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ABSTRACT 

Flows in estuarial and coastal regions may be described by the shallow-water equa­
tions. The processes of pollution transport, sediment transport, and plume dispersion 
are driven by the underlying hydrodynamics. Accurate resolution of these processes 
requires a three-dimensional formulation with turbulence modeling, which is very de­
manding computationally. A numerical scheme has been developed which is both stable 
and accurate-we show that this scheme is also well suited to parallel processing, 
making the solution of massive complex problems a practical computing possibility. We 
describe the implementation of the numerical scheme on a Kendall Square Research 
KSR-1 multiprocessor, and present experimental results. which demonstrate that a prob­
lem requiring 600,000 mesh points and 6,000 time steps can be solved in under 8 hours 
using 32 processors. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Environmental impact studie,; relating tu estuarial 
or coastal region,; invariably involve computa­
tiona! flow simulation with additional simulation 
for the transport of pollution, sediment. or ther­
mal plumes. The equations to be solved are 
known as the shallow-water equations which are 
based on the 1\'avier-Stokes and continuity equa­
ti~ns. with the assumption that the pressure 
everywhere in the flow is simply hydrostatic. The 
fo~mulation may be simplified further by making 
the "depth-averaged" assumption where velocity 
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is assumed uniform across the water depth. Com­
putational schemes for such two-dimensional 
(depth-averaged) flows have been in existence 
since the pioneering work of Leendertse [ 6] and 
have proved useful in predicting flows in "well­
mixed'' conditions. 

However. the turbulent boundan· laver velocitv . . . 
profile will not be typical of a steady unidirectional 
current when flow curvature effects and eddv 
shedding are significant. This has obvious impli­
cations for predicting the transport of pollution­
usually released near the sea bed-where the ver­
tical distribution of velocity and turbulence 
(mixing) processes has an important influence. 
For sediment transport the near bed velocity and 
turbulence characteristics are also of vital impor­
tance. When buoyant plumes are released from 
power station outfalls, vertical motion is clearly 
significant to plume dispersion. Overall it can be 
seen that computation of the shallow-water equa-
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tions m three-dimensional form is highly desir­
able. 

Casulli and Cheng [ 1 J developed a semi-Im­
plicit, Lagrangian finite-difference scheme as an 
alternative to a Eulerian, alternating direction-im­
plicit scheme [ 10 J avoiding the need for upwind 
differencing to give stability and the time step limi­
tation of the Courant condition due to convective 
terms. Casulli and Cheng applied their scheme to 
tidal flows in the San Francisco Bay and the Yen­
ice Lagoon reporting good results. 

Stansby and Lloyd [8] refined this scheme and 
applied it to the less spectacular, but probably 
more hydrodynamically demanding, case of flow 
around a circular island with sloping sides gener­
ating vortex shedding (see Fig. 1 ). The choice of 
this simple geometry was motivated by the desire 
to validate the model before applying it to real­
world estuaries (see Section 8). Hence, the output 
of the program was compared to detailed mea­
surements obtained from a laboratory tank, re­
sulting in good agreement [7]. 

Typical simulations require the order of 1 Qh 

mesh points and several thousand time steps. On 
scalar computers this would be compumtionally 
prohibitive. Even on a modest vector processor. 
the Cray EL-98, the code required excessive com­
puter time (days) for large problems. In this article 
we investigate the use of parallel processing for 
producing such simulations within practical time 
scales. 

Section 2 introduces briefly the underlying 
physical model and the numerical scheme. The 
resulting algorithm and its memory requirements 
are explained in detail in Section 3. Section -+ 
gives an overview of the target parallel platform. 
the Kendall Square Research KSR-1, focusing on 

those aspects of the architecture and pro;,rram­
ming model relevant to this study. Before embark­
ing on the parallelization process, sneral optimi­
zations were performed on the original, sequential 
code; these are described in Section 5. Section 6 
details the parallelization stratel-'}' and the prob­
lems encountered in its stepwise application to the 
optimized code. Section 7 presents run-time 
results obtained on the KSR-1. which confirm 'the 
suitability of the numerical scheme to parallt>l pro­
cessing. Furthermore. the sources of overhead in 
the parallel version are identified and analyzed. 
\Ve conclude with Section 8 in which we outline 
future enhancements in the physical and numeri­
cal model and their consequenct>s for paralleliza­
tion. 

2 THE THREE-DIMENSIONAL 
SHALLOW-WATER METHOD 

The three-dimensional shallow-water equations 
are as follows 

au au au au - + U - + L'- + W- = 
at ax a.Y az 

_ aT} + f-LH (a2
u + a2u) 

g ax p ax2 ay2 + i_ (f-L' au ) 
az p az 

av au au av -+ u-+ v-+ w-= at ax ay az 
aT} f-LH ( a2v a2v) a (/-LI au ) 

-gay+ p ax2 + ay2 + az paz 

0 = aT} + _!!_ f~ l1 dz + _!!_ f~ v dz 
at ax =u ay =u 

where zo is the bed elevation above a reference 
level and 7J is the water surface elevation; x. y. z 
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FIGURE 1 Surface flow after 2.000 time steps in the simulation. 
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are Cartesian coordinates: u. v. u· are the corre­
sponding velocity components: g is acceleration 
due to gravity; p is water density (assumed con­
stant): and JLr and Jl-11 are vertical and horizontal 
mixing coefficients. The boundary condition,; at 
the bed are 

where 7~ and r.;' are the x andy components of the 
shear stress. respectively. At the surface no wind is 
assumed. so that 

au al' 
P.t - = P.t - = (). a:: a:: 

In the laboratory experiment de,.;cribed in the 
previous section. thf' water is initiall~· ,.;tatiouary 
and the water level horizontal. The inlet flow ratf' 
is then increased with time a,; a quarter sinusoid 
and maintained after a specific time step at a con­
stant value to represent a steady current. At the 
outlet boundary. the velocities u and L' are given 
zero normal gradient,; and the water depth is 
fixed. At the two side walls. v and the normal !!ra­
dients of u and 1J are set to zero. 

The original formulation of the numerical 
scheme proposed by Casulli and Chen!! [ 1 J us<>cl a 
uniform mesh in the venical direction. con,.;tant 
venical and horizontal mixing coefficienti'. and 
the Chezy coefficients to give bed boundary con­
ditions. In order to give an accurate representation 
of bed and water-surface conditions. Stansb\· and 
Lloyd [8] introduced the a--coordinate ,;y,.;tem a- = 

(z - 1J )I (17 - zo) for the vertical direction. defining 
the bed surface by its roughnes:-; height. This en­
ables a turbulence model for the vertical direction 
to be incorporated: Stansby and Lloyd proposed a 
simple two-layer mixing length model for rou!!h­
turbulent flow. FurthermorP. the,· introduced for 
horizontal mixing a mixing coefficient propor­
tional to depth and friction velocity. 

.The finite-difference mesh used in the numeri­
cal computation is a staggered rectangular system 
"\\ri~h a "wet/dry"' boundary crossing the horizon­
tal mesh obliquely (giving wet and dry cells). This 
is not a severe limitation since velocitie» close to 
the shoreline with gently sloping beds tend to be 
quite small. The a--coordinate s\·stem entails a 
fixed number of vertical cells at ~ach horizontal 
mesh point. \re will refer to the number of mesh 
points in each spatial direction by n.ro n, .. and n~, 
and to the corresponding coordinates by xi(i = 

L ... , nr).)j (j = 1. ... , n,.). and ::k (k = 
1 ..... n~). 

An important feature of the numerical scheme 
is the Lagrangian treatment of the convective 
terms. This avoids the need in conventional 
Eulerian schemes (e.g., TRISCLA [10]) to gener­
ate stability through upwind differencing with 
some inevitable numerical viscosity. The terms in­
volving surface elevation gradient and vertical 
nuxmg are handled implicitly for stability, 
whereas the terms involving horizontal mixing are 
handled explicitly. The equations are solved as 
fully coupled in both horizontal directions pro­
ducing at each time step a pentadigonal system of 
equations for the new values of 1J at each grid 
point in the horizontal plane. Schemes which in­
min· uncoupling (alternating direction schemes) 
require smaller time steps to be used for equiva­
lent accuracv. 

3 THE APPLICATION PROGRAM: SW3D 

In this section we describe the structure of a For­
tran 77 program. S\\'3D, which implements the 
three-dimensional shallow-water method de­
scribed in Section 2. The version of S"'3D which 
forms the starting point for the parallelization pro­
cess had previously been run on a Cray EL-98 
svstem.-

The main computational effort of s"-3D is con­
tained within a subroutine called LXY, which is 
sketched in the pseudo code shown in Figure 2. 
\\'e distinguish between actual array elements 
(written in truetype font) and mathematical ob­
jects and operations (using standard notation). 
For instance, A '-i denotes a n. X n. tridiagonal 
matrix which depends on the index pair ( i, j ) , 
while u ( i, j , k) represents the ( i, j , k) -th 
element of the array storing the values of u. The 
vectors b1 and b2 in BC_CC and BY_CY are fixed, 
and ny in SETuP implies a numbering scheme of 
the nx X n_,. pentadiagonal matrix P. 

Most of the work in LXY is devoted to setting up 
the matrix P and right-hand side r of the linear 
system Pe = r which is solved for the new surface 
elevation. For each time step the sequence of op­
erations is as follows: first, code segments FU and 
FY evaluate. for every grid point, the finite-differ­
ence operator arising from the explicit terms for 
convection and horizontal mixing, and store the 
values into arrays fu and fv, respectively. 1\iext, 
segments BU_CC and BY_CV each solve (for every 
( i, j) ) two tridiagonal linear systems of dimen-
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dot= 1, maxt 
FU 

do i = 1, n., 
do j = 1, ny 

do k = 1, n, 
compute Lagrangian convection and horizontal diffusion terms in 1l 

store result in fu(i,j ,k) 
FV 

do i = 1, n., 
do j = 1, ny 

do k = 1, n, 
compute Lagrangian convection and horizontal diffusion terms in v 
store result in fv ( i, j, k) 

BU_CU 
do i = 1, n., 

do j = 1, ny 

setup n. x n, tridiagonal matrix A (>,J) using values stored in u 

bu(i,j) = b[ (A(i.j)rl b1 

setup n.-dimensional vector b(i,j) using values stored in fu 

cu(i,j) = b[ (A(i,j)r 1 
b(i,i) 

BV_CV 
do i = 1, n., 

do j = 1, ny 
setup n. x n. tridiagonal matrix A (i,j) using values stored in v 

bv(i,j) = bf (A(i,j)rl b2 

setup n.-dimensional vector b(i,j) using values stored in fv 

cv(i,j) = bf (A(i,j)r 1 
b(i,il 

SETUP 
do i = 1, n., 

do j = 1, ny 
compute 5 non-zero entries of row n;1 of P using bu(i,j), bu(i+l,j), bv(i,j), bv(i,j+l) 
compute element n;i of r using cu(i,j), cu(i+l,j), cv(i,j), cv(i,j+l) 

PENTA 
solve pentadiagonal system Pe = r; store results in array e 

COPY 
copy u into uold, v into vold 

UPDATE-D 
do i = 1, n., 

do j = 1, ny 

setup n. x n. tridiagonal matrix A(i,j) using values stored in uold 

setup n,-dimensional vector b(i,j) using values stored in fu and e 

u(i,j ,k) = k-th element of (A(i,j)r 1 
b(i,j) 

UPDATE-V 
do i = 1, n., 

do j = 1, ny 

setup n, x n, tridiagonal matrix A (i,j) using values stored in vold 

setup n.-dimensional vector b(i,j) using values stored in fv and e 

u(i,j,k) = k-th element of (A(i,j))-
1 

b(i,j) 

------------------------------UPDATE-W------------------------------
do i = 1, n., 

do j = 1, ny 

do k = 1, n, 
compute v(i, j ,k) using values stored in u and v 

FIGURE 2 S\l/3D' s main computational ~:yde--suLroutine L.\ Y. 
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sion n=. which n·,.;tdt from the implicit n'rtical 
mixinf! tern1. The dot product of dw ,.;olution of 
the,.;e sy,.;tt>m,.; with a gin•n vector i,.; stort>d in ar­
rays bu. cu and bv. cv. re,.;Jwctively. Segment 
SETCP u,.;p,.; this information to compute the Pn­
tries of P and r. PEi\TA ,.;oln',.; the pentadiagonal 
system. leavinf! the solution in array e. 

Having copit·d the current nthw,.; of u and v 
into uold and vold !COPY). tlw new u and r 
velocities are computed in Sef!mt·nts l"PD:\TE-C 
and CPDATE-\". n•,.;pectively. HPrt' a further tri­
diagonal systPm is soh-Pd for t>ach index pair 
( i, j) , giving the nt'w velocitie,.; for all values of 
k. The final segment of LX Y. CPO.\ TE- \\-. com­
pute,; the new ll' velocitie,.;. 

It is important to clarify the treatment of d1·y 
point,;. For those indices ( i, j). where (.r,. _lj. =1 i 

is a/Jove the water. t!w loops Fl. F\". Bl-_CL 
BC_C\". LPD.-\TE-L l"PD.-\TE-Y. and LP­
DATE- \\-do nothing except set the corresponding 
arrav f'lentents to zero. 

Figure 2 contains only thP most computa­
tionally significant ,;ef!nH'nh of LXY. F urtlwr code 
such a,; the calculation of the new water depth 
using tlw nf'w surfact' f'lP\·atinn or the flooding of 
dry points are not included. Thi,;; code will. how­
ever. not be neglPcted when analyzing the run­
time. 

To determine the memory requirements Wt' in­
troduce the notation ;_rz 1 . . . .. f/ 111 \ to den ott' Ill­

dimensional array,; with n 1 X ... X n 111 lloatin;!­
point elements. Hence. the array,; bu and bv are 
of type (rz.r. n, ). while P i,; stored in an array of 
type (."}n .... n,. ). Since the tridiagonal mat rice,; are 
set up on demand. nne arra~- of type (n=. ::3 ,' suf­
fices, otherwi,;e it would be nece,;,.;ary to store 
2n_,.n, of these. Clearly the memory needed i:; 
dominated hv tlH· :'if'ven three-dimensional arrays . . 
fu. fv. u. v. w. uold. and vold of type (n_, .. n, .. 
nJ. The original code use,;; six further arrays of the 
same type (,;;ep Section?); leading. for 6-t-bit float­
ing-point numbers. to a nwmory requirement of at 
least 13 X nx X n,. X 8 bytes. For n,. = :329. n,. = 
10;"), and n= = 22. the values used in thi,;; study. 
this represents a memory requirement of nearly 80 
Mbvte. 

4 THE KENDALL SQUARE 
RESEARCH KSR-1 

The KSR-1 is a virtual shared memory multipro­
cessor. The machine consists of processor-mem­
ory pairs (cells) arranged in a hierarchy of search 

groups. each group containinf! 32 cells. The vir­
tual memory is implemented on the physically dis­
tributed memorie,;; by a combination of operating 
system software and hardware support through 
the KSR ALLCACHE ,;earch enbrine. The OS 
manages page migration and fault handling in 
units of 16 Khyte. The ALLCACHE engine man­
ages movement of 128 byte subpages within the 
system . .\lovement of sub pages is therefore cheap 
compared to the movement of pages. The imple­
mentation described in thi,; work is for the 64 cell. 
doublP ,;earch group. KSR-1 installed at .\Ian­
chester Cniversitv. * 

Each cell i,; a 20 .\1Hz. super-scalar. RISC chip 
with a peak 6-t-bit floatinf!-point performance of 
40 .\Hlop/ s (achieved with a multiply-add in­
stmction) and 32 .\Ihyte of memory. Two instmc­
tions may he issued per cycle: the in,;truction pair 
consists of one load/ store or i/o instruction and 
one llnatin_g:-point or integer instmction. The cdls 
in a single group are connected by a unidirectional 
slotted ring network with a bandwidth of 1 
Gbyte/ s. The two search _groups of the .\lanches­
ter machine are connected b,- a further unidirec­
tional slotted ring network with a bandwidth nf -t 
Gbyte/ s, where up to :3-t groups can he attached. 

The ALLCACHE memorv svstem is a direc­
tory-based system which support,; full cache co­
herency in hardware. Data movement is n~qm~st 
driven:_a memory read operation which cannot be 
sati,;fied by a cell" s own memory _generates a re­
quest which traverses the hierarchy of rings and 
returns a copy of the data item to the requesting 
celL A memory write request which cannot be sat­
isfied bv a celrs own memory results in that cell . . 
obtaining exclusive ownership of the data item­
the data item moves to the requesting celL In the 
process. a!-i the request traverses the memory sys­
tem. all other copie,; of the data item are invali­
dated. thu,; maintaining cache coherence through 
an invalidate-on -write policy. 

The machine has a Cnix-compatible dis­
tributed operating system-the Mach-based 
OSF I 1-allowing multiuser operation. The pro­
gramming model supported is primarily that of 
program directives placed in the user code (For­
tran 77 and to some extent, C. [.5 J ). The directives 
may be placed manually or automatically (by a 
pre-processor, KAP). A run-time support system, 
PRESTO, and underlying Posix-hased threads 
model support the user directives. The run-time 

*Running KSR OS version R 1.1.-i.L Octo~wr 20. 199.3 
and compiler ven;ion 1.0. May 11. 199.3. 
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system and threads are also directly accessible 
through a standard library interface. 

4.1 KSR-1 Memory Latencies 

The KSR-1 processor has a JeyeJ 1 cache. known 
as the subcache. The subcache is 0.5 .\lbne in 
size, split equally bPtween instructions and .data. 
The data subcache is rwo-wa\· st'l associati\e with 
a random rt>placement policy. The cache line of 
the data subcache is 6-t bytt>s iJwlf a sul,pa;.!e). 

There is a two-cycle pipelirw from the suhcacht> 
to registers. A request sutisfit>d within the main 
cache of a cell results in the tran,..ft·r of half a ,..uJ,_ 
page to tht> subcache with a latt>tll'y of 1~ c~cJp,.; 
(0. 9 p.:,;. .\ requPst ,.;ati,.;fied n·mott·ly from the 
main cache of another cPll ou the same rillf! rP,u!t,.. 
in tlw transf(·r nf a "·hole stdJJ!Hf!t' "·ith n latPilt·~·of 
around 1.')() clock cycles , """"! .• ) W' .. This \ ahw has 
to be multiplied !Jy a factor of :3 if tlw rP<JLW."t i, 
satisfied by a cell of the ,.;ecoud rillf!. A requP,t for 
data not eurreutly eacht>d iu any cPIJ" s memory 
results in a traditional. hif!h laww·y. paf!t:' fault to 

disk. 

4.2 Memory System 
Behavior-Alignment and Padding 

In order for a thread to <HTe,s data on a ,.;ul,paf!t". 
the paf!t:' in "·hich the !'lubpa!!e re,.;ides mu"t lw 
present iu the cache of the proce,,or otJ which tlw 
thread executes. If the pa/!P is not pre>'Pllt. a paf!P 
nubs occurs ancl thP opPratitl!! ,.;~·,tem and 
ALLCACHE systt-'111 <·ombiue to make the !"'!!" 
preseut. Jf a new page caLbe" au old paf!P in the 
cache to be displaced. tlw old JWf!e is mon·d to the 
cache of another cell if po,sildt>. H uo room t·an lw 
found for tlw JH\~!e in any cadw. tlw pa,~P is dis­
placed to disk . .\Io,·iuf! a paf!e to the caclw of an­
other cPI! is much clwapt>r than JlHf!inf! to di,.,k. 

Performance of applicatimh is virtual JJJPlllOry 
system:; can suffer from the plwnometJ<Jil of false 
sharing: if two threads. ruunin!! ou different n·lls. 
request separate data items which reside ou the 
same . ..;ubpaf!e. t!wt subpa!!e nwy continually 
thrash back and forth between cdb . .\lo,t vir·llwl 
memon, svstems han· to contPnd with fabe ,.;!wr­
ing at the OS Jla!!e It>\ el. whieh is typically "t'\ era! 
kilobnes in size. On the K.SR-1 the unit of mme­
ment around the svstem i,; the n·lativeh· ,.;mall . . 
128-byte subpaf!e. At this size. ensurinf! that data 
structures accessed Lv sevt·ral threads do unt 
cause thrashing can be achieved simply by en,.;ur­
ing that the structures are paclded out to a sub-

page boundary and that they are alif!ned so as to 
begin on a ,.;ubpaf!e boundary. This is most ,;imply 
achievecl throuf!h suitable dP('laration of data 
structures: e.p: .. paddiuf! the inner dinwnsion of 
multidimPnsional aJTa\·,.;. 

4.3 KSR Fortran Directives 

The direct in·s providt>d ,.; up port t!w followi 111! 
thrPe forms of parallel ('on,.;truct: 

1. Parallel sections "upport tlw eXP('lltion of 
multiple code "''f!mPnb in parnllt·l. 

:2. Parallel regions ,.;uppon tlw e.\t'<"lltiotl of 
multi pit· co pit·,.; of tlw >'<IIIII' codt• "''f!nWnt in 
para lit·!. 

:3. Tile families "'lJ'i"'rt tlw t'Xt·cution of loop 
flt',.;t,.; in p<1l'HIIt·l. ,\loop ne..;t j,.. t·on:-idPn·d to 
delinP au itPration ,..pat'P which may lw par­
titiotwd iuto tilt·s . .\Iultiplt· ti!p, may lw PXP­
CLlled in parallt·l. Tlw tile family i, a "Jwt·ial­
ized ver,ion of a parallt•l ref!ion. wilorPd to 
tlw rP/!lllar itf'!'ation ,pace,.; ftJIIlld in Fortwu 
Do loop,.,. Thi,., form of pawlleli,.;m is tlw 
mo!'lt <·ommon in Fortmn pro;.rram,.,. Tlw 
syntax wa" de,.,erilwd prt'\ iou,Jy [ {. IJLtl \\T 

,.;hall outlint· t!w mo,..t important fPatun·, 
hen~. The tile dinTtin· takp,.; the followiu!! 
form: 

c*ksr* tile (index__list. [options] J 

[loop nest] 

c*ksr* end tile 

Thi,.; divide,.; the itewtion "J!<IIT of tlw l""fl nP."t 
into a lll!llllwr of rPcWll!!lllar piP<T>' tilt>>''· Tlw,.;,· 
tilPs are dwn ,..dwdult-·d to lw t'.\I'CIItt·d in paralkl. 
Tlw index__list al!tJ\\·,., tht· JH'tJf!l'illllllH'r to "JW<"­
ify whi<"h iteraton.; are tu lw tiled. The option:- al­
low spel'ilication "f the numlwr of thn·acb to lw 
u~ed. aucl a choice of ,dwdulin!! ,.,tratt'!!ie,.;. Tlwn· 
are two stratP~IiPs which are of intere,;.t in thi,.; 
study: slice and mod. Tlw slice :-;tralef!y di­
,·ides the iteration ,.;pa<"P into jJ rou!!!Jiy t•qually 
sized tilt>,.;. The mod stratef!y divides the iteratiou 
space into more tlum p tiles :where po,.;,.;il de). and 
schedules dwm ou p thread,., in a modulo fa,.;hion. 
For either ,.;trategy the size of tlw tilt's <"illl he fi.wd 
by the prof!rammer. or determiued at run-time. In 
the latter ca,.;e the tile ,.;ize willuonnall\' be chosen 
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as a multiple of 16 to help avoid false sharing of 
subpages. The options also allow scalar variables 
to be declared as private or reduction variables. 
In the case of a reduction variable results are ac­
cumulated in local copies of the variable. and 
code is generated which reduces these to a single 
variable at the end of the tiled loop. 

5 SEQUENTIAL OPTIMIZATIONS 

The original code consisted of nearly 1.000 lines 
of Fortran code. handling PEl\TA through IT­
PACK [3], a 9,000 line Fortran package which 
offers seven iterative methods to solve sparse lin­
ear systems with symmetric positive definite or 
mildly nonsymmetric coefficient matrices. The Ja­
cobi conjugate gradient (JCG) mdhod was chosen 
because of its convergence properties. As pro­
posed by Casulli and Cheng [ 1 J. the code was de­
veloped for vector processors, running initially on 
a Cray EL-98 with an optimized version of IT­
PACK. The code was transferred to the KSR -1 
and compiled without any change. \~·e always 
used the highest optimization level of the compiler 
(-02 option). Furthermore. ITPACK was com­
piled on the KSR-1 with the -r8 option. Other­
wise all floating-point variables. which are de­
clared as DOlJBLE PRECISIO~. would be 
handled as 128-bit values. 

It is important to note that one cell does not 
have enough memory to cope with the required 80 
Mbyte. causing a considerable amount of data to 
be placed on the memory of other cells. Hence. 
the sequential program suffers communication 
overhead since it has to perform some remote data 
acces,.;e,.;. Analy,.;i,.; of the code led to following op­
timizations. 

1. Reducing memory requirements: From 
Figure 2 WP can see that the most natural 
loop orders are ijk (i.e., i outermost. kin­
nermost) or j ik, where i runs over the x 
dimension. j over the y dimension. and k 
over the z dimension. Because the algorithm 
is applied to shallow-water problems. the 
index space of k is much smaller than that 
of i or j . Casulli and Cheng [ 1] suggest that 
the proposed algorithm is suited for vector­
ization: efficient vectorization would re­
quired flipping the loop order to make the 
innermostloops the longest. i.e., kij orkj i 
order. This "unnatural" loop ordering was 
implemented in the original code provided 

here only in FU and FV: the remaining 
computations used loop order ij k. As the 
Cray vectorizing compiler reported that loop 
bodies in FU and FY were too long to vec­
torize, the loop bodies were split in two. 
This involved the storage of intermediate 
data into six arrays of type (n.r, n,., n=). By 
reversing this splitting we avoided the tem­
porary arrays, reducing the number of 
three-dimensional arrays to seven, and the 
total memory required to around 4.3 ..\lbyte. 
This in tum reduced the number of remote 
accesses. 

2. Avoiding bad stride: All loops over i, j. 
and k were converted to ij k order. Since 
Fortran arravs are stored column wise. the 
seven three-dimensional arravs were de­
clared of type (n=. n,., n.r) thus achieving a 
correlation between loop nest order and the 
layout of arrays in memory. This is vital for 
achieving a high rate of data reuse in a hier­
archical memorv svstem. A minor side effect 
of k being the innermost array index is the 
fact that the solution of the tridiagonal sys­
tems in UPDATE-C and L'PDATE-Y can 
be stored directly into u and v. respectively. 
rather than having to use an intermediate 
vector. 

3. Stripping ITPACK: As a first step. the path 
followed by the JCG call through the library 
routines was identified and isolated: almost 
7,500 lines of unnecessary code were de­
leted. Furthermore, the routines SCAL and 
Cl\SCAL were modified. ITPACK calls the 
former before the first iteration to scale the 
matrix, the right-hand side and the initial 
solution. After convergence, the scaling is 
reversed. In LXY the unsealing of the ma­
trix and right-hand ,.;ide i,.; not necessary 
since thev are not used after PEl\TA. Hence 
Cl\SCAL was reduced to a single loop. 
which was inlined. to unscale the solution. 
The modification of SCAL was motivated 
retroactively by the necessity to parallelize 
ITPACK. The matrix is scaled bv ITPACK 
such that all diagonal elements have the 
value 1. To perform the unsealing. the origi­
nal diagonal elements are stored at the be­
ginning of the one-dimensional array con­
taining all nonzero elements of the sparse 
matrix. This implies shifting the off-diago­
nal elements. an operation that is inherently 
sequential. Therefore, the sparse matrix 
structure is constructed accordingly in 
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SETLP, i.e., the diagonal elements were 
stored at the beginning. and the rest after­
wards. The consequences for SCAL an~ the 
avoidance of the shifting, and the simplifi­
cation of the search for the diai!onal ele­
ments. 

The correctness of these code transformations 
was confirmed in separate runs by dumpinf! te:o;t 
data to a file after each time step and comparin::r 
them with the values from the original ,·ersion of 
the code. A new version was only acceptt'd if the 
files were identical. 

The effort invested in these sequemial chan::res 
has a significant payoff-the elapsed time for fin· 
time steps was reduced from nearly :2.730 second,.; 
in the original code to about 600 :-ecouds. :'\early 
86% of this enhancement is as a result of the 
avoidance of Lad striJe by dedariug the three­
dimensional arrays as (n=. n, .. n.r ). On a n•ctor 
processor (on which the code was dnelopedi 
stride has little impact. since the nwmory on ~uch 
an architecture is basicallv '"flat.·· In a hierarchi­
cally structured memory. however. ensuring maxi­
mum reu:;e of data is vital to obtain efliciel11 emit>. 
The reduction of data and stripping c1f ITPACK 
resulted in 13% and 1% improwment in execu­
tion time, respectively. The total amount of work 
invested in these optimisations. including the time 
required to become acquainted with the altroridun 
and the code. was about 7 person-day~ (we con­
sider 1 person-day to be 8 hours of dedieated 
work). 

6 PARALLELIZATION 

The version containin!! all seqtwntial optimiza­
tions proposed in Section ;) was the starting point 
for parallelization. Table 1 shows in detail the 
contribution of the different parts to the total run­
time of LXY: computations of similar structure 
have been grouped to!!ether since they can be par­
allelized in a similar wav. REST accounts for all 
minor computations scattered throughout LXY. 
including COPY. 

LXY was paralldized stepwise. the ~~"qurnct> 
order-reflected in the following subsections­
bein::r determined by the magnitude of the execu­
tion time given in Table 1. The only exception wa~ 
PEl\TA which was left to the end, because the 
loops in ITP.\CK have a different structure to all 
the others in LXY. The puralldization stmtet-'Y for 
loops not in PE:\TA is already implied in Fi~ur~· 2. 
The obYious and successful approach is to ,.;plit 
the x. y plane evenly among all threads a1:1d let 
each one work independently on its portion of the 
plane. This is achieved by tilin[! tlw loops o\·er i 
and j. thus: 

c*ksr* tile (i, j, strateg)=slice, 
private=(k)) 

do i 1, nx 
do j = 1, ny 

do k = 1, nz 

c*ksr* end tile 

Here the index ;;pace of i and j is partitioned 
by PRESTO (the KSR run-time ~y::<tem) into con­
tiguous tiles which are distributed between all 
threads such that each gets exactly onf' (,-lief" 
strate!!yj. All variables are shared (i.e .. ju,.;t oue 
copy exists which can be accessed Ly all thread~; 
except the tiled index variable,; and tho~e explic­
itly listed as prh·ate. 

A detailed anal~ sis showed that the propo:-ed 
approach is indeed mlid. The shared data eon:-i;;t 
basically of all arrays of size at lea,.;t n,. x n, ,e.::r .. 
fu, v. and e). Tiling of the loops re~ult~ in correct 
execution since only the thrt:>ad "owning" an in­
dex pair ( i, j ) updates the corre,.;pondin_!! t>le­
ment of an\· shared arn.n·. awl the tile ,;tatement~ . . 
impose the neces,;ary ,.;ynchronizatiou poim,.; 
which pre,·ent thrt>ad,; from ,.,tanill{! the execution 
of a sub:;equent loop nest until all other threads 
have completed the current loop llt>:'l. 

:\ote that the island is mapped onto tht:> thread,.; 
dependinf! on the cho,;en partitiouin~ of the .r. ·'· 
plane. This could lead in some partitioniu~,; to 

load imbalance. fiince no computation i,; per­
formed on dry wid points !see ~eetion :3). Benm,;;e 

Table 1. Elapsed Times in Seconds for Five Time Slt•ps for the Optimized Sequential Version of LX\' 

Bl'_(:L. l'PD.\-
TE_C. 

FLFV BLC\'. LPJHTE-\' SETlV PEYL\ LPIHTL\\ H. EST Total 

375 158 -t1 15 ()08 
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the size of the island is small compared to the 
estuary, the load imbalance i:-; negligible. For a 
complex estuary with irregular wet/ dry bound­
aries a more sophisticated load-balancing strate{:.ry 
is required (see Section 3). 

Figure ~ shows that some communication of 
data between thread,; is necessary in SETCP, 
caused when a thread owning index pair ( i, j ) 
but not ( i + 1, j ) accesses. for instance. 
bu ( i + 1, j). The set up of the tridia!-!onal matri­
ces (and to a lesser extent some of the right-ham.! 
sidt>s) as well as tht> computation in UPDATE-"­
cause similar. regular communication patterns. In 
FC and FV. however, the communication pattern 
depends on the data and is therefore unpredicta­
ble and irregular (see Section 6.1). The situation 
in PEl\TA will be described in Section 6.6. 

The performance re,;ults pre,;ented in Section 7 
confirm the validity of this approach. The follow­
ing subsections report insight,; and experiences 
gained during the procp,;,; of parallelizing tht> vari­
ous segments of LX Y. This parallelization process 
required approximately 10 person-day,;. 

6.1 FU and FV 

The main difficulty encountered in addinl-! the tile 
directives (to these and all other loop,;) was tht> 
identification of the private variables. Havinl-! 
done this for FL and FV. we discovered. usinl-! 
PRESTO information. an important amount of 
load imbalance cause by an uneven assignment of 
indices to threads. ~-e therefore decided to take 
manual control of the size and distribution of tiles 
in order to improve load balance. In Section 7 we 
will give more details and rqJOrt on the re:-;ult,; 
obtained. 

\'\'e would like to stress the ea,;e of parallelizinl-! 
FL and F\" on a virtual shan·d mPnWIY architec­
ture like the K.SR-1. A,; we have alread\ nwn­
tioned. the conununication pattern in t!JPSP ,;tpp,; 
is unpredictable: for each (i, j, k) we nPed the 
velocity at that grid point (.r,. y1. Zk) and at the 
point (.r; - a. :Vi - b. Zk = r). where a. b, and r 
depend on the actual valuPs of u ( i, j, k). 
v ( i, j , k) . and w ( i, j , k) . Since (.r; - a. YJ -
b: Zk - c) is usually not a !!rid point. its velocity is 
obtained by interpolating the velocities of the eil-!ht 
cell corner:; containin~ it (the two-dinwnsional an­
alog is shown in Fil! .. 3). 

On a message-passing architecture each pro­
cess would have to find out where the information 
concerninl-! (.r;- a .. l~i- b, Zk- r) is stored. ~wnd a 
message to the corresponding process. and wait 

(xi.yj) 

I~ ..______ 

------------
---{x;.a. yj-b) 

FIGURE 3 Two-dimensional Lat-rranl!ian interpola­
tion. 

for the data to arrive. !\"ote that this protocol is 
complicated by the fact that the ··owner·· of (.r;­
a, .l'} - b. Zk - c) does not know who is l!oing to 
contact him. or wherL Alternatively. the processes 
could exchange "halo'· data. but significant 
amounts of the communicated data would be un­
used. On the KSR -1. the remote accesses to array 
elements at (.r;- a .. l}- b. Zk - c) are automati­
callv handled bv the ALLCACHE memorv . . 
svstem. 

6.2 BU_CU, BV_CV, UPDATE-U, 
UPDATE-V 

Since the tridiagonal systems in these four seg­
ments are solved in paralleL each thread needs its 
own copy of the coefficient and right-hand side 
arrays. Because KSR Fortran does not support 
private arrays. a technique called array expansion 
had to be applied. Hereby. an array is expanded 
from (n 1 •••.• n,) to (n 1 ••••• n,. p) where p 
is the number of threads. so that thread i(i = 

1. . . .. p) uses the memory locations starting at 
index (1. .... nt. i 1. 

Havinl-! done this. the measured run -time of the 
parallel version was disappointin~. Lsing GIST. a 
tool for lo~§!in~ and visualizinl-! Pvents. serious 
load imbalance was detPcted. 

Information from PRESTO revealed that some 
loops over i run from 1 to n.r and others from 2 to 
nx. Tilinl-! the former causes the tir,;t thread to stan 
with index 1 and finish with some m 1 • while in the 
latter case the same thread handles the range 
2 .... , m 1 + 1. Hence. data locality is not pre­
served. a situation which can lead to a significant 
number of renwte data accesses. This was 
avoided by embracing all loops in LXY by a KSR 
Fortran aflinity rPgion [ -i]. which ensures that for 
different tiled loop,;. the same val uPs of indices are 
scheduled to the sanw threads. even thoul-!h the 
loop bounds may bP different. Although this mea-
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sure did not solve the load imbalance problem 
and showed almost no performance benefit, we 
maintained it to ease experimentinl! with different 
tile sizes and strategies. 

Finally we turned to P:\10N, a tool that gathers 
hardware monitoring statistics. This information 
showed that some threads had an extremely hi;.rh 
rate of cache subpage misses, that is they were 
accessing a large number of data items located on 
other cells. Since this did not occur in BC or BY. 
we searched for some different:es in the code 
which might account for this, and identified the 
"privatized" arrays as the source of the problem. 
The scalar expansion of arrays is an example 
where the effect of false sharinl! (see Section 4.2) 
can be severe. For instance, the element;; A (nz, 
3, i) andA(1, 1, i +1) lieinconsecutivemem­
ory locations, the first being written to by thread i, 
the second by thread i + 1. If these two 8-byte 
data items happen to be on the same 128-Lyte 
subpage, this subpage is moved back and forth, 
causing unnecessary communication. The smaller 
the original array is (in our case it has only 3n= 
elements), the higher the degree of false sharing in 
the extended array. By padding all extended ar­
rays to subpage boundaries. we eliminated this 
effect and achieved much better load balancing. 

6.3 UPDATE-W 

After the experience gained in the previous steps. 
tiling this loop, including identifying the private 
variables and expanding some arrays, was tri,·ial. 

6.4 REST 

The REST segments consist mainly of smaller 
loops scattered throughout LXY. Although they 
account for very little of the sequential execution 
time, it was important to parallelize them .. as oth­
erwise significant data mm·ement will occur. :\lost 
of these loops are similar to COPY and were tiled 
trivially. Some other loops cover only the bound­
aries of the domain. The bodies of these loops 
should ideally be performed by the threads that 
own the corresponding x, y index pairs. However 
this is not easy to perform on the KSR-1 and since 
the performance gain would not justify the eff011. 
we did not parallelize them. At the end of LX Y. 
the flooding and drying of cells in the horizonal 
plane is handled. Introducing parallelism in these 
final loops would result in several threads writing 
to the same memory location, making the use of 
locks or critical regions necessary, and again any 

performance gain would not justify the effort in­
volved. 

6.5 SETUP 

Due to the steps undertaken when optimizing the 
sequential code, it was straightforward to set up 
the pentadiagonal matrix in parallel maintaining 
the correct (sequential) order of the rows. 

6.6 PENTA 

In the optimized sequential version the call of the 
JCG routine in ITPACK took only 6. 7% of the to­
tal time, but this increased as the parallelization 
steps progressed. Eventually. havillf( carried out 
parallelization of all other segments. about half of 
the elapsed time (using 16 cells) was ;-;pent in 
PEI\"TA. 

ITPACK handles vector operations through 
level 1 BLAS-like routines while matrix-n·ctor 
multiplications are adapted to the structure of the 
data type containing the sparse matrix. These 
subroutines contain a single loop of length .V 
(where ,Vis the dimension of the linear system-in 
our case ,V = n,.n,.) as opposed to two outermost 
loops of length nx and n,. encountered in the pre­
vious sections. Therefore we tiled ITPACK loops 
specifying that they should not be part of the en­
dosing affinity region. 

As a consequence. some data mo,·ement will 
occur at the beginning and the end of the iteratiw 
procedure. After the first iteration. mo~t data are 
local and do not move to other threads. Commun­
ication takes place in each iteration due to the 
scatter and gather of wctors in GAXPY -like oper­
ations !Ax + b) with a ~parse matrix A. and the 
reduction phase in the parallel execution of dot 
products. 

1\"ote that the influence of rounding errors can 
change the result of parallelized floatinf(-point 
vector sums. Therefore we maintai1wd one se­
quential and one parallel version of the dot prod­
uct. The former was used to check the correctness 
of all changes (as mentioned in Section 5 ). the 
latter for run-time mea~urements. 

Finally. it is important to note that we are cop­
ing with some load imbalance in the parallelized 
version of JCG. Tile sizes produced by PRESTO 
are by default a multiple of 16 (see Section ·t.:3). 
Changing PRESTOs default (for in;;tance to a 
multiple of one) leads to better load balance. but 
results in false sharinf(. Our experiment~ ;;bowed 
that in this trade-off between load imbalance and 
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false sharint!. tlw former cau~ed the smaller per­
formance penalty. Thi,.; can lw explain<>d by not­
ing that mo,.;t operation~ in JCG are level 1 BLA.S­
like routitws. wlwre tlw ratio of acce,.;:;ed data to 
computation i:'i hit!h. \'..t:> then .. fore maintaint>d the 
original PRESTO default vahw. 

7 RESULTS 

To obtain consistt:>nt run-tinw measurPmPnts we 
rPmovPd from our t>xperiment,.; tlw output of data. 
Durint! a typical production run output is only 
prodtH"t:>d infrPqtwntly. FurtlwrmorP. ,n .. (Wr­
formt>d ,;ix tinw stt>ps but nwa:-;ured only dw 
elap,.;nl tinw for tlw SPt"orHl to tlw sixth. HPrPby 
WP rnaskPd nut the infliiPIH'P of tlw first tinw ,.;tep 
which 011 tlw ~SH-1 is lllOrt"' expt->r!:-iin .. that! Sti!J­

SPCfliPllt onP,-. due to pai-!P mis,..es cau,;ed b~- ac­
ce,-sin:r uninitializt>d data for tlw fir:-;t tiuw. In a 
normal run con,-istin:r of thousand,- of tiuw step,; 
the effect of thi,; is rw;.di,l!ildt>. 

\'..hen eomparint! tlw s~·quential and parallel 
run-timt>s. we had to con,.;idPr that the parallel 
ext:>cution of floatin!!-point sum,; in PE:\"TA will 
pt>rturh tlw data. and con,;.Pqtwtlfl~ tlw ruuulwr of 
iteration" performed hy .ICC may differ in the SP­
qtwntial and parallt>l n .. r,..ion. In ottr f'Xlwri­
ments-tinw Stf·'P" two to six-tlri" did not nr·cur. 
resultint! in a ··fair·· compari,..on. Loll!!l'r run,; t!='­

in!! the parallel ver·,..ion han· ,..lwwn that tlw num­
ber of iteration ,.;tep,; performed by JCC ha,.; a 
small varialll't"'. It is tlwreforP rea,.;onal dt• to ex­
trapolate tlw pf·rforrnarwt· rP,.;trlt,.; of short r11n,.; to 
loll!! one,;. 

A prolilt· of tlw code showed that ,..ul>n>tlline 
THL which lllt'n·ly inrt·q•oiHt•·,., tlw \t·lo,·it~ of an 
intt·rior n·ll point from dw \·elm·itiP,; at the t'i!!ht 
corn..-r point,;. i,.; •·allt-d rwarly I million tinw,.; in 
eyery time ,.;tt•p. :\ll otlwr ,..,tf,routirw,.; an· called 
considt·rahh- f<·w..-r tinw" and n•ruain <"orhidPra­
Lly more computation. \\-e decided then·fore to 
inline TRI at compile time. IHrt no other routirw,.;. 

Bd'ore pre,.;c>ntin!! the ol>tained re,.;u[t,.._ we de­
~cribe the cho,.;r·n tile sizP and tilin!! strale!!y for all 
loops ouhidP PE\TA. Load lwlance i,., usuallY . . 

achieved by lun·ing more tiles than cells and dis­
tributing the tiles in a modulo fashion. \\.hen we 
did this however. we discovered that the memorv 
requirements per thread were not decreasing with 
the number of cells. Remember that our problem 
requires around 4;3 :\lbyte of memory and that 
each thread should access roughly ont' pth part of 
it. where p is the number of cells. This effect can 
be explained by considering the layout ofF ortran 
arravs within the KSR-1 memorv architecture. . . 
l\'ote that n= X n,. X 8 bytes = 16 Kbyte. which is 
the size of a page. Thus. the access for instance of 
u (kO, j 0, iO) will caust:> the page containin:r the 
elements u (k, j, iO) (k = L .... n=. j = 

1. . . .. n,. J to become resident on the requestin:r 
ct>ll. \'.'ith the modulo tiling strate~-- we can ex­
pect that each thread will use almost t:>vt>ry value 
of i. HencP. almost every paw· is requested by 
every thread. even thou:rh only a few of irs sub­
pages are actually u,.;t>d by an~- one thread. i\'ote 
that this false sharint! of pa!!e" is different from the 
false sharing of suhpat!e,; encountered in Section 
6.2. To avoid thi,; problt:>m wt' let each thread 
work on exactly one tile of size r rz.r/ p 1 X n,. (equiv­
alent to tilin!! mer i in a slice fa,.;hion; so that 
each of the p threads requires only a pth of all 
pages and acee,.;se,.; all ""bpat!es within them. Thi,­
doe,.; however n·,.;11lt in some load imhalanct>-see 
hdow. 

Table :2 comains tlw run-times obtained fol­
lowint! the above exrwrimental description. Each 
run was repeated three time,.;: Tablt> 2 prt:>senb 
the ht:>st value of thrt:>e. Furthermore. all rurh were 
executed with tlw al!ocute_rel!s command. which 
en,-ures exclusi,-e tbt~ of a l!ivPn numht>r of ct>lls. 
By ,.;pecifyin:r in the tile statt:>ments the same num­
lwr of thread,.. a:- allocated cell:-.. 'n· achieYt"d a 
one-to-one mappin!! hetwPen cell,- and thrPads. 
Finally. for the experiment,; usillt! up to :32 cells. 
we ensured that all the cell,; were on tlw samt:> rini!. 

:\'ote the di,..crepancy lwtwet·n the ,.;equemial 
and the one-cell parallel time. This can be ex­
plained by the increa,.;e in memory rt:>quiremenr,.; 
caused by array expan,.;ion. :\'ote al:-;o that dte four 
cdl time is less than half that on two cell,;. \'.'hen 
usinl! one or two cells. there is not enoui!h memory 

Tablt" 2. Elapsed Timt• Pt"r Time Step in Seeonds for the St>qut'ntial and Parallel Version of SW:~D 

.\"umlll'r of c,•lb 

1 (,;pq I 1 (pari 1() :2-t :3:2 -tO 

1:2:2 1:26 6:2. <) 1.">.1'1 ;).6 -t.: 3.6 3.31 
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to hold all of S\C3D"s data. and it is necessarv for 
the operatin~ system to place some data in other 
cells' memories. ""ith four or more cells. however 
there is enough memory. and the number of re­
mote accesses are considerabh- reduced. ,,.e also 
see that the use of more than -±8 cells gives almost 
no further reduction of the run-time. 

Figure 4 shows the simulation performance in 
time steps per second. The naive ideal perfor­
mance is the reciprocal of the naive ideal time. 
which is computed by simply dividin!! the execu­
tion time of the optimized sequential code by the 
number of cells. To check that extrapolation of 
our results to long runs is indeed valid. we ran 
6.000 time steps on :32 cells (using both rin!!s.l. 
This simulation took 7 hours -±7 minutes. whieh 
corresponds to 0.21 timesteps per second. the 
same n1lue as we obtained from mea,.;urin!! five 
time steps. 

""e have performed an analysis of the parallel 
overheads in order to identify the major factors 
causing the discrepancy between the naive ideal 
and the actual performance. ,,.e define the total 
overhead as the difference between the actual 
measured time and the nain· ideal time. "·e then 
apportion the total overhead into four categories 
as follows: 
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1. Cnparallelised code. This is the uverlu·ad 
incurred due to the parallt'l Yersion contain­
ing sections of sequential code. 

2. Load imbalance. This is the merlwad that 
results from processors havinf! to wait at a 
synchronization point for other proces~or,.; 
to finish their parallel tasks. 

3. .\lemory acces~es. This the m·erhead d,ue to 

the parallel and sequential Yersions spend­
in~ different amounts of time acce;-;sin~ 

data. 1\"ote that data acct"sses include !Joth 
local (,.;ame cell) and remote accesses. 

-i. Synchronization and schedulill!!· Thi,.; is the 
m·erhead cau,.;ed by the implementatiou of 
synchronisation points (in s"·:3D these arl' 
all barrier s\·nchronisations '· and the 
scheduling of tiles to threads IJ\· the 
PRESTO run-time ~\~tcm. Thc~e are 
!!rouped to~ether because they are IH1th a~­
sociated with the addition of tile directiws 
to the code. 

1\"ote that this analysis 1s ,.;omewhat t·ompli­
cated by the fact that the sequential Yersion makes 
a substantial number of remote memory acn~,.;,.;es. 
because there is too much data to fit in the mem­
ory of a sin~le cell. This makes the naiYe ideal time 

24 32 40 48 56 
Number of cells 

FIGL'RE 4 Simulation performanl'e of S\'\:3D. 
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somewhat pessimistic. and re,;ulh in nef!atiYe val­
ues of memory acces,.; overhead. In such a situa­
tion the time spent by dw parallel \ersion in mak­
ing remote data accesses is a useful additional 
statistic. as it givt•,; a better impres,.;ion of the per­
fornlance loss resultinf! from communication of 
data between processor,.;. 

The result,.; of this anah-sis for 16. :3:2. and -tB 
cells are di,;played in Tah!P :~. Tlw analy,.;is shows 
that tlw total overheacb are increasinf! a,; the 
number of cells increases. such dmt on -tB pn>ees­
sors the o\erhead accounts for rwarh :3()'1o of the 
measured execution time. This sugge,.;ts that with 
the present parallPiization strate1-':·· it is unlikPiy 
that the execution time could lw reduced lwlow :3 
seconds per time step for a problem of this size. no 
rnatter how many pron•,.;sor,., \n•re u,.;Pd. 

It is dear that load im!Jalance i:-; the most signifi­
cant source of overhead. About half of this load 
imbalance can be attrilnlted to tlw uneven assign­
ment of indices to threads. since 1 b. :3:2. and -tB 
are not divisors of n_,.. For example. u,.;ing :3:2 pro­
cessors the tile size is 11. which results in two 
processor,.; being idle. Thi,.; could be ameliorated 
by transforming all double-rwsted loops over i 
and j into one loop from 1 to n . .- X n, .. 

The remaining load imbalance cannot he ex­
plainPd by unevPn assignment of indices to 

threads in PEl\TA (see Section 6.6;. Lsing hard­
ware monitoring information we discm·erecl that in 
many of the tiled loops. some threads are stalled 
waiting for data almost twice as !on!! as others. 

Table 3. Owrhead Analysis per Time Step 

.\umlwr of ( :elb 

16 :~:2 -t8 

.\ka~un·d tirne s.:w -t. -:'.) :3.60 
-'ain' iclt·al tinw '7. lJO :3.80 :2.SS 
Total overhead (). 70 0. <):) 1.0.) 
L nparallt·lized 
emit• ov<-'rhf'tHI (J. -tO 0.-tO 0.-tO 
Load -imLalance 
overhead 0.70 0.7;) (J. -t.) 

M_emory acce,;s 
overhead -0.60 -0.-t.) 0.00 
Svnchron iza tion I 

,.;chPdulinl! 
overhead 0.20 0.2:> 0.:30 

Remote access 
time 0.1;) 0.13 0.15 

1\'ote. :\II tirnPs an· in set·tnuJs and an-· ~in-·n to du· rH·an·st 

()_();) Se{'OflcJ,;. 

although all have the same workload. This addi­
tional stalling is not caused Ly remote accesses. 
but Ly subcache misses. The implication of this is 
that for certain values of i and j there is consider­
ably more overhashing (and ht>nce displacement) 
of subcache lines, than for others. The precise 
cause of this is current!,- not clear. but we believe 
it may be a side effect of havinl! a number of large 
arravs with a varietv of sizes. ~lore research is . . 
needed to understand and overcome this over-
head source. since it causes sif!nificant degrada­
tion of performance with increasing numbers of 
cells. 

The next most important source of overhead is 
the unparallelized code. ~lost of this code is con­
cerned with setting boundary conditions. and 
again with some more effort it may be possible to 
parallelize some of these sections. although, of 
course. doing so may increase the overheads from 
other sources. There is little that can be done to 
reduce the cost of svnchronization and tile sched­
uling. In each time step around 200 parallel loops 
are executed r:there is some variation depending 
on the number of steps required in the conjugate 
gradient solver). Experiments ha,·e shown that 
each parallel loop incurs a synchronization and 
scheduling overhead of 1 ms for small numbers of 
cells. risintr to 1.-t ms on .')6 cell:'i. Finally we note 
that remote data accpsses are the least significant 
source_ of performance loss. hence there is no 
point in attempting to reduce the number of re­
mote accesses before the other more significant 
sources of overhead have been addressed. 

8 FUTURE WORK 

After the validation of the code with a simple ge­
ometry. we intend to apply it tu a real-world estu­
ary. Bideford Bay (southwest Lnited Kingdom). 
which is used as a benchmark to allow a standard­
ized approach to the testing and comparison of 
modeling software used for hydrodynamic and 
bacterial dispersion modeling [ 11]. This will re­
quire a more sophisticated load-balancing strat­
egy in order to cope efficiently with highly irregular 
wet/ dry boundaries which may be changing 
markedly with time. One possible strategy consists 
of allowing the boundaries between the partitions 
of the horizontal plane to change as the simulation 
proceeds, in such a way as to equalize the time 
spent by each proce~sor [2]. 

Section 7 showed that further analysis is neces­
sarv to understand and overcome some overhead 
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sources, particularly the load imbalance. and the 
remaining unparallelized code. l\ote that the load 
imbalance problems should be solved by a dy­
namic load-balancing strategy. It would also be 
interesting to verify the parallelization strategy on 
other virtual shared memory architectures, such 
as the Cray T3D and Convex Exemplar. 

There are several planned enhancements to the 
computational model, including pollution trans­
port, sediment transport, and plume dispersion. 
Also a more sophisticated turbulence model in­
volving the transport of Reynolds stresses directly 
is planned. Algorithms for biological and chemical 
behavior of pollutants are also desirable. Since the 
governing equations for each of these additions 
are of essentiallv similar form to those studied 
here, and are assumed to be largely uncoupled 
from the hydrodynamics equations, we can expect 
to apply the same algorithmic structure and paral­
lelization strategy. 

We also envisage some enhancements to the 
numerical scheme, including the avoidance of the 
time step limitation due to the explicit treatment of 
horizontal mixing. This could be achie"~ed by an 
implicit treatment, possibly as a fractional step 
process. A greater challenge, especially for paral­
lelization, will arise from the introduction of adap­
tive mesh refinement. For example we might 
adopt a strategy where mesh sizes are successively 
halved in proportion to the inverse of water depth 
and spatial flow gradients, e.g., vorticity (9]. 

9 CONCLUSIONS 

We have described the parallelization of a three­
dimensional shallow-water estuarv model on the 
Kendall Square Research KSR-1. Although the 
semi-implicit Lagrangian scheme was initially de­
scribed as an algorithm well suited for vectoriza­
tion [1], we have found that its parallelization is 
natural and easy to perform, resulting in excep­
tionally efficient execution. 

Recall that the time stepping solution process 
revolves around the solution of a pentadiagonal 
system of equations describing the evolution of the 
surface elevation. This system of equations can 
itself be solved in parallel, but parallelism can also 
be exploited in all other major computation seg­
ments such as the set up of the matrix and right­
hand side coefficients for the system describing 
the new surface elevation. These matrix coeffi­
cients and right-hand side terms result from the 
solution of a set of independent tridiagonal sys-

tems of equations, one at each grid point in the 
horizontal plane. The parallel algorithm partitions 
the horizontal plane equally between threads. 
each one setting up and soh·ing a !!roup of inde­
pendent tridiagonal systems. This partitioning ap­
proach is used for all other code segments. except 
for the conjugate gradient solver itself. 

In practical terms we have demonstrated that a 
simulation which would require several days of 
CPU time on a powf:'rful workstation or a modest 
vector processor can be run overnight on :32 cells 
of a KSR-1. ~-e have also found that the develop­
ment process. consisting of sequential optimiza­
tions followed by an incremental parallelization 
strategy. has given very good performance without 
an excessive amount of programmer effort. \,.e 
have performed an analysis of the sources of over­
head in the parallel version of the code. which hail 
allowed us to identify the aspects of the parallel­
ization strategy which are most in need of atten­
tion should it prove desirable to further reduce the 
run-time by using more processors. 
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