
Pattern-Driven Automatic Parallelization

CHRISTOPH W. KESSLER

Fachbereich IV-lnformatik, Universitiit Trier, D-54286 Trier, Germany; e-mail: kessler@psi.uni-trier.de

ABSTRACT

This article describes a knowledge-based system for automatic parallelization of a wide
class of sequential numerical codes operating on vectors and dense matrices, and for
execution on distributed memory message-passing multiprocessors. Its main feature is
a fast and powerful pattern recognition tool that locally identifies frequently occurring
computations and programming concepts in the source code. This tool also works for
dusty deck codes that have been "encrypted" by former machine-specific code transfor­
mations. Successful pattern recognition guides sophisticated code transformations in­
cluding local algorithm replacement such that the parallelized code need not emerge
from the sequential program structure by just parallelizing the loops. It allows access
to an expert's knowledge on useful parallel algorithms, available machine-specific
library routines, and powerful program transformations. The partially restored program
semantics also supports local array alignment, distribution, and redistribution, and
allows for faster and more exact prediction of the performance of the parallelized target
code than is usually possible. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

Parallel computers with distributed memory are
known to be difficult to program. Even more prob­
lematic is the automatic parallelization for such
machines. The most challenging problems that a
parallelizing compiler is faced with are the fol­
lowing:

1. Parallel code must contain explicit message­
passing statements. But explicit program­
ming of message passing is complex, te­
dious, and error prone.

2. The efficiency of the target program depends
heavily on choosing a suitable distribution

R"ceived February 1995
Revised Aul!ust 1995

© 1996 John Wiley & Sons. Inc.

Scientific Prowamminl!, Vol. .S. pp. 2.'51-274 (1996)
CCC 1058-9244/96/030251-24

(and sometimes, even redistribution) of the
arrays occurring in the source program. For
larger applications, this is a difficult global
optimization problem.

3. A single-program multiple data (SP:MD) pro­
gram generated semiautomatically from a
sequential source program by adapting it to
given array distributions must in general be
transformed to be efficient-just applying
the owner-computes-rule will usually not
suffice. There is no guidance on which opti­
mizing transformations to choose, and in
which order to apply them. :Moreover, there
is no possibility to exploit explicitly parallel
algorithms that have been developed over
the last decades for various problems on var­
ious target architectures.

4. Run-time prediction for nontrivial codes on
real machines is a very complex issue, due
to network contention, message protocols,
buffering, undocumented hardware fea­
tures, and other problems. But reliable run­
time prediction is essential to estimate the

252 KESSLER

quality of array distribution schemes or of
program transformations.

:vlessage-passing statements can be generated
automatically today by semiautomatic paralleliza­
tion [10. 55]. The user has to provide array distri­
butions and optimizing transformations manually.
either in the form of interactive commands, as in
SCPERB [55], or in the form of language con­
structs or compiler directives in an explicitly paral­
lel programming language such as Fortran D [29],
Vienna Fortran [11], High- Performance Fortran
(HPF) [28], and others. "\evertheless, there re­
mains the hard problems involved in automatic
data distribution and redistribution, automatic
guidance on optimizing transformations, and in
suitably accurate performance prediction.

The problems involved in generating good par­
allel code for distributed memory multiprocessors
(or other complex supercomputer architectures)
arise from the fact that there is often not sufficient
knowledge available of the source program and
on the target machine characteristics. Thus. an
automatic parallelizer for such target architectures
must be able to acquire and access as much of
this knowledge as possible. Thi,; does not work for
all programs.

:Vlany numerical programs are, however, partic­
ularly suitable for this purpose. As a result of
considering numerical algorithms in books and
cour,;es. and studying a large number of typical
application codes that are reasonable candidates
to be ported to distributed memory systems, we
have observed [33] that there is onlv a rather lim­
ited number of typical operations. called patterns.
that often occur in these programs, in particular
in the time-consuming inner loops. These patterns
are mostly data parallel operations like element­
wise operations on vectors and matrices, various
kinds of reductions and linear recurrences. differ­
ence stars. grid relaxation sweeps. convolutions.
and others. A pattern is considered to be a primi­
tive with respect to mathematical properties, data
structures of operands, nwmory access structLLre,
array alignment preferences, and run-time behav­
ior. We have collected about 150 patterns in a
basic pattern library. We have also recorded typi­
cal implementation prototypes (syntactic varia­
tions) of these patterns that are used in sequential
source codes [33].

Based on this observation, we constructed an
automatic parallelization system called PARA­
MAT (PARallelize Automatically by pattern
J;JATching) with the following key ideas:

1. The first step of parallelization must contain
a pattern recognition tool that works fast and
reliably. Code pieces in the source program
that are recognized as an occurrence of one
of our patterns are replaced by an instance
of that pattern, looking similar to a call to
an externally defined function. The input
language is structured C without pointers.

2. Once the system knows what the source pro­
gram locally does. it can infer additional
knowledge using mathematical properties
and efficient implementations of the pat­
terns on the target machine and access off­
line-generated information on favorable
data distributions and run-time behavior of
the pattern implementations on the target
machine. The parallelization system can
then easily use this knowledge to guide a
sophisticated parallelization process with
high-level program transformations includ­
ing local algorithm replacement.

The remainder of this article is organized as
follows: Section 2 describes pattern recognition in
numerical codes and summarizes our list of pat­
terns. Section 3 presents the main ideas and defi­
nitions of our pattern recognition method and gives
several examples. Section 4 summarizes the PAR­
AYIAT pattern recognition tool. gives results, and
discusses some extensions. Section 5 shows how
the information supplied by pattern recognition is
used to guide automatic parallelization. Section 6
lists some related approaches to pattern recogni­
tion and pattern-driven automatic parallelization.

2 PATTERNS IN SCIENTIFIC PROGRAMS

To promote the pattern-recognition approach, we
examined many sequential numerical algorithms
that are typical and well-suited candidates to be
run on distributed memory multiprocessors. e.g ..
some "Numerical Recipes" [48] or algorithms
considered in numerical textbooks like [3] or in a
numerical math course: Basic linear algebra sub­
routines (see also [15, 40]). direct solvers for linear
equation systems (such as Gaussian Elimination.
LC. QR. or Cholesky decomposition), Simplex. it­
erative linear equation solvers (such as Jacobi.
Gauss-SeideL JOR. SOR. and Conjugate-Gradient
solver), fixpoint iterations (e.g .. square-rooting a
matrix), grid relaxations (used for numerical solu­
tion of partial differential equations), interpolation
problems. numerical integration and differentia-

PATTERI"-DRIVEN ACTOMATIC PARALLELIZATIOI" 253

Table 1. Analysis of the Purdue Set (Sequential Versions of 14 Kernels From the HPF Benchmark Suite
[46)): Currently Recognizable Patterns

~0. I" a me Recognized Pattems Recognized Loops

1 Trapezoidal rule FSUM 1 from 1
2 Reduction function 1 MINITSP. VVPROD. VSUM 3 from 3
3 Reduction function 2 MINIT. VVPROD. VSUM 3 from 3
4 Reduction function 3 VINIT. VINV. VSUM 3 from :3
5 Simple search MINITSP. MSUM, - 2 from 3
6 Tridiag. set of lin. eqns. VINIT (8). VMUL (4). GVOP (8). VCOPY (5). VSUM 26 from 26
7 Lagrange interpolation VINITSP (2). VINC (2). VINV. VPROD (2).- 7 from 8
8 Divided differences VINITSP. VSIN.-.MSUM 3 from 4
9 Finite differences MINITSP,MINIT,MJACOBI.-. MCOPY.MSUM 5 from 6

11 Fourier's moments VINITSP. GVOP. VSL~ 3 from 3
12 Arrav construction VINITSP (2), MINITSP. MCOPY. VCOPY (2) 6 from 6
13 Floating-point arithmetic VINITSP, GVOP (3). VMULTIADD. 7 from 7

VCONDASS(VADD). VQSUM
14 Simpson's and Gauss' integration FSUM (5) 5 from 5
15 Chebyshev interpolation VINITSP (2). GVOP (3). VCOPY. - 6 from 7

1\ote: The right-hand column indicat<es how manv loops (after applvinl! loop distribution) can lw covered bv patterns from
the Libran. GVOP denotes a general vector operation that is later decomposed into atomir t>lt'mentwist> vt'etor opt'rations usin{!
temporary arravs.

tion. and multigrid algorithms. These algorithms
are the basic building blocks of many numerical
applications.

Considering these numerical algorithms in nu­
merics books and courses, and studying a large
number of typical application codes as the Purdue
Set benchmark ([46]. Table 1), the Livermore
Loops ([44]. see Table 4), and others [see 33].
which are reasonable candidates to be ported to
distributed memory systems, we have observed
that there is only a rather limited number of typicaL
mostly data parallel operations, called patterns,
that often occur in these programs, in particular
in the time-consuming inner loops. A pattern is
considered to be a primitive with respect to mathe­
matical properties, data structures of operands,
memory access structure, array alignment prefer­
ences. and run-time behavior. We have collected
around 150 patterns in a basic pattern library [see
33]. Chapter 5 for the complete specification; Ta­
ble 2 gives an overview]. We have also recorded
typical implementation prototypes (syntactic vari­
ations) of these patterns that are used in the se­
quential source codes considered; they are speci­
fied in Appendix B of [33].

Our observations are backed up by other empir­
ical investigations on large FORTRAN codes [521
and by the typical sets of numerical routines con­
tained in numerical linear algebra packages, which
are either supplied by hardware vendors, or offered
by numerical software companies, or distributed

as public domain software. So far, we have focused
on algorithms operating on rectangular dense rPal
matrices because these are the most reasonable
candidates to be ported to distributed memory par­
allel supercomputers: nevertheless, our approach
may easily be extended to other matrix types (e.g.,
banded. block-banded; complex). We are cur­
rently investigating operations on sparse matri­
ces [33].

3 PRINCIPLES OF PATTERN
RECOGNITION

3.1 Overview

PARAMAT's pattern recognizer works on the in­
termediate representation of the source program
as an abstract svntax tree. A well-structured and
statically analyzable source language is assumed.
The goal is to annotate as many nodes as possible
with a so-called pattern instance, a summary
structure that describes which function is com­
puted in the subtree rooted at that node, together
with the parameter objects of that function. Speed
and robustness of this method mainly result from
exploiting the natural semantic hierarchy of the
patterns in the library.

The algorithm traverses the abstract syntax tree
from left to right in postorder. For a leaf node (a
variable or a constant), determining its pattern is

254 KESSLER

Table 2. A Summary of the Patterns Included in the Current Version of the Basic PARAMAT
Pattern Library

Order Patterns

0 Scalar arithmetics, iniL copy, max, min, swap, read. write, etc.
MULTIADD'0 • MULTIMUL 0 , grid stencil 1D (HSTAR 0 , and 2D (STAR 0 ')

1 Loop accumulating scalar values (FSUM 1)

Elementwise vector operations (VADD 11
, VMUL 1 , ...), scalar plus vector (VINC 1).

scalar times vector (SV' 1
·), full vector triad (VADDSV' 1

). accumulating vector triad
(VAADDSV' 1 , ...), vector init. (VINIT' 1

', VASSIGN' 1 , ...), vector copy (VCOPY 1), vector
swap (VSWAP' 1•), vector read/write, etc.

1 D reductions: total sum of vector elements (VSUM' 1), total product (VPROD 1), inner product
(SSP' 1·, VQSUM'1

), etc.
1D reductions: vector maximization/minimizations (value: VMAXVAL 11 , VMINVAL 1),

location: (VMAXLOC' 1 , VMINLOC11
), both (VMAXVL' 1 , VMINV0 1)

1D relaxation steps: Jacobi (VJACOBI11
), Gauss-Seidel (VGAUSSSEIDEL 1)

First order linear recurrences (FOLR' 1 , PREVSUM' 1
:, SUFVSUM11)

Intermediate form of 1 D convolution
Global vector update (VLUD 1 ')

Vector shift (VSHIFT 11
)

2 Elementwise matrix operations (MADD'2 '. MMUL 2 •...). scalar plus matrix (MINC' 2),

scalar times matrix (SM 2 '), matrix triad (MAADDSM 2), matrix init. (MINIT 2 '. MASSIGN 2 '),

matrix copy (MCOPY2 '). matrix read/ -write, etc.
Matrix-vector multiplication (MV' 2) and related patterns
Forward and backward substitution (FSUBST 2

. BSUBST'2 ')

2D reductions: total sum of matrix elements (MSUM 2 '). total product (MPROD 2 '). concurrent
row/ col-vector sum (VVSUM' 2) or product (VVPROD'2)

2D reductions: matrix maximizations/minimizations (total or row/col-wise) value (MMAXVAL 2 •

MMINVAL' 2). location (MMAXLOC 2 ', MMINLOC 2). both value and location (MMAXVL 2 '.

MMINVL 2
)

2D relaxation steps: Jacobi (MJACOBI 2 , ...). Gauss-Seidel (MGAUSSSEIDEL' 2 •...)

Global matrix update (MLUD 12
', ••. intermediate LC decomposition)

1D convolution (VCONV 2): intermediate forms of 2D convolution
Matrix shift (MSHIFT2 '). row I col-vector-shift (VVSHIFT 2)

:3 :\-latrix multiplication (MM '3 '), LU decomposition (LUD 3 j

Intermediate forms of 2D convolution
2D relaxation loops: Jacobi (JACOBI''3). Gauss-Seidel (GAUSSSEIDEL'1)

4 2D convolution (MCONV-+)

:'IJ"umber

20
4

1

32

7

6
2
3
1
1
1

17
3
2

4

12
4

3
3
2

6
2
2

1'\otP: All BLAS routinPs opt>ratinl! on dense real matrices are inclwlPd. A pattPrn·s order number (left-hand column) denotes
the depth of a loop nest that is usually encountered in a straif!htforward sequential implementation of that pattern. The so-called
unstable patterns. "·!!·· general vector operation (GVOP 1

') or multiple vector triad IVMULTIADD 1 are not listed becaust> thPv are
dt>composed into tlwir basic pattPrns before being submitted to the C()(lP f!Pneration stage. thus being invisiblt> to code generation.

trivial (VAR or CONST. respectively). At each inner
node v of the svntax tree. it tests. based on v' s
children's patterns already matched. whether
there is a pattern m in the library (there exisb
at most one) which matches the semantics of the
subtree T,, rooted at v. This is technically arranged
by callin§! a short routine. a realization of a so­
called template. This routine fails if it cannot prove
that the function computed by T,, equals the opera­
tion represented by m. Otherwise. it returns an
instance I of pattern m. maps the program objects
to the correspondin§! slots of I. and annotates v

with I. If there are several templates admissible,
these are tested concurrently (the result is deter­
ministic). Failing templates abort as soon as pos­
sible.

The already matched patterns of v's children
dramatically prune the search space of patterns
that mav match v. Often. there is alreadv one char-. .
acteristic pattern (trigger pattern) of a child of v
together with v's operator to select a single possible
template. ~We give the formal definitions of these
concepts in Subsection 3.3.

This (classical) pattern matching along '·verti-

PATTERN-DRIVE~ AUTOMATIC PARALLELIZATION 255

cal" edges of the abstract syntax tree corresponds
to a special deterministic bottom-up tree automa­
ton [18]. This procedure can be extended for pat­
tern matching along "horizontal" data flow edges,
such that several (matched) instructions in the
same block that belong to the same pattern may
be contracted to a single pattern instance. Several
instructions may belong to the same computation
only if their operands are involved in at least one
of several types of data flow relations. We denote
important data flow relations by data flow edges
(cross edges). Computation of these edges (i.e.,
computing exact array data flow) is generally hard,
but in our case, we can profit from the simple array
access structures that are characteristic for dense
matrix computations and that are present in all
our patterns. We will consider this problem in Sub­
section 3. 5.

3.2 Preparing Code Transformations

Before starting pattern recognition, we apply sev­
eral important normalizing transformations to
make the program as explicit as possible by

1. Inlining all procedures (recursive procedures
are very untypical for the application area
considered); this makes all program analysis
intraprocedural.

2. Performing forward propagation of con­
stant expressions.

3. Making control flow well structured by elimi­
nating gatos.

4. Recognizing and replacing induction vari­
ables (i.e., integer variables indexing arrays
that are not a loop variable of a surrounding
for 1 oop) by a term depending only on
loop variables.

u. Eliminating dead code.

These transformations are applied in this order
just once (regarding ordering of transformations,
see [54]).

3.3 Patterns, Templates, and the Pattern
Hierarchy Graph

Each nontrivial pattern m is a pair (fm, lm) consist­
ing of a specificationfm of a (mathematical) opera­
tion, and a list /m of specifications of the types
and the data structures of the parameters occur­
ring in fm. For instan~e, the MVI2) pattern represents
the ... operation y = Ab + x, with the parameters y,
A, b, and x being real (sub)arrays (x may also be

a constant). For each nontrivial pattern, m, we
usually know several implementation prototypes
(for sequential C code). Because of the wide variety
of semantics preserving code transformations, the
number of such prototypes can be large for more
complex patterns (such as matrix-matrix-multipli­
cation), expanding the size of an automatically
generated tree automaton dramatically. For this
reason, we formulate the prototypes as far as possi­
ble by using instances of (other) patterns. An im­
plementation of matrix-vector-multiplication
(MVI21) can be written as a single loop based on a
dot product computation

for (i=l; i<=n; i++)
SSP(j=[l:m], x[i], A[i] [l:m],
b[l:m], x[i]);

or as a loop summing up the result vectors of vec­
tor triads

for (j=l; j<=m; j++)
VAADDSV(i=[l:n], x[l:n], b[j],
A[l:n] (j], x[l:n]);

~ -+ ~m

because (Ab + x);=[h•l = (~J=l Aiibi + x;)i=[LnJ

"'"' ~i=l ((Aijbj)i=[LnJ)j + (x;)i=[lnJ·
With such domain information it becomes straight­
forward to formulate templates, which are the rules
to determine a node's pattern m (and pattern in­
stance I) given the node's operator and all its chil­
dren's pattern instances.

Recognizing leaf nodes in the syntax tree as vari­
ables or constants is trivial. Now consider a subtree
Tw rooted at a node w with several children v1 ,

... , vk. The operator op of w is either a for loop
header, an if header, an assignment, or a unary
or binary expression operator. The children of w,
respectively, correspond to the loop body, the
then or else branch, the left-hand side variable
or the right-hand side expression of the assign­
ment, or the operand expressions.

Definition

Let h be the function computed by Tw, as defined
by the semantics of the programming language
used. Let the children v1, v2 , ... , vk of node w
already being annotated by pattern instances / 1 ,

/ 2 , ... , Ik of (potentially, trivial) patterns m 1 , m2 ,

... , mk from the library. Let g denote a function.
Let i E {1, ... , k}. We call the k + 2-tuple S =
(g, m1 , ... , mk, i) a template of m, if g(fm

1
, ••• ,

fm) = fm = h. We call m1 a trigger pattern; i is,
depending on op, determined according to Table

256 KESSLER

3. Moreover, we call m 1 , ... , mk (potential) sub­
patterns of m. For each pattern, we realize only
the most important templates (typically, we have
one to three realized templates per pattern), see
[33].

Definition

A pattern hierarchy graph (PHG) for a set M of
patterns m is a directed graph G = (V, E). The set
V of nodes contains all patterns m E M. For each
realized templateS= (g, m 1 , ... , m;, ... , mb
i) for a pattern m with trigger pattern m; there is
an edge (m;, m) in E. Because m; = m is possible
(i.e., a pattern may occur as a subpattern in one
of its own templates), there may exist trivial cycles
from a pattern to itself. Apart from these trivial
cvcles the PHG is acyclic. We associate an order
n.umb~r order(m) with each pattern m that denotes
the loop nesting depth in a straightforward sequen­
tial implementation of m (i.e., without blocked
loops). For example, for matrix-vector multiplica-

12') 2 d f . tion, we have order(MV ' = , an o~ matnx-
matrix multiplication, we have order(MM13!) = 3. A
PHG edge (m;, m) implies order(m;) :S order(m).

A PHG is called complete for a pattern m, if its
node set contains m and all subpatterns m 1 , ... ,

mk of m occurring in any realized template of m,
and if it is complete for all mJ, 1 :S j :S k. It follows
that the PHG complete for a subpattern m1 of m is
a subgraph of the PHG complete for m. If m; is a
trigger pattern in some template of m, we call m a
superpattern of m;. We denote by SP(m;) the set
of all superpatterns of m;. Usually, a pattern has
onlv a small number of superpatterns (see [33]).
Let w be as above, then the set of possible candi­
date patterns that may match w is

n {m:(mJ,m)edgeinPHG} (1)
}"Sj"Sk

SP<m1 :~0

Table 3. Trigger Pattern

Operator op of
!\"ode w

for loop header
if header
Assignment

Expression operator

Child of w Carrying the
Trigger Pattern

Loop body (first statement)
Then part (first statement)
Root of right-hand side

expression
Left or right subexpression

FIGURE 1 The PHG of matrix-matrix-multiplication.
Solid edges mean realized templates for vertical pattern
recognition; dashed edges for horizontal pattern recog­
nition along cross edges. Solid cycles mean templates
for unblocking or eliminating semantically invariant
conditionals: dashed cycles represent templates for loop
rerolling or integration of initializers.

and the set of templates of these patterns that are
to be tried out at w is determined analogously.
Thus, pattern recognition becomes a path finding
problem in the PHG. Different paths toward a pat­
tern m correspond to different implementations of
the functionality of m. This means that a linear­
sized PHG (and thus, pattern recognizer) repre­
sents exponentially many implementation varia­
tions of the same pattern.

The PHG has a second important advantage: It
serves as a hash table that can be inspected by the
pattern recognition algorithm, because it yields all
the possible superpatterns that could be matched
from a given trigger pattern. Often, the trigger pat­
tern together with the operator of the node to be
matched suffices to select a single possible tem­
plate to match that node. If there are several tem­
plates admissible, these are tested concurrently;
the result is deterministic. Failing templates abort
as soon as possible.

3.4 Examples

Matrix-Matrix Multiplication

We demonstrate the pattern recognition algorithm
using a simple example. Ylatrix-matrix-multipli­
cation is well suited because its functionality and
subpatterns are widely known. Its PHG is given in
Figure 1.

Suppose the programmer has coded matrix­
matrix-multiplication as follows:

PATTERI'\-DRIVE~ AUTOMATIC PARALLELIZATIOI\' 257

for (i=l; i<=n; i++) {
for (j=l; j<=m; j++)

Sl: c[i) [j] = 0.0;
for (j=l; j<=m; j++)

for (k=l; k<=r; k++}
S2: c[i) (j] = c[i) [j]+a[i] [k]*b[k) [j);

}

The pattern recognition algorithm travArses the
abstract syntax tree from left to right in postorder.
First. it encounters at Sl a scalar initialization
SINIT (c[i] (j], O.O).Forthej looparound
it, we obtain an instance of a vector initialization
VINIT(j=[1:m], c[i] [1:m], 0.0). The ac­
cess to array c has become a vector, since one
dimension has been bound by the loop.

Then, the algorithm considers the assignment
S2 and annotates it by AADDMUL (c [i] [j] ,
a[i] [k], b[k] [j], c[i] [j]) (accumulative
addition of a product). Following the suitable
PHG edge, this yields a dot product for the k
loop: SSP (k=[1: r], c [i] [j], a[i] [1: r],
b [1 : r] [j] , c [i] [j]) . The accesses to the
arravs a and b have become vectors. As the accu­
mulating scalar c [i] [j] has not been initialized
so far, it has to be entered into the initialization
slot of the ssp(1: instance to keep data access infor­
mation consistent. In the next step, the do j loop
around the ssp(ll instance is recognized as an in­
stance of matrix-vector-multiplication. Also in this

for i

~
for j ----- for j

1 1
assign for k

(\ 1
c[i) [j] 0.0 assign

(\
c[i] [j]

Abstract syntax tree of the Matrix-matrix-multiplica­
tion example.

case, the accumulating vector c [i J [1: m] tills the
initialization slot. The partially matched, unparsed
syntax tree now looks as follows (code parts "be­
low'' recognized nodes are not shown):

for (i=1; i<=n; i++) {
VINIT(j=[1:m}, c[i] [1:m], 0. 0);
MV (j = [1: m] , k= [1: r] , c [i] [1: m] ,

a[i] [l:r],b[1:r] [1:m],c[i] [1:m]);
}

At this stage, we can continue pattern recogni­
tion only if we take care of data flow. Exact array
data flow analysis, although generally a ver·y hard
problem [17, 43], is dramatically simplified by the
exact data access information supplied with the
pattern instances. In this example, we find that
the vector c[i] [l:m] is written in the VINITI11

instance, and read and overwritten by the MV12l
instance, symbolized by a so-called cross edge of
type FLOW. Thus, we have exact information that
data flow between these two instances in an ex­
pected way. This situation can be tested by a real­
ization of another template for pattern recognition
along cross edges. As the template matches, we
can merge these two instances into a single MV(2)

instanceMV (k=[1:r], j=[1:m], c[i] [1:m],
b [1: r] [1: m], a [i] [1: r], 0. 0), i.e., the ini­
tialization slot is now filled by 0.0 from the VINIT(l)
instance. This instance, in tum, can be matched
with the i loop into MM(k=[1:r], i=[1:n],
j=1:m],c[1:n] [1:m],a[1:n] [l:r],b[1:r]
[1: m], 0. 0) (matrix-matrix-multiplication)
representing this entire piece of code.

During pattern recognition, we have followed
the PHG paths SINIT(Oi . . . VINIT(1l, and
AADDMUL(Ol SSP(1) MV\2) . . . MVI2)

... MM(3 l. Common program transformations, like
loop interchange or loop distribution, would result
in a different path being taken toward MMI3l, but
would not prohibit pattern recognition.

258 KESSLER

Elimination of Semantically
Redundant Conditionals

The following fragment is taken from the MATMUL
routine of the DYFESM program from the Perfect
Club Benchmark Suite [4] :

DO 300 J = 1, M
IF (B(J,K) .NE. 0.) THEN
DO 200 I 1, L

C(I,K) C(I,K) + A(I,J)*B(J,K)
200 CONTINUE
300 CONTINUE

The programmer has added the condition IF
(B (J, K). NE. 0. 0) to avoid unnecessary multi­
plications and additions by 0.0. Since ;he pro­
gram's semantics is not changed by this optimiza­
tion. we realized a new template for the vector triad
VAADDSV!l! (and for several similar patterns) that
follows a self-cycle in the PHG to remove the condi­
tion, just by copying the V AADDSV11

; instance at
the I loop header to its parent node, the IF header.
Pattern recognition then proceeds as above.

Unblocking Loops

Blocked loops are very common in dusty deck pro­
grams that have been optimized for other target
architectures with caches or vector registers. In the
following example, the i loop has been blocked
bv a factor of k:

for (i=1; 1<=n; i+=k)
for (j=i; j<=min(n,i+k-1); j++)

dy[jJ = dy[jJ + da*dx[j];

The inner loop is recognized as a VAADDSV(1) in­
stance:

for (i=1; i<=n; i+=k)
VAADDSV(j=[i:min(n,i+k-1)],

dy[i:min(n,i+k-1)],
da, dx[i:min(n,i+k-1)],
dy[i:min(n,i+k-1)]);

Another template {corresponding to another PHG
self-cycle) discovers that the i loop is blocked, and
annotates it by

VAADDSV(i=[1:n], dy[1:n], da,
dx[1:n], dy[1:n]).

Similar unblocking templates exist for many other­
elementwise vector and matrix operations and for
many reductions. The normalizing transformation
"loop unblocking" has thus been integrated into
the pattern recognizer as a realization that is
shared by all these templates. This integration is
possible because the syntax tree structure is not
modified. However, this does not hold for loop
distribution (a loop transformation important for
pattern recognition) which has to be called sepa­
rately before each recognition step.

DiHerence Stars

MULTIMUL:01 matches a multioperand product of
scalars: MULTIADD(O) matches a multioperand sum
of scalars or products of scalars. The trigger pat­
terns for MULTIADD:o) are ADD, ADDMUU0 i, MUL­
MUL10', MULTIMUL:01 , and MULTIADDI0l; these for
MULTIMUL10; are MUL and MULTIMUL'01 • Distribu­
tivity is not applied. Double negations (-a))) or
inversions (1/ (1/ a)) are eliminated. Subtractions
are represented as sums, divisions as products.
1\;egations and inversions are represented as flag
bits in their operand nodes; this makes expression
trees more compact and easier to recognize.

Difference stars (stencils), in one (HSTARI01) and
two (STAR(01) dimensions, arc the most important
building blocks of grid relaxation sweeps. They are
always based on an ADD, AADD, or a MULTIADD10i.

The following Gauss-Seidel relaxation (Livermore
Loop 23)

for (j::::2; j<=6; j++)
for (i=2; i<=N; i++)

ZA[i] [j] ZA[i] [j] + 0.175
* (ZA[i] [j+1]*ZR[i] [j]

+ ZA[i] [j-l]*ZB[i] [j]
+ ZA[i+1] [j]*ZU(i] [j]
+ ZA [i -1] [j] * ZZ [i] [j]

ZA[i] [j]) ;

contains a five-point stencil. The realization of the
HSTAR1°lfSTAR1°l templates refines the just recog­
nized MULTIADD(Ol instance to a STAR(OJ instance
and calls itself as long as further optional STAR(O)
parameters can be filled in:

PATTERN-DRIVEN AUTOMATIC PARALLELIZATION 259

for (j=2; j<=6; j++)
for (i=2; i<=N; i++)

STAR (ZA[i] [j]. ' 0. 175000,
ZB[i][j],

, ZA[i][jl, _, _,

zz [i l [j] '

i,1,1, j,2,1);

4. 714286,
ZR[i] [j],

Now, further recognition of MGAUSSEIDEL(2) is
straightforward.

3.5 Exploiting the Cross Edges

Cross edges in the syntax tree represent particular,
loop-independent data flow relations among the
operands of pattern instances within the same
block. Pattern instances interconnected by a cross
edge may, even if textually separated, belong to
the same thread of computation, and thus, to the
same superpattern. Therefore, cross edges are well
suited to guide horizontal pattern recognition.

In [34], we have devised a compact array access
descriptor that supports fast realizations of the im­
portant query operations equality, inclusion, dis­
jointness, and (direct) neighborhood of array ac­
cess shapes. A descriptor is computed for each
operand of a pattern instance just after generating
it. Thus, only one loop level has to be considered
at a time. Furthermore, each operand has one of
four possible access modes: I (ignore), R (read), W
(write), RW (read and overwrite). For nonrecognized
code fragments, worst case assumptions have to
be made. From this information, we easily com­
pute five different types of cross edges that are
important for pattern recognition. A cross edge
connects an instance / 1 to an instance / 2 located
textually behind / 1 within the same block, and
has type

1. FLOW if / 1 writes an object that is read by
12 , and this data flow is not killed by another
instance Is located between 11 and / 2 that
writes to this object; this corresponds to a
loop-independent data flow dependence
from / 1 to / 2 .

2. ANTI if / 1 reads an object that is written by
/ 2 , and this data flow is not killed by another
instance Is located between / 1 and / 2 that
writes to this object; this corresponds to a
loop-independent data antidependence
from / 1 to / 2 .

zu [i] [j],

3. INPuT ifboth/1 and lz read the same object
that is not written to by another instance / 3
located between / 1 and l 2 .

4. NEIGHBOUT if / 1 and 1'2 write neighbored
sections of the same object that are not read
or written by another instance I 3 located be­
tween / 1 and / 2 •

5. 1\"EICHBIN if / 1 and / 2 read neighbored sec­
tions of the same object that are not written
to by another instance 1,1 located between 11

and lz.

In general, the eross edges of a block form a di­
rected acyclic graph.

Only pattern instances connected by cross edges
are considered for a potential merge in pattern
recognition. Selection of suitable templates is
guided by the type of the cross edge and by the
(trigger) pattern name of the last pattern instance
(/2). If several templates should be admissible, then
thev can be tried out concurrentlv: at most one of
the~ may really match, thus, de~erminism is pre­
served.

Cross edges of type Ai\"TI are used at recognition
of VSWAP(l) from three single vcopy\1l (vector
copy) instances.

Il: VCOPY(i=[l:n!,tl[:], a[:));
I2: VCOPY(i=[l:n],t2[:], b[:]);
I3: VCOPY(i=[l:n], a[:], c[:]);
I 4: VCOPY (i = [1: n), b [:], d [:]) ;
I5: VCOPY(i=[l:n], c[:],tl[:]);
I6: VCOPY(i=[l:n), d[:],t2[:]);

....--... ANTI ... --.... ANTI ,.,. ' ,.., '
(vcOPYr (vcOPYJ lVCOPYJ ")VCOPYJ \}(vcoPY))VCOPYJ

Il 12 '...,..., 13 ; 14 '-.,IS ; 16
... __ ,..ANTI '--"'ANTI

Instances belonging to the same VSWAP'L computation are
chained by A:-iTI cross edges.

260 KESSLER

The interleaving of the instances does not prohibit
the recognition process because it is guided by the
cross edges. We obtain

Il': VSWAP(i=[l:n], a[:], c[:], tl[:]);

12': VSWAP(i=[l:n], b[:], d[:], t2[:]);

The following special cases of pattern matching
along cross edges are particularly important for us:

1. Loop rerolling: Loop unrolling is a com­
mon program optimization. It occurs (1) as
replication on the expression level (within
the same expression) and (2) as replication
on the statement level (different statements
in the same block). When rerolling loops,
in general, several instances are merged at
once. These instances form a connected
component of cross edges of type NEIGHBIN
or NEIGHBOUT [see 34].

2. Renaming/removing of temporary vari­
ables: Often, reduction implementations
use temporaries for the accumulating vari­
ables, e.g .. to enforce register usage or to
avoid complicated addressing:

for (i=1; i<=n; i++) {

}

SSP (j = [1: m1 , temp, a [i 1 [1: m1 ,
b[1:m],O.O);

SCOPY (x [i1, temp) ;

function stmtdescend (node)
if node is alreadv visited then return fi

Immediately after recogmuon of scopy'O

and computation of cross edges, the FLOW
cross edge from the SSP' 1 ' to the SCQpy'O

instance selects a ssp'l; template that re­
places the temporary temp by x [i 1 and
removes the (now useless) SCOPY 0 · instance.

Due to the one-pass nature of the pattern
recognition algorithm, we do not know at this
point whether the last value of temp (i.e.,
the nth component of vector x) may be used
later on. Thus. to maintain consistencv. we
insert a correcting scopy:O) instance. After
loop distribution and one further pattern
recognition step, we have

MV(i=[1:n1 ,j=[1:m1, x[1:n1,
a[1:n1 [1:m], b[1:m], 0.0) ;

SCOPY(temp, x[n1) ;

The scopy(o: instance may later be removed
as useless code if temp is not used anymore.

3.6 The PaHern Recognition Algorithm

The function stmtdescend() traverses the syntax
tree in postorder; exprdescend() does the same for
expression trees (where, however, no cross edges
can occur).

if node is not an assignment statement then forall children s of node do stmtdescend(s) od fi
forall expressions e occurring in node do exprdescend(e) od
/*Now all subtrees of node are visited and (perhaps) recognized* I
if node is an IF header then tryJF_distribution(node) fi
if node is a for loop header then try _/oop_distribution (node) fi
forall admissible vertical superpatterns m for node in the PHG (cf. formula 1)
do test by the vertical template match(m,node), if there is an instance I of m matching node od
if not. return fi /*FAILED* I
annotate node with I; compute access descriptors and cross edges to I
repeat

forall direct cross predecessors x of node (in the same block)
do /* x has alreadv been visited earlier* I

test by admissible cross templates if the sequence x: node is an incarnation of a superpattern m'
if yes, merge x and node, call the result node and annotate node with an instance I' of m'; break;

od
until there are no mergeable cross predecessors of node left.
end stmtdescend()

PATTERN-DRIVEN AUTOMATIC PARALLELIZATIOl\i 261

The routine try_f}'_distribution tries to distribute a
masked block of statements; try_/oop_distribution
tries, for a loop over a block of statements, to per­
form scalar and vector expansion and thereafter
distribute the loop as far as possible [cf. 56]. IF
and loop distribution modify the structure of the
syntax tree: node gets several "younger" brothers
(copies of node) and moves some of the statements
from its body to theirs. After node, pattern recogni­
tion visits the new brother nodes as if these would
exist already from the beginning; but revisiting
their children (that were children of node before
and thus are already matched) is not required.

Because of the deterministic nature of the
method, each node is visited only once. Because
selection of admissible templates is vety fast due
to PHG inspection, run-time cost is dominated by
the linear tree traversal time. Data flow is com­
puted by need, i.e., only for the current loop level.
Loop distribution uses Tatian's algorithm for
strongly connected components; its pseudocode
can be found in [56].*

3.7 Recognition of Data
Structure Concepts

Beyond annotating nodes with pattern instances,
pattern recognition offers the possibility to keep
track of static relations of single program objects.
An illustrative example is the identification of stati­
cally known grid hierarchies in multigrid programs.
Detection of such grid hierarchies is especially im­
portant when data are stored in a one-dimensional
workspace array. Then, the additional information
allows reconstruction of the different two-dimen­
sional grids, supporting array partitioning and
load balancing.

3.8 Transformations after
Pattern Recognition

After pattern recognition, we must eliminate use­
less code that may emanate from conservative

* Computation of the data dependency graph for a block
of k statements takes, depending: on the dependence tests used,
in the worst case at least time O(k2): the data dependency graph
itself may require space O(k2) which is then the input size for
Tarjan's linear-time algorithm. This works fast for blocks of
moderate size. buc of course, ruins the otherwise linear run­
time of our algorithm. \\'e tolerate this because blocks tend to
be small compared with the size of the entire source program,
and because loop distribution is crucial for the robustness of
our method.

FIGURE 2 P ARAMAT pattern recognition tool.

cross matching and certain transformations. Use­
less code computes variables that are not con­
sumed or output before being recomputed.

Instances of so-called unstable patterns are de­
composed into their basic patterns' instances, e.g.,
theinstanceSVSUM(i,c, a, b[l:n], 0.0) is
split into the sequence VSUM (i, temp,
b[l:n], O.O);MUL(c, a, temp). This ex­
traction of a loop-invariant multiplication is a tar­
get machine-independent optimization. Further­
more, the number of patterns that is visible for the
eode generation phase is additionally reduced.

4 THE PARAMAT PATTERN
RECOGNITION TOOL

4.1 Implementation

A prototype of the pattern recognition tool (see Fig.
2) has been implemented and tested. The current
implementation consists of around 12,000 lines
of C code and reliably recognizes 91 nontrivial
patterns with about 150 nontrivial templates. Each
template is implemented as a C routine of around
20 to 50 lines that tests syntactic and semantic

262 KESSLER

conditions and, if successful, generates the pattern
instance and fills in the slot entries. Because many
useful syntactic and semantic predicates have
been predefined, writing code for templates is
handy and straightforward. More patterns can eas­
ily be added. The high degree of robustness against
loop interchange, loop distribution, loop unrolling,
and statement reordering has been exemplified
in practice.

4.2 Results

A phase [cf. 6] is a minimal set of loops around
some assignment statements such that all indexing
variables occurring in these statements are bound
by loop variables. Ideally, all phases of a program
have been recognized completely as incamations
of our patterns. The pattern recognition tool recog­
nizes nearly all phases in 16 of the 24 Livermore
Loops (Table 4). The recognition times are pretty
fast although measured on a low-end Sun SLC,
including the time for parsing the source and print­
ing the result. Further encouraging results have
been obtained for many other source programs:
most of them are listed in the appendix of [33].

4.3 Discussion

A possible alternative to our syntax tree-based ap­
proach may be pattern recognition on the control

Table 4. Livermore Loops [44]

flow graph (CFG). We state:

1. The syntax tree representation is supplied
by the front end. Because we only admit C
statements that produce well-structured
control flow, the syntax tree contains all re­
quired control dependency information.

2. The CFG is much less structured than the
abstract syntax tree. By converting the syn­
tax tree in a CFG, we would lose information
about the loop structure (loop variables).
Pattern recognition would be harder, less
clear, and slower.

3. The CFG may be more useful if the source
program contains many jumps ("spaghetti
code"). For our pattems, however, jumps
are rarely required, and can always be re­
placed by structuring constructs like IF­
THEN-ELSE or WHILE.

Future extensions to the pattern recognizer
could address interprocedural matching which
would handle recursive functions (that are encoun­
tered in many FFT programs) and indirect array
references and pointers (that are required for rec­
ognition of operations on sparse matrices). Pattern
instances could also be written directly by the pro­
grammer in the source text (very similar to Fortran
90's array operations and intrinsic array manipu­
lation functions), thus locally bypassing pattem
recognition.

Loop Computation Recognized Patterns Rec. Loops Nodes Time

1 Hydrofragment GVOP 1 of 1 47 0.2 sec.
3 Inner product SSP 1 of 1 35 0.2 sec.
5 Tri-diag. elim., below diagonal FOLR 1 of 1 45 0.1 sec.
7 Equation of state fragment GVOP 1 of 1 88 0.3 sec.
8 A.D.I. Integration VJACOBI (3), GVOP (3) 6 of 6 320 1.3 sec.
9 Numerical integration GVOP 1 of 1 91 0.3 sec.

10 Numerical differentiation VCOPY (10), VADD (9) 19 of 19 242 1.1 sec.
11 First sum PREVSUM 1 of 1 48 0.2 sec.
12 First difference VJACOBI 1 of 1 32 0.1 sec.
13 2D particle in a cell VCOPY (4), VAMOD (4), VAINC 12 of 17 258 0.9 sec.

(2), VAADD (2)
14 1 D particle in a cell GVOP (3), VCOPY, VADD (2) 6 of 12 229 0.7 sec.
18 2D explicit hydrodynamic fragment GMOP (4), MAADDSM (2) 6 of 6 608 2.5 sec.
21 Matrix product MM 1 of 1 58 0.1 sec.
22 Planckian distribution GVOP (2) 2 of 2 80 0.2 sec.
23 2D implicit hydrodynamic fragment MGAUSSSEIDEL 1 of 1 105 0.2 sec.
24 1D Minimization VMINLOC 1 of 1 47 0.1 sec.

Note: Sixteen of the 24 kernels are (mostly completely) recognized. The fourth column indicates how many loops (counted after
applying loop distribution) were matched. The fifth column gives the number of nodes of the abstract syntax tree: the last column
the overall times for parsing. recognition and output, measured on a low-end Sun SLC. that are quite encouraging.

PATTER~-DRIVEN AUTOMATIC PARALLELIZATION 263

5 PATTERN-DRIVEN PARALLEL
CODE GENERATION

The matched intermediate representation is rna­
chine independent and opens access to very so­
phisticated program transformations. Instances of
r~cognized patterns can now be replaced by their
best known parallel implementation. These imple­
mentations are machine dependent and are pa­
rameterized by problem sizes and data distribu­
tions of the operand arrays occurring in the
instance. Thev should be written in C with inline
assembler for ~ptimal usage of local processor fea­
tures. Because we want to optimize each pattern
implementation only once, off-line at compiler
generation time, we assume that the following ma­
chine parameters are known at compiler genera­
tion time:

1. The number of processors.
2. Sizes of local memory and communication

buffers.
3. Average communication overhead and la­

tency.
4. Cache size and caching strategy, ifthey exist.
o. Length of arithmetic pipelines and/ or vector

registers of the node processor, if they exist.

In principle, there are now two possibilities to gen­
erate parallel code for a recognized subtree of the
abstract syntax tree: The first alternative is the
generatioU: of a standard parallelization according
to well-known techniques that we shortly revisit
in Subsection 5.1 and modify for our purpose in
Subsection 5.2. The second option, considered in
Subsection 5.3, addresses the selection of an alter­
native parallel implementation that computes the
same function as the standard parallelization but
applies a different parallel algorithm.

5.1 Generation of Standard Parallel
Implementations

For given array distributions, a standard parallel
implementation is generated according to the fol­
lowing, well-known techniques [cf. 55].

Splitting

If the target machine has a host that handles all
110 operations, then a host program is generated
that performs all 110 operations, starts the node
programs on each processor, sends portions of
read operands to the node processors that need
them, and collects the result values from the node
processors that generate them.

Adaptation

The node program maintains, in principle, the pro­
gram structure of the sequential version. For a
given partitioning of the arrays, each assignment
statement will be masked by a condition depending
on the node processor's lD number that ensures
that a node processor only execute~ this statement
if it ownst the variable on the left-hand side of the
assignment. Furthermore. interprocessor commu­
nication (EXCH-statements. cf. [55]) must be gen­
erated to ensure that nonlocal operands are avail­
able when the statement is executed. There is no
explicit synchronization needed if blocking re­
ceive statements are used.

Optimization

The masks can often be integrated into the bounds
of a surrounding loop. thus avoiding much of the
overhead due to the condition evaluation. Inter­
processor communication is moved to the topmost
loop level (loop distribution) that is still possible
without violating data dependencies. Communica­
tion is vectorized as far as possible.

The standard parallelization for a single loop l
with body r consists of a specialization of this
scheme: if l indexes the dth dimension of an array
occurrence A [... J in r, the dimension-specific
mask ownedd(A [...]) has to be used instead of
owned(A [...]), and the dimension-specific com­
munication statement EXCHr1(A [...]) instead of
EXCH as described above. In contrast to an explic­
itly parallel algorithm, the standard parallelization
preserves the structure of the sequential program.

5.2 Selection of Parallel Implementations

For the matched nodes v in the abstract syntax
tree, there exist several possibilities to generate
code for Tv beyond standard parallelization. The
P ARAMA T user may a priori control the selection
process for each pattern m by setting code genera­
tion switches SEQDEBUG[m], REPLSEQ[m], and
l'\"oREPLACE [m J. Based on these switches, at each
node v with pattern m = v.pat matched at v, PAR­
AMA T selects among the following alternatives:

1. A sequential implementation ~[m] for m
(computes m on one node processor or on

t A variable (e.g., a section of an array) is owned by a
processor if that variable resides in its local memory due to the
given data distribution. Scalars are, in general, replicated, i.e.,
owned by all processors.

264 KESSLER

the host. including the necessary communi­
cation), if the debugging bit SEQDEBUG[m]
has been set. The parameters controlling the
data distribution and the problem sizes
. are ignored.

2. A replicated sequential implementation
a [m l for m (sequential computation on all
node processors, corresponding to the given
array distributions), if the sequentialization
bit REPLSEQ [m] has been set. The parame­
ters controlling the data distribution are ig­
nored.

3. A standard parallel implementation 'l'[m]
(see above) for the topmost loop l occurring
in Tv, if the bit 1\"oREPLACE [m] has been set.
The implementation chosen for the body r

of l depends on the bits for the pattern r.pat.
4. A parallel algorithm ll [m] for m that is not

a standard implementation, if such an algo­
rithm exists. This parallel implementation is
also parameterized in data distribution and
problem sizes.

The construction of 'I' [m] deserves some clari­
fication. Let L denote the set of loop headers l E
T, that fulfill.pat = m (i.e., nodes in L are anno­
tated with the same pattern name as u). The loop
nesting structure in Tv, as originally programmed,
is still available. Several loop headers in L arise
from unrolled or blocked loops outside L. Let R
be the body of the innermost loop linn E L. Let
L' C L the set of loops that block a loop in R.
Technically, we make L' U R contiguous by inter­
changing:j: all loops l' E L' "downward" with the
next inner loop l E L - L', such that T, now con­
sists of a contiguous set L - L' of outer loops
around a new body R', consisting of the loops of
L' around R. If R' - R oF- 0, pattern recognition
has to be called again for the nodes in R' - R to
update the pattern instances for the loop headers
in R' - R. The same holds for L - L', if some loop
had been interchanged. The structure of R remains
unchanged. For all loops l E L - L', a standard
implementation is generated.

Let r' denote the root of R'. The code generation
method chosen for Tr' depends on the code genera­
tion switches for the (maybe updated) pattern
r'.pat.

:!: This loop interchange is generally possible, because for
blocking of interchangeable loops similar conditions hold as
for loop interchange (the blocking loop does not index any
array references)-otherwise. our pattern recognition algorithm
would not have recognized I' as a blocking loop. As an alterna­
tive. we also may explicitly undo the blocking after the pattern
recognition phase.

The effect of 1\"oREPLACE[m] is thus the same
as if the loops in L - L' would not have been
recognized as pattern instances (but these in R'
would) .

Example: Pattern recognition has identified the
following code fragment

for (i=1; i<=n; i+=x)
for (j=1; j<=m; j++)

for (k=i; k<=min(i+x-1,n); k++)
for (1=1; 1<=r; 1++)

a[jl [k] = a[j] [k] + b[j] [1]*c[1] [k];

as an occurrence of matrix-matrix multiplication
and annotated the i loop header u = I, with the
MM!3: instance

MM(j,i,1, a[:] [:],b[:] [:],c[:] [:],a[:][:]).

Also the j loop header (call it~) has been annotated
with an MM:31 instance because the i loop only
blocks the k loop. Thus, we have L = {l,, U and
L' ={/;}.Let us further assume that the PARAMAT
user has set NoREPLACE[MM:3 i]. Since l, blocks an­
other loop (lk), we interchange it toward the
"body" (with ~) and obtain

for (j =1; j <=m; j ++)
for (i=1; i<=n; i+=x)

for (k=i; k<=min(i+x-1,n); k++)
for (1=1; 1<=r; 1++)

a[j] [k] = a[j] [k] + b[j] [1]*c[1J [k];

We recognize that, after resubmitting this code to
pattern recognition, only the pattern instance of I,
would change (namely, into a MM(2) instance). That
is why we call pattern recognition again only for
R' - R = {!;}, with the MV(21 instance at lk being
already given.

Standard parallelization then yields

for (j=l; j<=m; j++)
EXCILl (a [j] [:]) ; I* communication

in dimension 1 *I
if (owne<Ll (a [j] [:]))

code for MV (i, 1, a [j] [:] , b [j] [:] ,
c [: l [: l , a [j l [: l l ;

Note that this scheme already includes message
vectorization.

The implementations ~ [m], E [m], 'I' [m], and
ll[m] are machine dependent and are parameter­
ized in problem sizes and data distributions of the
operand arrays occurring in the instance. They
should be written in message-passing C with inline
assembler to allow optimal usage of local processor

PATTER!\"-DRIVEJ\ ACTOMATIC PARALLELIZATION 265

features.§ I\ote that a standard implementation
may also result in some loop being executed se­
quentially if required by the given array distribu­
tions.

For some patterns m there may not exist a (non­
standard) parallel algorithm. Furthermore, the
user may a priori II forbid P ARAMA T to select a
parallel implementation different from the stan­
dard one for a specific pattern m by setting a flag
bit NoREPLACE(m). To enforce a standard paral­
lelization for the entire T,., the NoREPLACE switch
must be set for all the patterns matched at the
nodes ofT.,.

For an instance I of a pattern m, the boolean
predicate No PARALLEL [m] (/) evaluates to TRL!E iff
it is, given the problem sizes and data distributions,
not advisable to generate parallel code for I.
For this case, the effect is. the same as setting
REPLSEQ[m].

For each pattern m, we build an implementation
driver that generates code for any instance I of m.
The coarse structure of such a driver looks as
follows:

gen_code[m](I, T.,):
if SEQDEBLG[m] then generate .:l[m] for I; return fi;
if NoPARALLEL [m J (I) can be evaluated statically
then if NoPARALLEL[m](I)

then generateS[m] for I
else if NoREPLACE[m] or there is no ll[m]

Thus, if the problem size of I is known at compile
time and if it is small, P ARAMAT will decide to
prohibit parallelization if sequential execution will
be faster, thus avoiding slow-down of the target
program. If the problem size is not known at com­
pile time, a suitable run-time test is inserted into
the generated code.

Similar run -time tests can be inserted if PARA­
MAT is not really sure about the value of certain
important program values. An example is the fol­
lowing situation that is often encountered in multi­
grid applications: The programmer uses a large
linear workspace array to store all (e.g., two-di­
mensional) grids and indexes each single grid by
using an offset pointer which is, in general, an
array reference itself. Such indirect array accesses
cannot be handled by compile-time data depen­
dence analysis, and, even worse, a standard de­
composition scheme for this linear work array will
result in bad load balancing and unnecessary com­
munication. However, from the indexing schemes
in recognized patterns of interpolation or restric­
tion operations from one grid to the next one, PAR-

then generate 'l'[m] for L- L' (see above) around gen_code[r'.pat}(r'.matched, Tr.)
else generate nr m J for I fi

fi
else (some problem size is unknown at compile time)

generate target code "if (No PARALLEL [m](I))";
generate S [m J for I;
generate target code "else";
if NoREPLACE[m] or there is no ll[m] available
then generate 'l'[m] for L - L' (see above) around gen_code[r'.pat}(r'.matched, Tr.)
else generate ll[m] for I
fi

fi

§ For instance, arithmetic pipeline of the Intel iPSC/860
node processor i860 can only be used if the program is written
in machine language-the C compiler does not vectorize. Fried
[23] shows how impressive performance improvements can be
reached by exploiting hardware features like arithmetic pipe­
lines, dual operation mode. or dual instruction mode that are
just ignored by the standard compilers.

II This may also be handled by a compiler option included
in the program text. but as we focus on fully automatic paralleli­
zation. this is not a viable alternative for us.

AMAT is able to detect the (potentially) different
grid parts by treating the offset array accesses as
symbolic parameters. To make sure that the offset
values implement the workspace concept, a suit­
able run-time test on the offset values must be
generated that, if successful, treats each single grid
as a unique (two-dimensional) array that can be
aligned and partitioned individually, thus avoiding
the performance decrease mentioned above. As

266 KESSLER

the number of different grids (and thus, the num­
ber of offsets) is usually small, this run -time test
does not involve much run-time overhead. As the
potential benefit from a positive test result is greaL
this optimization is sensible. If the assumption of
a workspace grid hierarchy has been confirmed at
run-time, the workspace array is decomposed into
the single grids, and program control branches to
an alternative implementation with separate array
distributions for each grid.

5.3 Examples for Nonstandard
Parallel Implementations

This section gives some examples for parallel im­
plementations that may differ completely from the
original sequential program structure, or that in­
troduce useful transformations of the correspond­
ing standard implementation. The latter can be
regarded as automatic program transformation
which is hidden from the user. There is no need
for a cyclic approximation scheme of successively
applying some program optimizations, observing
the results, and choosing better ones [301. The
disadvantage is that for each pattern a separate
implementation driver is required. We claim that
this can be taken into account, given that there
would be a large intellectual effort devoted to the
development of numerical software libraries for
any real machine. In any case, we have finally the
chance to get rid of the owner-computes rule.

The implementations are code skeletons where
the slot entries are entered in an appropriate way.
They already contain message-passing statements
and register allocation. In the sequel, we sketch
some of them. For a more complete survey of paral­
lel algorithms for matrix computations, see [21]
or [24].

Reduction Operations

For instances of specific common reduction opera­
tions (cf. Table 2) like global sum, global product,
global OR, global maximum etc., we can make
optimal use of optimized routines that are, in gen­
eral, already supplied with the run-time environ­
ment of the target machine. Here the nonstandard
parallel implementation mainly consists of a run­
time svstem call.

Grid Relaxations

A single grid relaxation step represents one update
of all elements of a two-dimensional grid. A se­
quence of such steps, e.g., a step-counting loop

around them, offers additional potential for opti­
mizations.

Algorithm replacement must always be conser­
vative with respect to numerical stability and con­
vergency properties. As the recognized pattern's
names are available, we can access mathematical
background information on convergency proper­
ties. This information allows-if not explicitly for­
bidden by the user-the replacement of, for in­
stance, a Gauss-Seidel Wavefront relaxation by its
red-black variant or by two steps of Jacobi relax­
ation which are much better suited for parallel exe­
cution (depending on the target machine). The
basic motivation for this "aggressive" local re­
placement of implementations is that the average
user just wants to get the actually fastest par­
allel implementation on this target machine­
independent of, for instance, a particular relax­
ation coding.

Linear Recurrences

Simple linear recurrences are a classical example
for algorithm replacement. Csually it appears as a
sequential loop like

for (i=2; i<=; i++) X[i]=(A[i]*X[i-1]) +B[i];

which is serialized due to a loop carried data de­
pendence as long as standard parallelization is
used. For recognized linear recurrences (here
FOLR'1l) we can apply a suitable number of recur­
sive doubling steps [37] to gain some parallelism
while taking care of growing communication over­
head. The optimal number of recursive doubling
steps (up to min(log p, log n) are possible for p
processors) depends on the problem size n and the
time required for interprocessor communication
on the target machine. For smaller problem sizes,
the sequential variant will be faster.

Matrix-Vector and Matrix-Matrix
Multiplication

For matrix-vector multiplication (MV(2 l), the stan­
dard method can be implemented as the ij variant
(the inner loop is a dot product) or as the j i variant
(the inner loop is a 1 1 daxpy 1

' vector update).
The latter variant seems to be preferable on vector
node architectures. Alternatively, we might use a
systolic algorithm; this seems at most appropriate
for transputer arrays with comparably low commu­
nication overhead and node performance. For rna­
trix-matrix multiplication (MM(3l), the standard
method expands to one of six possible variants

PATTERN-DRIVE:\' AUTOMATIC PARALLELIZATlON 267

(ijk. ikj, etc.) since all three loops are inter­
changeable. An alternative would be a systolic im­
plementation [see [22]. Similar systolic methods
are also applicable to LU decomposition (LUD;3l

Discussion

Algorithm replacement must be conservative with
respect to numerical stability and convergency
properties of the recognized patterns. For each
pattern rn, the nonstandard implementation II[m]
must guarantee that its numerical stability is not
worse than that of'¥[m]. Where this is not possible,
the user receives a warning, and thus can force
PARAMAT to choose the standard implementa­
tion by setting NoREPLACE[p].

Algorithm replacement is the most complex and
strongest program transformation of all. Safe algo­
rithm exchange is enabled only by the availability
of pattern instances. It includes all other machine­
specific optimizing transformations. The imple­
mentation library can be optimized off-line by ex­
pert parallel programmers, until optimum perfor­
mance is reached. Some optimizations may even
be reintroduced which have been removed at the
pattern recognition phase (e.g., loop blocking, se­
mantically redundant IFs, etc.). The suitable com­
munication routines, either simple SE~D and RE­
CEIVE instructions or higher-order communication
primitives like COMBll"E, REDUCE, BROADCAST,
GATHER, and SCATTER that are typically supplied
with the parallel environment, are a basic compo­
nent of the parallel pattern implementations and
need not be further optimized afterward. Such op­
timizations would usually be required for semiau­
tomatically parallelized code, e.g., by vectorization
of messages [25] or by the general message-pass­
ing optimization technique proposed in [42].

Algorithm replacement enables local deviation
from the owner-computes rule; it forms a frame­
work to include all useful parallel algorithms that
are known so far for the corresponding class of
target machines (topology, granularity, communi-

cation properties). All experts' knowledge becomes
available for the average user, although they do
not need to be concerned about these algorithms
or machine parameters.

5.4 PaHern-Driven Data Distribution

To simplify the system design a given hardware
environment is regarded as fixed: in particular,
hardware resources like the number p and the
speed of the processors, the network topoloe,ry, the
cache size and caching strategy, and the memory
size are regarded as constant. This corresponds to
a "dedicated" target machine. In the following,
we need not consider these hardware parameters
further. Nevertheless, scalability of parallel pattern
implementations (in a more general sense) is still
an important issue since local problem granularity
still depends on the problem size.

Each parallel pattern implementation accesses
data in an individual manner. Thus, for each pat­
tern implementation, there is (at least) one favorite
alignment (to minimize communication) and one
favorite distribution (to maximize parallelism) of
all the arrays for this pattern. The programmer
knows these favorite alignment and distribution
strategies for each pattern implementation. This
information is stored in a table and can be accessed
bv the data distribution driver for each instance.
S~me examples of anay alignment and distribu­
tion recommendations for standard parallel imple­
mentations are given in Table 5.

A second requirement for on-line optimization
of array distributions is that the parallel implemen­
tations are specified in a data-distribution-inde­
pendent way. This may be technically arranged
either by conditionals depending on the distribu­
tion parameters of one or several arrays, or by
replication of parallel implementations, one for
each possible distribution configuration. In each
of these cases, it would be advisable to limit the
possible distribution alternatives, instead of ad­
mitting arbitrary block-cyclic distributions of any

Table 5. Array Alignment and Distribution Recommendations for the Standard Parallelizations
of Some Patterns

Pattern

MCOPY (A, B)
VCOPY (V, W)
MJACOBI (A, B)
MM (C,A, B)
VSlJM (s, V)
SSP (s, V, W)

Algorithm

Matrix copy
Vector copy
Jacobi step
Matrix multiply
Vector sum
Dot product

Align

A=B
V= W
A=B

A=CVB=C
Arbitrarily

V= W

Distribute

Arbitrarily
Arbitrarily

Quadr. hlocks
A rep!., B by col. or A by row, B rep!.

Arbitrarily
Arbitrarily

268 KESSLER

block size. For vectors of length n, we allow the
following distributions:

1. Contiguous distribution (block size is nIp)
2. Cyclic distribution (block size is 1)
3. Total replication (no distribution)

For an m X n matrix, we admit the following
distributions:

1. Contiguous row distribution [block size is
mn/p, block shape is (mlp) X n]

2. Contiguous column distribution ·block size
is mn/ p, block shape is m X (nip)]

3. Cyclic row distribution (block shape ism X 1)
4. Cyclic column distribution (block shape is

1 x n)
5. Contiguous quadratic blocks [block size is

mnlp, block shape is (miYP) X (n/YP))]
6. Total replication (no distribution, block

shape ism X n)

This limitation of array distribution alternatives is
supported by the fact that for all our patterns [33],
a locally optimal distribution for each array op­
erand is contained in this list. We are aware of
the fact that a globally optimal data distribution
configuration may be made up of only locally sub­
optimal array distributions, although we believe
that this scenario hardly appears in practice.

Quadratic contiguous block distributions are
optimal for grid relaxation sweeps, because they
minimize the surface-to-volume ratio of the arrav
partitions and thus the amount of data to be ex~
changed. In our framework, they are the only dis­
tribution scheme that distributes processors along
more than one array axis. For quadratic distribu­
tions, however, we must add in this case the follow­
ing constraint: The array (grid) A accessed by a
matrix m must be two-dimensional. Otherwise,
imagine the following situation: Let A be three di­
mensional, with axes A 1, A", and A :1, being distrib­
uted into quadratic blocks along, say, axes A2 and
A:~· Let m be a matrix access along the first and
second axis of A. The number of processors along
axis A2 is Vp, the number of processors along axis
A1 is 1 (not distributed). Thus, m has only YP
partitions, which limits parallelism unnecessarily,
and, worse still, the overall number of working
processors is no longer constant for each call to
the corresponding relaxation routine. Because we
do not want to do everything nvice, with one extra
routine version forp and one for only YP proces­
sors, we generally admit quadratic block distribu­
tions only for, arrays of dimensionality equal to 2.

The alignment and distribution recommenda­
tions for different pattern instances in a given pro­
gram will usually conflict with each other. The
problem of resolving this conflict by determining
globally optimal data alignment and distribudon
is well known to be NP-complete [41], thus auto­
matic partitioning may take exponential time in the
worst ease. Dierstein et al. [12] propose a branch­
and-bound algorithm for automatic partitioning.
To help with the combinatorial complexity, we
make use of our knowledge on favorite local parti­
tionings as starting configurations when perform­
ing a global search for the optimal data distri­
bution.

Dierstein et al. [12] also cover static anay redis­
tribution which is a NP-complete problem itself
[39]. The main problem in static redistribution is
that a globally optimal distribution scheme involv­
ing redistribution may even be made up of subopti­
mal data distributions for all phases of the pro­
gram. However, [6] shows that for application
programs of moderate size (800 lines) represented
as a sequence of phases, an optimal data distribu­
tion scheme can be found within a few CPU sec­
onds using a fast 0-1 integer programming tool.
This method matches our approach well, because
the pattern instances supply the required phase
representation, and the run-time tables (see the
next section) deliver suitably accurate cost esti­
mates.

5.5 Pattern-Driven Run-Time Prediction

Many performance prediction approaches [12, 16,
26] work analytically by estimating the program's
run-time bottom-up through the abstract syntax
tree, starting at the leaves of the expression trees,
with an idealized model of the target machine in
mind. Specific hardware features like caches or
network traffic yield actual run-times that signifi­
cantly differ from the prediction. For this reason,
we follow a synthetic performance prediction ap­
proach that has been proposed in [2] and [20].

For each pattern implementation, PARAMAT
provides a mn-time prediction driver that inspects
a table of previously measured nm-times of that
implementation with varying problem sizes and
varying anay distribution schemes on the target
machine. The table entries for each pattern are
indexed in different data distribution configura­
tions, in the problem sizes (logarithmic scale), and
in the NoREPLACE flag. They also depend on the
NoPARALLEL predicate. The restriction of data

PATTERl\'-DRIVEN ALTOMATIC PARALLELIZATION 269

distribution altematives given above keeps theta­
ble sizes moderate. In addition, we require some
table entries for the communication routines that
may be generated due to array redistribution,
see [6].

As a consequence, run-time prediction consid­
erably gains accuracy because now actual run­
times of high-level implementations on the target
architecture are available which reflect hardware
properties (traffic on the network, message buffer
sizes. message protocols. undocumented commu­
nication behavior, overlapping of computation and
communication etc.) better than theoretical, ideal­
ized estimation functions.

This synthetic run-time prediction has another
important advantage over the analytical ap­
proaches: It is faster because table lookup suffices
where otherwise complex intermediate representa­
tions have to be traversed and analyzed. For in­
stance, the ADDAP [12] system's automatic data
distribution engine suffers mainly from slow ana­
lytical performance estimation.

Problems with performance prediction generally
arise if the target machine has a cache. Then, run­
time also depends on whether operands (arrays or
parts thereof) already reside in the cache due to a
previous operation, or whether they must be re­
loaded first. This scenario may be influenced by
previous operations. With a synthetic approach,
however, the larger the problem sizes are, the less
this effect changes the actual run-times compared
with the table entries. For small problem sizes, the
run-time prediction drivers may be augmented by
some correction term addressing the cache effect.
This issue is left to future research.

Problem sizes (corresponding to vector lengths
or matrix extents) need to be considered only in a
specific interval [Nmin ... Nmaxl of interest, e.g.,
from 8 to 16384. The parameter extent of that
problem size axis thus contains D = log N max -
log N min + 1 entries. With these guidelines and
with the limitation of array distribution altematives
given in the previous section, the parameterization
space (and thus, the run-time table size) for a pat­
tern implementation with x vector operands, y rna­
trix operands, and z problem sizes contains 3x ·
6-'" · Dz entries. For the MV matrix vector product,
we obtain an (uncompressed) table size of 54D2 .

Of course, this does not mean that we have to
implement a matrix vector product once for each
of these configurations. Generally, several entries
can be handled as a whole block by taking array
alignment relations [35, 36, 41] into account, or
ranges of problem sizes with similar run-time be-

havior. The run-time tables can also be com­
pressed according to this hierarchical parametri­
zation structure of the parallel implementation.
For run-time prediction, we consider a parallel im­
plementation ('l'[m] and II[m]) of a pattem mas
a black box. We are not concerned with the issue
of how their run-times should behave in theorv. but
how thev actuallv behave on the concrete hardware . .
configuration, which can substantially differ from
the former.

The synthetic performance prediction treats
greater code portions as units where analytical
methods estimate the program's run-time bottom
up, starting at the expression level. Synthetic pre­
diction models (at least partially) the cache behav­
ior due to the localitv relations that are inherent
to the parallel implementation, the overlapping of
computation and communication, and the charac­
teristic network traffic induced bv the access struc­
tures inherent to the parallel implementation.

For true parallel algorithms (II [m]) the analyti­
cal methods (like [12, 16, 26]) often fail because
they rely on standard parallelizations within a spe­
cific compilation environment. Synthetic perfor­
mance prediction works also for all nonstandard
parallelizations. As a byproduct, the nm-time ta­
bles will provide an extensive performance spec­
trum of the target machine. Furthermore, they will
show which parallel algorithms are feasible in
practice, and in which range of problem sizes and
for which data distributions they are superior to
others or to standard implementations.

5.6 System Overview

There remains the technical problem of how to
code a parallel implementation in a data distribu­
tion independent way while maintaining explicit
formulae for iteration and communication sets and
avoiding the overhead involved in evaluating com­
plicated parametrization formulae at the target
program's run-time. We do this in two steps. First,
P ARAMAT specifies the parallel implementation
in a target machine-specific language like C plus
in-line assembler. This specification, however,
allows complicated parameterization formulae or,
if unavoidable, excessive replication of implemen­
tation code. Once the data distribution engine has
determined a global distribution configuration for
all array operands, we can derive the proper paral­
lel implementation subroutines (comparable to
those in the previous section) from that data distri­
bution-independent specification by partial evalu­
ation [32] and dead code elimination. We obtain

270 KESSLER

~ FrontEnd

§) ----310-

sequential C source

specifications of

distributed-memory

parallel pattern

implementations
paramelerized
in problem sizes
and array distnbutions

PARAMAT

Pattern
Recognizer

linker

'f
distributed-memory multiprocessor target machine

FIGURE 3 The overall structure of a distributed mem­
ory back-end for P ARA:VIA T.

small and efficient message-passing C sources that
are data distribution dependent, and we need to

extract only those routines from the specification
library that are called by the matched user pro­
gram. These arc then compiled and linked with
the matched user program that has been produced
by a suitable code driver (cf. Fig. 3).

These routines extracted from the specification
are also used to produce the run-time tables. As
this is a tedious procedure, we plan to automatize
table construction. 1'\ote that the time-consuming
generation of the run-time tables can be performed
off-line (at compiler generation time). We intend
to develop an automatic benchmarking tool that
does this tedious job.

For nonrecognized code portions, P ARAMA T
generates standard parallelizations. The differ­
ence from standard parallelizations of recognized
code portions is only that there are no correspond­
ing entries in the data distribution/ alignment rec­
ommendation and run-time tables available; thus,
these code portions do not (yet) influence the global
determination of array distributions.

6 RELATED WORK

Several automatic program comprehension tech­
niques have been developed over the years. They

vary considerably in their application domain.
method, and status of implementation.

Earlier Work Targeted Toward Automatic
Code Optimization, Vectorization, or
Parallelization

Snyder [53] addresses idiom recognition in APL
codes. His algorithm is an extended depth-first
traversal of the abstract svntax tree with linear
expected run-time. He applies dynamic program­
ming techniques to select the most profitable idiom
in the presence of overlapping idioms, which
appears to be common in APL programs.

Brandes and Sommer [9] suggest (non construc­
tively) to apply pattern matching techniques for
the detection of reductions and recurrences within
the framework of a formal system for automatic
shared memory parallelization.

EAVE [7, 8] is an expert system for interactive
vectorization of Fortran programs. It contains a
simple pattern matching tool that can discover or­
der 1 patterns (vector operations, reductions).

The pattern matcher of [4] works on a modified
program dependence graph (PDG, see [19]) that
has been extended in a special way to match cer­
tain loop structures with the goal of replacing them
by parallel algorithms. The cost of recognition is
higher because the rewrite rules form a graph
grammar. Normalization of the PDG has to be pro­
vided interactively by the user.

By abstract interpretation of the sequential
source, [1] computes a sequential memory access
map (abstract store) that assigns to each array ele­
ment referenced in a loop the corresponding sym­
bolic representation of its content. Thereafter,
loops are, where possible, replaced by their explicit
representation (closed form), comparable to our
pattern instances. They recognize some patterns
of order $1, namely equivalents of POWER, VSUM(l J,
VPROD(1l, PREVSUM(1l, SSP(11. Based on the closed
forms, they implemented recognition of induction
variables. The method fails at unroHed or
blocked loops.

Red on and F eautrier [49] propose a special ap­
proach for recurrence detection. While this method
offers, at considerable computational effort, the
recognition of rather general and multidimensional
recurrences, a number of assumptions are made
that are hardly met by real applications. As compli­
cated recurrences are rare in real programs, the
computational effort of this approach seems un­
justified.

PATTER:"'-DRIVE:"' AUTOMATIC P ARALLELIZATION 271

CMAX [51] is the only commercial application
of pattern matching with regard to parallelization.
It translates Fortran 77 programs to CM-Fortran,
a parallel vendor-specific Fortran dialect :;irnilar
to Fortran 90. It recognizes syntactically several
common loop constructs (vector operations, re­
ductions, matrix-matrix multiply), but does not
distinguish between patterns and templates. The
recognition power is slightly weaker than PARA­
MAT's, but the main advantage of CMAX is its
ability to recognize Fortran-specific storage con­
ventions and to transform them in order to make
the program machine independent and more suit­
able to distribution of data at that point.

Program comprehension for algorithm replace­
ment should not be confused with pattern match­
ing that optimizes communication statements,
e.g., in [31] and [42]. These approaches do not
try to understand program semantics but apply
pattern matching to (implicit) message-passing
code to exploit higher-order communication rou­
tines like global combine, reduction, or broadcast,
which are supplied by most parallel run-time sys­
tems. Note that such optimizations are contained
in PARA.c\1AT's algorithm replacement strategy.

Other Current Research Proiects

Bhansali et al. [5] conclude, from a case analysis,
that current tools for automatic parallelization are
not powerful enough and recommend pattern rec­
ognition as the solution. Some general ideas are
sketched, but there is no implementation.

DiMartino and lanello (13] build from the PDG
a database of PROLOG facts, formulates tem­
plates as PROLOG clauses, and uses PROLOG's
inference engine for pattern matching. This ap­
proach, although slightly more general than ours,
forbids intermediate restructuring, relies on back­
tracking, and takes exponential run-time in the
worst case. The information derived is used in an
interactive system for automatic array alignment
and distribution [30]; algorithm replacement is not
straightforward as in PARAMAT. A detailed com­
parison of this approach with PARA:\1AT's pattern
recognizer is given in (14].

A program comprehension system for Fortran
programs sketched in [45 J is currently being imple­
mented for a list of over 500 idioms of common
loop nests, which corresponds roughly to an un­
compressed version of our PHG. The method
works on the PDG; it is a top-down approach that
partly uses the algorithm from [53].

Other Problem Domains

Some systems for program comprehension in a
nonnumerical domain are targeted toward auto­
matic documentation and support of software
maintenance. Transfmmation or replacement of
code is not considered. Plan Calculus [50] repre­
sents code and patterns (called "cliches") with
graph structures whose nodes correspond to sub­
concept instances and whose arcs capture control
and data flow relationships among them. Cliches
recognition becomes thus a graph parsing process
using a set of graph grammar rules. It produces a
parse tree representjng a hierarchical description
of plausible concepts of the program.

The PAT approach [27] and following work
[38] uses an abstract, object-oriented representa­
tion for syntactic and semantic concepts compos­
ing a (COBOL) source program. Each concept is
an instance of a concept class, and the classes
are hierarchically structured. Our templates are
roughly comparable to their '"plans": a plan's rep­
resentation consists of a description of the syntacti­
cal components and a description of the con­
straints to be satisfied by components. An
inferential pattern-directed engine derives new
higher-level concepts from the existing ones, utiliz­
ing plans as inference rules.

7 CONCLUSION

The PARAMAT approach to automatic paralleli­
zation consists of three basic ideas: First, we ob­
serve that we can cover large parts of many numeri­
cal codes by a small set of typical programming
patterns. Second, we devise a recognition algo­
rithm similarto bottom-up pattern matching which
tries to locally recover the semantics of the pro­
gram, while being robust against many common
code modifications such as loop distribution, loop
interchange, loop blocking, or loop unrolling.
Third, we use the restored program semantics in­
fornlation to guide sophisticated optimizing code
transformations including local algorithm re­
placement.

In this article, we have presented a powerful
framework for the detection of the patterns in
scientific programs. We applied our knowledge on
the semantical correlations between the patterns
for speed and space economy. We used data access
description and data flow information to compute
cross edges which guide recognition of delocalized
code portions. Our prototype implementation

272 KESSLER

shows (1) that pattern recognition is robust against
many common code transformations, (2) that writ­
ing code for template realizations is rather easy,
and (3) that pattern recognition is very fast.

We have presented a framework for pattern­
driven generation of parallel code. For each pat­
tern we can-as an alternative to standard paral­
lelization of some loops according to given array
distributions-also select a conceptually different
parallel algorithm, for instance, highly optimized
system routines supplied with the hardware envi­
ronment. Safe algorithm replacement, though, is
only guaranteed by the availability of pattern in­
stances. It provides a universal framework to inte­
grate all known parallel algorithms, library rou­
tines. and program transformations. Treating
larger code parts as atomic building blocks of a
parallel program also supports faster and more
accurate performance prediction. Thus, PARA­
MAT makes the experience of parallel program­
ming and optimization experts accessible to all
scientific programmers and thus avoids rein­
venting the wheel for each program paralleliza­
tion project.

PARAMAT is not interactive. This is not neces­
sary either because the user does not have to recog­
nize his/her code during and after parallelization
for selecting transforn1ations or further tuning by
hand. On the other hand, this "non-WYSIWYG"
system offers many more possibilities for aggressive
optimizations and hides the parallelization details
from the user.

The PARAMAT system is open for extensions.
The pattern library can be extended by adding
more pattern modules according to individual ap­
plication areas. The computation of the run-time
approximation functions can be automatized by a
universal benchmarking tool. Changing the hard­
ware platform only requires the loading of another
base of parallel implementations, their default dis­
tributions, and their run-time functions. Thus, the
PARAMA T system can always be up to date with
the latest available hardware environments.

The P ARAMAT system could also be modified
to output HPF source programs instead of target
machine code. As HPF programs (especially distri­
bution and mapping directives and explicitly
transformed code) are target machine (and com­
piler) specific, generating HPF output for each pat­
tern by the implementation drivers and distribu­
tion recommendations by the distribution drivers
is, in principle, possible. This, however, would only
work if the same HPF target compiler is used to
generate the machine code, since this compiler

must then also be used to generate the run-time
tables for the pattern implementations written in
HPF. On the one hand, this would supply a Fortran
77 (Fortran 90, C) to an HPF converter for a spe­
cific target machine; on the other hand, it is likely
that this indirect approach of generating HPF code
and later compiling it again will result in a perfor­
mance degradation of the final target program,
compared with direct machine code generation
bv PARAMAT.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions
with Prof. Dr. Wolfgang Paul, Prof. Dr. Helmut
Seidl, and Prof. Dr. Reinhard Wilhelm.

REFERENCES

[1] Z. Ammarguellat and W. L. Harrison III, "Auto­
matic recognition of induction variables and recur­
rence relations by abstract interpretation," in Pro­
ceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementa­
tion, White Plains, New York, June 20-22, 1990
(ACM Press).

[2] V. Balasundaram, G. Fox, K. Kennedy, and
U. Kremer, "A static performance estimator to
guide data partitioning decisions,'' in Proceedings
of ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming, vol. 3, Wil­
liamsburg, VA, April1991, pp. 213-223.

[3] R. Barrett, M. Berry, T. Chan, J. Demmel,
J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst, TEMPLATES
for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Philadelphia:
SIAM, 1993.

[4] Michael Berry (Ed.), "Scientific workload charac­
terization by loop based analyses," Performance
Eval. Rev., vol. 19, pp. 17-29, Feb. 1992.

[5] S. Bhansali, J. R. Hagemeister, C. S. Raghavendra,
and H. Sivaraman, "Parallelizing sequential pro­
grams by algorithm-level transformations," in
Proceedings of the Third Workshop on Program
Recognition. Washington, Nov. 1994. IEEE Com­
puter Society Press, 1994, pp. 100-107.

[6] R. Bixby, K. Kennedy, and U. Kremer, "Auto­
matic data layout using 0-1 integer program­
ming,'' Center for Research on Parallel Computa­
tion, Rice University, Houston, TX, Tech. Rep.
CRPC-TR93349-S, Nov. 1993.

[7] P. Bose, "Heuristic rule-based program transfor-

PATTER:'II-DRIVEN AUTOMATIC PARALLELIZATION 273

mations for enhanced vectorization," in Proc. Int.
Conf on Parallel Processing, pp. 63-66, 1988.

[8] P. Bose, "Interactive program improvement via
EAVE: An expert adviser for vectorization," in
Proc. Int. Conf on Supercomputing, pp. 119-
130, 1988.

[9] T. Brandes and M. Sommer, "A knowledge-based
parallelization tool in a programming environ­
ment," in 16th Int. Conf on Parallel Processing,
1987, p. 446.

[10] D. Callahan and K. Kennedy, "Compiling pro­
grams for distributed memory multiprocessors,"
J. Supercomput., vol. 2, pp. 151-169, 1988.

[11] B. Chapman, P. Mehrotra, and H. Zima, "Pro­
gramming in Vienna Fortran," Sci. Programming,
vol. 1, pp. 31-50, 1992.

[12] A. Dierstein, R. Hayer, and T. Rauber, "Auto­
matic parallelization for distributed memory
multiprocessors," in Automatic Parallelization­
New Approaches to Code Generation, Data Distri­
bution and Performance Prediction, C. ,V.
Kessler, Ed. Braunschweig; Wiesbaden: Verlag
Vieweg, 1994, pp. 192-217.

[13] B. DiMartino and G. Ianello, "Towards automated
code parallelization through program comprehen­
sion, in Proceedings of the Third Workshop on
Program Recognition. Washington, Nov. 1994.
IEEE Computer Society Press, 1994, pp.
108-115.

[14] B. DiMartino and C. W. Kessler, "Program com­
prehension engines for automatic parallelization:
A comparative study," Proceedings of the First
International Workshop on Software Engineering
for Parallel and Distributed Systems. I. Jelly, I.
Gorton, and P. Croll, Eds. Chapman & Hall,
1996,pp. 146-157,London.

[15] J. J. Dongarra, J. DuCroz, S. Hammarling, and
R. Hanson, "An extended set of Fortran basic
linear algebra subprograms," ACM Trans. Math.
Software, vol. 14, pp. 1-32, 1988.

[16] T. Fahringer, "Automatic performance prediction
for parallel programs on massively parallel com­
puters," PhD thesis, Technisch-Naturwissen­
schaftliche Fakultat der Universitat Wien,
1990.

[17] P. Feautrier, "Dataflow analysis of array and
scalar references," Int. J. Parallel Programming,
vol. 20, pp. 23-53, Feb. 1991.

(18] C. Ferdinand, H. Seidl, and R. Wilhelm, "Tree
automata for code selection," in Code Genera­
tion-Concepts, Tools, Techniques. R. Giegerich
and S. L. Graham, Eds. Springer Verlag, Work­
shops in Computing series, 1992, pp. 30-50.

[19] J. Ferrante, K. J. Ottenstein, and 1. D. Warren,
"The program dependence graph and its use in
optimization," A CM Trans. Programming Lan­
guages Systems, vol. 9, pp. 319-349, 1987.

[20] A. Formella, S. Mi.iller, W. Paul, and A. Bingert,
"Isolating the reasons for the performance of par-

allel machines on numerical programs," in Auto­
matic Parallelization-New Approaches to Code
Generation, Data Distribution and Peiformance
Prediction, C. W. Kessler, Ed. Braunschweig;
Wiesbaden: Verlag Vieweg, 1994, pp. 34-64.

[21] G. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon, and D. Walker, Solving Problems on
Concurrent Processors, vol. 1: General Tech­
niques and Regular Problems. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

[22] T. L. Freeman and C. Philips, Parallel Numerical
Algorithms. Englewood Cliffs, NJ: Prentice-Hall,
1992.

[23) S. S. Fried, "Personal supercomputing with the
Intel i860," BYTE, pp. 347-357, Jan. 1991.

[24) K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega,
B. W. Peyton, R. J. Plemmons, C. H. Romine,
A. H. Sameh, and R. G. Voigt, Parallel Algorithms
for Matrix Computations. Philadelphia: SIAM,
1990.

[25] H. M. Gemdt, "Automatic parallelization for dis­
tributed-memory multiprocessing systems!' PhD
thesis, Universitiit Bonn, 1989.

[26) M. Gupta, "Automatic data partitioning on dis­
tributed memory multicomputers," University of
Illinois at Urbana-Champaign, Tech. Rep. UILU­
ENG-92-2237 or CRHC-92-19, 1992.

[27] M. T. Harandi and J. Q. Ning, "Knowledge-based
program analysis," IEEE Software, pp. 74-81,
Jan. 1990.

[28] High Perfonnance Fortran Forum (HPFF): "High
performance Fortran language specification,'' Sci.
Programming, vol. 2, 1993.

[29] S. Hiranandani, K. Kennedy, and C.-W. Tseng,
"Compiler-support for machine-independent
parallel programming in Fortran-D," Tech. Rep.
Rice COMP TR91-149, Rice University, Houston,
TX, Mar. 1991.

[30) J. Hulman, S. Andel, B. M. Chapman, and H. P.
Zima, "Intelligent parallelization within the
Vienna Fortran compilation system, in Fourth
Workshop on Compilers for Parallel Computers,
H. J. Sips, Ed. Delft Cniversity of Technology,
1993, pp. 455-467.

[31) K. Ikudome, G. C. Fox, A. Kolawa, and J. W.
Flower, "An automatic and symbolic paralleliza­
tion system for distributed memory parallel com­
puters, in Fifth Distributed Memory Computing
Conference (DMCC5)." Charleston, SC: IEEE
Computer Society Press, 1990, pp. 11 05-1114.

[32] N.D. Jones, C. K. Gomard, and P. Sestoft, Partial
Evaluation and Automatic Program Generation.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

[33] C. W. Kessler, "Automatische Parallelisierung
numerischer Programme durch Mustererken­
nung," PhD thesis, Universitat Saarbri.icken,
1994.

[34] C. W. Kessler, "Symbolic array data flow analysis
and pattern recognition in dense matrix computa-

274 KESSLER

tions, in Proceedings of IFIP WG10.3 Working
Conference on Programming Environments for
Massively Parallel Distributed Systems. K. M.
Decker and R. M. Rehmann, Eds. Basel, Switzer­
land: Birkhauser Verlag AG, pp. 57-68, 1994.

[35] K. Knobe, J. D. Lukas, and G. L. Steele, "Data
optimization: Allocation of arrays to reduce com­
munication on SIMD machines,"]. Parallel Dis­
trib. Comput., vol. 8, pp. 102-118, 1990.

[36] K. Knobe and V. ~atarajan, "Data optimization:
Minimizing residual interprocessor data motion on
SIMD machines, in Third Symposium on the Fron­
tiers of Massively Parallel Computation. J. Jaja,
Ed. Los Alamitos, CA, 1990, pp. 416-423.

[37] P.M. Kogge and H. S. Stone, "A parallel algorithm
for the efficient solution of a general class of re­
currence equations,'' IEEE Trans. Computers,
vol. C-22, pp. 786-793, Aug. 1973.

[38] W. Kozaczynski, J. ~ing, and A. Engberts,
"Program concept recognition and transforma­
tion," IEEE Trans. Software Eng., vol. 18, Dec.
1993,pp. 1065-1075.

[39] U. Kremer, "~P-completenessofdynamicremap­
ping," Center for Research on Parallel Computa­
tion, Rice University, Houston, TX, Tech. Rep.
CRPC-TR93330-S, Aug. 1993. See also: Proc.
Fourth Workshop on Compilers for Parallel Com­
puters, Delft, Dec. 1993.

[40] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh,
"Basic linear algebra subprograms for Fortran us­
age," ACM Trans. Math. Software, vol. 5,
pp. 308-325, 1979.

[41] J. Li and M. Chen, Index domain alignment: Min­
imizing cost of cross-referencing between distrib­
uted arrays, in Third Symposium on the Frontiers
of Massively Parallel Computation. J. Jaja, Ed.
IEEE Computer Society Press, Los Alamitos, CA,
1990, pp. 424-433.

[42] J. Li and M. Chen, "Compiling communication­
efficient programs for massively parallel rna­
chines," IEEE Trans. Parallel Distrib. Systems,
vol. 2, pp. 361-375, July 1991.

[43] D. E. Maydan, S. P. Amarasinghe, andM. S. Lam,
"Array data-flow analysis and its use in array pri­
vatization," in Proceedings of ACM SIGPLAN
Conference on Principles of Programming Lan­
guages. 1993, pp. 2-15, ACM Press.

[44] F. McMahon, "The Livermore Fortran kemels: A
test of the numeric performance range,'' Lawrence

Livermore National Laboratory, Tech. Rep.,
1986.

[45] R. Metzger, "Automated recognition of parallel
algorithms in scientific applications," in Workshop
on Plan Recognition at IJCA/'95. 1995.

[46] A. Mohamed, G. Fox, G. Laszewski, M. Parashar,
T. Haupt, K. Mills, Y. Lu, N. Lin, and N. Yeh,
"Application benchmark set for Fortran D and
high performance Fortran," Northeast Parallel
Architectures Center, Syracuse, NY. Tech. Rep.
327, 1992.

[47] S. S. Pinter and R. Y. Pinter, "Program optimiza­
tion and parallelization using idioms, in ACM
SIGPLAN Symposium on Principles of Program­
ming Languages. 1991, pp. 79-92, ACM Press.

[48] W. H. Press, S. A. Teukolski, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes inC-The
Art of Scientific Computing, 2nd ed. Cambridge:
Cambridge University Press, 1992.

[49] X. Redon and P. Feautrier, "Detection of recur­
rences in sequential programs with loops," in
PARLE 93, Springer LNCS, vol. 694, pp. 132-
145, 1993.

[50] C. RichandL. M. Wills, "Recognizingaprogram's
design: A graph-parsing approach," IEEE Soft­
ware, pp. 82-89, Jan. 1990.

[51] G. Sabot and S. Wholey, "Cmax: A Fortran
translator for the connection machine system,
in Int. ACM Conf on Supercomputing, 1993,
pp. 147-156.

[52] Z. Shen, Z. LL and P. Yew, "An empirical study
of Fortran programs for parallelizing compilers,"
IEEE Trans. Parallel Distrib. Systems, vol. 1,
pp. 356-364, July 1990.

[53] L. Snyder, "Recognition and selection of idioms
for code optimization," Acta Informatica, vol. 17,
pp. 327-348, 1982.

[54] D. Whitfield and M. L. Soffa, "An approach to
ordering optimizing transformations,'' in Proceed­
ings of ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 1990, pp.
137-146, ACM Press.

[55] H. Zima, H. Bast, and M. Gemdt, "Superb: A
tool for semi-automatic MIMD/SIMD paralleliza­
tion," Parallel Computing, vol. 6, pp. 1-18,
1988.

[56] H. Zima and B. Chapman, Supercompilers for
Parallel and Vector Computers. ACM Press Fron­
tier Series, Addison-Wesley, 1990.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

