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ABSTRACT 

This article describes a knowledge-based system for automatic parallelization of a wide 
class of sequential numerical codes operating on vectors and dense matrices, and for 
execution on distributed memory message-passing multiprocessors. Its main feature is 
a fast and powerful pattern recognition tool that locally identifies frequently occurring 
computations and programming concepts in the source code. This tool also works for 
dusty deck codes that have been "encrypted" by former machine-specific code transfor­
mations. Successful pattern recognition guides sophisticated code transformations in­
cluding local algorithm replacement such that the parallelized code need not emerge 
from the sequential program structure by just parallelizing the loops. It allows access 
to an expert's knowledge on useful parallel algorithms, available machine-specific 
library routines, and powerful program transformations. The partially restored program 
semantics also supports local array alignment, distribution, and redistribution, and 
allows for faster and more exact prediction of the performance of the parallelized target 
code than is usually possible. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Parallel computers with distributed memory are 
known to be difficult to program. Even more prob­
lematic is the automatic parallelization for such 
machines. The most challenging problems that a 
parallelizing compiler is faced with are the fol­
lowing: 

1. Parallel code must contain explicit message­
passing statements. But explicit program­
ming of message passing is complex, te­
dious, and error prone. 

2. The efficiency of the target program depends 
heavily on choosing a suitable distribution 
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(and sometimes, even redistribution) of the 
arrays occurring in the source program. For 
larger applications, this is a difficult global 
optimization problem. 

3. A single-program multiple data (SP:MD) pro­
gram generated semiautomatically from a 
sequential source program by adapting it to 
given array distributions must in general be 
transformed to be efficient-just applying 
the owner-computes-rule will usually not 
suffice. There is no guidance on which opti­
mizing transformations to choose, and in 
which order to apply them. :Moreover, there 
is no possibility to exploit explicitly parallel 
algorithms that have been developed over 
the last decades for various problems on var­
ious target architectures. 

4. Run-time prediction for nontrivial codes on 
real machines is a very complex issue, due 
to network contention, message protocols, 
buffering, undocumented hardware fea­
tures, and other problems. But reliable run­
time prediction is essential to estimate the 
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quality of array distribution schemes or of 
program transformations. 

:vlessage-passing statements can be generated 
automatically today by semiautomatic paralleliza­
tion [ 10. 55]. The user has to provide array distri­
butions and optimizing transformations manually. 
either in the form of interactive commands, as in 
SCPERB [55], or in the form of language con­
structs or compiler directives in an explicitly paral­
lel programming language such as Fortran D [29], 
Vienna Fortran [ 11], High- Performance Fortran 
(HPF) [28], and others. "\evertheless, there re­
mains the hard problems involved in automatic 
data distribution and redistribution, automatic 
guidance on optimizing transformations, and in 
suitably accurate performance prediction. 

The problems involved in generating good par­
allel code for distributed memory multiprocessors 
(or other complex supercomputer architectures) 
arise from the fact that there is often not sufficient 
knowledge available of the source program and 
on the target machine characteristics. Thus. an 
automatic parallelizer for such target architectures 
must be able to acquire and access as much of 
this knowledge as possible. Thi,; does not work for 
all programs. 

:Vlany numerical programs are, however, partic­
ularly suitable for this purpose. As a result of 
considering numerical algorithms in books and 
cour,;es. and studying a large number of typical 
application codes that are reasonable candidates 
to be ported to distributed memory systems, we 
have observed [33] that there is onlv a rather lim­
ited number of typical operations. called patterns. 
that often occur in these programs, in particular 
in the time-consuming inner loops. These patterns 
are mostly data parallel operations like element­
wise operations on vectors and matrices, various 
kinds of reductions and linear recurrences. differ­
ence stars. grid relaxation sweeps. convolutions. 
and others. A pattern is considered to be a primi­
tive with respect to mathematical properties, data 
structures of operands, nwmory access structLLre, 
array alignment preferences, and run-time behav­
ior. We have collected about 150 patterns in a 
basic pattern library. We have also recorded typi­
cal implementation prototypes (syntactic varia­
tions) of these patterns that are used in sequential 
source codes [33]. 

Based on this observation, we constructed an 
automatic parallelization system called PARA­
MAT (PARallelize Automatically by pattern 
J;JATching) with the following key ideas: 

1. The first step of parallelization must contain 
a pattern recognition tool that works fast and 
reliably. Code pieces in the source program 
that are recognized as an occurrence of one 
of our patterns are replaced by an instance 
of that pattern, looking similar to a call to 
an externally defined function. The input 
language is structured C without pointers. 

2. Once the system knows what the source pro­
gram locally does. it can infer additional 
knowledge using mathematical properties 
and efficient implementations of the pat­
terns on the target machine and access off­
line-generated information on favorable 
data distributions and run-time behavior of 
the pattern implementations on the target 
machine. The parallelization system can 
then easily use this knowledge to guide a 
sophisticated parallelization process with 
high-level program transformations includ­
ing local algorithm replacement. 

The remainder of this article is organized as 
follows: Section 2 describes pattern recognition in 
numerical codes and summarizes our list of pat­
terns. Section 3 presents the main ideas and defi­
nitions of our pattern recognition method and gives 
several examples. Section 4 summarizes the PAR­
AYIAT pattern recognition tool. gives results, and 
discusses some extensions. Section 5 shows how 
the information supplied by pattern recognition is 
used to guide automatic parallelization. Section 6 
lists some related approaches to pattern recogni­
tion and pattern-driven automatic parallelization. 

2 PATTERNS IN SCIENTIFIC PROGRAMS 

To promote the pattern-recognition approach, we 
examined many sequential numerical algorithms 
that are typical and well-suited candidates to be 
run on distributed memory multiprocessors. e.g .. 
some "Numerical Recipes" [48] or algorithms 
considered in numerical textbooks like [ 3] or in a 
numerical math course: Basic linear algebra sub­
routines (see also [15, 40] ). direct solvers for linear 
equation systems (such as Gaussian Elimination. 
LC. QR. or Cholesky decomposition), Simplex. it­
erative linear equation solvers ( such as Jacobi. 
Gauss-SeideL JOR. SOR. and Conjugate-Gradient 
solver), fixpoint iterations (e.g .. square-rooting a 
matrix), grid relaxations (used for numerical solu­
tion of partial differential equations), interpolation 
problems. numerical integration and differentia-
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Table 1. Analysis of the Purdue Set (Sequential Versions of 14 Kernels From the HPF Benchmark Suite 
[46)): Currently Recognizable Patterns 

~0. I" a me Recognized Pattems Recognized Loops 

1 Trapezoidal rule FSUM 1 from 1 
2 Reduction function 1 MINITSP. VVPROD. VSUM 3 from 3 
3 Reduction function 2 MINIT. VVPROD. VSUM 3 from 3 
4 Reduction function 3 VINIT. VINV. VSUM 3 from :3 
5 Simple search MINITSP. MSUM, - 2 from 3 
6 Tridiag. set of lin. eqns. VINIT (8). VMUL (4). GVOP (8). VCOPY (5). VSUM 26 from 26 
7 Lagrange interpolation VINITSP (2). VINC (2). VINV. VPROD (2).- 7 from 8 
8 Divided differences VINITSP. VSIN.-.MSUM 3 from 4 
9 Finite differences MINITSP,MINIT,MJACOBI.-. MCOPY.MSUM 5 from 6 

11 Fourier's moments VINITSP. GVOP. VSL~ 3 from 3 
12 Arrav construction VINITSP (2), MINITSP. MCOPY. VCOPY (2) 6 from 6 
13 Floating-point arithmetic VINITSP, GVOP (3). VMULTIADD. 7 from 7 

VCONDASS(VADD). VQSUM 
14 Simpson's and Gauss' integration FSUM (5) 5 from 5 
15 Chebyshev interpolation VINITSP (2). GVOP (3). VCOPY. - 6 from 7 

1\ote: The right-hand column indicat<es how manv loops (after applvinl! loop distribution) can lw covered bv patterns from 
the Libran. GVOP denotes a general vector operation that is later decomposed into atomir t>lt'mentwist> vt'etor opt'rations usin{! 
temporary arravs. 

tion. and multigrid algorithms. These algorithms 
are the basic building blocks of many numerical 
applications. 

Considering these numerical algorithms in nu­
merics books and courses, and studying a large 
number of typical application codes as the Purdue 
Set benchmark ( [ 46]. Table 1 ), the Livermore 
Loops ([44]. see Table 4), and others [see 33]. 
which are reasonable candidates to be ported to 
distributed memory systems, we have observed 
that there is only a rather limited number of typicaL 
mostly data parallel operations, called patterns, 
that often occur in these programs, in particular 
in the time-consuming inner loops. A pattern is 
considered to be a primitive with respect to mathe­
matical properties, data structures of operands, 
memory access structure, array alignment prefer­
ences. and run-time behavior. We have collected 
around 150 patterns in a basic pattern library [see 
33]. Chapter 5 for the complete specification; Ta­
ble 2 gives an overview]. We have also recorded 
typical implementation prototypes (syntactic vari­
ations) of these patterns that are used in the se­
quential source codes considered; they are speci­
fied in Appendix B of [33]. 

Our observations are backed up by other empir­
ical investigations on large FORTRAN codes [521 
and by the typical sets of numerical routines con­
tained in numerical linear algebra packages, which 
are either supplied by hardware vendors, or offered 
by numerical software companies, or distributed 

as public domain software. So far, we have focused 
on algorithms operating on rectangular dense rPal 
matrices because these are the most reasonable 
candidates to be ported to distributed memory par­
allel supercomputers: nevertheless, our approach 
may easily be extended to other matrix types (e.g., 
banded. block-banded; complex). We are cur­
rently investigating operations on sparse matri­
ces [33]. 

3 PRINCIPLES OF PATTERN 
RECOGNITION 

3.1 Overview 

PARAMAT's pattern recognizer works on the in­
termediate representation of the source program 
as an abstract svntax tree. A well-structured and 
statically analyzable source language is assumed. 
The goal is to annotate as many nodes as possible 
with a so-called pattern instance, a summary 
structure that describes which function is com­
puted in the subtree rooted at that node, together 
with the parameter objects of that function. Speed 
and robustness of this method mainly result from 
exploiting the natural semantic hierarchy of the 
patterns in the library. 

The algorithm traverses the abstract syntax tree 
from left to right in postorder. For a leaf node (a 
variable or a constant), determining its pattern is 
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Table 2. A Summary of the Patterns Included in the Current Version of the Basic PARAMAT 
Pattern Library 

Order Patterns 

0 Scalar arithmetics, iniL copy, max, min, swap, read. write, etc. 
MULTIADD'0 • MULTIMUL 0 , grid stencil 1D (HSTAR 0 , and 2D (STAR 0 ') 

1 Loop accumulating scalar values (FSUM 1 ) 

Elementwise vector operations (VADD 11
, VMUL 1 , ... ), scalar plus vector (VINC 1 ). 

scalar times vector (SV' 1
·), full vector triad (VADDSV' 1 

). accumulating vector triad 
(VAADDSV' 1 , ... ), vector init. (VINIT' 1

', VASSIGN' 1 , ... ), vector copy (VCOPY 1 ), vector 
swap (VSWAP' 1•), vector read/write, etc. 

1 D reductions: total sum of vector elements (VSUM' 1 ), total product (VPROD 1 ), inner product 
(SSP' 1·, VQSUM'1 

), etc. 
1D reductions: vector maximization/minimizations (value: VMAXVAL 11 , VMINVAL 1 ), 

location: (VMAXLOC' 1 , VMINLOC11
), both (VMAXVL' 1 , VMINV0 1 ) 

1D relaxation steps: Jacobi (VJACOBI11
), Gauss-Seidel (VGAUSSSEIDEL 1 ) 

First order linear recurrences (FOLR' 1 , PREVSUM' 1
:, SUFVSUM11 ) 

Intermediate form of 1 D convolution 
Global vector update (VLUD 1 ') 

Vector shift (VSHIFT 11 
) 

2 Elementwise matrix operations (MADD'2 '. MMUL 2 •... ). scalar plus matrix (MINC' 2 ), 

scalar times matrix (SM 2 '), matrix triad (MAADDSM 2 ), matrix init. (MINIT 2 '. MASSIGN 2 '), 

matrix copy (MCOPY2 '). matrix read/ -write, etc. 
Matrix-vector multiplication (MV' 2 ) and related patterns 
Forward and backward substitution (FSUBST 2

. BSUBST'2 ') 

2D reductions: total sum of matrix elements (MSUM 2 '). total product (MPROD 2 '). concurrent 
row/ col-vector sum (VVSUM' 2 ) or product (VVPROD'2 ) 

2D reductions: matrix maximizations/minimizations (total or row/col-wise) value (MMAXVAL 2 • 

MMINVAL' 2 ). location (MMAXLOC 2 ', MMINLOC 2 ). both value and location (MMAXVL 2 '. 

MMINVL 2
) 

2D relaxation steps: Jacobi (MJACOBI 2 , ... ). Gauss-Seidel (MGAUSSSEIDEL' 2 •... ) 

Global matrix update (MLUD 12
', ••. intermediate LC decomposition) 

1D convolution (VCONV 2): intermediate forms of 2D convolution 
Matrix shift (MSHIFT2 '). row I col-vector-shift (VVSHIFT 2 ) 

:3 :\-latrix multiplication (MM '3 '), LU decomposition (LUD 3 j 

Intermediate forms of 2D convolution 
2D relaxation loops: Jacobi (JACOBI''3 ). Gauss-Seidel (GAUSSSEIDEL'1 ) 

4 2D convolution (MCONV-+ ) 

:'IJ"umber 

20 
4 

1 

32 

7 

6 
2 
3 
1 
1 
1 

17 
3 
2 

4 

12 
4 

3 
3 
2 

6 
2 
2 

1'\otP: All BLAS routinPs opt>ratinl! on dense real matrices are inclwlPd. A pattPrn·s order number (left-hand column) denotes 
the depth of a loop nest that is usually encountered in a straif!htforward sequential implementation of that pattern. The so-called 
unstable patterns. "·!!·· general vector operation (GVOP 1 

') or multiple vector triad IVMULTIADD 1 are not listed becaust> thPv are 
dt>composed into tlwir basic pattPrns before being submitted to the C()(lP f!Pneration stage. thus being invisiblt> to code generation. 

trivial (VAR or CONST. respectively). At each inner 
node v of the svntax tree. it tests. based on v' s 
children's patterns already matched. whether 
there is a pattern m in the library (there exisb 
at most one) which matches the semantics of the 
subtree T,, rooted at v. This is technically arranged 
by callin§! a short routine. a realization of a so­
called template. This routine fails if it cannot prove 
that the function computed by T,, equals the opera­
tion represented by m. Otherwise. it returns an 
instance I of pattern m. maps the program objects 
to the correspondin§! slots of I. and annotates v 

with I. If there are several templates admissible, 
these are tested concurrently (the result is deter­
ministic). Failing templates abort as soon as pos­
sible. 

The already matched patterns of v's children 
dramatically prune the search space of patterns 
that mav match v. Often. there is alreadv one char-. . 
acteristic pattern (trigger pattern) of a child of v 
together with v's operator to select a single possible 
template. ~We give the formal definitions of these 
concepts in Subsection 3.3. 

This (classical) pattern matching along '·verti-
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cal" edges of the abstract syntax tree corresponds 
to a special deterministic bottom-up tree automa­
ton [18]. This procedure can be extended for pat­
tern matching along "horizontal" data flow edges, 
such that several (matched) instructions in the 
same block that belong to the same pattern may 
be contracted to a single pattern instance. Several 
instructions may belong to the same computation 
only if their operands are involved in at least one 
of several types of data flow relations. We denote 
important data flow relations by data flow edges 
(cross edges). Computation of these edges (i.e., 
computing exact array data flow) is generally hard, 
but in our case, we can profit from the simple array 
access structures that are characteristic for dense 
matrix computations and that are present in all 
our patterns. We will consider this problem in Sub­
section 3. 5. 

3.2 Preparing Code Transformations 

Before starting pattern recognition, we apply sev­
eral important normalizing transformations to 
make the program as explicit as possible by 

1. Inlining all procedures (recursive procedures 
are very untypical for the application area 
considered); this makes all program analysis 
intraprocedural. 

2. Performing forward propagation of con­
stant expressions. 

3. Making control flow well structured by elimi­
nating gatos. 

4. Recognizing and replacing induction vari­
ables (i.e., integer variables indexing arrays 
that are not a loop variable of a surrounding 
for 1 oop) by a term depending only on 
loop variables. 

u. Eliminating dead code. 

These transformations are applied in this order 
just once (regarding ordering of transformations, 
see [54]). 

3.3 Patterns, Templates, and the Pattern 
Hierarchy Graph 

Each nontrivial pattern m is a pair (fm, lm) consist­
ing of a specificationfm of a (mathematical) opera­
tion, and a list /m of specifications of the types 
and the data structures of the parameters occur­
ring in fm. For instan~e, the MVI2) pattern represents 
the ... operation y = Ab + x, with the parameters y, 
A, b, and x being real (sub )arrays (x may also be 

a constant). For each nontrivial pattern, m, we 
usually know several implementation prototypes 
(for sequential C code). Because of the wide variety 
of semantics preserving code transformations, the 
number of such prototypes can be large for more 
complex patterns (such as matrix-matrix-multipli­
cation), expanding the size of an automatically 
generated tree automaton dramatically. For this 
reason, we formulate the prototypes as far as possi­
ble by using instances of (other) patterns. An im­
plementation of matrix-vector-multiplication 
(MVI21) can be written as a single loop based on a 
dot product computation 

for (i=l; i<=n; i++) 
SSP(j=[l:m], x[i], A[i] [l:m], 
b[l:m], x[i]); 

or as a loop summing up the result vectors of vec­
tor triads 

for (j=l; j<=m; j++) 
VAADDSV(i=[l:n], x[l:n], b[j], 
A[l:n] (j], x[l:n]); 

~ -+ ~m 

because (Ab + x);=[h•l = (~J=l Aiibi + x;)i=[LnJ 

"'"' ~i=l ((Aijbj)i=[LnJ)j + (x;)i=[lnJ· 
With such domain information it becomes straight­
forward to formulate templates, which are the rules 
to determine a node's pattern m (and pattern in­
stance I) given the node's operator and all its chil­
dren's pattern instances. 

Recognizing leaf nodes in the syntax tree as vari­
ables or constants is trivial. Now consider a subtree 
Tw rooted at a node w with several children v1 , 

... , vk. The operator op of w is either a for loop 
header, an if header, an assignment, or a unary 
or binary expression operator. The children of w, 
respectively, correspond to the loop body, the 
then or else branch, the left-hand side variable 
or the right-hand side expression of the assign­
ment, or the operand expressions. 

Definition 

Let h be the function computed by Tw, as defined 
by the semantics of the programming language 
used. Let the children v1, v2 , ... , vk of node w 
already being annotated by pattern instances / 1 , 

/ 2 , ... , Ik of (potentially, trivial) patterns m 1 , m2 , 

... , mk from the library. Let g denote a function. 
Let i E {1, ... , k}. We call the k + 2-tuple S = 
(g, m1 , ... , mk, i) a template of m, if g(fm

1
, ••• , 

fm) = fm = h. We call m1 a trigger pattern; i is, 
depending on op, determined according to Table 
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3. Moreover, we call m 1 , ... , mk (potential) sub­
patterns of m. For each pattern, we realize only 
the most important templates (typically, we have 
one to three realized templates per pattern), see 
[33]. 

Definition 

A pattern hierarchy graph (PHG) for a set M of 
patterns m is a directed graph G = (V, E). The set 
V of nodes contains all patterns m E M. For each 
realized templateS= (g, m 1 , ... , m;, ... , mb 
i) for a pattern m with trigger pattern m; there is 
an edge (m;, m) in E. Because m; = m is possible 
(i.e., a pattern may occur as a subpattern in one 
of its own templates), there may exist trivial cycles 
from a pattern to itself. Apart from these trivial 
cvcles the PHG is acyclic. We associate an order 
n.umb~r order(m) with each pattern m that denotes 
the loop nesting depth in a straightforward sequen­
tial implementation of m (i.e., without blocked 
loops). For example, for matrix-vector multiplica-

12') 2 d f . tion, we have order(MV ' = , an o~ matnx-
matrix multiplication, we have order(MM13!) = 3. A 
PHG edge (m;, m) implies order(m;) :S order(m). 

A PHG is called complete for a pattern m, if its 
node set contains m and all subpatterns m 1 , ... , 

mk of m occurring in any realized template of m, 
and if it is complete for all mJ, 1 :S j :S k. It follows 
that the PHG complete for a subpattern m1 of m is 
a subgraph of the PHG complete for m. If m; is a 
trigger pattern in some template of m, we call m a 
superpattern of m;. We denote by SP(m;) the set 
of all superpatterns of m;. Usually, a pattern has 
onlv a small number of superpatterns (see [33]). 
Let w be as above, then the set of possible candi­
date patterns that may match w is 

n {m:(mJ,m)edgeinPHG} (1) 
}"Sj"Sk 

SP<m1 :~0 

Table 3. Trigger Pattern 

Operator op of 
!\"ode w 

for loop header 
if header 
Assignment 

Expression operator 

Child of w Carrying the 
Trigger Pattern 

Loop body (first statement) 
Then part (first statement) 
Root of right-hand side 

expression 
Left or right subexpression 

FIGURE 1 The PHG of matrix-matrix-multiplication. 
Solid edges mean realized templates for vertical pattern 
recognition; dashed edges for horizontal pattern recog­
nition along cross edges. Solid cycles mean templates 
for unblocking or eliminating semantically invariant 
conditionals: dashed cycles represent templates for loop 
rerolling or integration of initializers. 

and the set of templates of these patterns that are 
to be tried out at w is determined analogously. 
Thus, pattern recognition becomes a path finding 
problem in the PHG. Different paths toward a pat­
tern m correspond to different implementations of 
the functionality of m. This means that a linear­
sized PHG (and thus, pattern recognizer) repre­
sents exponentially many implementation varia­
tions of the same pattern. 

The PHG has a second important advantage: It 
serves as a hash table that can be inspected by the 
pattern recognition algorithm, because it yields all 
the possible superpatterns that could be matched 
from a given trigger pattern. Often, the trigger pat­
tern together with the operator of the node to be 
matched suffices to select a single possible tem­
plate to match that node. If there are several tem­
plates admissible, these are tested concurrently; 
the result is deterministic. Failing templates abort 
as soon as possible. 

3.4 Examples 

Matrix-Matrix Multiplication 

We demonstrate the pattern recognition algorithm 
using a simple example. Ylatrix-matrix-multipli­
cation is well suited because its functionality and 
subpatterns are widely known. Its PHG is given in 
Figure 1. 

Suppose the programmer has coded matrix­
matrix-multiplication as follows: 
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for (i=l; i<=n; i++) { 
for (j=l; j<=m; j++) 

Sl: c[i) [j] = 0.0; 
for (j=l; j<=m; j++) 

for (k=l; k<=r; k++} 
S2: c[i) (j] = c[i) [j]+a[i] [k]*b[k) [j); 

} 

The pattern recognition algorithm travArses the 
abstract syntax tree from left to right in postorder. 
First. it encounters at Sl a scalar initialization 
SINIT (c[i] (j], O.O).Forthej looparound 
it, we obtain an instance of a vector initialization 
VINIT(j=[1:m], c[i] [1:m], 0.0). The ac­
cess to array c has become a vector, since one 
dimension has been bound by the loop. 

Then, the algorithm considers the assignment 
S2 and annotates it by AADDMUL ( c [ i] [j ] , 
a[i] [k], b[k] [j], c[i] [j]) (accumulative 
addition of a product). Following the suitable 
PHG edge, this yields a dot product for the k 
loop: SSP (k=[1: r], c [i] [j], a[i] [1: r], 
b [ 1 : r] [j ] , c [ i ] [j ] ) . The accesses to the 
arravs a and b have become vectors. As the accu­
mulating scalar c [ i] [ j ] has not been initialized 
so far, it has to be entered into the initialization 
slot of the ssp(1: instance to keep data access infor­
mation consistent. In the next step, the do j loop 
around the ssp(ll instance is recognized as an in­
stance of matrix-vector-multiplication. Also in this 

for i 

~ 
for j ----- for j 

1 1 
assign for k 

(\ 1 
c[i) [j] 0.0 assign 

(\ 
c[i] [j] 

Abstract syntax tree of the Matrix-matrix-multiplica­
tion example. 

case, the accumulating vector c [ i J [ 1: m] tills the 
initialization slot. The partially matched, unparsed 
syntax tree now looks as follows (code parts "be­
low'' recognized nodes are not shown): 

for (i=1; i<=n; i++) { 
VINIT(j=[1:m}, c[i] [1:m], 0. 0); 
MV (j = [ 1: m] , k= [ 1: r] , c [ i] [ 1: m] , 

a[i] [l:r],b[1:r] [1:m],c[i] [1:m]); 
} 

At this stage, we can continue pattern recogni­
tion only if we take care of data flow. Exact array 
data flow analysis, although generally a ver·y hard 
problem [ 17, 43], is dramatically simplified by the 
exact data access information supplied with the 
pattern instances. In this example, we find that 
the vector c[i] [l:m] is written in the VINITI11 

instance, and read and overwritten by the MV12l 
instance, symbolized by a so-called cross edge of 
type FLOW. Thus, we have exact information that 
data flow between these two instances in an ex­
pected way. This situation can be tested by a real­
ization of another template for pattern recognition 
along cross edges. As the template matches, we 
can merge these two instances into a single MV(2) 

instanceMV (k=[1:r], j=[1:m], c[i] [1:m], 
b [1: r] [1: m], a [i] [1: r], 0. 0), i.e., the ini­
tialization slot is now filled by 0.0 from the VINIT(l) 
instance. This instance, in tum, can be matched 
with the i loop into MM(k=[1:r], i=[1:n], 
j=1:m],c[1:n] [1:m],a[1:n] [l:r],b[1:r] 
[1: m], 0. 0) (matrix-matrix-multiplication) 
representing this entire piece of code. 

During pattern recognition, we have followed 
the PHG paths SINIT(Oi . . . VINIT(1l, and 
AADDMUL(Ol SSP(1 ) MV\2 ) . . . MVI2 ) 

... MM(3 l. Common program transformations, like 
loop interchange or loop distribution, would result 
in a different path being taken toward MMI3l, but 
would not prohibit pattern recognition. 
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Elimination of Semantically 
Redundant Conditionals 

The following fragment is taken from the MATMUL 
routine of the DYFESM program from the Perfect 
Club Benchmark Suite [ 4] : 

DO 300 J = 1, M 
IF (B(J,K) .NE. 0.) THEN 
DO 200 I 1, L 

C(I,K) C(I,K) + A(I,J)*B(J,K) 
200 CONTINUE 
300 CONTINUE 

The programmer has added the condition IF 
(B (J, K). NE. 0. 0) to avoid unnecessary multi­
plications and additions by 0.0. Since ;he pro­
gram's semantics is not changed by this optimiza­
tion. we realized a new template for the vector triad 
VAADDSV!l! (and for several similar patterns) that 
follows a self-cycle in the PHG to remove the condi­
tion, just by copying the V AADDSV11

; instance at 
the I loop header to its parent node, the IF header. 
Pattern recognition then proceeds as above. 

Unblocking Loops 

Blocked loops are very common in dusty deck pro­
grams that have been optimized for other target 
architectures with caches or vector registers. In the 
following example, the i loop has been blocked 
bv a factor of k: 

for (i=1; 1<=n; i+=k) 
for (j=i; j<=min(n,i+k-1); j++) 

dy[jJ = dy[jJ + da*dx[j]; 

The inner loop is recognized as a VAADDSV(1) in­
stance: 

for (i=1; i<=n; i+=k) 
VAADDSV(j=[i:min(n,i+k-1)], 

dy[i:min(n,i+k-1)], 
da, dx[i:min(n,i+k-1)], 
dy[i:min(n,i+k-1)]); 

Another template {corresponding to another PHG 
self-cycle) discovers that the i loop is blocked, and 
annotates it by 

VAADDSV(i=[1:n], dy[1:n], da, 
dx[1:n], dy[1:n]). 

Similar unblocking templates exist for many other­
elementwise vector and matrix operations and for 
many reductions. The normalizing transformation 
"loop unblocking" has thus been integrated into 
the pattern recognizer as a realization that is 
shared by all these templates. This integration is 
possible because the syntax tree structure is not 
modified. However, this does not hold for loop 
distribution (a loop transformation important for 
pattern recognition) which has to be called sepa­
rately before each recognition step. 

DiHerence Stars 

MULTIMUL:01 matches a multioperand product of 
scalars: MULTIADD(O) matches a multioperand sum 
of scalars or products of scalars. The trigger pat­
terns for MULTIADD:o) are ADD, ADDMUU0 i, MUL­
MUL10', MULTIMUL:01 , and MULTIADDI0l; these for 
MULTIMUL10; are MUL and MULTIMUL'01 • Distribu­
tivity is not applied. Double negations (-a))) or 
inversions (1/ (1/ a)) are eliminated. Subtractions 
are represented as sums, divisions as products. 
1\;egations and inversions are represented as flag 
bits in their operand nodes; this makes expression 
trees more compact and easier to recognize. 

Difference stars (stencils), in one (HSTARI01) and 
two (STAR(01 ) dimensions, arc the most important 
building blocks of grid relaxation sweeps. They are 
always based on an ADD, AADD, or a MULTIADD10i. 

The following Gauss-Seidel relaxation (Livermore 
Loop 23) 

for (j::::2; j<=6; j++) 
for (i=2; i<=N; i++) 

ZA[i] [j] ZA[i] [j] + 0.175 
* ( ZA[i] [j+1]*ZR[i] [j] 

+ ZA[i] [j-l]*ZB[i] [j] 
+ ZA[i+1] [j]*ZU(i] [j] 
+ ZA [ i -1 ] [ j ] * ZZ [ i ] [j ] 

ZA[i] [j] ) ; 

contains a five-point stencil. The realization of the 
HSTAR1°lfSTAR1°l templates refines the just recog­
nized MULTIADD(Ol instance to a STAR(OJ instance 
and calls itself as long as further optional STAR(O) 
parameters can be filled in: 
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for (j=2; j<=6; j++) 
for (i=2; i<=N; i++) 

STAR ( ZA[i] [j ]. ' 0. 175000, 
ZB[i][j], 

, ZA[i][jl, _, _, 

zz [i l [j] ' 

i,1,1, j,2,1); 

4. 714286, 
ZR[i] [j], 

Now, further recognition of MGAUSSEIDEL(2) is 
straightforward. 

3.5 Exploiting the Cross Edges 

Cross edges in the syntax tree represent particular, 
loop-independent data flow relations among the 
operands of pattern instances within the same 
block. Pattern instances interconnected by a cross 
edge may, even if textually separated, belong to 
the same thread of computation, and thus, to the 
same superpattern. Therefore, cross edges are well 
suited to guide horizontal pattern recognition. 

In [34], we have devised a compact array access 
descriptor that supports fast realizations of the im­
portant query operations equality, inclusion, dis­
jointness, and (direct) neighborhood of array ac­
cess shapes. A descriptor is computed for each 
operand of a pattern instance just after generating 
it. Thus, only one loop level has to be considered 
at a time. Furthermore, each operand has one of 
four possible access modes: I (ignore), R (read), W 
(write), RW (read and overwrite). For nonrecognized 
code fragments, worst case assumptions have to 
be made. From this information, we easily com­
pute five different types of cross edges that are 
important for pattern recognition. A cross edge 
connects an instance / 1 to an instance / 2 located 
textually behind / 1 within the same block, and 
has type 

1. FLOW if / 1 writes an object that is read by 
12 , and this data flow is not killed by another 
instance Is located between 11 and / 2 that 
writes to this object; this corresponds to a 
loop-independent data flow dependence 
from / 1 to / 2 . 

2. ANTI if / 1 reads an object that is written by 
/ 2 , and this data flow is not killed by another 
instance Is located between / 1 and / 2 that 
writes to this object; this corresponds to a 
loop-independent data antidependence 
from / 1 to / 2 . 

zu [ i] [j], 

3. INPuT ifboth/1 and lz read the same object 
that is not written to by another instance / 3 
located between / 1 and l 2 . 

4. NEIGHBOUT if / 1 and 1'2 write neighbored 
sections of the same object that are not read 
or written by another instance I 3 located be­
tween / 1 and / 2 • 

5. 1\"EICHBIN if / 1 and / 2 read neighbored sec­
tions of the same object that are not written 
to by another instance 1,1 located between 11 

and lz. 

In general, the eross edges of a block form a di­
rected acyclic graph. 

Only pattern instances connected by cross edges 
are considered for a potential merge in pattern 
recognition. Selection of suitable templates is 
guided by the type of the cross edge and by the 
(trigger) pattern name of the last pattern instance 
(/2 ). If several templates should be admissible, then 
thev can be tried out concurrentlv: at most one of 
the~ may really match, thus, de~erminism is pre­
served. 

Cross edges of type Ai\"TI are used at recognition 
of VSWAP(l) from three single vcopy\1l (vector 
copy) instances. 

Il: VCOPY(i=[l:n!,tl[:], a[:)); 
I2: VCOPY(i=[l:n],t2[:], b[:]); 
I3: VCOPY(i=[l:n], a[:], c[:]); 
I 4: VCOPY ( i = [ 1: n), b [: ], d [ : ] ) ; 
I5: VCOPY(i=[l:n], c[:],tl[:]); 
I6: VCOPY(i=[l:n), d[:],t2[:]); 

....--... ANTI ... --.... ANTI ,.,. ' ,.., ' 
(vcOPYr (vcOPYJ lVCOPYJ ")VCOPYJ \}(vcoPY) )VCOPYJ 

Il 12 '...,..., 13 ; 14 '-.,IS ; 16 
... __ ,..ANTI '--"'ANTI 

Instances belonging to the same VSWAP'L computation are 
chained by A:-iTI cross edges. 
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The interleaving of the instances does not prohibit 
the recognition process because it is guided by the 
cross edges. We obtain 

Il': VSWAP(i=[l:n], a[:], c[:], tl[:]); 

12': VSWAP(i=[l:n], b[:], d[:], t2[:]); 

The following special cases of pattern matching 
along cross edges are particularly important for us: 

1. Loop rerolling: Loop unrolling is a com­
mon program optimization. It occurs (1) as 
replication on the expression level (within 
the same expression) and (2) as replication 
on the statement level (different statements 
in the same block). When rerolling loops, 
in general, several instances are merged at 
once. These instances form a connected 
component of cross edges of type NEIGHBIN 
or NEIGHBOUT [see 34]. 

2. Renaming/removing of temporary vari­
ables: Often, reduction implementations 
use temporaries for the accumulating vari­
ables, e.g .. to enforce register usage or to 
avoid complicated addressing: 

for (i=1; i<=n; i++) { 

} 

SSP ( j = [ 1: m1 , temp, a [ i 1 [ 1: m1 , 
b[1:m],O.O); 

SCOPY ( x [i1, temp ) ; 

function stmtdescend (node) 
if node is alreadv visited then return fi 

Immediately after recogmuon of scopy'O 

and computation of cross edges, the FLOW 
cross edge from the SSP' 1 ' to the SCQpy'O 

instance selects a ssp'l; template that re­
places the temporary temp by x [ i 1 and 
removes the (now useless) SCOPY 0 · instance. 

Due to the one-pass nature of the pattern 
recognition algorithm, we do not know at this 
point whether the last value of temp (i.e., 
the nth component of vector x) may be used 
later on. Thus. to maintain consistencv. we 
insert a correcting scopy:O) instance. After 
loop distribution and one further pattern 
recognition step, we have 

MV( i=[1:n1 ,j=[1:m1, x[1:n1, 
a[1:n1 [1:m], b[1:m], 0.0 ) ; 

SCOPY( temp, x[n1 ) ; 

The scopy(o: instance may later be removed 
as useless code if temp is not used anymore. 

3.6 The PaHern Recognition Algorithm 

The function stmtdescend() traverses the syntax 
tree in postorder; exprdescend() does the same for 
expression trees (where, however, no cross edges 
can occur). 

if node is not an assignment statement then forall children s of node do stmtdescend(s) od fi 
forall expressions e occurring in node do exprdescend(e) od 
/*Now all subtrees of node are visited and (perhaps) recognized* I 
if node is an IF header then tryJF_distribution(node) fi 
if node is a for loop header then try _/oop_distribution (node) fi 
forall admissible vertical superpatterns m for node in the PHG ( cf. formula 1) 
do test by the vertical template match(m,node), if there is an instance I of m matching node od 
if not. return fi /*FAILED* I 
annotate node with I; compute access descriptors and cross edges to I 
repeat 

forall direct cross predecessors x of node (in the same block) 
do /* x has alreadv been visited earlier* I 

test by admissible cross templates if the sequence x: node is an incarnation of a superpattern m' 
if yes, merge x and node, call the result node and annotate node with an instance I' of m'; break; 

od 
until there are no mergeable cross predecessors of node left. 
end stmtdescend() 
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The routine try_f}'_distribution tries to distribute a 
masked block of statements; try_/oop_distribution 
tries, for a loop over a block of statements, to per­
form scalar and vector expansion and thereafter 
distribute the loop as far as possible [ cf. 56]. IF 
and loop distribution modify the structure of the 
syntax tree: node gets several "younger" brothers 
(copies of node) and moves some of the statements 
from its body to theirs. After node, pattern recogni­
tion visits the new brother nodes as if these would 
exist already from the beginning; but revisiting 
their children (that were children of node before 
and thus are already matched) is not required. 

Because of the deterministic nature of the 
method, each node is visited only once. Because 
selection of admissible templates is vety fast due 
to PHG inspection, run-time cost is dominated by 
the linear tree traversal time. Data flow is com­
puted by need, i.e., only for the current loop level. 
Loop distribution uses Tatian's algorithm for 
strongly connected components; its pseudocode 
can be found in [56].* 

3.7 Recognition of Data 
Structure Concepts 

Beyond annotating nodes with pattern instances, 
pattern recognition offers the possibility to keep 
track of static relations of single program objects. 
An illustrative example is the identification of stati­
cally known grid hierarchies in multigrid programs. 
Detection of such grid hierarchies is especially im­
portant when data are stored in a one-dimensional 
workspace array. Then, the additional information 
allows reconstruction of the different two-dimen­
sional grids, supporting array partitioning and 
load balancing. 

3.8 Transformations after 
Pattern Recognition 

After pattern recognition, we must eliminate use­
less code that may emanate from conservative 

* Computation of the data dependency graph for a block 
of k statements takes, depending: on the dependence tests used, 
in the worst case at least time O(k2): the data dependency graph 
itself may require space O(k2) which is then the input size for 
Tarjan's linear-time algorithm. This works fast for blocks of 
moderate size. buc of course, ruins the otherwise linear run­
time of our algorithm. \\'e tolerate this because blocks tend to 
be small compared with the size of the entire source program, 
and because loop distribution is crucial for the robustness of 
our method. 

FIGURE 2 P ARAMAT pattern recognition tool. 

cross matching and certain transformations. Use­
less code computes variables that are not con­
sumed or output before being recomputed. 

Instances of so-called unstable patterns are de­
composed into their basic patterns' instances, e.g., 
theinstanceSVSUM(i,c, a, b[l:n], 0.0) is 
split into the sequence VSUM ( i, temp, 
b[l:n], O.O);MUL(c, a, temp). This ex­
traction of a loop-invariant multiplication is a tar­
get machine-independent optimization. Further­
more, the number of patterns that is visible for the 
eode generation phase is additionally reduced. 

4 THE PARAMAT PATTERN 
RECOGNITION TOOL 

4.1 Implementation 

A prototype of the pattern recognition tool (see Fig. 
2) has been implemented and tested. The current 
implementation consists of around 12,000 lines 
of C code and reliably recognizes 91 nontrivial 
patterns with about 150 nontrivial templates. Each 
template is implemented as a C routine of around 
20 to 50 lines that tests syntactic and semantic 



262 KESSLER 

conditions and, if successful, generates the pattern 
instance and fills in the slot entries. Because many 
useful syntactic and semantic predicates have 
been predefined, writing code for templates is 
handy and straightforward. More patterns can eas­
ily be added. The high degree of robustness against 
loop interchange, loop distribution, loop unrolling, 
and statement reordering has been exemplified 
in practice. 

4.2 Results 

A phase [ cf. 6] is a minimal set of loops around 
some assignment statements such that all indexing 
variables occurring in these statements are bound 
by loop variables. Ideally, all phases of a program 
have been recognized completely as incamations 
of our patterns. The pattern recognition tool recog­
nizes nearly all phases in 16 of the 24 Livermore 
Loops (Table 4). The recognition times are pretty 
fast although measured on a low-end Sun SLC, 
including the time for parsing the source and print­
ing the result. Further encouraging results have 
been obtained for many other source programs: 
most of them are listed in the appendix of [33]. 

4.3 Discussion 

A possible alternative to our syntax tree-based ap­
proach may be pattern recognition on the control 

Table 4. Livermore Loops [ 44] 

flow graph (CFG). We state: 

1. The syntax tree representation is supplied 
by the front end. Because we only admit C 
statements that produce well-structured 
control flow, the syntax tree contains all re­
quired control dependency information. 

2. The CFG is much less structured than the 
abstract syntax tree. By converting the syn­
tax tree in a CFG, we would lose information 
about the loop structure (loop variables). 
Pattern recognition would be harder, less 
clear, and slower. 

3. The CFG may be more useful if the source 
program contains many jumps ("spaghetti 
code"). For our pattems, however, jumps 
are rarely required, and can always be re­
placed by structuring constructs like IF­
THEN-ELSE or WHILE. 

Future extensions to the pattern recognizer 
could address interprocedural matching which 
would handle recursive functions (that are encoun­
tered in many FFT programs) and indirect array 
references and pointers (that are required for rec­
ognition of operations on sparse matrices). Pattern 
instances could also be written directly by the pro­
grammer in the source text (very similar to Fortran 
90's array operations and intrinsic array manipu­
lation functions), thus locally bypassing pattem 
recognition. 

Loop Computation Recognized Patterns Rec. Loops Nodes Time 

1 Hydrofragment GVOP 1 of 1 47 0.2 sec. 
3 Inner product SSP 1 of 1 35 0.2 sec. 
5 Tri-diag. elim., below diagonal FOLR 1 of 1 45 0.1 sec. 
7 Equation of state fragment GVOP 1 of 1 88 0.3 sec. 
8 A.D.I. Integration VJACOBI (3), GVOP (3) 6 of 6 320 1.3 sec. 
9 Numerical integration GVOP 1 of 1 91 0.3 sec. 

10 Numerical differentiation VCOPY (10), VADD (9) 19 of 19 242 1.1 sec. 
11 First sum PREVSUM 1 of 1 48 0.2 sec. 
12 First difference VJACOBI 1 of 1 32 0.1 sec. 
13 2D particle in a cell VCOPY (4), VAMOD (4), VAINC 12 of 17 258 0.9 sec. 

(2), VAADD (2) 
14 1 D particle in a cell GVOP (3), VCOPY, VADD (2) 6 of 12 229 0.7 sec. 
18 2D explicit hydrodynamic fragment GMOP (4), MAADDSM (2) 6 of 6 608 2.5 sec. 
21 Matrix product MM 1 of 1 58 0.1 sec. 
22 Planckian distribution GVOP (2) 2 of 2 80 0.2 sec. 
23 2D implicit hydrodynamic fragment MGAUSSSEIDEL 1 of 1 105 0.2 sec. 
24 1D Minimization VMINLOC 1 of 1 47 0.1 sec. 

Note: Sixteen of the 24 kernels are (mostly completely) recognized. The fourth column indicates how many loops (counted after 
applying loop distribution) were matched. The fifth column gives the number of nodes of the abstract syntax tree: the last column 
the overall times for parsing. recognition and output, measured on a low-end Sun SLC. that are quite encouraging. 
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5 PATTERN-DRIVEN PARALLEL 
CODE GENERATION 

The matched intermediate representation is rna­
chine independent and opens access to very so­
phisticated program transformations. Instances of 
r~cognized patterns can now be replaced by their 
best known parallel implementation. These imple­
mentations are machine dependent and are pa­
rameterized by problem sizes and data distribu­
tions of the operand arrays occurring in the 
instance. Thev should be written in C with inline 
assembler for ~ptimal usage of local processor fea­
tures. Because we want to optimize each pattern 
implementation only once, off-line at compiler 
generation time, we assume that the following ma­
chine parameters are known at compiler genera­
tion time: 

1. The number of processors. 
2. Sizes of local memory and communication 

buffers. 
3. Average communication overhead and la­

tency. 
4. Cache size and caching strategy, ifthey exist. 
o. Length of arithmetic pipelines and/ or vector 

registers of the node processor, if they exist. 

In principle, there are now two possibilities to gen­
erate parallel code for a recognized subtree of the 
abstract syntax tree: The first alternative is the 
generatioU: of a standard parallelization according 
to well-known techniques that we shortly revisit 
in Subsection 5.1 and modify for our purpose in 
Subsection 5.2. The second option, considered in 
Subsection 5.3, addresses the selection of an alter­
native parallel implementation that computes the 
same function as the standard parallelization but 
applies a different parallel algorithm. 

5.1 Generation of Standard Parallel 
Implementations 

For given array distributions, a standard parallel 
implementation is generated according to the fol­
lowing, well-known techniques [cf. 55]. 

Splitting 

If the target machine has a host that handles all 
110 operations, then a host program is generated 
that performs all 110 operations, starts the node 
programs on each processor, sends portions of 
read operands to the node processors that need 
them, and collects the result values from the node 
processors that generate them. 

Adaptation 

The node program maintains, in principle, the pro­
gram structure of the sequential version. For a 
given partitioning of the arrays, each assignment 
statement will be masked by a condition depending 
on the node processor's lD number that ensures 
that a node processor only execute~ this statement 
if it ownst the variable on the left-hand side of the 
assignment. Furthermore. interprocessor commu­
nication (EXCH-statements. cf. [55]) must be gen­
erated to ensure that nonlocal operands are avail­
able when the statement is executed. There is no 
explicit synchronization needed if blocking re­
ceive statements are used. 

Optimization 

The masks can often be integrated into the bounds 
of a surrounding loop. thus avoiding much of the 
overhead due to the condition evaluation. Inter­
processor communication is moved to the topmost 
loop level (loop distribution) that is still possible 
without violating data dependencies. Communica­
tion is vectorized as far as possible. 

The standard parallelization for a single loop l 
with body r consists of a specialization of this 
scheme: if l indexes the dth dimension of an array 
occurrence A [ ... J in r, the dimension-specific 
mask ownedd(A [ ... ] ) has to be used instead of 
owned(A [ ... ]), and the dimension-specific com­
munication statement EXCHr1(A [ ... ] ) instead of 
EXCH as described above. In contrast to an explic­
itly parallel algorithm, the standard parallelization 
preserves the structure of the sequential program. 

5.2 Selection of Parallel Implementations 

For the matched nodes v in the abstract syntax 
tree, there exist several possibilities to generate 
code for Tv beyond standard parallelization. The 
P ARAMA T user may a priori control the selection 
process for each pattern m by setting code genera­
tion switches SEQDEBUG[m], REPLSEQ[m], and 
l'\"oREPLACE [ m J. Based on these switches, at each 
node v with pattern m = v.pat matched at v, PAR­
AMA T selects among the following alternatives: 

1. A sequential implementation ~[m] for m 
(computes m on one node processor or on 

t A variable (e.g., a section of an array) is owned by a 
processor if that variable resides in its local memory due to the 
given data distribution. Scalars are, in general, replicated, i.e., 
owned by all processors. 



264 KESSLER 

the host. including the necessary communi­
cation), if the debugging bit SEQDEBUG[m] 
has been set. The parameters controlling the 
data distribution and the problem sizes 
. are ignored. 

2. A replicated sequential implementation 
a [ m l for m (sequential computation on all 
node processors, corresponding to the given 
array distributions), if the sequentialization 
bit REPLSEQ [ m] has been set. The parame­
ters controlling the data distribution are ig­
nored. 

3. A standard parallel implementation 'l'[m] 
(see above) for the topmost loop l occurring 
in Tv, if the bit 1\"oREPLACE [ m] has been set. 
The implementation chosen for the body r 

of l depends on the bits for the pattern r.pat. 
4. A parallel algorithm ll [ m] for m that is not 

a standard implementation, if such an algo­
rithm exists. This parallel implementation is 
also parameterized in data distribution and 
problem sizes. 

The construction of 'I' [ m] deserves some clari­
fication. Let L denote the set of loop headers l E 
T, that fulfill.pat = m (i.e., nodes in L are anno­
tated with the same pattern name as u). The loop 
nesting structure in Tv, as originally programmed, 
is still available. Several loop headers in L arise 
from unrolled or blocked loops outside L. Let R 
be the body of the innermost loop linn E L. Let 
L' C L the set of loops that block a loop in R. 
Technically, we make L' U R contiguous by inter­
changing:j: all loops l' E L' "downward" with the 
next inner loop l E L - L', such that T, now con­
sists of a contiguous set L - L' of outer loops 
around a new body R', consisting of the loops of 
L' around R. If R' - R oF- 0, pattern recognition 
has to be called again for the nodes in R' - R to 
update the pattern instances for the loop headers 
in R' - R. The same holds for L - L', if some loop 
had been interchanged. The structure of R remains 
unchanged. For all loops l E L - L', a standard 
implementation is generated. 

Let r' denote the root of R'. The code generation 
method chosen for Tr' depends on the code genera­
tion switches for the (maybe updated) pattern 
r'.pat. 

:!: This loop interchange is generally possible, because for 
blocking of interchangeable loops similar conditions hold as 
for loop interchange (the blocking loop does not index any 
array references )-otherwise. our pattern recognition algorithm 
would not have recognized I' as a blocking loop. As an alterna­
tive. we also may explicitly undo the blocking after the pattern 
recognition phase. 

The effect of 1\"oREPLACE[m] is thus the same 
as if the loops in L - L' would not have been 
recognized as pattern instances (but these in R' 
would) . 

Example: Pattern recognition has identified the 
following code fragment 

for (i=1; i<=n; i+=x) 
for (j=1; j<=m; j++) 

for (k=i; k<=min(i+x-1,n); k++) 
for (1=1; 1<=r; 1++) 

a[jl [k] = a[j] [k] + b[j] [1]*c[1] [k]; 

as an occurrence of matrix-matrix multiplication 
and annotated the i loop header u = I, with the 
MM!3: instance 

MM(j,i,1, a[:] [:],b[:] [:],c[:] [:],a[:][:]). 

Also the j loop header (call it~) has been annotated 
with an MM:31 instance because the i loop only 
blocks the k loop. Thus, we have L = {l,, U and 
L' ={/;}.Let us further assume that the PARAMAT 
user has set NoREPLACE[MM:3 i]. Since l, blocks an­
other loop (lk), we interchange it toward the 
"body" (with ~) and obtain 

for (j =1; j <=m; j ++) 
for (i=1; i<=n; i+=x) 

for (k=i; k<=min(i+x-1,n); k++) 
for (1=1; 1<=r; 1++) 

a[j] [k] = a[j] [k] + b[j] [1]*c[1J [k]; 

We recognize that, after resubmitting this code to 
pattern recognition, only the pattern instance of I, 
would change (namely, into a MM(2 ) instance). That 
is why we call pattern recognition again only for 
R' - R = {!;}, with the MV(21 instance at lk being 
already given. 

Standard parallelization then yields 

for (j=l; j<=m; j++) 
EXCILl ( a [j] [:] ) ; I* communication 

in dimension 1 *I 
if ( owne<Ll ( a [j ] [ : ] ) ) 

code for MV ( i, 1, a [j ] [ : ] , b [j ] [ : ] , 
c [: l [: l , a [j l [: l l ; 

Note that this scheme already includes message 
vectorization. 

The implementations ~ [ m], E [ m], 'I' [ m], and 
ll[m] are machine dependent and are parameter­
ized in problem sizes and data distributions of the 
operand arrays occurring in the instance. They 
should be written in message-passing C with inline 
assembler to allow optimal usage of local processor 
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features.§ I\ote that a standard implementation 
may also result in some loop being executed se­
quentially if required by the given array distribu­
tions. 

For some patterns m there may not exist a (non­
standard) parallel algorithm. Furthermore, the 
user may a priori II forbid P ARAMA T to select a 
parallel implementation different from the stan­
dard one for a specific pattern m by setting a flag 
bit NoREPLACE(m). To enforce a standard paral­
lelization for the entire T,., the NoREPLACE switch 
must be set for all the patterns matched at the 
nodes ofT.,. 

For an instance I of a pattern m, the boolean 
predicate No PARALLEL [ m] (/) evaluates to TRL!E iff 
it is, given the problem sizes and data distributions, 
not advisable to generate parallel code for I. 
For this case, the effect is. the same as setting 
REPLSEQ[m]. 

For each pattern m, we build an implementation 
driver that generates code for any instance I of m. 
The coarse structure of such a driver looks as 
follows: 

gen_code[m](I, T.,): 
if SEQDEBLG[m] then generate .:l[m] for I; return fi; 
if NoPARALLEL [ m J (I) can be evaluated statically 
then if NoPARALLEL[m](I) 

then generateS[m] for I 
else if NoREPLACE[m] or there is no ll[m] 

Thus, if the problem size of I is known at compile 
time and if it is small, P ARAMAT will decide to 
prohibit parallelization if sequential execution will 
be faster, thus avoiding slow-down of the target 
program. If the problem size is not known at com­
pile time, a suitable run-time test is inserted into 
the generated code. 

Similar run -time tests can be inserted if PARA­
MAT is not really sure about the value of certain 
important program values. An example is the fol­
lowing situation that is often encountered in multi­
grid applications: The programmer uses a large 
linear workspace array to store all (e.g., two-di­
mensional) grids and indexes each single grid by 
using an offset pointer which is, in general, an 
array reference itself. Such indirect array accesses 
cannot be handled by compile-time data depen­
dence analysis, and, even worse, a standard de­
composition scheme for this linear work array will 
result in bad load balancing and unnecessary com­
munication. However, from the indexing schemes 
in recognized patterns of interpolation or restric­
tion operations from one grid to the next one, PAR-

then generate 'l'[m] for L- L' (see above) around gen_code[r'.pat}(r'.matched, Tr.) 
else generate nr m J for I fi 

fi 
else (some problem size is unknown at compile time) 

generate target code "if (No PARALLEL [ m ](I))"; 
generate S [ m J for I; 
generate target code "else"; 
if NoREPLACE[m] or there is no ll[m] available 
then generate 'l'[m] for L - L' (see above) around gen_code[r'.pat}(r'.matched, Tr.) 
else generate ll[m] for I 
fi 

fi 

§ For instance, arithmetic pipeline of the Intel iPSC/860 
node processor i860 can only be used if the program is written 
in machine language-the C compiler does not vectorize. Fried 
[23] shows how impressive performance improvements can be 
reached by exploiting hardware features like arithmetic pipe­
lines, dual operation mode. or dual instruction mode that are 
just ignored by the standard compilers. 

II This may also be handled by a compiler option included 
in the program text. but as we focus on fully automatic paralleli­
zation. this is not a viable alternative for us. 

AMAT is able to detect the (potentially) different 
grid parts by treating the offset array accesses as 
symbolic parameters. To make sure that the offset 
values implement the workspace concept, a suit­
able run-time test on the offset values must be 
generated that, if successful, treats each single grid 
as a unique (two-dimensional) array that can be 
aligned and partitioned individually, thus avoiding 
the performance decrease mentioned above. As 
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the number of different grids (and thus, the num­
ber of offsets) is usually small, this run -time test 
does not involve much run-time overhead. As the 
potential benefit from a positive test result is greaL 
this optimization is sensible. If the assumption of 
a workspace grid hierarchy has been confirmed at 
run-time, the workspace array is decomposed into 
the single grids, and program control branches to 
an alternative implementation with separate array 
distributions for each grid. 

5.3 Examples for Nonstandard 
Parallel Implementations 

This section gives some examples for parallel im­
plementations that may differ completely from the 
original sequential program structure, or that in­
troduce useful transformations of the correspond­
ing standard implementation. The latter can be 
regarded as automatic program transformation 
which is hidden from the user. There is no need 
for a cyclic approximation scheme of successively 
applying some program optimizations, observing 
the results, and choosing better ones [301. The 
disadvantage is that for each pattern a separate 
implementation driver is required. We claim that 
this can be taken into account, given that there 
would be a large intellectual effort devoted to the 
development of numerical software libraries for 
any real machine. In any case, we have finally the 
chance to get rid of the owner-computes rule. 

The implementations are code skeletons where 
the slot entries are entered in an appropriate way. 
They already contain message-passing statements 
and register allocation. In the sequel, we sketch 
some of them. For a more complete survey of paral­
lel algorithms for matrix computations, see [21] 
or [24]. 

Reduction Operations 

For instances of specific common reduction opera­
tions (cf. Table 2) like global sum, global product, 
global OR, global maximum etc., we can make 
optimal use of optimized routines that are, in gen­
eral, already supplied with the run-time environ­
ment of the target machine. Here the nonstandard 
parallel implementation mainly consists of a run­
time svstem call. 

Grid Relaxations 

A single grid relaxation step represents one update 
of all elements of a two-dimensional grid. A se­
quence of such steps, e.g., a step-counting loop 

around them, offers additional potential for opti­
mizations. 

Algorithm replacement must always be conser­
vative with respect to numerical stability and con­
vergency properties. As the recognized pattern's 
names are available, we can access mathematical 
background information on convergency proper­
ties. This information allows-if not explicitly for­
bidden by the user-the replacement of, for in­
stance, a Gauss-Seidel Wavefront relaxation by its 
red-black variant or by two steps of Jacobi relax­
ation which are much better suited for parallel exe­
cution (depending on the target machine). The 
basic motivation for this "aggressive" local re­
placement of implementations is that the average 
user just wants to get the actually fastest par­
allel implementation on this target machine­
independent of, for instance, a particular relax­
ation coding. 

Linear Recurrences 

Simple linear recurrences are a classical example 
for algorithm replacement. Csually it appears as a 
sequential loop like 

for (i=2; i<=; i++) X[i]=(A[i]*X[i-1]) +B[i]; 

which is serialized due to a loop carried data de­
pendence as long as standard parallelization is 
used. For recognized linear recurrences (here 
FOLR'1l) we can apply a suitable number of recur­
sive doubling steps [37] to gain some parallelism 
while taking care of growing communication over­
head. The optimal number of recursive doubling 
steps (up to min(log p, log n) are possible for p 
processors) depends on the problem size n and the 
time required for interprocessor communication 
on the target machine. For smaller problem sizes, 
the sequential variant will be faster. 

Matrix-Vector and Matrix-Matrix 
Multiplication 

For matrix-vector multiplication (MV(2 l), the stan­
dard method can be implemented as the ij variant 
(the inner loop is a dot product) or as the j i variant 
(the inner loop is a 1 1 daxpy 1 

' vector update). 
The latter variant seems to be preferable on vector 
node architectures. Alternatively, we might use a 
systolic algorithm; this seems at most appropriate 
for transputer arrays with comparably low commu­
nication overhead and node performance. For rna­
trix-matrix multiplication (MM(3l), the standard 
method expands to one of six possible variants 



PATTERN-DRIVE:\' AUTOMATIC PARALLELIZATlON 267 

(ijk. ikj, etc.) since all three loops are inter­
changeable. An alternative would be a systolic im­
plementation [see [22]. Similar systolic methods 
are also applicable to LU decomposition (LUD;3l 

Discussion 

Algorithm replacement must be conservative with 
respect to numerical stability and convergency 
properties of the recognized patterns. For each 
pattern rn, the nonstandard implementation II[m] 
must guarantee that its numerical stability is not 
worse than that of'¥[ m]. Where this is not possible, 
the user receives a warning, and thus can force 
PARAMAT to choose the standard implementa­
tion by setting NoREPLACE[p ]. 

Algorithm replacement is the most complex and 
strongest program transformation of all. Safe algo­
rithm exchange is enabled only by the availability 
of pattern instances. It includes all other machine­
specific optimizing transformations. The imple­
mentation library can be optimized off-line by ex­
pert parallel programmers, until optimum perfor­
mance is reached. Some optimizations may even 
be reintroduced which have been removed at the 
pattern recognition phase (e.g., loop blocking, se­
mantically redundant IFs, etc.). The suitable com­
munication routines, either simple SE~D and RE­
CEIVE instructions or higher-order communication 
primitives like COMBll"E, REDUCE, BROADCAST, 
GATHER, and SCATTER that are typically supplied 
with the parallel environment, are a basic compo­
nent of the parallel pattern implementations and 
need not be further optimized afterward. Such op­
timizations would usually be required for semiau­
tomatically parallelized code, e.g., by vectorization 
of messages [25] or by the general message-pass­
ing optimization technique proposed in [ 42]. 

Algorithm replacement enables local deviation 
from the owner-computes rule; it forms a frame­
work to include all useful parallel algorithms that 
are known so far for the corresponding class of 
target machines (topology, granularity, communi-

cation properties). All experts' knowledge becomes 
available for the average user, although they do 
not need to be concerned about these algorithms 
or machine parameters. 

5.4 PaHern-Driven Data Distribution 

To simplify the system design a given hardware 
environment is regarded as fixed: in particular, 
hardware resources like the number p and the 
speed of the processors, the network topoloe,ry, the 
cache size and caching strategy, and the memory 
size are regarded as constant. This corresponds to 
a "dedicated" target machine. In the following, 
we need not consider these hardware parameters 
further. Nevertheless, scalability of parallel pattern 
implementations (in a more general sense) is still 
an important issue since local problem granularity 
still depends on the problem size. 

Each parallel pattern implementation accesses 
data in an individual manner. Thus, for each pat­
tern implementation, there is (at least) one favorite 
alignment (to minimize communication) and one 
favorite distribution (to maximize parallelism) of 
all the arrays for this pattern. The programmer 
knows these favorite alignment and distribution 
strategies for each pattern implementation. This 
information is stored in a table and can be accessed 
bv the data distribution driver for each instance. 
S~me examples of anay alignment and distribu­
tion recommendations for standard parallel imple­
mentations are given in Table 5. 

A second requirement for on-line optimization 
of array distributions is that the parallel implemen­
tations are specified in a data-distribution-inde­
pendent way. This may be technically arranged 
either by conditionals depending on the distribu­
tion parameters of one or several arrays, or by 
replication of parallel implementations, one for 
each possible distribution configuration. In each 
of these cases, it would be advisable to limit the 
possible distribution alternatives, instead of ad­
mitting arbitrary block-cyclic distributions of any 

Table 5. Array Alignment and Distribution Recommendations for the Standard Parallelizations 
of Some Patterns 

Pattern 

MCOPY (A, B) 
VCOPY (V, W) 
MJACOBI (A, B) 
MM (C,A, B) 
VSlJM (s, V) 
SSP (s, V, W) 

Algorithm 

Matrix copy 
Vector copy 
Jacobi step 
Matrix multiply 
Vector sum 
Dot product 

Align 

A=B 
V= W 
A=B 

A=CVB=C 
Arbitrarily 

V= W 

Distribute 

Arbitrarily 
Arbitrarily 

Quadr. hlocks 
A rep!., B by col. or A by row, B rep!. 

Arbitrarily 
Arbitrarily 
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block size. For vectors of length n, we allow the 
following distributions: 

1. Contiguous distribution (block size is nIp) 
2. Cyclic distribution (block size is 1) 
3. Total replication (no distribution) 

For an m X n matrix, we admit the following 
distributions: 

1. Contiguous row distribution [block size is 
mn/p, block shape is (mlp) X n] 

2. Contiguous column distribution ·block size 
is mn/ p, block shape is m X (nip)] 

3. Cyclic row distribution (block shape ism X 1) 
4. Cyclic column distribution (block shape is 

1 x n) 
5. Contiguous quadratic blocks [block size is 

mnlp, block shape is (miYP) X (n/YP))] 
6. Total replication (no distribution, block 

shape ism X n) 

This limitation of array distribution alternatives is 
supported by the fact that for all our patterns [33], 
a locally optimal distribution for each array op­
erand is contained in this list. We are aware of 
the fact that a globally optimal data distribution 
configuration may be made up of only locally sub­
optimal array distributions, although we believe 
that this scenario hardly appears in practice. 

Quadratic contiguous block distributions are 
optimal for grid relaxation sweeps, because they 
minimize the surface-to-volume ratio of the arrav 
partitions and thus the amount of data to be ex~ 
changed. In our framework, they are the only dis­
tribution scheme that distributes processors along 
more than one array axis. For quadratic distribu­
tions, however, we must add in this case the follow­
ing constraint: The array (grid) A accessed by a 
matrix m must be two-dimensional. Otherwise, 
imagine the following situation: Let A be three di­
mensional, with axes A 1, A", and A :1, being distrib­
uted into quadratic blocks along, say, axes A2 and 
A:~· Let m be a matrix access along the first and 
second axis of A. The number of processors along 
axis A2 is Vp, the number of processors along axis 
A1 is 1 (not distributed). Thus, m has only YP 
partitions, which limits parallelism unnecessarily, 
and, worse still, the overall number of working 
processors is no longer constant for each call to 
the corresponding relaxation routine. Because we 
do not want to do everything nvice, with one extra 
routine version forp and one for only YP proces­
sors, we generally admit quadratic block distribu­
tions only for, arrays of dimensionality equal to 2. 

The alignment and distribution recommenda­
tions for different pattern instances in a given pro­
gram will usually conflict with each other. The 
problem of resolving this conflict by determining 
globally optimal data alignment and distribudon 
is well known to be NP-complete [ 41], thus auto­
matic partitioning may take exponential time in the 
worst ease. Dierstein et al. [12] propose a branch­
and-bound algorithm for automatic partitioning. 
To help with the combinatorial complexity, we 
make use of our knowledge on favorite local parti­
tionings as starting configurations when perform­
ing a global search for the optimal data distri­
bution. 

Dierstein et al. [12] also cover static anay redis­
tribution which is a NP-complete problem itself 
[39]. The main problem in static redistribution is 
that a globally optimal distribution scheme involv­
ing redistribution may even be made up of subopti­
mal data distributions for all phases of the pro­
gram. However, [6] shows that for application 
programs of moderate size (800 lines) represented 
as a sequence of phases, an optimal data distribu­
tion scheme can be found within a few CPU sec­
onds using a fast 0-1 integer programming tool. 
This method matches our approach well, because 
the pattern instances supply the required phase 
representation, and the run-time tables (see the 
next section) deliver suitably accurate cost esti­
mates. 

5.5 Pattern-Driven Run-Time Prediction 

Many performance prediction approaches [ 12, 16, 
26] work analytically by estimating the program's 
run-time bottom-up through the abstract syntax 
tree, starting at the leaves of the expression trees, 
with an idealized model of the target machine in 
mind. Specific hardware features like caches or 
network traffic yield actual run-times that signifi­
cantly differ from the prediction. For this reason, 
we follow a synthetic performance prediction ap­
proach that has been proposed in [2] and [20]. 

For each pattern implementation, PARAMAT 
provides a mn-time prediction driver that inspects 
a table of previously measured nm-times of that 
implementation with varying problem sizes and 
varying anay distribution schemes on the target 
machine. The table entries for each pattern are 
indexed in different data distribution configura­
tions, in the problem sizes (logarithmic scale), and 
in the NoREPLACE flag. They also depend on the 
NoPARALLEL predicate. The restriction of data 
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distribution altematives given above keeps theta­
ble sizes moderate. In addition, we require some 
table entries for the communication routines that 
may be generated due to array redistribution, 
see [6]. 

As a consequence, run-time prediction consid­
erably gains accuracy because now actual run­
times of high-level implementations on the target 
architecture are available which reflect hardware 
properties (traffic on the network, message buffer 
sizes. message protocols. undocumented commu­
nication behavior, overlapping of computation and 
communication etc.) better than theoretical, ideal­
ized estimation functions. 

This synthetic run-time prediction has another 
important advantage over the analytical ap­
proaches: It is faster because table lookup suffices 
where otherwise complex intermediate representa­
tions have to be traversed and analyzed. For in­
stance, the ADDAP [12] system's automatic data 
distribution engine suffers mainly from slow ana­
lytical performance estimation. 

Problems with performance prediction generally 
arise if the target machine has a cache. Then, run­
time also depends on whether operands (arrays or 
parts thereof) already reside in the cache due to a 
previous operation, or whether they must be re­
loaded first. This scenario may be influenced by 
previous operations. With a synthetic approach, 
however, the larger the problem sizes are, the less 
this effect changes the actual run-times compared 
with the table entries. For small problem sizes, the 
run-time prediction drivers may be augmented by 
some correction term addressing the cache effect. 
This issue is left to future research. 

Problem sizes (corresponding to vector lengths 
or matrix extents) need to be considered only in a 
specific interval [Nmin ... Nmaxl of interest, e.g., 
from 8 to 16384. The parameter extent of that 
problem size axis thus contains D = log N max -
log N min + 1 entries. With these guidelines and 
with the limitation of array distribution altematives 
given in the previous section, the parameterization 
space (and thus, the run-time table size) for a pat­
tern implementation with x vector operands, y rna­
trix operands, and z problem sizes contains 3x · 
6-'" · Dz entries. For the MV matrix vector product, 
we obtain an (uncompressed) table size of 54D2 . 

Of course, this does not mean that we have to 
implement a matrix vector product once for each 
of these configurations. Generally, several entries 
can be handled as a whole block by taking array 
alignment relations [35, 36, 41] into account, or 
ranges of problem sizes with similar run-time be-

havior. The run-time tables can also be com­
pressed according to this hierarchical parametri­
zation structure of the parallel implementation. 
For run-time prediction, we consider a parallel im­
plementation ('l'[m] and II[m]) of a pattem mas 
a black box. We are not concerned with the issue 
of how their run-times should behave in theorv. but 
how thev actuallv behave on the concrete hardware . . 
configuration, which can substantially differ from 
the former. 

The synthetic performance prediction treats 
greater code portions as units where analytical 
methods estimate the program's run-time bottom 
up, starting at the expression level. Synthetic pre­
diction models (at least partially) the cache behav­
ior due to the localitv relations that are inherent 
to the parallel implementation, the overlapping of 
computation and communication, and the charac­
teristic network traffic induced bv the access struc­
tures inherent to the parallel implementation. 

For true parallel algorithms (II [ m]) the analyti­
cal methods (like [12, 16, 26]) often fail because 
they rely on standard parallelizations within a spe­
cific compilation environment. Synthetic perfor­
mance prediction works also for all nonstandard 
parallelizations. As a byproduct, the nm-time ta­
bles will provide an extensive performance spec­
trum of the target machine. Furthermore, they will 
show which parallel algorithms are feasible in 
practice, and in which range of problem sizes and 
for which data distributions they are superior to 
others or to standard implementations. 

5.6 System Overview 

There remains the technical problem of how to 
code a parallel implementation in a data distribu­
tion independent way while maintaining explicit 
formulae for iteration and communication sets and 
avoiding the overhead involved in evaluating com­
plicated parametrization formulae at the target 
program's run-time. We do this in two steps. First, 
P ARAMAT specifies the parallel implementation 
in a target machine-specific language like C plus 
in-line assembler. This specification, however, 
allows complicated parameterization formulae or, 
if unavoidable, excessive replication of implemen­
tation code. Once the data distribution engine has 
determined a global distribution configuration for 
all array operands, we can derive the proper paral­
lel implementation subroutines (comparable to 
those in the previous section) from that data distri­
bution-independent specification by partial evalu­
ation [32] and dead code elimination. We obtain 



270 KESSLER 

~ FrontEnd 

§) ----310-

sequential C source 

specifications of 

distributed-memory 

parallel pattern 

implementations 
paramelerized 
in problem sizes 
and array distnbutions 

PARAMAT 

Pattern 
Recognizer 

linker 

'f 
distributed-memory multiprocessor target machine 

FIGURE 3 The overall structure of a distributed mem­
ory back-end for P ARA:VIA T. 

small and efficient message-passing C sources that 
are data distribution dependent, and we need to 

extract only those routines from the specification 
library that are called by the matched user pro­
gram. These arc then compiled and linked with 
the matched user program that has been produced 
by a suitable code driver (cf. Fig. 3). 

These routines extracted from the specification 
are also used to produce the run-time tables. As 
this is a tedious procedure, we plan to automatize 
table construction. 1'\ote that the time-consuming 
generation of the run-time tables can be performed 
off-line (at compiler generation time). We intend 
to develop an automatic benchmarking tool that 
does this tedious job. 

For nonrecognized code portions, P ARAMA T 
generates standard parallelizations. The differ­
ence from standard parallelizations of recognized 
code portions is only that there are no correspond­
ing entries in the data distribution/ alignment rec­
ommendation and run-time tables available; thus, 
these code portions do not (yet) influence the global 
determination of array distributions. 

6 RELATED WORK 

Several automatic program comprehension tech­
niques have been developed over the years. They 

vary considerably in their application domain. 
method, and status of implementation. 

Earlier Work Targeted Toward Automatic 
Code Optimization, Vectorization, or 
Parallelization 

Snyder [53] addresses idiom recognition in APL 
codes. His algorithm is an extended depth-first 
traversal of the abstract svntax tree with linear 
expected run-time. He applies dynamic program­
ming techniques to select the most profitable idiom 
in the presence of overlapping idioms, which 
appears to be common in APL programs. 

Brandes and Sommer [9] suggest (non construc­
tively) to apply pattern matching techniques for 
the detection of reductions and recurrences within 
the framework of a formal system for automatic 
shared memory parallelization. 

EAVE [7, 8] is an expert system for interactive 
vectorization of Fortran programs. It contains a 
simple pattern matching tool that can discover or­
der 1 patterns (vector operations, reductions). 

The pattern matcher of [ 4] works on a modified 
program dependence graph (PDG, see [19]) that 
has been extended in a special way to match cer­
tain loop structures with the goal of replacing them 
by parallel algorithms. The cost of recognition is 
higher because the rewrite rules form a graph 
grammar. Normalization of the PDG has to be pro­
vided interactively by the user. 

By abstract interpretation of the sequential 
source, [1] computes a sequential memory access 
map (abstract store) that assigns to each array ele­
ment referenced in a loop the corresponding sym­
bolic representation of its content. Thereafter, 
loops are, where possible, replaced by their explicit 
representation (closed form), comparable to our 
pattern instances. They recognize some patterns 
of order $1, namely equivalents of POWER, VSUM(l J, 
VPROD(1l, PREVSUM(1l, SSP(11. Based on the closed 
forms, they implemented recognition of induction 
variables. The method fails at unroHed or 
blocked loops. 

Red on and F eautrier [ 49] propose a special ap­
proach for recurrence detection. While this method 
offers, at considerable computational effort, the 
recognition of rather general and multidimensional 
recurrences, a number of assumptions are made 
that are hardly met by real applications. As compli­
cated recurrences are rare in real programs, the 
computational effort of this approach seems un­
justified. 
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CMAX [51] is the only commercial application 
of pattern matching with regard to parallelization. 
It translates Fortran 77 programs to CM-Fortran, 
a parallel vendor-specific Fortran dialect :;irnilar 
to Fortran 90. It recognizes syntactically several 
common loop constructs (vector operations, re­
ductions, matrix-matrix multiply), but does not 
distinguish between patterns and templates. The 
recognition power is slightly weaker than PARA­
MAT's, but the main advantage of CMAX is its 
ability to recognize Fortran-specific storage con­
ventions and to transform them in order to make 
the program machine independent and more suit­
able to distribution of data at that point. 

Program comprehension for algorithm replace­
ment should not be confused with pattern match­
ing that optimizes communication statements, 
e.g., in [31] and [42]. These approaches do not 
try to understand program semantics but apply 
pattern matching to (implicit) message-passing 
code to exploit higher-order communication rou­
tines like global combine, reduction, or broadcast, 
which are supplied by most parallel run-time sys­
tems. Note that such optimizations are contained 
in PARA.c\1AT's algorithm replacement strategy. 

Other Current Research Proiects 

Bhansali et al. [5] conclude, from a case analysis, 
that current tools for automatic parallelization are 
not powerful enough and recommend pattern rec­
ognition as the solution. Some general ideas are 
sketched, but there is no implementation. 

DiMartino and lanello ( 13] build from the PDG 
a database of PROLOG facts, formulates tem­
plates as PROLOG clauses, and uses PROLOG's 
inference engine for pattern matching. This ap­
proach, although slightly more general than ours, 
forbids intermediate restructuring, relies on back­
tracking, and takes exponential run-time in the 
worst case. The information derived is used in an 
interactive system for automatic array alignment 
and distribution [30]; algorithm replacement is not 
straightforward as in PARAMAT. A detailed com­
parison of this approach with PARA:\1AT's pattern 
recognizer is given in (14]. 

A program comprehension system for Fortran 
programs sketched in [ 45 J is currently being imple­
mented for a list of over 500 idioms of common 
loop nests, which corresponds roughly to an un­
compressed version of our PHG. The method 
works on the PDG; it is a top-down approach that 
partly uses the algorithm from [53]. 

Other Problem Domains 

Some systems for program comprehension in a 
nonnumerical domain are targeted toward auto­
matic documentation and support of software 
maintenance. Transfmmation or replacement of 
code is not considered. Plan Calculus [50] repre­
sents code and patterns (called "cliches") with 
graph structures whose nodes correspond to sub­
concept instances and whose arcs capture control 
and data flow relationships among them. Cliches 
recognition becomes thus a graph parsing process 
using a set of graph grammar rules. It produces a 
parse tree representjng a hierarchical description 
of plausible concepts of the program. 

The PAT approach [27] and following work 
[38] uses an abstract, object-oriented representa­
tion for syntactic and semantic concepts compos­
ing a (COBOL) source program. Each concept is 
an instance of a concept class, and the classes 
are hierarchically structured. Our templates are 
roughly comparable to their '"plans": a plan's rep­
resentation consists of a description of the syntacti­
cal components and a description of the con­
straints to be satisfied by components. An 
inferential pattern-directed engine derives new 
higher-level concepts from the existing ones, utiliz­
ing plans as inference rules. 

7 CONCLUSION 

The PARAMAT approach to automatic paralleli­
zation consists of three basic ideas: First, we ob­
serve that we can cover large parts of many numeri­
cal codes by a small set of typical programming 
patterns. Second, we devise a recognition algo­
rithm similarto bottom-up pattern matching which 
tries to locally recover the semantics of the pro­
gram, while being robust against many common 
code modifications such as loop distribution, loop 
interchange, loop blocking, or loop unrolling. 
Third, we use the restored program semantics in­
fornlation to guide sophisticated optimizing code 
transformations including local algorithm re­
placement. 

In this article, we have presented a powerful 
framework for the detection of the patterns in 
scientific programs. We applied our knowledge on 
the semantical correlations between the patterns 
for speed and space economy. We used data access 
description and data flow information to compute 
cross edges which guide recognition of delocalized 
code portions. Our prototype implementation 
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shows (1) that pattern recognition is robust against 
many common code transformations, (2) that writ­
ing code for template realizations is rather easy, 
and (3) that pattern recognition is very fast. 

We have presented a framework for pattern­
driven generation of parallel code. For each pat­
tern we can-as an alternative to standard paral­
lelization of some loops according to given array 
distributions-also select a conceptually different 
parallel algorithm, for instance, highly optimized 
system routines supplied with the hardware envi­
ronment. Safe algorithm replacement, though, is 
only guaranteed by the availability of pattern in­
stances. It provides a universal framework to inte­
grate all known parallel algorithms, library rou­
tines. and program transformations. Treating 
larger code parts as atomic building blocks of a 
parallel program also supports faster and more 
accurate performance prediction. Thus, PARA­
MAT makes the experience of parallel program­
ming and optimization experts accessible to all 
scientific programmers and thus avoids rein­
venting the wheel for each program paralleliza­
tion project. 

PARAMAT is not interactive. This is not neces­
sary either because the user does not have to recog­
nize his/her code during and after parallelization 
for selecting transforn1ations or further tuning by 
hand. On the other hand, this "non-WYSIWYG" 
system offers many more possibilities for aggressive 
optimizations and hides the parallelization details 
from the user. 

The PARAMAT system is open for extensions. 
The pattern library can be extended by adding 
more pattern modules according to individual ap­
plication areas. The computation of the run-time 
approximation functions can be automatized by a 
universal benchmarking tool. Changing the hard­
ware platform only requires the loading of another 
base of parallel implementations, their default dis­
tributions, and their run-time functions. Thus, the 
PARAMA T system can always be up to date with 
the latest available hardware environments. 

The P ARAMAT system could also be modified 
to output HPF source programs instead of target 
machine code. As HPF programs (especially distri­
bution and mapping directives and explicitly 
transformed code) are target machine (and com­
piler) specific, generating HPF output for each pat­
tern by the implementation drivers and distribu­
tion recommendations by the distribution drivers 
is, in principle, possible. This, however, would only 
work if the same HPF target compiler is used to 
generate the machine code, since this compiler 

must then also be used to generate the run-time 
tables for the pattern implementations written in 
HPF. On the one hand, this would supply a Fortran 
77 (Fortran 90, C) to an HPF converter for a spe­
cific target machine; on the other hand, it is likely 
that this indirect approach of generating HPF code 
and later compiling it again will result in a perfor­
mance degradation of the final target program, 
compared with direct machine code generation 
bv PARAMAT. 
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