); 
SLESSetOperators(sles,A,A,O); 
SLESSetFromOptions(sles); 
SLESSolve(sles,b,x,&its); 

FIGURE 4 Sample code using Krylov solvers. 

solution of a linear system by using the conjugate 
gradient method, GMRES, Bi-CG-stab, CGS, or 
two different versions of transpose-free QMR. In 
the first line, a data structure, sles, to contain 
the control information on the solution process is 
created. We next set the matrix operator defining 
the linear system (note that we support matrix-free 
methods by passing in an abstract matrix object). 
The next line checks the users command line for 
solver options and finally the linear system is 
solved. 

The important point is that all of the different 
methods have the same calling sequences. Op­
tional arguments are passed by calling additional 
routines, which are ignored if the option is not 
appropriate. In this way any of the methods in the 
library may be used without changing the applica­
tion code at all. In addition, more Krylov space 
methods may be added to the library without a 
need for any changes to the application codes. 
Of course, this flexibility is purchased at a price. 
Adding a method requires following the object­
oriented approach. Further, any matrix vector 
product or preconditioner provided by the user 
must conform to the defined calling sequence. But 
the user may choose any data structure appro­
priate for his or her application. It has been our 
experience that the object-oriented design makes 
this selection relatively easy. 

Figure 5 shows the calling sequence for a conju­
gate gradient algorithm contained in a recent tech­
nical report. Within the constraints of Fortran 77 
(as a language in which to implement this routine), 
this is just about the best that can be done. We 
contend that limiting the design of software to what 
can be implemented in Fortran 77 severely limits 
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SUBROUTINE CG(M,DESCRA,AR,IA1,IA2,INFORM,DESCRL,LR,IL1,IL2,DESCRU, 
* UR,IU1,IU2,DESCRAN,ARN,IAN1,IAN2,DESCRLN,LRN,ILN1, 
* ILN2,DESCRUN,URN,IUN1,IUN2,VDIAG,B,X,EPS,ITMAX, 
* ERR,ITER,IERROR,Q,R,S,W,P,PT1,IAUX,LIAUX,AUX,LAUX) 

FIGURE 5 Calling sequence for a conjugate gradient routine in Fortran 77. 

the flexibility and maintainability of the software. 
However. this limitation (:loes not mean that the 
libraries cannot be implemented in another lan­
guage and then used from either Fortran 77 or 90. 
For instance, virtually all aspects of our libraries 
may be used directly from C. C++, or Fortran. 

We also point out that our approach is not in­
tended to duplicate the code in a package such as 
SPARS KIT [ 3], but rather to provide an interface 
that is more flexible and extensible. In fact, we can 
use carefully crafted implementations of opera­
tions involving sparse matrices as the implementa­
tion of the operations that we support. 

One major concern with object-oriented pro­
gramming in numerical computing is efficiency. In 
our approach the "objects" (vectors and matrices) 
are large grained; this means the OOP overhead 
is small relative to the time for the numerical com­
putation. Thus, the overall computation time is 
dictated by the efficiency of the numerical code. 
In fact, using our package to solve a sparse linear 
system with direct LU factorization is faster than 
the Fortran 77 implementation in the YSYIP. In 
Tables 2 and 3 we compare the performance of 
the direct linear system solver in our package 
PETSc) to the publicly available YSY[P for solving 
nonsymmetric linear systems using LC factoriza­
tion and a nested dissection ordering. The first 
problem is from an industrial oil reservoir simula­
tor and contains 1.501 unknowns and 26,1:31 
nonzeros. The second is from a three-dimensional 
compressible flow simulation with 15,360 un­
knowns and 496.,000 nonzeros. Runs were made 
on a Digital Alpha workstation and on an IBM 
RS6000/:370. Times are given in seconds. 

The columns Default and Basic indicate the 
PETSc default I-node version (a version that takes 

Table 2. Oil Heservoir Simulation 

Machine 

Alpha 
RS6000 

Default 

."f5 

.57 

PETSc 

Basic 

.5.3 

.69 

YSYIP 

.60 

.72 

advantage of rows with identical nonzero structure) 
and basic version, respectively. 1'\ote that the basic 
version's performance is virtually the same as that 
from the Fortran 77 YS:MP code. Our alpha work­
station did not have enough memory to perform 
the factorization on the larger matrix. 

We have chosen the C programming language 
for our software libraries for a varietv of reasons. 
It is simply not possible to perform true data encap­
sulation in Fortran 77 or Fortran 90. In addition. 
the various object-oriented languages such as 
Smalltalk and Eiffel are too far from the main­
stream of scientific computing to be considered. 
C++ was rejected because it is a moving target. 
Code that compiles with one compiler will not com­
pile with another; even slightly different genera­
tions of the compiler handle very different aspects 
of the C++ language. We work in an environment 
where we must maintain robust, high-quality eode 
for a large variety of machines. \~·e can do this in 
C; and sinee we ean do true data encapsulation 
and polymorphism inC while supporting users who 
program in both Fortran and C++, Cis dearly 
the language of choice for our libraries. In many 
numerical applications and libraries, C++ may be 
the most appropriate ehoice. 

4 RECOMMENDATIONS 

Some readers may object that the object-oriented 
approach merely hides the fact that users must still 
write the routines to perform the vector operations 
and the matrix-vector operations. To some degree 
this objection is correct. The power of the object­
oriented approach is that once the vector and ma­
trix-vector routines are written, they need not be 
touched, or even understood, to write a new Kry-

Table 3. Compressible Flow Simulation 

PETSc 

Machine Default Basic YSMP 

RS6000 112 162 161 



lov-based solver that utilizes them. The converse 
is also true: One need never rewrite the Krvlov­
based solvers again when a new architecture comes 
along. As soon as the vector and matrix-vector 
operations are provided, the Krylov-based solvers 
will automaticallv work on that machine-and as 
efficiently as the underlying operators. 

As an example of the flexibility that this ap­
proach gives. we mention one of our applications. 
a magnetostatics code that solves a large, dense 
linear system in its inner loop. w·e wished to use 
iterative methods instead of direct methods to solve 
this problem. To do this. we simply introduced a 
new sparse matrix format called "dense." This 
format uses the same matrix storage that the appli­
cation is using. and uses Level2 BLAB for matrix­
vector operations (thus providing good efficiency). 
w· e were then able to use all of our iterative routines 
without change. The same approach was used for 
the parallel version of this application [ 6]. 

Another example is in the EAGLE code [T for 
external two- and three-dimensional fluid dvnam­
ics. In this code. a linear svstem must be solved 
within the inner loop. However, the matrix is repre­
sented implicitly as coefficients on a grid. The con­
ventional approach to interfacing this code to a 
solver package is to reformat the matrix into some 
explicit representation, such as the YS:YIP format. 
With our package, we simply added a new sparse 
matrix type. "Eagle." that is defined by the grid 
coefficients and a few operations. This simplified 
the task of using our package in an existing appli­
cation. Perhaps more importantly. it minimized 
the amount of additional memorv needed. since 
we did not have to make a separate copy of the 
matrix elements. Both of these applications codes 
are written in Fortran T?, demonstrating that the 
advantages of true object-oriented design can be 
made available to Fortran users. 

w· e make the following recommendations for the 
design of truly data -structure-neutral libraries: 

1. Do not design the interface based on the 
limitations of the target language. Just be­
cause you cannot implement an interface in 
Fortran does not mean that you cannot pro­
vide that interface to Fortran programmers. 

2. Do not assume any particular format in the 
data structures. Do not assume that vectors 
are contiguous in computer memory (this is 
not true even in many serial applications 
codes). 

3. Design the interface so that routines that 
solve the same problem in different ways are 
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perfectly interchangeable. This approach 
maximizes the upward compatibility of add­
ing new algorithms. 

4. Remember that data-structure-neutral does 
not mean that the format of the matrix is 
unspecified: it means specifying vectors and 
matrices and other objects by the operations 
that are performed on them in such a way 
that you can operate on them without know­
ing their internal structure. 

5. Choose the operations carefully so that they 
can be implemented efficiently. Often this 
means providing aggregate operations. such 
as one to set manv elements in a matrix. 
rather than only providing an operation that 
acts on a single element. 

6. Provide implementations of the operations 
for at least several interesting data struc­
tures. For example. our library implementa­
tion includes several kinds of sparse matrix 
formats as well as a dense matrix format. 

Developing the codes initially takes slightly longer 
than writing use-once, data-structure-dependent 
codes. but the payoff in code reuse more than com­
pensates. Our codes that use these techniques are 
available via anonymous ftp from the site 
info. mcs. anl. gov in the directory pub lpetsc. 
(We will support "double" and '·double complex"' 
as the Scalar.) These routines are callable from C. 
C++. and Fortran 77 (and from Fortran 90 using 
the Fortran 77 interface). The linear solvers are 
part of a larger set of tools. PETSc 2.0 (Portable, 
Extensible Tools for Scientific computing). that we 
have been developing. The user's manual for 
PETSc Version 2.0, [8: is also available at the ftp 
site. In addition. an overview of PETSc mav be 
obtained vm the W\VW at http: I I 
www.mcs.anl.govlpetsclpetsc.html. 
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