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ABSTRACT 

A number of "tricks" are known that trade multiplications for additions. The term "tricks" 
reflects the way these methods seem not to proceed from any general theory, but instead 
jump into existence as recipes that work. The Strassen method for 2 x 2 matrix product 
with seven multiplications is a well-known example, as is the method for finding a 
complex number product in three multiplications. We have created a practical computer 
program for finding such tricks automatically, where massive parallelism makes the 
combinatorially explosive search tolerable for small problems. One result of this pro­
gram is a method for cross products of three-vectors that requires only five 
multiplications. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Humans have talents that are hard to program. 
Driving a car, recognizing continuous speech, and 
playing chess have proved far more challenging to 
computers than they have to people. To this class 
we can probably add algorithm optimization. How 
is it that a mathematician can look at a simple 
algorithm for complex product like 

u.,_aXc-bxd 

and discover that the number of multiplication op-
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erations can be reduced to three. One method, 
which seems far from obvious. is 

s 1 =a- b 

s2 =a+ b 

S;> = C- d 

m 1 = C X s 1 

m 2 = d X s~ 

me,= b X Sg 

The conventional method for 2 X 2 matrix prod­
ucts calls for eight multiplications and four addi­
tions. (In this article, we equate additions and sub­
tractions in assessing operation count because they 
are computationally similar). 

The trick behind the Strassen method for 2 X 

2 matrix products [20] is even more abtruse and 
baffling than the shortcut for complex products 
(Yuval presents a possible derivation, see [22]): 
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s1 a12- an 

Sz a11 + azz 

S:1 a11- a:n 

s .. a11 + a12 

s:; = a;,n + an 

s6 = b21 + bzz 

s., b11 + 6n 

ss bl1 + 612 

Sq b12- 6n 

rn1 s3 X s8 

m 4 = s4 x 622 

m:;=a11 Xs9 

m 6 a 22 X s 11l 

m7 = s,-, x 6 11 

This algorithm was later improved by Winograd 
[L p. 247], who reduced the number of additions 
from 18 to 15: 

S:; = b 12 - 6 11 m:; = s 1 X S:; 

s6 = b22 - s:; m 6 = s1 X b22 

s7 = b22 b12 m., = a:n X s8 

ss = s~>- b2t 

ell= m2 + m3 

c12 = lt + m;-, + m(, 

Where is the pattern in these methods? Al­
though the theory of trilinear forms [ 16, 17] has 
helped guide some shortcuts, it appears that these 
methods are the result of inexplicable intuitive 
leaps by some very bright people. 

In August 1991, the authors began an expeti-

rnent to see if computers, especially massively par­
allel computers, could discover these tricks, and 
perhaps find new ones. Beginning with brute force 
search methods that ran for days on very small 
algorithms, the program became gradually more 
sophisticated and able to handle interesting prob­
lems within the limits of our patience. Recently, 
an nCCBE 2 with 256 processors revealed that it 
is possible to compute the cross product of two 3-
dimensional vectors using only five multiplica­
tions, and this method is new to the best of our 
knowledge. The conventional method requires six 
multiplications and three subtractions: 

1 + c2T + c3k) 
(~17 + 0'2f + 0;1k) X (bl + b2l + b:);) 

= (a2 b3 - a3 b2 )7 + (o3 b 1 o 1 b:JJ 
+ (a1b2 - a2 b 1)k 

The algorithm with five multiplications, found by 
the computer program, is: 

St = al o2 ml o:l X bt tl = m3 m'l. 

s2 = b2 + b8 m2 = a 1 x b;3 

s'~ = s 1 - a;1 m;3 = s 1 x s2 

s4 = b1 s2 m4 b2 X ss 

The rest of the article describes our search pro­
gram. Shortcut ways of computing the given ex­
pressions are found by doing a search among all 
possible expressions that can be derived from the 
given set of variables and operations. Because this 
exhaustive enumeration has a combinatorially 
large number of expressions to explore, strategies 
are developed which reduce the search. Several 
"pruning" strategies are u;;ed to avoid the explora­
tion of unpromising subtrees. Parallel computers 
are employed to conduct the search in parallel, to 
achieve higher speed. 

2 PROBLEM SPECIFICATION 

The problem can be defined as follows: 
Given: A set of variables 



a budget of M multiplications and A addi­
tions 
and a set of goal expressions 

Find: A sequence of (expl op exp2) triples where 
exp 1 and exp2 are selected from either 
the set of variables or previously computed 
expressions, and op is chosen from there­
maining multiplications or additions that 
compute the goal expressions, and that 
minimize the total number of operations 
or the number of operations of a particu­
lar type. 

We are interested in minimizing the number of 
operations of a particular type because the relative 
cost of the operation types is different in general. 
For example, in Strassen's matrix product algo­
rithm, the variables involved could themselves be 
matrices, and matrix products are costlier than 
matrix sums. Any algorithm for finding the product 
of two k X k matrices in Jl,f multiplications can be 
used recursivelv to find the product of two n X n 
matrices (n > k) in O(n 1"gk H) time [1, 20]. For such 
a problem, we are obviously interested in minimiz­
ing the number of multiplications, even at the cost 
of increasing the total number of addition opera­
tions. 

For the class of problems addressed in this arti­
de, addition ( + ), subtraction (- ), and multi plica­
tion (X) operations are sufficient. Addition and 
multiplication are commutative, while subtraction 
is not. For the purposes of uniformity, we introduce 
a notation "reverse subtraction" ( ~ ), with the as­
sociated meaning that exp 1 ~ exp2 is the same 
as exp2 - exp1. With this, we can impose an 
ordering on exp1 and exp2 and explore only cases 
with exp 1 < exp2 without omission. Also, we use 
the term ''add'' to denote anv of addition/ subtrac­
tion/reverse subtraction. Throughout the article, 
we assume that operation cost is data independent. 
We also use the term ''product'' to refer to multipli­
cation of entities like complex numbers and matri­
ces and reserve the term "multiplication" for 
real numbers. 

3 MODELING AS A SEARCH PROBLEM 

Consider the set of all possible expressions that 
can be derived from the given set of variables and 
operations. These can be thought of as a graph 
with each node representing an expression (Fig. 
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a b 

(a+b)x(a+b) ax(axb) (axb)+b 

FIGURE 1 Partial search l!raph for a two-input 
problem. 

1). \V e use the tenn ''expression'' for a node as 
long as it results in no confusion, because each 
node can be specified by the expression it repre­
sents. The graph G(V, E) can be defined as follows: 

1. Each of the given set of variables forms a 
node in the graph. 

2. If two expressions e 1 , e~ E V, then (e1 op 
e2 ) E V for every choice of operation op. 

We can also think of edges from e 1 and e2 to 
the node (e1 op e2 ). Clearly, this graph represents 
all possible expressions that can be generated from 
the given variables and operation types. Note that 
each node represents a unique expression and the 
way of generating it starting from the variables can 
easilv be found bv following the edges into the node 
repr~senting this .expression. However, two or more 
expressions could be mathematically equivalent. 

The number of operations required to compute 
any expression in the graph can be found by recur­
sively following the edges coming into the expres­
sion. The number of operations for computing 
e 1 op e2 is one more than the operations required 
for computing e 1 and e2 , except that expressions 
common to the paths for e 1 and e:2. need be com­
puted only once. 

A set of nodes in this graph whose expressions 
are mathematically equivalent to the goal expres­
sions constitutes a way of computing the goal ex­
pressions with the associated number of opera­
tions. The problem then translates to finding the 
appropriate set of nodes such that the associated 
number of operations is the minimum over all such 
possible sets. 

Because there is no budget for the number of 
operations, the graph has an infinite number of 
nodes. The nodes of the graph can easily be or­
dered according to the number of operations re­
quired to compute the expressions at the nodes. 
The nodes at level 0 constitute the given set of 
variables. The nodes at level i consist of expres­
sions that can be computed using exactly i opera-
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a 

I 
b 

~ 
~b a-b ?Zbxh 

(a+b)x(a+b) ... ax(axb) ... (axh)+b ... 

FIGURE 2 Partial search tree for a two-input problem. 

tions. We can easily place a bound on the search 
because we are interested in minimizing the num­
ber of operations. If a known way of generating the 
goal expressions needs k operations, we need only 
look at nodes at levels less than k. 

Because the graph has a combinatorially explo­
sive number of nodes, it would be impractical to 

Search() 
For input1 = 1 to level- 1: 

For input2 = 1 to level- 1: 

4 THE BASIC SEARCH ALGORITHM 

The Search algorithm is simply a depth-first search 
on the tree described in the previous section. Note 
that we do not allow operations involving specific 
integers; only letters involving unknown quantities. 
The naive form of the basic algorithm is easily 
stated: 

Input: m variables, a budget consisting of M multi­
plications, and A adds, and n goal expressions to 
be determined. 
Output: A way of computing the goal expressions 
without exceeding the budgeted number of op­
erations or a statement that no such method 
exists. 
Method: Initialize the first m levels to the input 
variables. Initialize level to m + 1. 

For each operation type left in the budget: 
Apply operation to the expressions at input1 and input2. 
Remove the operation from the budget. 
level ~ level + 1. 
If the new expression is a goal expression not yet found, 

mark the goal expression as found. 
If all the goals are found, retum the solution. 
If level< m + M + A, Search(). 
Cnmark the goal expression found, if any. 
Restore operation to the budget. 

End For. 
End For. 

End For. 

generate and store the graph during the search 
process. Also, solutions are difficult to identify, 
because matching subgraphs to the goal expres­
sions (as algebraic equivalents) is itself a combina­
torial problem. To avoid these problems, it is con­
venient to do a depth-first search on a tree as 
shown in Figure 2. 

The tree is constructed as follows: The given set 
of variables forms the first m levels of the tree, one 
node at each level. The children of node i are all the 
expressions that can be formed using an operation 
and any two expressions on the path from the root 
to node i. The goal is to search for a path in the 
tree which contains expressions equivalent to goal 
expressions. Because each node accounts for one 
operation, paths containing more than the bud­
geted number of operations need not be explored. 

In principle, questions like, "Is there a method 
of finding the product of two complex numbers 
involving three real multiplications and five real 
adds?" can be answered by exhaustive search. 
This approach is naive in general because there 
are so many possible algorithms with these con­
straints. Because the two input expressions can be 
taken from any previously computed expression, 
the number of input combinations is (A + Af + 

m- 1)! 2 /(m - 1)! 2 . There are (A ~i\-1) ways to 

place the multiplications in the set of steps. Be­
cause the "add'' operations can be any of addi­
tion, subtraction, or reverse subtraction, there are 
3 1 possible sets of add operations for any speci­
fied placing of multiplications. The total number 
of elements in the search space by the naive 



method is 

(A + M + m - 1)! 2 (A + M) 3A 
(m- 1)! 2 M 

For the complex product with four inputs and a 
budget of three multiplications and five adds, this 
value is approximately 6.02 X 1017. 

A massively parallel collection of 8000 proces­
sors, each checking one million nodes per second, 
would take more than 2 years in the worst case 
that there is only one such algorithm and that it is 
the last one checked. The existence of multiple 
algorithms in the search space and termination of 
the search when the first is found might reduce 
this time by an order of magnitude, but it would 
still not be the sort of problem casually attempted 
with 1992 technology! 

To make the problem more tractable, we began 
the accumulation of "pruning rules" for eliminat­
ing subtrees in the search without any danger of 
missing a solution. These pruning rules are conser­
vative because they still allow the resulting tree to 
be called an exhaustive search. Later we consider 
pruning rules that seem to greatly assist in finding 
clever methods that trade multiplications for adds, 
but cannot be used to prove the nonexistence of 
a method with a given operation budget. 

5 CONSERVATIVE PRUNING RULES 

To motivate the need for pruning rules, look at 
what is probably the simplest trick in all of elemen­
tary algebra: a 2 - b 2 =(a+ b)(a- b). The factor­
ing reduces the number of multiplications from two 
to one, at the cost of increasing the number of adds 
from one to two. If we set up a search tree using 
Algorithm A, the first step could be any of 

a~a a-a a+a aXa 

a~b a-b a+b aXb 

b~a b-a b+a bxa 

b~b b-b b+b bxb 

Because addition and multiplication are com­
mutative, and we include both subtraction and 
reverse subtraction, we need not include both in­
pull op input2 and input2 op input1. Therefore, 
requiring the first input to be from the level on or 
above that of the second input is a conservative 
pruning rule. This pruning rule is easily imple- ft 
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a (0) 

I 
b (!) 

L2) 
/ 

a-b (3:0--1) 

a-l (4: 0--2) 

L 
FIGURE 3 A typical path showing expressions and 
how they are derived. 

mented by changing loop control variables instead 
of using explicit "if" statements. Some of the prun­
ing strategies are rather straightforward and obvi­
ous. Nevertheless, they are very important in view 
of the significant amount of reduction in the 
search. · 

Before we enumerate the pruning rules, it is nec­
essary to introduce some notions. The program 
always keeps track of the path from the root of the 
tree to the current node along with the way each 
expression on the path is derived. Expressions are 
represented as polynomials in the input variables. 
The terms of the polynomials are ordered to make 
it easy for addition and subtraction operations and 
to check mathematical equality of expressions. 
The expressions on the path are numbered starting 
from the root. The way an expression is derived is 
represented by the numbers denoting the parent 
expressions and the operation used. Figure 3 
makes the ideas clear. 

We can also define a lexicographic ordering on 
the expressions based on the way they are derived. 
Let/1 op 1 g 1 and/2 op2 g 2 denote two expressions 
e1 and e2 on a path. We say e1 precedes e2 in 
lexicographic order if g 1 < g 2 or if g 1 = g 2 and op 1 

precedes op2 in lexicographic order or if g 1 = g 2 , 

op 1 = op2 , and/1 < / 2 . The ordering on operations 
is defined to be"~"<"-"<"+"<" X". There 
are several possible choices for defining a lexico­
graphic ordering and there is nothing special about 
the specific order chosen. The ordering is useful in 
defining some pruning rules. A number of pruning 
strategies are discussed below. For each pruning 
rule that is used, we state the rule along with a 
brief justification wherever it is appropriate. 

1. Explore only paths of length less than or 
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a (0) 

I 
b (I) 

/ 
a-b (2: 0--1) 

I 
b (3: 0--2) 

FIGURE 4 A path showing two identical expressions. 

equal to the total number of operations 
plus the number of variables. 
Each expression on a path (except the vari­
ables) is formed by one operation. There­
fore, paths of length more than the bud­
geted number of operations plus the 
number of variables cannot provide the de­
sired solution. 

2. Restrict the number of operations of each 
particular ~ype. 
lf the budget of operations of a particular 
type is consumed on a path from the root 
to a node, all children of the node using 
the particular operation can be pruned. 

3. Subtracting an expression from itself is not 
useful, and can be excluded from the 
search tree. 
This assumes that 0 is not a goal ex­
pression. 

4. If the expression at a node is the same as 
the expression at one of its parent nodes, 
delete the node and the subtree under it. 
This is obvious because no shortcut will 
have the same expression computed twice. 
In Figure 4, the node labeled b(3 : 0 - 2) 
is deleted because it represents the same 
expression as the node labeled b ( 1). 

5. Eliminate expressions with a leading nega­
tive term, except when one of the goal 
expressions contains a leading negative 
term. 
Recall that the terms of expressions are or­
dered and hence there is no ambiguity in 
deciding if an expression has a leading neg­
ative term. An expression is negative if it 
has a leading negative term and positive 
otherwise. For each path P(1

) containing a 
negative expression, we show the existence 
of another path p!'21 which does not contain 
such expressions and is a solution if p(ll is 
a solution. p!'2) satisfies the property that 
every expression in it is the same as the 

corresponding expression in p(ll or its neg­
ative. We construct p!'2 starting from the 
root, such that at each stage the con­
structed partial path satisfies the above 
property. To start, the first m levels consti­
tute the variables and hence satisfy the 
property. Let e~ 1 be the next expressi.on to 
be added to P(21 and e11

) be the correspond­
ing expression on pr1 I. Let e~31 I = e\1 1 op 
e&ll. We can show that for every choice of 
op and for every possible combination of 

'1' :1) '2' signs of e1 1 and e2 , e3 · can be constructed 
such that ek21 = -e~11 if e111 is negative and 
e~2 1 = e111 otherwise. For example, if e111 = 

e\11 + e&11 and e~1 ) and e&11 are negative, let 
e~21 = e\21- e&21. Because e~21 = ei11 and 
e!21 = -e(1) e(2) = -er1)- e(1) = -e(11 as de-

2 213 2 1 g,' 

sired. If all goal expressions are positive 
and P(11 contains a solution, then p!'21 must 
also contain a solution by the above con­
struction. Therefore, we can prune the sub­
tree under any expression that is negative. 

6. The level of the second input node should 
be the same as or greater than the level of 
the first input node. 
This rule was explained in the beginning 
of this section. 

7. Eliminate exploring paths with an identi­
cal set of expressions, by requiring expres­
sions on each path to be in increasing lexi­
cographic order starting from the root. 
For each path P!11 that does not contain 
expressions in increasing lexicographic or­
der, we can show the existence of another 
path p!21 containing the same expressions 
as p!ll, but in the proper order. Let e\11 and 
e&1

) be two expressions on P(1i that do not 
conform to the lexicographic order. With­
out loss of generality, let ei1) be the expres­
sion nearer to the root. Because e&11 pre­
cedes e\11 in lexicographic order, the 
expressions needed to compute e&1

) appear 
before e\11 on the path, and therefore e\11 
and e&1 I can be swapped. We can construct 
p!21 by systematically swapping every two 
expressions on p(ll that do not conform to 
the lexicographic order. Because P!11 and 
P!21 contain the same expressions, p('2) rep­
resents a solution if p!11 represents a solu­
tion. 
Using this rule, we can prune each node 
that precedes its parent in lexicographic 
order. In Figure 5, the two paths shown 
have identical expressions and hence the 



subtre.es under them are identical. The tree 
is pruned at node labeled a - b(3: 0 - 1) 
because it precedes its parent in lexico­
graphic order. This avoids computing the 
same subtree twice. 

8. Among all the children of a node with 
mathematically equivalent expressions, 
choose the one that is smallest in the lexi­
cographic ordering. 
This rule is also useful to avoid computing 
duplicate subtrees. The expression that is 
smallest in the lexicographic ordering is 
chosen because by rule 7, the subtree un­
der such a node contains the subtree under 
a node representing the same expression 
and having the same parent node. For ex­
ample, in Figure 6, the node labeled b -
c(5: 3 ~ 4) is pruned as it succeeds the 
node labeled b - c(5: 2 - 3) in lexico­
graphic order and has a common parent. 

9. Levels to explore should be at least as 
many as goal expressions to be found. 
A path representing a solution should con­
tain all the goal expressions. Paths with 
not enough room for all the goals need not 
be explored. 

10. In a shortcut, each expression is used at 
least once. 
Each expression is formed by at most two 
expressions on the current path. Also, the 
number of expressions on the path is 
bounded. This places a limit on the number 
of expressions that can be used in forming 
subsequent expressions on the path. If 
there is no possibility that all the expres­
sions (except the goal expressions) are used 
at least once, the tree can be pruned at this 
node. 

a (0) 

I 
b (!) 

~ 
0

, "-''"1 T'''""' 
(3 "''f§i li:. "-'' 

FIGURE 5 Search tree with two paths having identical 
set of expressions. 

FIGURE 6 
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a (0) 

I 
b (1) 

L2) 
/ 

a-b (3:0-1) 

I 
a-e (4: 0-2) 

A 
(5: 2-3) b-e b--e (5: 3-4) 

Search tree with two children of a node 
representing the same expression. 

Let l = length of the path constructed so 
far, g = number of goals yet to be found, 
and u = number of unused expressions on 
the path. As only paths of length at most 
m + M + A are explored, the constructed 
path can be extended to contain (m + M + 
A) - l more expressions and at most 2 X 

(m + M +A - l) different expressions could 
be used to construct these. There are u 
expressions on the path explored that are 
unused and (m + M + A - l - g) expres­
sions on any extended path that have to be 
used. Therefore, any extension of the path 
could be a shortcut and a solution only if 
u + (m + M +A - l- g) ::; 2 x (m + M + 
A - l) or if u ::; m + M + A - l + g: 
Otherwise, the subtree under the path con­
stnicted so far can be pruned. 

It should be noted that some of the pruning rules 
are more expensive than the others. This can be 
viewed as moving the tree traversal cost to the node 
expansion cost, and the trade off in cost should 
be considered. For example, rule 4 involves deter­
mining whether the expression is identical to one 
of its ancestors. Implementing this rule is fairly 
cheap and effective when the node is close to the 
root because there are few nodes to compare and 
large subtrees to prune. However, when it is close 
to the maximum level (as defined by rule 1 ), the 
cost of comparison increases dramatically but the 
payoff decreases significantly. Rule 8 involves 
comparing the expression to its siblings generated 
before, making it impractical to implement even 
for nodes fairly close to the root. In fact, the siblings 
are not available in a depth-first search as only 
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the path from the root to the current node is stored. 
In such a case, a restricted version of the rule might 
be more useful. For example, rule 8 implies that 
any expression in first degree of length two should 
be constructed using only the given variables and 
this can be checked with just two comparisons. 
Except for rules 4 and 8, the remaining rules can 
be implemented using a constant number of opera­
tions irrespective of the position in the tree of the 
node being tested. 

There are other pruning rules that guarantee 
that if a solution were to be found in one of the 
deleted subtrees, then an equally economical solu­
tion is guaranteed to be found in another subtree 
to be explored. These rules usually stem from the 
commutativity of the operation the goal expres­
sions represent or from symmetry considerations. 

As an example, consider the complex product, 
which is a commutative operation. 

(a+ ib)(c + id) = (c + id)(a + ib) 

Exchanging a with c and b with din any solution 
that computes the complex product also gives a 
solution for the same. Hence, in the search pro­
gram, if a path from the root to a node can be 
derived from another path by the above exchange, 
the subtree under that node need not be explored. 
In fact, we can easily derive the missed solutions 
from the solutions found. 

Such a pruning rule is very useful because it 
prunes the tree at the first level. For, if a path can 
be derived from another, the first node in the path 
can also be derived and the tree should have been 
pruned at the first node on the path itself. 

As another example of a similar rule, consider 
the 2 X 2 matrix product. Interchanging the rows 
of the first matrix and/ or the columns of the second 
matrix does not affect the goal expressions to be 
computed. This prunes three of four nodes at the 
first level of the tree. 

6 AGGRESSIVE PRUNING RULES 

As the size of the search tree is exponential both 
in the number of variables and the number of oper­
ations, we need as many pruning rules as possible 
to be able to tackle interesting problems in reason­
able time. Due to this, we added some pruning 
rules that seem to be intuitively appealing, without 
the guarantee that they eliminate only unpromising 
subtrees. These rules greatly assist in finding clever 

a 

b 

~ ··~~~ 
a+b axh ax(a-b) bxh bx(a-b) axh ax(a+b) bxh bx(a+b) a-b a+b 

axh bx(a+b) (a+b)x(a-b) 

FIGURE 7 Aggressively pruned Eearch tree for 
a2 - b2. 

solutions but cannot be used to prove the nonexist­
ence of any methods with a given operation budget: 

1. Eliminate expressions with degree higher 
than the highest degree among goal expres­
sions. 

2. If the goal expressions are all homogeneous, 
do not allow expressions with terms of differ­
ent degree. 

3. If the goal expressions do not contain terms 
of the form n X expression, where n is an 
integer, In I > 1, and expression is a product 
of input variables, then we can also exclude 
all operations that result in such terms. 

This set of pruning rules, along with the 
conservative pruning rules, reduces the 
number of possibilities for the a 2 

- 6 2 search 
space from 15,552 to a much more manage­
able 24 expressions. The savings are more 
dramatic for larger search trees, of course. 
The resulting search tree for the computa­
tion of a 2 - 6 2 is shown in Figure 7. 

A few more pruning rules were found use­
ful in dealing with goal expressions denoting 
the product of two mathematical entities like 
complex numbers, vectors, and matrices. 
None of the goal expressions for such a prod­
uct contains a term with two variables drawn 
from the same operand and none of the 
known shortcuts contains any intermediate 
expressions with such terms. 

We define the structure of a term to be 
the sequence of operand names from which 
the variables forming the term are drawn. 
For example, with respect to the complex 
product (a+ ib) X (c + id), the term be has 
the structure (exp1, exp2), where exp1 and 



exp2 refer to the first and the second op­
erand, respectively. The following pruning 
rules are based on the structures of expres­
sions. Due to these pruning rules, each ex­
pression is made of the terms of the same 
structure and the structure of any term can 
be taken as the structure of the entire ex­
pression. 

4. +, - operations are allowed only on oper­
ands of the same structure. 

5. X is allowed only on operands of different 
structures. 

For example, in the search tree for computing 
the complex product, (a - b) X (a + b) is not 
allowed whereas (a + b) X (c + d) is allowed. 

7 THE PARALLEL PROGRAM 

Besides the speed gained by using the pruning 
rules, the search may be done in parallel to achieve 
further speed. The parallel approach is simply that 
of master-slave load allocation. In the serial ver­
sion, a depth-first search of the tree is done until 
a path containing goal expressions is found. In the 
parallel program, several processors can be used 
with each processor exploring a subtree of the en­
tire tree. The master-slave approach is inherently 
suited to multiple instruction multiple data (MIMD) 
computers. The primary obstacle to single instruc­
tion multiple data (SIMD) computers is the large 
number of branching tests from the pruning rules 
resulting in disparate control flow [3]. 

For the MIMD approach, one processor is used 
as the master processor delegating work (subtrees) 
to the other processors. The master processor does 
a depth-first search of the entire tree. However, 
on reaching a specified number of levels, it dele­
gates the underlying subtree to an idle processor 
instead of exploring it. The master processor then 
backtracks and continues the search. Each of the 
slave processors performs a depth-first search on 
the subtrees assigned to it and reports the solution 
to the master, if found. To avoid waiting for work, 
each slave processor is given its next subtree while 
it is computing the current one. With this, all the 
slave processors are busy most of the time. On 256 
nodes, efficiencies of 99.8% are typical. 

A key parameter in the parallel program is the 
number of levels the master explores before dis­
tributing the subtrees. If this is too small, there 
might not be enough subtrees to allocate to all the 
processors. Also, there is greater danger of load 
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imbalance with fewer subtrees. lf this is too large, 
the master processor needs to do most of the work 
and the slaves remain idle. The choice depends 
on the size of the problem and the number of pro­
cessors used. An appropriate value can easily be 
found by experimentation. For problems like com­
plex product or matrix product on a system of 16 
to 1024 nodes, exploring three levels on the master 
processor seems to be a good choice. 

Notice that a superlinear speedup is possible, if 
we stop as soon as a solution is found. Because 
the tree is searched in parallel by many processors, 
there is a good possibility that some processor 
might get "lucky" and find the solution [19]. We 
have found that this is indeed the case, most of 
the time. 

8 EXAMPLES OF USE 

8.1 Integer Powers of a Number 

An example of an algorithm optimization dis­
cussed in Knuth [10] is that of raising a number 
to an integer power by repeated multiplications. 
By saving and reusing partial products, the number 
of multiplications to compute an is usually much 
less than the n - 1 multiplications that would be 
done by a simple loop. for example, a 1" can be 
computed with five multiplications using a 2 = a X 

a, a-1 = a 2 X a 2 , a 3 = a 4 X a, a 10 =a" X a", a 15 = 
ato X a". 

Even this simple problem illustrates that mini­
mizing operations results in tricks, i.e., methods 
that do not seem derivable by straightforward step­
wise thinking. A straightforward method might be 
to express the exponent as a binary number, and 
compute products corresponding to every "1" in 
that number. For example, a 1" = a1+'2+4+B, so a 2 = 

a X a, a 4 = a 2 X a 2 , a 8 = a 4 X a\ a 12 = a 8 X a\ 
a 14 = a 12 X a 2 , a 15 = a 14 X a. Because this method 
uses six multiplications, it is inferior to the ''clever'' 
method of more subtle derivation. 

A further complication is that divide operations 
can sometimes reduce the work to get to a power, 
depending on the relative cost of multiplications 
and divides (and on the cost of handling divisions 
by zero). For instance, a·31 can be computed by 
repeated squaring to get a 32

, and then dividing 
by a to get a 31 . The five multiplications and one 
division required will be faster than the seven oper­
ations needed using multiplications alone, if there 
is no cost for the a = 0 exception and division 
takes less time than two multiplications. 
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The optimization program of Section 4 easily 
generates optimal algorithms for the first powers 
of a number up to an exponent of 100. We simpli­
fied the program to consider only one initial input, 
a, and used the mathematical equivalence of the 
ring formed by multiplication and exponentiation 
to the ring formed by addition and multiplication. 
That is, the goal expression of 15a using only addi­
tion and subtraction is equivalent to a goal expres­
sion of a 1:; using only multiplication and division. 

To automate the discovery of minimal operation 
counts, the algorithm was surrounded by the fol­
lowing control structure, where m(n) is the number 
of operations to find an: 

n = 2. 
While n :s nmax 

mlesl = rlog2 n l 
While Search(mlesl) fails 

Increment mlesl. 
End While 
Record method with mtest operations. 
Increment n. 

End While 

Only conservative pruning rules involving adds 
were applied. The aggressive pruning rules are ei­
ther irrelevant or inappropriate, since we wish goal 
expressions of the form na, where n is an integer. 
For extra speed, the Search program was sim­
plified. 
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FIGURE 8 Power tree with multiplications. 
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FIGURE 9 Power tree with divisions weighed the same 
as multiplications. 

An nCuBE 2 with 64 processors took 1.5 
minutes to find all of the optimal methods tabled 
in Knuth, assuming no divisions. Divisions were 
then introduced with various weightings, because 
division takes longer than multiplication on most 
1992 computers, by amounts that vary from com­
puterto computer. The optimal sequence of opera­
tions with no divisions is shown in Figure 8 and 
with a division weighted the same as a multiplica­
tion is shown in Figure 9. The sequence of optimal 
operations when a division is weighted as two or 
more multiplications is the same as that with no 
divisions, for integer powers less than or equal to 
100. 

Note that division is much less help than one 
might think. Given the high cost of division on 
many machines, plus the cost of exception 
handling when a = 0, the use of multiplications 
alone appears very attractive for low integer pow­
ers. For integer powers higher than 200 or so, other 
methods such as those given in [ 6 J become ad van­
tageous. 

8.2 Complex Product 

We have already mentioned the trick for computing 
the product of complex numbers (a + ib) and (c + 
id) with only three multiplications. The search pro­
gram found 12 different ways of doing this, 2 of 
which are given below: 



m1 = c X (a - b) m1 = (a - b) X (c + d) 

m 2 = d X (a + b) m 2 = b X c 

m3 = b X (c- d) m3 =a X d 

u = m 1 + m 3 u = m 1 + m 2 - m 3 

v = m 2 + m 3 v = m 2 + m 3 

An exhaustive search with a budget of three 
multiplications and five adds took 21 h and 10 
min on a 256-processor nCUBE 2. This repre­
sents approximately 1014 integer operations. Re­
duction of the budget to four adds revealed no 
way to compute the goal expressions ac - bd 
and ad + be, providing a computational "proof" 
of the nonexistence of a method with fewer 
adds. 

Aggressive pruning rules can be used to reduce 
the search time: Expressions involving ab or cd 
are disallowed, as are expressions involving sums 
±a ± c, ±a ± d, ±b ± c, or ±b ± d (aggressive 
pruning rule 4). Nonhomogeneous expressions, 
expressions with degree higher than 2 (highest de­
gree among goal expressions), and expressions 
having terms with coefficients other than ± 1 (see 
Section 6) are disallowed. Although we have no 
proof that optimal methods cannot use such steps, 
we empirically observed the efficacy of these prun­
ing rules and make use of them in related problems 
such as cross product and matrix-matrix product. 
For the complex product, a search with the aggres­
sive pruning rules took only 0.18 son a 64-proces­
sor nCUBE, yet found all 12 methods. Aggressive 
pruning rules destroy proof of optimality, but 
speed the discovery of new methods. Without ag­
gressive pruning rules, the method that forms the 
alternative title of this article would probably not 
have been tractable with current high-speed com­
puters. 

8.3 Cross Product 

Among many applications, computer graphics 
uses the cross product of three-vectors extensively 
to determine intersections of rays and polygons o~ 
to create plane normals. The conventional algo­
rithm is as follows: 

Given three vectors 
-> -t -o> 

b1 i + b2J + b3k, find 

a 2 X b3 - a 3 X b2 , 

a 3 X b1 - a 1 X b3 , 

and 
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as the three goal expressions. 
While working on a synthetic scene generation 

program, we wondered if there might be a way to 
compute a cross product in less than six multipli­
cations, at the cost of extra adds. The Sandia 
nCCBE 2, with 1024 total processors, was invalu­
able for this search; we used 256 of its processors 
for a period of 5 h and 40 min and discovered the 
method with the first set of stems distributed by 
the master. A search that went through all the 
stems would have taken a month, even with aggres­
sive pruning rules. The method is shown at the 
end of Section 1. We believe this is the first publica­
tion of the method. 

9 FUTURE APPLICATIONS 

9.1 Strassen Products 

The Strassen algorithm for 2 X 2 matrix products 
[20] was cited in the Introduction. Applied recur­
sively to matrices of size N, it reduces the complex­
ity of matrix-matrix products from order N:3 to or­
der N 1

og2 
7 . The lack of an obvious pattern in the 

algorithm was the original motive for the work de­
scribed in this article. We intended to generate the 
Strassen method by exhaustive search, and then 
attempt to find simlar tricks for 3 X 3 and 4 X 4 
matrix products. For 3 X 3 matrix products, a 
method using only 23 multiplications has been 
found [13], presumably by hand. With optimal 
methods for 2 X 2, 3 X 3, and 4 X 4, we hoped 
to find a pattern that would reduce the exponent 
for matrix products without requiring very large 
values of N, the matrix size. 

The budget for a Strassen product, using the 
Winograd improvement, is 22 operations (7 multi­
plications and 15 additions). Because the search 
grows exponentially in the number of operations 
in the budget, the search is significantly harder 
than those described m previous sections 
(Table 1). 

Based on the number of "stems" generated by 
the parallel algorithm and the rate at which prog­
ress is made through that set of stems, we estimate 
that exhaustive search for the Strassen matrix 
product on the 1024-processor nGlJBE 2, even 
with aggressive pruning rules, would take many 
centuries. We continue to seek exploitable sym­
metries and search orderings that will result in dis­
covery of methods, if not search of the entire space. 
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Table 1. Minimum Operation Budgets Required 
for Various Tasks 

Task to Optimize Operation Budget 

a2- 62 

Conventional complex product 
Three-multiply complex product 
Conventional cross product 
Conventional matrix product 
Five-multiply cross product 
Strassen matrix product 

3 
6 
8 
9 

12 
13 
22 

9.2 Buneman-Type Methods Using Extra 
Identities 

The conventional method for rotating a two-vector 
(x, y) by 0 radians is to multiply it by a matrix of 
the form 

[ 
cos 0 

- sin 0 
sin 0] 
cos 0 

to obtain (x', y'). This requires four multiplications 
and two additions. This operation is critical, e.g., 
in the fast fourier transform (FFT) algorithm. If 
the rotation is to be done for many two-vectors, as 
it is for the FFT, one regards the cos 0 and sin 0 
values as constants instead of as input variables. 
Therefore, it is legitimate to consider precomputing 
alternative constants based on 0, but not consider 
the effort to do so in the operation count. Buneman 
[ 5] discovered a trigonometric identity that accom­
plishes a two-vector rotation with three multiplica­
tions and three additions, assuming zero cost for 
computing tan(0/2): 

t = y + x X tan(0/2) 

x' = x - t X sin 0 

y' = x X tan(0/2) + t 

A similar approach exists for reducing the num­
her of multiplications for computing a fourth-de­
gree polynomial [18] from 4 to 3, where precompu­
tation of constants based on the polynomial 
coefficients can be amortized over many evalua­
tions of the polynomial for various arguments. 

The Search program described in this article 
does not currently have any way of discovering 
this type of trick. We do not yet see a brute force 
approach likely to generate such tricks automati­
cally. 

9.3 Massively Parallel Compiler 
Optimization 

Current commercially available MPP systems ei­
ther compile source programs on a single node of 
the ensemble or use a front-end computer that 
has a traditional serial architecture. Small-scale 
parallelism for the phases of compilation can be 
accomplished via pipelining, but that approach 
does not scale to thousands of processors. 

The Search method described here suggests a 
strategy for a way of using large numbers of proces­
sors during compilation. A small number of pro­
cessors can do conventional compilation using 
pipeline parallelism, but basic blocks that look 
amenable to optimization can be farmed out to the 
rest of the ensemble and run through the Search 
process. When conventional compilation is com­
pleted, the processors that were given sections to 
optimize can be polled for the best optimization 
found so far, and the optimizations can be col­
lected as a final pass. The user might supply a 
time constraint on compilation, so the search for 
reduced operation counts can be limited by the 
user's patience instead of the completion of con­
ventional compilation. Here, "operation" includes 
any instruction in the target computer's repertoire, 
not just arithmetic operations. Also, overlap of in­
structions and the number of clock cycles for each 
instruction would have to be used in the cost metric 
instead of the simplistic operation counts used in 
Search. It might make more sense to budget clock 
cycles than operations or instructions for MPP 
compiler optimization. This is fertile ground for 
future research. 

As a test of the massively parallel compiler opti­
mization concept, we did the following experiment: 
Given the C expressions 

f = a * a * a + a * a * b + a * b * b + b * b * b and 

g=a*a*a+3*a*a*b+2*a*b*b 
+ b * b * b, 

we used the Search program to optimize the calcu­
lation off and g. Then, we tried various C compilers 
with optimizations enabled. 

Unoptimized compilation gave a method to 
compute fusing eight multiplies and three adds. 
The Search program found that f could be 
computed with three multiplies and two adds in 
0.18 s on a 16-processor nCUBE. The Shortcut 
found by the Search program is (a + b) 
(a2 + 62 ). The SUN (Sun Release 4.1) and DEC 
(Ultrix) compilers were only able to reduce the op-



eration count to seven multiplies and three adds. 
The Gnu compiler managed six multiplies and 
three adds. 

A naive computation of g requires 10 multipli­
cations and 3 adds, as found by unoptimized com­
pilation. The SUN and DEC compilers could not 
find any improvements. The Gnu compiler found 
a method with nine multiplies and four adds. The 
optimum method ((a+ b)3 - ab2 ) taking 4 multi­
plications and 2 adds is found by the Search pro­
gram in 0.36 s on a 64-processor nCUBE. 

To test our approach on expressions that appear 
in real production codes, we have chosen the fol­
lowing subroutine by Sisira W eeratunga of NASA 
Ames Research Center from the application 
benchmarks given in the NAS parallel bench­
marks [4]. 

subroutine setiv 
do k = 2, nz-1 

Ozeta = (dfloat(k-1))/(nz-1) 
do j = 2 nv-1 

eta=' (dfloat(j-1))/(ny-1) 
do i = 2, nx-1 

xi= (dfloat(i-1))/(nx-1) 
do m = 1, 5 
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It appears that even simple algebraic expres­
sions can be improved by a factor of 2 over current 
compiler technology using the Search approach. 

10 LIMITATIONS OF USE 

1 0.1 Numerical Stability 

The Search program can be used to derive meth­
ods for computing expressions with minimum 
number of operations but such a method is not 
guaranteed to be numerically stable. Thus, analy­
sis of the numerical stability of the derived algo­
rithm is necessary before advocating its use. 

Numerical stability of algorithms for real and 
complex matrix multiplication is discussed in [7, 
8, 15]. Miller [15] analyzes the tradeoff between 

u(m,i,j,k) = pxi + peta + pzeta - pxi * peta - peta * pzeta 
- pzeta * pxi + pxi * peta * pzeta 

end do 
end do 

end do 
end do 
return 
end 

We tried to optimize the core of the computation 
given by the statement inside the loops, which, 
after a convenient renaming of the variables, is 

a + b + c - ab - be - ca + abc. 

Table 2 shows the number of operations used by 
various compilers in computing this expression. 
An optimal way of computing this expression, as 
found by the Search program in 24.6 son 32 pro­
cessors, is 

c(ab- a- b)- ((ab- a- b)- c). 

computational complexity and numerical stability. 
He defines the notion of Strong stability and Brent 
stability, which is a much weaker requirement with 
Strong stability implying Brent stability. For a thor­
ough discussion of these notions, see [ 15]. It is 
shown that any algorithm for matrix multiplication 

Table 2. Number of Operations Used by Various 
Compilers and the Search Program in Computing 
a + b + c - ab - be - ea + abc 

Compiler 

SUN (V 4.1) 
Ultrix (V 4.2a) 
Gnu (V 1.36) 

Search 

Unoptimized 

5 muls, 6 adds 
4 muls, 6 adds 
5 muls, 6 adds 

Optimized 

4 muls, 6 adds 
4 muls, 6 adds 
4 muls, 6 adds 

2 muls, 4 adds 
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that possesses Strong stability should have at least 
n 3 multiplications and that the Strassen's method 
possesses Brent stability. 

Applying a similar analysis to the new Croos 
Product method discovered by the Search pro­
gram, we found that six multiplications are neces­
sary for Strong stability and that the method dis­
covered by the Search program possesses Brent 
stability. A similar result is true for the complex 
multiplication methods. 

1 0.2 Use of Constants 

Shortcuts for several expressions involve clever use 
of numerical constants. For example, the expres­
sion abc - ab - ac - be + a + b + c is equivalent 
to (a - 1)(b - 1)(c- 1) + 1, requiring only two 
multiplications and four adds. a 4

- 8a3 + 24a2
-

32a + 16 can be computed as (a - 2)4 using 
only two multiplications and one add. Such clever 
methods involving the use of constants cannot be 
found by the Search program. 

11 SUMMARY AND CONCLUSIONS 

With the speed of computers continuing to increase 
about 60% per year, it is prudent to examine some 
of the problems and solution methods traditionally 
thought of as "intractable." Contrary to the phi­
losophy taught in most computer science pro­
grams, even programs of combinatorially explosive 
complexity can yield interesting results for small 
problems. The computer-aided discovery of a 
cross product with five multiplications is an exam­
ple of the kind of problem we can now pose to the 
fastest machines available. 

In 1992, computers were capable of about 1011 

integer operations per second, so a run within the 
limits of human patience might involve 1 0 17 opera­
tions. At the current rate of performance improve­
ment, computers will eventually be fast enough to 
"discover" the Strassen product trick in a 2 week 
run. As we find better rules for pruning the search 
tree, we might well move this date up by many 
years, and be able to attempt larger problems with 
the MPP computers of the future. 
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