
Massively Parallel Searching for Better
Algoritlnns or How to Do a Cross Product with
Five Multiplications

JOHN GUSTAFSON 1 AND SRINIVAS ALURU2

1Ames Laboratory, Iowa State University, Ames, /A 50011; email: gus@scl.ameslab.gov
2Department of Computer and Information Science, Syracuse University, Syracuse, NY 13244; email: aluru@top.cis.syr.edu

ABSTRACT

A number of "tricks" are known that trade multiplications for additions. The term "tricks"
reflects the way these methods seem not to proceed from any general theory, but instead
jump into existence as recipes that work. The Strassen method for 2 x 2 matrix product
with seven multiplications is a well-known example, as is the method for finding a
complex number product in three multiplications. We have created a practical computer
program for finding such tricks automatically, where massive parallelism makes the
combinatorially explosive search tolerable for small problems. One result of this pro­
gram is a method for cross products of three-vectors that requires only five
multiplications. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

Humans have talents that are hard to program.
Driving a car, recognizing continuous speech, and
playing chess have proved far more challenging to
computers than they have to people. To this class
we can probably add algorithm optimization. How
is it that a mathematician can look at a simple
algorithm for complex product like

u.,_aXc-bxd

and discover that the number of multiplication op-

Received December 199:~
Revised August 1995

© 1996 John Wiley & Sons. Inc.

Scientific Programming, Vol. 5, pp. 20:3-21? (1996)
CCC 1058-9244/96/030203-1 S

erations can be reduced to three. One method,
which seems far from obvious. is

s 1 =a- b

s2 =a+ b

S;> = C- d

m 1 = C X s 1

m 2 = d X s~

me,= b X Sg

The conventional method for 2 X 2 matrix prod­
ucts calls for eight multiplications and four addi­
tions. (In this article, we equate additions and sub­
tractions in assessing operation count because they
are computationally similar).

The trick behind the Strassen method for 2 X

2 matrix products [20] is even more abtruse and
baffling than the shortcut for complex products
(Yuval presents a possible derivation, see [22]):

204 GUSTAFSON AND ALURU

s1 a12- an

Sz a11 + azz

S:1 a11- a:n

s .. a11 + a12

s:; = a;,n + an

s6 = b21 + bzz

s., b11 + 6n

ss bl1 + 612

Sq b12- 6n

rn1 s3 X s8

m 4 = s4 x 622

m:;=a11 Xs9

m 6 a 22 X s 11l

m7 = s,-, x 6 11

This algorithm was later improved by Winograd
[L p. 247], who reduced the number of additions
from 18 to 15:

S:; = b 12 - 6 11 m:; = s 1 X S:;

s6 = b22 - s:; m 6 = s1 X b22

s7 = b22 b12 m., = a:n X s8

ss = s~>- b2t

ell= m2 + m3

c12 = lt + m;-, + m(,

Where is the pattern in these methods? Al­
though the theory of trilinear forms [16, 17] has
helped guide some shortcuts, it appears that these
methods are the result of inexplicable intuitive
leaps by some very bright people.

In August 1991, the authors began an expeti-

rnent to see if computers, especially massively par­
allel computers, could discover these tricks, and
perhaps find new ones. Beginning with brute force
search methods that ran for days on very small
algorithms, the program became gradually more
sophisticated and able to handle interesting prob­
lems within the limits of our patience. Recently,
an nCCBE 2 with 256 processors revealed that it
is possible to compute the cross product of two 3-
dimensional vectors using only five multiplica­
tions, and this method is new to the best of our
knowledge. The conventional method requires six
multiplications and three subtractions:

1 + c2T + c3k)
(~17 + 0'2f + 0;1k) X (bl + b2l + b:);)

= (a2 b3 - a3 b2)7 + (o3 b 1 o 1 b:JJ
+ (a1b2 - a2 b 1)k

The algorithm with five multiplications, found by
the computer program, is:

St = al o2 ml o:l X bt tl = m3 m'l.

s2 = b2 + b8 m2 = a 1 x b;3

s'~ = s 1 - a;1 m;3 = s 1 x s2

s4 = b1 s2 m4 b2 X ss

The rest of the article describes our search pro­
gram. Shortcut ways of computing the given ex­
pressions are found by doing a search among all
possible expressions that can be derived from the
given set of variables and operations. Because this
exhaustive enumeration has a combinatorially
large number of expressions to explore, strategies
are developed which reduce the search. Several
"pruning" strategies are u;;ed to avoid the explora­
tion of unpromising subtrees. Parallel computers
are employed to conduct the search in parallel, to
achieve higher speed.

2 PROBLEM SPECIFICATION

The problem can be defined as follows:
Given: A set of variables

a budget of M multiplications and A addi­
tions
and a set of goal expressions

Find: A sequence of (expl op exp2) triples where
exp 1 and exp2 are selected from either
the set of variables or previously computed
expressions, and op is chosen from there­
maining multiplications or additions that
compute the goal expressions, and that
minimize the total number of operations
or the number of operations of a particu­
lar type.

We are interested in minimizing the number of
operations of a particular type because the relative
cost of the operation types is different in general.
For example, in Strassen's matrix product algo­
rithm, the variables involved could themselves be
matrices, and matrix products are costlier than
matrix sums. Any algorithm for finding the product
of two k X k matrices in Jl,f multiplications can be
used recursivelv to find the product of two n X n
matrices (n > k) in O(n 1"gk H) time [1, 20]. For such
a problem, we are obviously interested in minimiz­
ing the number of multiplications, even at the cost
of increasing the total number of addition opera­
tions.

For the class of problems addressed in this arti­
de, addition (+), subtraction (-), and multi plica­
tion (X) operations are sufficient. Addition and
multiplication are commutative, while subtraction
is not. For the purposes of uniformity, we introduce
a notation "reverse subtraction" (~), with the as­
sociated meaning that exp 1 ~ exp2 is the same
as exp2 - exp1. With this, we can impose an
ordering on exp1 and exp2 and explore only cases
with exp 1 < exp2 without omission. Also, we use
the term ''add'' to denote anv of addition/ subtrac­
tion/reverse subtraction. Throughout the article,
we assume that operation cost is data independent.
We also use the term ''product'' to refer to multipli­
cation of entities like complex numbers and matri­
ces and reserve the term "multiplication" for
real numbers.

3 MODELING AS A SEARCH PROBLEM

Consider the set of all possible expressions that
can be derived from the given set of variables and
operations. These can be thought of as a graph
with each node representing an expression (Fig.

ALGORITHM OPTIMIZATION 205

a b

(a+b)x(a+b) ax(axb) (axb)+b

FIGURE 1 Partial search l!raph for a two-input
problem.

1). \V e use the tenn ''expression'' for a node as
long as it results in no confusion, because each
node can be specified by the expression it repre­
sents. The graph G(V, E) can be defined as follows:

1. Each of the given set of variables forms a
node in the graph.

2. If two expressions e 1 , e~ E V, then (e1 op
e2) E V for every choice of operation op.

We can also think of edges from e 1 and e2 to
the node (e1 op e2). Clearly, this graph represents
all possible expressions that can be generated from
the given variables and operation types. Note that
each node represents a unique expression and the
way of generating it starting from the variables can
easilv be found bv following the edges into the node
repr~senting this .expression. However, two or more
expressions could be mathematically equivalent.

The number of operations required to compute
any expression in the graph can be found by recur­
sively following the edges coming into the expres­
sion. The number of operations for computing
e 1 op e2 is one more than the operations required
for computing e 1 and e2 , except that expressions
common to the paths for e 1 and e:2. need be com­
puted only once.

A set of nodes in this graph whose expressions
are mathematically equivalent to the goal expres­
sions constitutes a way of computing the goal ex­
pressions with the associated number of opera­
tions. The problem then translates to finding the
appropriate set of nodes such that the associated
number of operations is the minimum over all such
possible sets.

Because there is no budget for the number of
operations, the graph has an infinite number of
nodes. The nodes of the graph can easily be or­
dered according to the number of operations re­
quired to compute the expressions at the nodes.
The nodes at level 0 constitute the given set of
variables. The nodes at level i consist of expres­
sions that can be computed using exactly i opera-

206 GUST AFSO~ AI\D ALCRC

a

I
b

~
~b a-b ?Zbxh

(a+b)x(a+b) ... ax(axb) ... (axh)+b ...

FIGURE 2 Partial search tree for a two-input problem.

tions. We can easily place a bound on the search
because we are interested in minimizing the num­
ber of operations. If a known way of generating the
goal expressions needs k operations, we need only
look at nodes at levels less than k.

Because the graph has a combinatorially explo­
sive number of nodes, it would be impractical to

Search()
For input1 = 1 to level- 1:

For input2 = 1 to level- 1:

4 THE BASIC SEARCH ALGORITHM

The Search algorithm is simply a depth-first search
on the tree described in the previous section. Note
that we do not allow operations involving specific
integers; only letters involving unknown quantities.
The naive form of the basic algorithm is easily
stated:

Input: m variables, a budget consisting of M multi­
plications, and A adds, and n goal expressions to
be determined.
Output: A way of computing the goal expressions
without exceeding the budgeted number of op­
erations or a statement that no such method
exists.
Method: Initialize the first m levels to the input
variables. Initialize level to m + 1.

For each operation type left in the budget:
Apply operation to the expressions at input1 and input2.
Remove the operation from the budget.
level ~ level + 1.
If the new expression is a goal expression not yet found,

mark the goal expression as found.
If all the goals are found, retum the solution.
If level< m + M + A, Search().
Cnmark the goal expression found, if any.
Restore operation to the budget.

End For.
End For.

End For.

generate and store the graph during the search
process. Also, solutions are difficult to identify,
because matching subgraphs to the goal expres­
sions (as algebraic equivalents) is itself a combina­
torial problem. To avoid these problems, it is con­
venient to do a depth-first search on a tree as
shown in Figure 2.

The tree is constructed as follows: The given set
of variables forms the first m levels of the tree, one
node at each level. The children of node i are all the
expressions that can be formed using an operation
and any two expressions on the path from the root
to node i. The goal is to search for a path in the
tree which contains expressions equivalent to goal
expressions. Because each node accounts for one
operation, paths containing more than the bud­
geted number of operations need not be explored.

In principle, questions like, "Is there a method
of finding the product of two complex numbers
involving three real multiplications and five real
adds?" can be answered by exhaustive search.
This approach is naive in general because there
are so many possible algorithms with these con­
straints. Because the two input expressions can be
taken from any previously computed expression,
the number of input combinations is (A + Af +

m- 1)! 2 /(m - 1)! 2 . There are (A ~i\-1) ways to

place the multiplications in the set of steps. Be­
cause the "add'' operations can be any of addi­
tion, subtraction, or reverse subtraction, there are
3 1 possible sets of add operations for any speci­
fied placing of multiplications. The total number
of elements in the search space by the naive

method is

(A + M + m - 1)! 2 (A + M) 3A
(m- 1)! 2 M

For the complex product with four inputs and a
budget of three multiplications and five adds, this
value is approximately 6.02 X 1017.

A massively parallel collection of 8000 proces­
sors, each checking one million nodes per second,
would take more than 2 years in the worst case
that there is only one such algorithm and that it is
the last one checked. The existence of multiple
algorithms in the search space and termination of
the search when the first is found might reduce
this time by an order of magnitude, but it would
still not be the sort of problem casually attempted
with 1992 technology!

To make the problem more tractable, we began
the accumulation of "pruning rules" for eliminat­
ing subtrees in the search without any danger of
missing a solution. These pruning rules are conser­
vative because they still allow the resulting tree to
be called an exhaustive search. Later we consider
pruning rules that seem to greatly assist in finding
clever methods that trade multiplications for adds,
but cannot be used to prove the nonexistence of
a method with a given operation budget.

5 CONSERVATIVE PRUNING RULES

To motivate the need for pruning rules, look at
what is probably the simplest trick in all of elemen­
tary algebra: a 2 - b 2 =(a+ b)(a- b). The factor­
ing reduces the number of multiplications from two
to one, at the cost of increasing the number of adds
from one to two. If we set up a search tree using
Algorithm A, the first step could be any of

a~a a-a a+a aXa

a~b a-b a+b aXb

b~a b-a b+a bxa

b~b b-b b+b bxb

Because addition and multiplication are com­
mutative, and we include both subtraction and
reverse subtraction, we need not include both in­
pull op input2 and input2 op input1. Therefore,
requiring the first input to be from the level on or
above that of the second input is a conservative
pruning rule. This pruning rule is easily imple- ft

ALGORITHM OPTIMIZATION 207

a (0)

I
b (!)

L2)
/

a-b (3:0--1)

a-l (4: 0--2)

L
FIGURE 3 A typical path showing expressions and
how they are derived.

mented by changing loop control variables instead
of using explicit "if" statements. Some of the prun­
ing strategies are rather straightforward and obvi­
ous. Nevertheless, they are very important in view
of the significant amount of reduction in the
search. ·

Before we enumerate the pruning rules, it is nec­
essary to introduce some notions. The program
always keeps track of the path from the root of the
tree to the current node along with the way each
expression on the path is derived. Expressions are
represented as polynomials in the input variables.
The terms of the polynomials are ordered to make
it easy for addition and subtraction operations and
to check mathematical equality of expressions.
The expressions on the path are numbered starting
from the root. The way an expression is derived is
represented by the numbers denoting the parent
expressions and the operation used. Figure 3
makes the ideas clear.

We can also define a lexicographic ordering on
the expressions based on the way they are derived.
Let/1 op 1 g 1 and/2 op2 g 2 denote two expressions
e1 and e2 on a path. We say e1 precedes e2 in
lexicographic order if g 1 < g 2 or if g 1 = g 2 and op 1

precedes op2 in lexicographic order or if g 1 = g 2 ,

op 1 = op2 , and/1 < / 2 . The ordering on operations
is defined to be"~"<"-"<"+"<" X". There
are several possible choices for defining a lexico­
graphic ordering and there is nothing special about
the specific order chosen. The ordering is useful in
defining some pruning rules. A number of pruning
strategies are discussed below. For each pruning
rule that is used, we state the rule along with a
brief justification wherever it is appropriate.

1. Explore only paths of length less than or

208 GUSTAFSON AND ALURC

a (0)

I
b (I)

/
a-b (2: 0--1)

I
b (3: 0--2)

FIGURE 4 A path showing two identical expressions.

equal to the total number of operations
plus the number of variables.
Each expression on a path (except the vari­
ables) is formed by one operation. There­
fore, paths of length more than the bud­
geted number of operations plus the
number of variables cannot provide the de­
sired solution.

2. Restrict the number of operations of each
particular ~ype.
lf the budget of operations of a particular
type is consumed on a path from the root
to a node, all children of the node using
the particular operation can be pruned.

3. Subtracting an expression from itself is not
useful, and can be excluded from the
search tree.
This assumes that 0 is not a goal ex­
pression.

4. If the expression at a node is the same as
the expression at one of its parent nodes,
delete the node and the subtree under it.
This is obvious because no shortcut will
have the same expression computed twice.
In Figure 4, the node labeled b(3 : 0 - 2)
is deleted because it represents the same
expression as the node labeled b (1).

5. Eliminate expressions with a leading nega­
tive term, except when one of the goal
expressions contains a leading negative
term.
Recall that the terms of expressions are or­
dered and hence there is no ambiguity in
deciding if an expression has a leading neg­
ative term. An expression is negative if it
has a leading negative term and positive
otherwise. For each path P(1

) containing a
negative expression, we show the existence
of another path p!'21 which does not contain
such expressions and is a solution if p(ll is
a solution. p!'2) satisfies the property that
every expression in it is the same as the

corresponding expression in p(ll or its neg­
ative. We construct p!'2 starting from the
root, such that at each stage the con­
structed partial path satisfies the above
property. To start, the first m levels consti­
tute the variables and hence satisfy the
property. Let e~ 1 be the next expressi.on to
be added to P(21 and e11

) be the correspond­
ing expression on pr1 I. Let e~31 I = e\1 1 op
e&ll. We can show that for every choice of
op and for every possible combination of

'1' :1) '2' signs of e1 1 and e2 , e3 · can be constructed
such that ek21 = -e~11 if e111 is negative and
e~2 1 = e111 otherwise. For example, if e111 =

e\11 + e&11 and e~1) and e&11 are negative, let
e~21 = e\21- e&21. Because e~21 = ei11 and
e!21 = -e(1) e(2) = -er1)- e(1) = -e(11 as de-

2 213 2 1 g,'

sired. If all goal expressions are positive
and P(11 contains a solution, then p!'21 must
also contain a solution by the above con­
struction. Therefore, we can prune the sub­
tree under any expression that is negative.

6. The level of the second input node should
be the same as or greater than the level of
the first input node.
This rule was explained in the beginning
of this section.

7. Eliminate exploring paths with an identi­
cal set of expressions, by requiring expres­
sions on each path to be in increasing lexi­
cographic order starting from the root.
For each path P!11 that does not contain
expressions in increasing lexicographic or­
der, we can show the existence of another
path p!21 containing the same expressions
as p!ll, but in the proper order. Let e\11 and
e&1

) be two expressions on P(1i that do not
conform to the lexicographic order. With­
out loss of generality, let ei1) be the expres­
sion nearer to the root. Because e&11 pre­
cedes e\11 in lexicographic order, the
expressions needed to compute e&1

) appear
before e\11 on the path, and therefore e\11
and e&1 I can be swapped. We can construct
p!21 by systematically swapping every two
expressions on p(ll that do not conform to
the lexicographic order. Because P!11 and
P!21 contain the same expressions, p('2) rep­
resents a solution if p!11 represents a solu­
tion.
Using this rule, we can prune each node
that precedes its parent in lexicographic
order. In Figure 5, the two paths shown
have identical expressions and hence the

subtre.es under them are identical. The tree
is pruned at node labeled a - b(3: 0 - 1)
because it precedes its parent in lexico­
graphic order. This avoids computing the
same subtree twice.

8. Among all the children of a node with
mathematically equivalent expressions,
choose the one that is smallest in the lexi­
cographic ordering.
This rule is also useful to avoid computing
duplicate subtrees. The expression that is
smallest in the lexicographic ordering is
chosen because by rule 7, the subtree un­
der such a node contains the subtree under
a node representing the same expression
and having the same parent node. For ex­
ample, in Figure 6, the node labeled b -
c(5: 3 ~ 4) is pruned as it succeeds the
node labeled b - c(5: 2 - 3) in lexico­
graphic order and has a common parent.

9. Levels to explore should be at least as
many as goal expressions to be found.
A path representing a solution should con­
tain all the goal expressions. Paths with
not enough room for all the goals need not
be explored.

10. In a shortcut, each expression is used at
least once.
Each expression is formed by at most two
expressions on the current path. Also, the
number of expressions on the path is
bounded. This places a limit on the number
of expressions that can be used in forming
subsequent expressions on the path. If
there is no possibility that all the expres­
sions (except the goal expressions) are used
at least once, the tree can be pruned at this
node.

a (0)

I
b (!)

~
0

, "-''"1 T'''""'
(3 "''f§i li:. "-''

FIGURE 5 Search tree with two paths having identical
set of expressions.

FIGURE 6

ALGORITHM OPTIMIZA TI0:\1 209

a (0)

I
b (1)

L2)
/

a-b (3:0-1)

I
a-e (4: 0-2)

A
(5: 2-3) b-e b--e (5: 3-4)

Search tree with two children of a node
representing the same expression.

Let l = length of the path constructed so
far, g = number of goals yet to be found,
and u = number of unused expressions on
the path. As only paths of length at most
m + M + A are explored, the constructed
path can be extended to contain (m + M +
A) - l more expressions and at most 2 X

(m + M +A - l) different expressions could
be used to construct these. There are u
expressions on the path explored that are
unused and (m + M + A - l - g) expres­
sions on any extended path that have to be
used. Therefore, any extension of the path
could be a shortcut and a solution only if
u + (m + M +A - l- g) ::; 2 x (m + M +
A - l) or if u ::; m + M + A - l + g:
Otherwise, the subtree under the path con­
stnicted so far can be pruned.

It should be noted that some of the pruning rules
are more expensive than the others. This can be
viewed as moving the tree traversal cost to the node
expansion cost, and the trade off in cost should
be considered. For example, rule 4 involves deter­
mining whether the expression is identical to one
of its ancestors. Implementing this rule is fairly
cheap and effective when the node is close to the
root because there are few nodes to compare and
large subtrees to prune. However, when it is close
to the maximum level (as defined by rule 1), the
cost of comparison increases dramatically but the
payoff decreases significantly. Rule 8 involves
comparing the expression to its siblings generated
before, making it impractical to implement even
for nodes fairly close to the root. In fact, the siblings
are not available in a depth-first search as only

210 GUSTAFSON AND ALURU

the path from the root to the current node is stored.
In such a case, a restricted version of the rule might
be more useful. For example, rule 8 implies that
any expression in first degree of length two should
be constructed using only the given variables and
this can be checked with just two comparisons.
Except for rules 4 and 8, the remaining rules can
be implemented using a constant number of opera­
tions irrespective of the position in the tree of the
node being tested.

There are other pruning rules that guarantee
that if a solution were to be found in one of the
deleted subtrees, then an equally economical solu­
tion is guaranteed to be found in another subtree
to be explored. These rules usually stem from the
commutativity of the operation the goal expres­
sions represent or from symmetry considerations.

As an example, consider the complex product,
which is a commutative operation.

(a+ ib)(c + id) = (c + id)(a + ib)

Exchanging a with c and b with din any solution
that computes the complex product also gives a
solution for the same. Hence, in the search pro­
gram, if a path from the root to a node can be
derived from another path by the above exchange,
the subtree under that node need not be explored.
In fact, we can easily derive the missed solutions
from the solutions found.

Such a pruning rule is very useful because it
prunes the tree at the first level. For, if a path can
be derived from another, the first node in the path
can also be derived and the tree should have been
pruned at the first node on the path itself.

As another example of a similar rule, consider
the 2 X 2 matrix product. Interchanging the rows
of the first matrix and/ or the columns of the second
matrix does not affect the goal expressions to be
computed. This prunes three of four nodes at the
first level of the tree.

6 AGGRESSIVE PRUNING RULES

As the size of the search tree is exponential both
in the number of variables and the number of oper­
ations, we need as many pruning rules as possible
to be able to tackle interesting problems in reason­
able time. Due to this, we added some pruning
rules that seem to be intuitively appealing, without
the guarantee that they eliminate only unpromising
subtrees. These rules greatly assist in finding clever

a

b

~ ··~~~
a+b axh ax(a-b) bxh bx(a-b) axh ax(a+b) bxh bx(a+b) a-b a+b

axh bx(a+b) (a+b)x(a-b)

FIGURE 7 Aggressively pruned Eearch tree for
a2 - b2.

solutions but cannot be used to prove the nonexist­
ence of any methods with a given operation budget:

1. Eliminate expressions with degree higher
than the highest degree among goal expres­
sions.

2. If the goal expressions are all homogeneous,
do not allow expressions with terms of differ­
ent degree.

3. If the goal expressions do not contain terms
of the form n X expression, where n is an
integer, In I > 1, and expression is a product
of input variables, then we can also exclude
all operations that result in such terms.

This set of pruning rules, along with the
conservative pruning rules, reduces the
number of possibilities for the a 2

- 6 2 search
space from 15,552 to a much more manage­
able 24 expressions. The savings are more
dramatic for larger search trees, of course.
The resulting search tree for the computa­
tion of a 2 - 6 2 is shown in Figure 7.

A few more pruning rules were found use­
ful in dealing with goal expressions denoting
the product of two mathematical entities like
complex numbers, vectors, and matrices.
None of the goal expressions for such a prod­
uct contains a term with two variables drawn
from the same operand and none of the
known shortcuts contains any intermediate
expressions with such terms.

We define the structure of a term to be
the sequence of operand names from which
the variables forming the term are drawn.
For example, with respect to the complex
product (a+ ib) X (c + id), the term be has
the structure (exp1, exp2), where exp1 and

exp2 refer to the first and the second op­
erand, respectively. The following pruning
rules are based on the structures of expres­
sions. Due to these pruning rules, each ex­
pression is made of the terms of the same
structure and the structure of any term can
be taken as the structure of the entire ex­
pression.

4. +, - operations are allowed only on oper­
ands of the same structure.

5. X is allowed only on operands of different
structures.

For example, in the search tree for computing
the complex product, (a - b) X (a + b) is not
allowed whereas (a + b) X (c + d) is allowed.

7 THE PARALLEL PROGRAM

Besides the speed gained by using the pruning
rules, the search may be done in parallel to achieve
further speed. The parallel approach is simply that
of master-slave load allocation. In the serial ver­
sion, a depth-first search of the tree is done until
a path containing goal expressions is found. In the
parallel program, several processors can be used
with each processor exploring a subtree of the en­
tire tree. The master-slave approach is inherently
suited to multiple instruction multiple data (MIMD)
computers. The primary obstacle to single instruc­
tion multiple data (SIMD) computers is the large
number of branching tests from the pruning rules
resulting in disparate control flow [3].

For the MIMD approach, one processor is used
as the master processor delegating work (subtrees)
to the other processors. The master processor does
a depth-first search of the entire tree. However,
on reaching a specified number of levels, it dele­
gates the underlying subtree to an idle processor
instead of exploring it. The master processor then
backtracks and continues the search. Each of the
slave processors performs a depth-first search on
the subtrees assigned to it and reports the solution
to the master, if found. To avoid waiting for work,
each slave processor is given its next subtree while
it is computing the current one. With this, all the
slave processors are busy most of the time. On 256
nodes, efficiencies of 99.8% are typical.

A key parameter in the parallel program is the
number of levels the master explores before dis­
tributing the subtrees. If this is too small, there
might not be enough subtrees to allocate to all the
processors. Also, there is greater danger of load

ALGORITHM OPTIMIZATION 211

imbalance with fewer subtrees. lf this is too large,
the master processor needs to do most of the work
and the slaves remain idle. The choice depends
on the size of the problem and the number of pro­
cessors used. An appropriate value can easily be
found by experimentation. For problems like com­
plex product or matrix product on a system of 16
to 1024 nodes, exploring three levels on the master
processor seems to be a good choice.

Notice that a superlinear speedup is possible, if
we stop as soon as a solution is found. Because
the tree is searched in parallel by many processors,
there is a good possibility that some processor
might get "lucky" and find the solution [19]. We
have found that this is indeed the case, most of
the time.

8 EXAMPLES OF USE

8.1 Integer Powers of a Number

An example of an algorithm optimization dis­
cussed in Knuth [10] is that of raising a number
to an integer power by repeated multiplications.
By saving and reusing partial products, the number
of multiplications to compute an is usually much
less than the n - 1 multiplications that would be
done by a simple loop. for example, a 1" can be
computed with five multiplications using a 2 = a X

a, a-1 = a 2 X a 2 , a 3 = a 4 X a, a 10 =a" X a", a 15 =
ato X a".

Even this simple problem illustrates that mini­
mizing operations results in tricks, i.e., methods
that do not seem derivable by straightforward step­
wise thinking. A straightforward method might be
to express the exponent as a binary number, and
compute products corresponding to every "1" in
that number. For example, a 1" = a1+'2+4+B, so a 2 =

a X a, a 4 = a 2 X a 2 , a 8 = a 4 X a\ a 12 = a 8 X a\
a 14 = a 12 X a 2 , a 15 = a 14 X a. Because this method
uses six multiplications, it is inferior to the ''clever''
method of more subtle derivation.

A further complication is that divide operations
can sometimes reduce the work to get to a power,
depending on the relative cost of multiplications
and divides (and on the cost of handling divisions
by zero). For instance, a·31 can be computed by
repeated squaring to get a 32

, and then dividing
by a to get a 31 . The five multiplications and one
division required will be faster than the seven oper­
ations needed using multiplications alone, if there
is no cost for the a = 0 exception and division
takes less time than two multiplications.

212 GUSTAFSO,'\l AND ALURU

The optimization program of Section 4 easily
generates optimal algorithms for the first powers
of a number up to an exponent of 100. We simpli­
fied the program to consider only one initial input,
a, and used the mathematical equivalence of the
ring formed by multiplication and exponentiation
to the ring formed by addition and multiplication.
That is, the goal expression of 15a using only addi­
tion and subtraction is equivalent to a goal expres­
sion of a 1:; using only multiplication and division.

To automate the discovery of minimal operation
counts, the algorithm was surrounded by the fol­
lowing control structure, where m(n) is the number
of operations to find an:

n = 2.
While n :s nmax

mlesl = rlog2 n l
While Search(mlesl) fails

Increment mlesl.
End While
Record method with mtest operations.
Increment n.

End While

Only conservative pruning rules involving adds
were applied. The aggressive pruning rules are ei­
ther irrelevant or inappropriate, since we wish goal
expressions of the form na, where n is an integer.
For extra speed, the Search program was sim­
plified.

1--2

32.-:::::::::::::~----:!
16 ..-::::::::::::17 --)] .:::::::::6!

---~~ 9--17--:W -----.41--TI ·-=--·--·--11--)6~ ..
~

.. ,. __ , , __ .,
12--24 Z7--SI

< , __ ,, __ ,.
6 ~.-::::::::::::~--n

9--11..-::::::::::::ZI--54
10

~
4S--IS

40 4]--13
~ 41--11

20~~==::==:

<
10 "-=:::::::::::'".-::::::::::::~--::::::;:

2S--S0~7S
13--D--46--!>2

s 16..-::::::::::::~~==~==~
I ~13 --26..-::::::::::::~ .:::::::==~
!==~~==:==~-----~

<
'-c:::::::::::==:;==E~E ,..-::::::::::::,1....--.-..

" -----29~&3--" "<21..-::::::::::::;;~_,
17--ll~--"

" Sl--19
1 tt-=:::::::::::21~ .n

18 ~ .45_ , __ , __ .,
10~_,. __ ,. __ ,.
' 40--41--19

·'~ '-...20.-::::::::::::Z1--41--11__........._ .. __ ,. __ .,
16--32--39

FIGURE 8 Power tree with multiplications.

1--2

~JJ~~:::::=!!
If 17--~----~

IS--11---H

~
.. ...;=:::::::::;,_"'

12--24 ~, __ ., , __ ., __ .,
D--<1--H

10--20--«1-=====:--,
~·~==z_,

~
..

9 SI--.S 11< 43--71 ,. __ ., __ ,.
16-=:::::::::::32--41--7J

ll-=:::::::::::~===:
16-=::::::::::::~-=::::=::--::::::::::~

=----==~=
IS ~JO~~:::::::::~

7 ~~==~=---=~
14-=::::::::::::U--JI~U

21~:::--=:::::s•
12--IJ--JI=---==~ 10--20--40 ~16 6-=:::::::::::: 1--13--U--Sl ~$7

'--12~2-1-=::::::::::::~::_-----.:~ ==!:
S--•--u -............17--J:J~SJ

12...._ --......__;;-=---~--....:51
J ---24 ----] ., ,<· ;-c:::::::::;~--"-=:::::::::::!~~--"

s--10--lD--40--"3~91 __ , ----...:..,

FIGURE 9 Power tree with divisions weighed the same
as multiplications.

An nCuBE 2 with 64 processors took 1.5
minutes to find all of the optimal methods tabled
in Knuth, assuming no divisions. Divisions were
then introduced with various weightings, because
division takes longer than multiplication on most
1992 computers, by amounts that vary from com­
puterto computer. The optimal sequence of opera­
tions with no divisions is shown in Figure 8 and
with a division weighted the same as a multiplica­
tion is shown in Figure 9. The sequence of optimal
operations when a division is weighted as two or
more multiplications is the same as that with no
divisions, for integer powers less than or equal to
100.

Note that division is much less help than one
might think. Given the high cost of division on
many machines, plus the cost of exception
handling when a = 0, the use of multiplications
alone appears very attractive for low integer pow­
ers. For integer powers higher than 200 or so, other
methods such as those given in [6 J become ad van­
tageous.

8.2 Complex Product

We have already mentioned the trick for computing
the product of complex numbers (a + ib) and (c +
id) with only three multiplications. The search pro­
gram found 12 different ways of doing this, 2 of
which are given below:

m1 = c X (a - b) m1 = (a - b) X (c + d)

m 2 = d X (a + b) m 2 = b X c

m3 = b X (c- d) m3 =a X d

u = m 1 + m 3 u = m 1 + m 2 - m 3

v = m 2 + m 3 v = m 2 + m 3

An exhaustive search with a budget of three
multiplications and five adds took 21 h and 10
min on a 256-processor nCUBE 2. This repre­
sents approximately 1014 integer operations. Re­
duction of the budget to four adds revealed no
way to compute the goal expressions ac - bd
and ad + be, providing a computational "proof"
of the nonexistence of a method with fewer
adds.

Aggressive pruning rules can be used to reduce
the search time: Expressions involving ab or cd
are disallowed, as are expressions involving sums
±a ± c, ±a ± d, ±b ± c, or ±b ± d (aggressive
pruning rule 4). Nonhomogeneous expressions,
expressions with degree higher than 2 (highest de­
gree among goal expressions), and expressions
having terms with coefficients other than ± 1 (see
Section 6) are disallowed. Although we have no
proof that optimal methods cannot use such steps,
we empirically observed the efficacy of these prun­
ing rules and make use of them in related problems
such as cross product and matrix-matrix product.
For the complex product, a search with the aggres­
sive pruning rules took only 0.18 son a 64-proces­
sor nCUBE, yet found all 12 methods. Aggressive
pruning rules destroy proof of optimality, but
speed the discovery of new methods. Without ag­
gressive pruning rules, the method that forms the
alternative title of this article would probably not
have been tractable with current high-speed com­
puters.

8.3 Cross Product

Among many applications, computer graphics
uses the cross product of three-vectors extensively
to determine intersections of rays and polygons o~
to create plane normals. The conventional algo­
rithm is as follows:

Given three vectors
-> -t -o>

b1 i + b2J + b3k, find

a 2 X b3 - a 3 X b2 ,

a 3 X b1 - a 1 X b3 ,

and

ALGORITHM OPTIMIZATION 213

as the three goal expressions.
While working on a synthetic scene generation

program, we wondered if there might be a way to
compute a cross product in less than six multipli­
cations, at the cost of extra adds. The Sandia
nCCBE 2, with 1024 total processors, was invalu­
able for this search; we used 256 of its processors
for a period of 5 h and 40 min and discovered the
method with the first set of stems distributed by
the master. A search that went through all the
stems would have taken a month, even with aggres­
sive pruning rules. The method is shown at the
end of Section 1. We believe this is the first publica­
tion of the method.

9 FUTURE APPLICATIONS

9.1 Strassen Products

The Strassen algorithm for 2 X 2 matrix products
[20] was cited in the Introduction. Applied recur­
sively to matrices of size N, it reduces the complex­
ity of matrix-matrix products from order N:3 to or­
der N 1

og2
7 . The lack of an obvious pattern in the

algorithm was the original motive for the work de­
scribed in this article. We intended to generate the
Strassen method by exhaustive search, and then
attempt to find simlar tricks for 3 X 3 and 4 X 4
matrix products. For 3 X 3 matrix products, a
method using only 23 multiplications has been
found [13], presumably by hand. With optimal
methods for 2 X 2, 3 X 3, and 4 X 4, we hoped
to find a pattern that would reduce the exponent
for matrix products without requiring very large
values of N, the matrix size.

The budget for a Strassen product, using the
Winograd improvement, is 22 operations (7 multi­
plications and 15 additions). Because the search
grows exponentially in the number of operations
in the budget, the search is significantly harder
than those described m previous sections
(Table 1).

Based on the number of "stems" generated by
the parallel algorithm and the rate at which prog­
ress is made through that set of stems, we estimate
that exhaustive search for the Strassen matrix
product on the 1024-processor nGlJBE 2, even
with aggressive pruning rules, would take many
centuries. We continue to seek exploitable sym­
metries and search orderings that will result in dis­
covery of methods, if not search of the entire space.

214 GUSTAFSON AND ALCRU

Table 1. Minimum Operation Budgets Required
for Various Tasks

Task to Optimize Operation Budget

a2- 62

Conventional complex product
Three-multiply complex product
Conventional cross product
Conventional matrix product
Five-multiply cross product
Strassen matrix product

3
6
8
9

12
13
22

9.2 Buneman-Type Methods Using Extra
Identities

The conventional method for rotating a two-vector
(x, y) by 0 radians is to multiply it by a matrix of
the form

[
cos 0

- sin 0
sin 0]
cos 0

to obtain (x', y'). This requires four multiplications
and two additions. This operation is critical, e.g.,
in the fast fourier transform (FFT) algorithm. If
the rotation is to be done for many two-vectors, as
it is for the FFT, one regards the cos 0 and sin 0
values as constants instead of as input variables.
Therefore, it is legitimate to consider precomputing
alternative constants based on 0, but not consider
the effort to do so in the operation count. Buneman
[5] discovered a trigonometric identity that accom­
plishes a two-vector rotation with three multiplica­
tions and three additions, assuming zero cost for
computing tan(0/2):

t = y + x X tan(0/2)

x' = x - t X sin 0

y' = x X tan(0/2) + t

A similar approach exists for reducing the num­
her of multiplications for computing a fourth-de­
gree polynomial [18] from 4 to 3, where precompu­
tation of constants based on the polynomial
coefficients can be amortized over many evalua­
tions of the polynomial for various arguments.

The Search program described in this article
does not currently have any way of discovering
this type of trick. We do not yet see a brute force
approach likely to generate such tricks automati­
cally.

9.3 Massively Parallel Compiler
Optimization

Current commercially available MPP systems ei­
ther compile source programs on a single node of
the ensemble or use a front-end computer that
has a traditional serial architecture. Small-scale
parallelism for the phases of compilation can be
accomplished via pipelining, but that approach
does not scale to thousands of processors.

The Search method described here suggests a
strategy for a way of using large numbers of proces­
sors during compilation. A small number of pro­
cessors can do conventional compilation using
pipeline parallelism, but basic blocks that look
amenable to optimization can be farmed out to the
rest of the ensemble and run through the Search
process. When conventional compilation is com­
pleted, the processors that were given sections to
optimize can be polled for the best optimization
found so far, and the optimizations can be col­
lected as a final pass. The user might supply a
time constraint on compilation, so the search for
reduced operation counts can be limited by the
user's patience instead of the completion of con­
ventional compilation. Here, "operation" includes
any instruction in the target computer's repertoire,
not just arithmetic operations. Also, overlap of in­
structions and the number of clock cycles for each
instruction would have to be used in the cost metric
instead of the simplistic operation counts used in
Search. It might make more sense to budget clock
cycles than operations or instructions for MPP
compiler optimization. This is fertile ground for
future research.

As a test of the massively parallel compiler opti­
mization concept, we did the following experiment:
Given the C expressions

f = a * a * a + a * a * b + a * b * b + b * b * b and

g=a*a*a+3*a*a*b+2*a*b*b
+ b * b * b,

we used the Search program to optimize the calcu­
lation off and g. Then, we tried various C compilers
with optimizations enabled.

Unoptimized compilation gave a method to
compute fusing eight multiplies and three adds.
The Search program found that f could be
computed with three multiplies and two adds in
0.18 s on a 16-processor nCUBE. The Shortcut
found by the Search program is (a + b)
(a2 + 62). The SUN (Sun Release 4.1) and DEC
(Ultrix) compilers were only able to reduce the op-

eration count to seven multiplies and three adds.
The Gnu compiler managed six multiplies and
three adds.

A naive computation of g requires 10 multipli­
cations and 3 adds, as found by unoptimized com­
pilation. The SUN and DEC compilers could not
find any improvements. The Gnu compiler found
a method with nine multiplies and four adds. The
optimum method ((a+ b)3 - ab2) taking 4 multi­
plications and 2 adds is found by the Search pro­
gram in 0.36 s on a 64-processor nCUBE.

To test our approach on expressions that appear
in real production codes, we have chosen the fol­
lowing subroutine by Sisira W eeratunga of NASA
Ames Research Center from the application
benchmarks given in the NAS parallel bench­
marks [4].

subroutine setiv
do k = 2, nz-1

Ozeta = (dfloat(k-1))/(nz-1)
do j = 2 nv-1

eta=' (dfloat(j-1))/(ny-1)
do i = 2, nx-1

xi= (dfloat(i-1))/(nx-1)
do m = 1, 5

ALGORITHM OPTIMIZATION 215

It appears that even simple algebraic expres­
sions can be improved by a factor of 2 over current
compiler technology using the Search approach.

10 LIMITATIONS OF USE

1 0.1 Numerical Stability

The Search program can be used to derive meth­
ods for computing expressions with minimum
number of operations but such a method is not
guaranteed to be numerically stable. Thus, analy­
sis of the numerical stability of the derived algo­
rithm is necessary before advocating its use.

Numerical stability of algorithms for real and
complex matrix multiplication is discussed in [7,
8, 15]. Miller [15] analyzes the tradeoff between

u(m,i,j,k) = pxi + peta + pzeta - pxi * peta - peta * pzeta
- pzeta * pxi + pxi * peta * pzeta

end do
end do

end do
end do
return
end

We tried to optimize the core of the computation
given by the statement inside the loops, which,
after a convenient renaming of the variables, is

a + b + c - ab - be - ca + abc.

Table 2 shows the number of operations used by
various compilers in computing this expression.
An optimal way of computing this expression, as
found by the Search program in 24.6 son 32 pro­
cessors, is

c(ab- a- b)- ((ab- a- b)- c).

computational complexity and numerical stability.
He defines the notion of Strong stability and Brent
stability, which is a much weaker requirement with
Strong stability implying Brent stability. For a thor­
ough discussion of these notions, see [15]. It is
shown that any algorithm for matrix multiplication

Table 2. Number of Operations Used by Various
Compilers and the Search Program in Computing
a + b + c - ab - be - ea + abc

Compiler

SUN (V 4.1)
Ultrix (V 4.2a)
Gnu (V 1.36)

Search

Unoptimized

5 muls, 6 adds
4 muls, 6 adds
5 muls, 6 adds

Optimized

4 muls, 6 adds
4 muls, 6 adds
4 muls, 6 adds

2 muls, 4 adds

216 GUSTAFSO~ AND ALURU

that possesses Strong stability should have at least
n 3 multiplications and that the Strassen's method
possesses Brent stability.

Applying a similar analysis to the new Croos
Product method discovered by the Search pro­
gram, we found that six multiplications are neces­
sary for Strong stability and that the method dis­
covered by the Search program possesses Brent
stability. A similar result is true for the complex
multiplication methods.

1 0.2 Use of Constants

Shortcuts for several expressions involve clever use
of numerical constants. For example, the expres­
sion abc - ab - ac - be + a + b + c is equivalent
to (a - 1)(b - 1)(c- 1) + 1, requiring only two
multiplications and four adds. a 4

- 8a3 + 24a2
-

32a + 16 can be computed as (a - 2)4 using
only two multiplications and one add. Such clever
methods involving the use of constants cannot be
found by the Search program.

11 SUMMARY AND CONCLUSIONS

With the speed of computers continuing to increase
about 60% per year, it is prudent to examine some
of the problems and solution methods traditionally
thought of as "intractable." Contrary to the phi­
losophy taught in most computer science pro­
grams, even programs of combinatorially explosive
complexity can yield interesting results for small
problems. The computer-aided discovery of a
cross product with five multiplications is an exam­
ple of the kind of problem we can now pose to the
fastest machines available.

In 1992, computers were capable of about 1011

integer operations per second, so a run within the
limits of human patience might involve 1 0 17 opera­
tions. At the current rate of performance improve­
ment, computers will eventually be fast enough to
"discover" the Strassen product trick in a 2 week
run. As we find better rules for pruning the search
tree, we might well move this date up by many
years, and be able to attempt larger problems with
the MPP computers of the future.

ACKNOWLEDGMENTS

We thank Dr. G. M. Prabhu for many suggestions
during the development of this article and for veri-

fying the proofs of the validity of the conservative
pruning rules. We are also indebted to Sandia
National Laboratories for generous amounts of
time on their 1024-processor nCUBE 2 computer,
on which many of our results were obtained. This
work is supported by the Applied Mathematical
Sciences Program of the Ames Laboratory­
USDOE under contract No. W -7405-ENG-82.
The submitted manuscript has been authored by a
contractor of the U.S. Govemment under contract
No. W-7405-ENG-82. Accordingly, the U.S.
Govemment retains a nonexclusive, royalty-free
license to publish or reproduce the published form
of this contribution, or allow others to do so for
U.S. Government purposes.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J.D. Ullman, The
Design and Analysis of Computer Algorithms.
Reading, MA: Addison-Wesley, 197 4.

[2] S. Aluru and J. Gustafson, "A massively parallel
optimizer for expression evaluation," in Interna­
tional Conference on Supercomputing, 1993, p.
97-106.

[3] S. Aluru and J. Gustafson, "Subtle issues ofSIMD
tree search," Pro c. Parallel Computing, 1993.

[4] D. Bailey eta!., "The NAS parallel benchmarks,"
NASA Ames Research Center, Ames, lA, Tech.
Rep. RNR-91-002, Jan. 1991.

[5] 0. Buneman, "Inversion of the Helmholtz (or La­
place-Poisson) operator for slab geometry,"].
Computational Phys., vol. 12, pp. 124-130,
1973.

[6] W. J. Cody and W. Waite, Software Manual for
the Elementary Functions. Englewood Cliffs, NJ:
Prentice-Hall, 1980.

[7] N.J. Higham, "Exploiting fast matrix multiplica­
tion within the level 3 BLAS," ACM Trans. Math.
Soft., vol. 16, pp. 352-368, 1990.

[8] N.J. Higham, "Stability of a method for multiply­
ing complex matrices with three real matrix multi­
plications," SIAM]. Matrix Anal. Appl., vol. 13,
pp. 681-687, 1992.

[9] J. E. Hopcroft and L. R. Kerr, "On minimizing
the number of multiplications necessary for matrix
multiplication," SIAM]. Appl. Math., vol. 20, pp.
30-36, 1971.

[10] D. E. Knuth, TheArtofComputerProgramming,
Vol. 2: Seminumerical Algorithms, 2nd ed. Read­
ing, MA: Addison-Wesley, 1981.

[11 J L. Kronsjo, Algorithms: Their Complexity and Ef­
ficiency, 2nd ed. New York: John Wiley & Sons,
1987.

[12] D. W. Krumme and D. H. Ackley, "A practical

method for code generation based on exhaustive
search," in Proceedings of the ACM SIGPLAN'82
Symposium on Compiler Construction, 1982,
pp. 185-196.

[13] J. D. Laderman, "A non-commutative algorithm
for multiplying 3 X 3 matrices using 23 multi plica­
tions, Bull. Am. Math. Soc., vol. 82, pp. 126-
128, 1976.

[14] H. Massalin, ''Superoptimizer-A look at the small­
est program," ASPLOS II, pp. 122-126, 1987.

[15] W. Miller, "Computational complexity and nu­
merical stability," SIAM]. Comput .. vol. 4, pp.
97-107, 1975.

[16] V. Pan, "Strassen algorithm is not optimal. Trilin­
ear technique of aggregating, uniting and cancel­
ing for constructing fast algorithms for matrix mul­
tiplication, in Proceedings of the 19th Annual
Symposium on the Foundations of Computer Sci­
ence, Ann Arbor, MI, 1978, pp. 166-176.

ALGORITHM OPTIMIZATION 217

[17] V. Pan, "How can we speed up matrix multiplica­
tion?" SIAM Rev., vol. 26, pp. 393-415, 1984.

[18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling, Numerical Recipes in C: The Art
of Scientific Computing. Cambridge, MA: Cam­
bridge University Press, 1990.

[19] V. :'-l. Rao and V. Kumar, "Superlinear speedup
in ordered depth -first search," in Proceedings of
the 6th Distributed Memory Computing Confer­
ence (DMCC6), 1991.

[20] V. Strassen, "Gaussian elimination is not opti­
mal," Numer. ,Hath .. vol. 13, pp. 354-356,
1969.

[21 J S. Winograd, "On multiplication of 2 X 2 matri­
ces," Linear Alg. Appl., vol. 4, pp. 381-388,
1971.

[22] G. Yuval, "A simple proof of Strassen's
result," Info. Proc. Let., vol. 7, pp. 285-286,
1978.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

