
Parallelization of a Three-Dimensional
Shallow-Water Estuary Model on the KSR-1

C. FALCO KORN 1, J, M. BULL2 , G. D. RILEY2 , AND P. K. STANSBY3

1The London Parallel Applications Centre, Queen Mary and Westfield College; Mile End Road, London El 4NS, U.K.; e-mail:
C.F alco-Korn@lpac.ac.uk
2Center for Novel Computing, University of Manchester, Oxford Rd., Manchester Ml3 9PL, U.K.: e-mail: {markb, griley}@cs.man.ac.uk
3Department of Engineering, Unirersity of i'rlanchester, O.~ford Rd., iiianchester Ml3 9PL, U.K.; e-mail: pkstansby@fsl.eng.man.uk

ABSTRACT

Flows in estuarial and coastal regions may be described by the shallow-water equa­
tions. The processes of pollution transport, sediment transport, and plume dispersion
are driven by the underlying hydrodynamics. Accurate resolution of these processes
requires a three-dimensional formulation with turbulence modeling, which is very de­
manding computationally. A numerical scheme has been developed which is both stable
and accurate-we show that this scheme is also well suited to parallel processing,
making the solution of massive complex problems a practical computing possibility. We
describe the implementation of the numerical scheme on a Kendall Square Research
KSR-1 multiprocessor, and present experimental results. which demonstrate that a prob­
lem requiring 600,000 mesh points and 6,000 time steps can be solved in under 8 hours
using 32 processors. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

Environmental impact studie,; relating tu estuarial
or coastal region,; invariably involve computa­
tiona! flow simulation with additional simulation
for the transport of pollution, sediment. or ther­
mal plumes. The equations to be solved are
known as the shallow-water equations which are
based on the 1\'avier-Stokes and continuity equa­
ti~ns. with the assumption that the pressure
everywhere in the flow is simply hydrostatic. The
fo~mulation may be simplified further by making
the "depth-averaged" assumption where velocity

Received :\lav 199-1
Revised December 199-1

© 1995 by John Wiley & Sons. Inc.

Scientific Programming. \ol. -1, pp. 1:53-169 (199.'5)

CCC 1 0.58-92-H /95/0:3015.5-1.5

is assumed uniform across the water depth. Com­
putational schemes for such two-dimensional
(depth-averaged) flows have been in existence
since the pioneering work of Leendertse [6] and
have proved useful in predicting flows in "well­
mixed'' conditions.

However. the turbulent boundan· laver velocitv . . .
profile will not be typical of a steady unidirectional
current when flow curvature effects and eddv
shedding are significant. This has obvious impli­
cations for predicting the transport of pollution­
usually released near the sea bed-where the ver­
tical distribution of velocity and turbulence
(mixing) processes has an important influence.
For sediment transport the near bed velocity and
turbulence characteristics are also of vital impor­
tance. When buoyant plumes are released from
power station outfalls, vertical motion is clearly
significant to plume dispersion. Overall it can be
seen that computation of the shallow-water equa-

156 KOR~ ET AL.

tions m three-dimensional form is highly desir­
able.

Casulli and Cheng [1 J developed a semi-Im­
plicit, Lagrangian finite-difference scheme as an
alternative to a Eulerian, alternating direction-im­
plicit scheme [10 J avoiding the need for upwind
differencing to give stability and the time step limi­
tation of the Courant condition due to convective
terms. Casulli and Cheng applied their scheme to
tidal flows in the San Francisco Bay and the Yen­
ice Lagoon reporting good results.

Stansby and Lloyd [8] refined this scheme and
applied it to the less spectacular, but probably
more hydrodynamically demanding, case of flow
around a circular island with sloping sides gener­
ating vortex shedding (see Fig. 1). The choice of
this simple geometry was motivated by the desire
to validate the model before applying it to real­
world estuaries (see Section 8). Hence, the output
of the program was compared to detailed mea­
surements obtained from a laboratory tank, re­
sulting in good agreement [7].

Typical simulations require the order of 1 Qh

mesh points and several thousand time steps. On
scalar computers this would be compumtionally
prohibitive. Even on a modest vector processor.
the Cray EL-98, the code required excessive com­
puter time (days) for large problems. In this article
we investigate the use of parallel processing for
producing such simulations within practical time
scales.

Section 2 introduces briefly the underlying
physical model and the numerical scheme. The
resulting algorithm and its memory requirements
are explained in detail in Section 3. Section -+
gives an overview of the target parallel platform.
the Kendall Square Research KSR-1, focusing on

those aspects of the architecture and pro;,rram­
ming model relevant to this study. Before embark­
ing on the parallelization process, sneral optimi­
zations were performed on the original, sequential
code; these are described in Section 5. Section 6
details the parallelization stratel-'}' and the prob­
lems encountered in its stepwise application to the
optimized code. Section 7 presents run-time
results obtained on the KSR-1. which confirm 'the
suitability of the numerical scheme to parallt>l pro­
cessing. Furthermore. the sources of overhead in
the parallel version are identified and analyzed.
\Ve conclude with Section 8 in which we outline
future enhancements in the physical and numeri­
cal model and their consequenct>s for paralleliza­
tion.

2 THE THREE-DIMENSIONAL
SHALLOW-WATER METHOD

The three-dimensional shallow-water equations
are as follows

au au au au - + U - + L'- + W- =
at ax a.Y az

_ aT} + f-LH (a2
u + a2u)

g ax p ax2 ay2 + i_ (f-L' au)
az p az

av au au av -+ u-+ v-+ w-= at ax ay az
aT} f-LH (a2v a2v) a (/-LI au)

-gay+ p ax2 + ay2 + az paz

0 = aT} + _!!_ f~ l1 dz + _!!_ f~ v dz
at ax =u ay =u

where zo is the bed elevation above a reference
level and 7J is the water surface elevation; x. y. z

------ ---------------------·~---- ----------- -· ---·------- -------------
---- _ .. ------------- ----- ----

- --- - -· --· -------------- / /
_,.., _____ _

--------------~--
/ / / --~ / ~- - - -- - - - -

-- -- - - - -- ,.., .. ,..,·"" / ' _, / I /

- - - - - - -· / (J- ' '
- - - - - - -- ~ . ' '

/ / / / ,..,
' '

' I \

-----~-~--......-.......·~- ' \ -- -- ..._ ~ ~ -... - - -- --· _ _.., ---- __ ... --· --- -- - -- ~-_ --

- ---- -- -- ------------ -------~--.... -~ --~ --· ----- -- - ~~ -- -- - __ --·--~--------- ------ --
- - - - - - -- -- --------.--------- - -- -- -- - - - -- --- ------------- -- --- ------.- -- -- ·-- --.--- ~-- - - -

FIGURE 1 Surface flow after 2.000 time steps in the simulation.

Tf!REE-DI.\JE~SIO~.\L SI 1:\LLO\\--\'CATER ESTL\RY ~IODEL 157

are Cartesian coordinates: u. v. u· are the corre­
sponding velocity components: g is acceleration
due to gravity; p is water density (assumed con­
stant): and JLr and Jl-11 are vertical and horizontal
mixing coefficients. The boundary condition,; at
the bed are

where 7~ and r.;' are the x andy components of the
shear stress. respectively. At the surface no wind is
assumed. so that

au al'
P.t - = P.t - = (). a:: a::

In the laboratory experiment de,.;cribed in the
previous section. thf' water is initiall~· ,.;tatiouary
and the water level horizontal. The inlet flow ratf'
is then increased with time a,; a quarter sinusoid
and maintained after a specific time step at a con­
stant value to represent a steady current. At the
outlet boundary. the velocities u and L' are given
zero normal gradient,; and the water depth is
fixed. At the two side walls. v and the normal !!ra­
dients of u and 1J are set to zero.

The original formulation of the numerical
scheme proposed by Casulli and Chen!! [1 J us<>cl a
uniform mesh in the venical direction. con,.;tant
venical and horizontal mixing coefficienti'. and
the Chezy coefficients to give bed boundary con­
ditions. In order to give an accurate representation
of bed and water-surface conditions. Stansb\· and
Lloyd [8] introduced the a--coordinate ,;y,.;tem a- =

(z - 1J)I (17 - zo) for the vertical direction. defining
the bed surface by its roughnes:-; height. This en­
ables a turbulence model for the vertical direction
to be incorporated: Stansby and Lloyd proposed a
simple two-layer mixing length model for rou!!h­
turbulent flow. FurthermorP. the,· introduced for
horizontal mixing a mixing coefficient propor­
tional to depth and friction velocity.

.The finite-difference mesh used in the numeri­
cal computation is a staggered rectangular system
"\\ri~h a "wet/dry"' boundary crossing the horizon­
tal mesh obliquely (giving wet and dry cells). This
is not a severe limitation since velocitie» close to
the shoreline with gently sloping beds tend to be
quite small. The a--coordinate s\·stem entails a
fixed number of vertical cells at ~ach horizontal
mesh point. \re will refer to the number of mesh
points in each spatial direction by n.ro n, .. and n~,
and to the corresponding coordinates by xi(i =

L ... , nr).)j (j = 1. ... , n,.). and ::k (k =
1 n~).

An important feature of the numerical scheme
is the Lagrangian treatment of the convective
terms. This avoids the need in conventional
Eulerian schemes (e.g., TRISCLA [10]) to gener­
ate stability through upwind differencing with
some inevitable numerical viscosity. The terms in­
volving surface elevation gradient and vertical
nuxmg are handled implicitly for stability,
whereas the terms involving horizontal mixing are
handled explicitly. The equations are solved as
fully coupled in both horizontal directions pro­
ducing at each time step a pentadigonal system of
equations for the new values of 1J at each grid
point in the horizontal plane. Schemes which in­
min· uncoupling (alternating direction schemes)
require smaller time steps to be used for equiva­
lent accuracv.

3 THE APPLICATION PROGRAM: SW3D

In this section we describe the structure of a For­
tran 77 program. S\\'3D, which implements the
three-dimensional shallow-water method de­
scribed in Section 2. The version of S"'3D which
forms the starting point for the parallelization pro­
cess had previously been run on a Cray EL-98
svstem.-

The main computational effort of s"-3D is con­
tained within a subroutine called LXY, which is
sketched in the pseudo code shown in Figure 2.
\\'e distinguish between actual array elements
(written in truetype font) and mathematical ob­
jects and operations (using standard notation).
For instance, A '-i denotes a n. X n. tridiagonal
matrix which depends on the index pair (i, j) ,
while u (i, j , k) represents the (i, j , k) -th
element of the array storing the values of u. The
vectors b1 and b2 in BC_CC and BY_CY are fixed,
and ny in SETuP implies a numbering scheme of
the nx X n_,. pentadiagonal matrix P.

Most of the work in LXY is devoted to setting up
the matrix P and right-hand side r of the linear
system Pe = r which is solved for the new surface
elevation. For each time step the sequence of op­
erations is as follows: first, code segments FU and
FY evaluate. for every grid point, the finite-differ­
ence operator arising from the explicit terms for
convection and horizontal mixing, and store the
values into arrays fu and fv, respectively. 1\iext,
segments BU_CC and BY_CV each solve (for every
(i, j)) two tridiagonal linear systems of dimen-

158 KORN ET AL.

dot= 1, maxt
FU

do i = 1, n.,
do j = 1, ny

do k = 1, n,
compute Lagrangian convection and horizontal diffusion terms in 1l

store result in fu(i,j ,k)
FV

do i = 1, n.,
do j = 1, ny

do k = 1, n,
compute Lagrangian convection and horizontal diffusion terms in v
store result in fv (i, j, k)

BU_CU
do i = 1, n.,

do j = 1, ny

setup n. x n, tridiagonal matrix A (>,J) using values stored in u

bu(i,j) = b[(A(i.j)rl b1

setup n.-dimensional vector b(i,j) using values stored in fu

cu(i,j) = b[(A(i,j)r 1
b(i,i)

BV_CV
do i = 1, n.,

do j = 1, ny
setup n. x n. tridiagonal matrix A (i,j) using values stored in v

bv(i,j) = bf (A(i,j)rl b2

setup n.-dimensional vector b(i,j) using values stored in fv

cv(i,j) = bf (A(i,j)r 1
b(i,il

SETUP
do i = 1, n.,

do j = 1, ny
compute 5 non-zero entries of row n;1 of P using bu(i,j), bu(i+l,j), bv(i,j), bv(i,j+l)
compute element n;i of r using cu(i,j), cu(i+l,j), cv(i,j), cv(i,j+l)

PENTA
solve pentadiagonal system Pe = r; store results in array e

COPY
copy u into uold, v into vold

UPDATE-D
do i = 1, n.,

do j = 1, ny

setup n. x n. tridiagonal matrix A(i,j) using values stored in uold

setup n,-dimensional vector b(i,j) using values stored in fu and e

u(i,j ,k) = k-th element of (A(i,j)r 1
b(i,j)

UPDATE-V
do i = 1, n.,

do j = 1, ny

setup n, x n, tridiagonal matrix A (i,j) using values stored in vold

setup n.-dimensional vector b(i,j) using values stored in fv and e

u(i,j,k) = k-th element of (A(i,j))-
1

b(i,j)

------------------------------UPDATE-W------------------------------
do i = 1, n.,

do j = 1, ny

do k = 1, n,
compute v(i, j ,k) using values stored in u and v

FIGURE 2 S\l/3D' s main computational ~:yde--suLroutine L.\ Y.

TIIREE-DI\IE:\:-110:\.\L SIL\LLO\\ -"ATER ESTL\RY ~IODEL 159

sion n=. which n·,.;tdt from the implicit n'rtical
mixinf! tern1. The dot product of dw ,.;olution of
the,.;e sy,.;tt>m,.; with a gin•n vector i,.; stort>d in ar­
rays bu. cu and bv. cv. re,.;Jwctively. Segment
SETCP u,.;p,.; this information to compute the Pn­
tries of P and r. PEi\TA ,.;oln',.; the pentadiagonal
system. leavinf! the solution in array e.

Having copit·d the current nthw,.; of u and v
into uold and vold !COPY). tlw new u and r
velocities are computed in Sef!mt·nts l"PD:\TE-C
and CPDATE-\". n•,.;pectively. HPrt' a further tri­
diagonal systPm is soh-Pd for t>ach index pair
(i, j) , giving the nt'w velocitie,.; for all values of
k. The final segment of LX Y. CPO.\ TE- \\-. com­
pute,; the new ll' velocitie,.;.

It is important to clarify the treatment of d1·y
point,;. For those indices (i, j). where (.r,. _lj. =1 i

is a/Jove the water. t!w loops Fl. F\". Bl-_CL
BC_C\". LPD.-\TE-L l"PD.-\TE-Y. and LP­
DATE- \\-do nothing except set the corresponding
arrav f'lentents to zero.

Figure 2 contains only thP most computa­
tionally significant ,;ef!nH'nh of LXY. F urtlwr code
such a,; the calculation of the new water depth
using tlw nf'w surfact' f'lP\·atinn or the flooding of
dry points are not included. Thi,;; code will. how­
ever. not be neglPcted when analyzing the run­
time.

To determine the memory requirements Wt' in­
troduce the notation ;_rz 1 f/ 111 \ to den ott' Ill­

dimensional array,; with n 1 X ... X n 111 lloatin;!­
point elements. Hence. the array,; bu and bv are
of type (rz.r. n,). while P i,; stored in an array of
type (."}n n,.). Since the tridiagonal mat rice,; are
set up on demand. nne arra~- of type (n=. ::3 ,' suf­
fices, otherwi,;e it would be nece,;,.;ary to store
2n_,.n, of these. Clearly the memory needed i:;
dominated hv tlH· :'if'ven three-dimensional arrays . .
fu. fv. u. v. w. uold. and vold of type (n_, .. n, ..
nJ. The original code use,;; six further arrays of the
same type (,;;ep Section?); leading. for 6-t-bit float­
ing-point numbers. to a nwmory requirement of at
least 13 X nx X n,. X 8 bytes. For n,. = :329. n,. =
10;"), and n= = 22. the values used in thi,;; study.
this represents a memory requirement of nearly 80
Mbvte.

4 THE KENDALL SQUARE
RESEARCH KSR-1

The KSR-1 is a virtual shared memory multipro­
cessor. The machine consists of processor-mem­
ory pairs (cells) arranged in a hierarchy of search

groups. each group containinf! 32 cells. The vir­
tual memory is implemented on the physically dis­
tributed memorie,;; by a combination of operating
system software and hardware support through
the KSR ALLCACHE ,;earch enbrine. The OS
manages page migration and fault handling in
units of 16 Khyte. The ALLCACHE engine man­
ages movement of 128 byte subpages within the
system . .\lovement of sub pages is therefore cheap
compared to the movement of pages. The imple­
mentation described in thi,; work is for the 64 cell.
doublP ,;earch group. KSR-1 installed at .\Ian­
chester Cniversitv. *

Each cell i,; a 20 .\1Hz. super-scalar. RISC chip
with a peak 6-t-bit floatinf!-point performance of
40 .\Hlop/ s (achieved with a multiply-add in­
stmction) and 32 .\Ihyte of memory. Two instmc­
tions may he issued per cycle: the in,;truction pair
consists of one load/ store or i/o instruction and
one llnatin_g:-point or integer instmction. The cdls
in a single group are connected by a unidirectional
slotted ring network with a bandwidth of 1
Gbyte/ s. The two search _groups of the .\lanches­
ter machine are connected b,- a further unidirec­
tional slotted ring network with a bandwidth nf -t
Gbyte/ s, where up to :3-t groups can he attached.

The ALLCACHE memorv svstem is a direc­
tory-based system which support,; full cache co­
herency in hardware. Data movement is n~qm~st
driven:_a memory read operation which cannot be
sati,;fied by a cell" s own memory _generates a re­
quest which traverses the hierarchy of rings and
returns a copy of the data item to the requesting
celL A memory write request which cannot be sat­
isfied bv a celrs own memory results in that cell . .
obtaining exclusive ownership of the data item­
the data item moves to the requesting celL In the
process. a!-i the request traverses the memory sys­
tem. all other copie,; of the data item are invali­
dated. thu,; maintaining cache coherence through
an invalidate-on -write policy.

The machine has a Cnix-compatible dis­
tributed operating system-the Mach-based
OSF I 1-allowing multiuser operation. The pro­
gramming model supported is primarily that of
program directives placed in the user code (For­
tran 77 and to some extent, C. [.5 J). The directives
may be placed manually or automatically (by a
pre-processor, KAP). A run-time support system,
PRESTO, and underlying Posix-hased threads
model support the user directives. The run-time

*Running KSR OS version R 1.1.-i.L Octo~wr 20. 199.3
and compiler ven;ion 1.0. May 11. 199.3.

160 KOR:\' ET AL.

system and threads are also directly accessible
through a standard library interface.

4.1 KSR-1 Memory Latencies

The KSR-1 processor has a JeyeJ 1 cache. known
as the subcache. The subcache is 0.5 .\lbne in
size, split equally bPtween instructions and .data.
The data subcache is rwo-wa\· st'l associati\e with
a random rt>placement policy. The cache line of
the data subcache is 6-t bytt>s iJwlf a sul,pa;.!e).

There is a two-cycle pipelirw from the suhcacht>
to registers. A request sutisfit>d within the main
cache of a cell results in the tran,..ft·r of half a ,..uJ,_
page to tht> subcache with a latt>tll'y of 1~ c~cJp,.;
(0. 9 p.:,;. .\ requPst ,.;ati,.;fied n·mott·ly from the
main cache of another cPll ou the same rillf! rP,u!t,..
in tlw transf(·r nf a "·hole stdJJ!Hf!t' "·ith n latPilt·~·of
around 1.')() clock cycles , """"! .•) W' .. This \ ahw has
to be multiplied !Jy a factor of :3 if tlw rP<JLW."t i,
satisfied by a cell of the ,.;ecoud rillf!. A requP,t for
data not eurreutly eacht>d iu any cPIJ" s memory
results in a traditional. hif!h laww·y. paf!t:' fault to

disk.

4.2 Memory System
Behavior-Alignment and Padding

In order for a thread to <HTe,s data on a ,.;ul,paf!t".
the paf!t:' in "·hich the !'lubpa!!e re,.;ides mu"t lw
present iu the cache of the proce,,or otJ which tlw
thread executes. If the pa/!P is not pre>'Pllt. a paf!P
nubs occurs ancl thP opPratitl!! ,.;~·,tem and
ALLCACHE systt-'111 <·ombiue to make the !"'!!"
preseut. Jf a new page caLbe" au old paf!P in the
cache to be displaced. tlw old JWf!e is mon·d to the
cache of another cell if po,sildt>. H uo room t·an lw
found for tlw JH\~!e in any cadw. tlw pa,~P is dis­
placed to disk . .\Io,·iuf! a paf!e to the caclw of an­
other cPI! is much clwapt>r than JlHf!inf! to di,.,k.

Performance of applicatimh is virtual JJJPlllOry
system:; can suffer from the plwnometJ<Jil of false
sharing: if two threads. ruunin!! ou different n·lls.
request separate data items which reside ou the
same . ..;ubpaf!e. t!wt subpa!!e nwy continually
thrash back and forth between cdb . .\lo,t vir·llwl
memon, svstems han· to contPnd with fabe ,.;!wr­
ing at the OS Jla!!e It>\ el. whieh is typically "t'\ era!
kilobnes in size. On the K.SR-1 the unit of mme­
ment around the svstem i,; the n·lativeh· ,.;mall . .
128-byte subpaf!e. At this size. ensurinf! that data
structures accessed Lv sevt·ral threads do unt
cause thrashing can be achieved simply by en,.;ur­
ing that the structures are paclded out to a sub-

page boundary and that they are alif!ned so as to
begin on a ,.;ubpaf!e boundary. This is most ,;imply
achievecl throuf!h suitable dP('laration of data
structures: e.p: .. paddiuf! the inner dinwnsion of
multidimPnsional aJTa\·,.;.

4.3 KSR Fortran Directives

The direct in·s providt>d ,.; up port t!w followi 111!
thrPe forms of parallel ('on,.;truct:

1. Parallel sections "upport tlw eXP('lltion of
multiple code "''f!mPnb in parnllt·l.

:2. Parallel regions ,.;uppon tlw e.\t'<"lltiotl of
multi pit· co pit·,.; of tlw >'<IIIII' codt• "''f!nWnt in
para lit·!.

:3. Tile families "'lJ'i"'rt tlw t'Xt·cution of loop
flt',.;t,.; in p<1l'HIIt·l. ,\loop ne..;t j,.. t·on:-idPn·d to
delinP au itPration ,..pat'P which may lw par­
titiotwd iuto tilt·s . .\Iultiplt· ti!p, may lw PXP­
CLlled in parallt·l. Tlw tile family i, a "Jwt·ial­
ized ver,ion of a parallt•l ref!ion. wilorPd to
tlw rP/!lllar itf'!'ation ,pace,.; ftJIIlld in Fortwu
Do loop,.,. Thi,., form of pawlleli,.;m is tlw
mo!'lt <·ommon in Fortmn pro;.rram,.,. Tlw
syntax wa" de,.,erilwd prt'\ iou,Jy [{. IJLtl \\T

,.;hall outlint· t!w mo,..t important fPatun·,
hen~. The tile dinTtin· takp,.; the followiu!!
form:

c*ksr* tile (index__list. [options] J

[loop nest]

c*ksr* end tile

Thi,.; divide,.; the itewtion "J!<IIT of tlw l""fl nP."t
into a lll!llllwr of rPcWll!!lllar piP<T>' tilt>>''· Tlw,.;,·
tilPs are dwn ,..dwdult-·d to lw t'.\I'CIItt·d in paralkl.
Tlw index__list al!tJ\\·,., tht· JH'tJf!l'illllllH'r to "JW<"­
ify whi<"h iteraton.; are tu lw tiled. The option:- al­
low spel'ilication "f the numlwr of thn·acb to lw
u~ed. aucl a choice of ,dwdulin!! ,.,tratt'!!ie,.;. Tlwn·
are two stratP~IiPs which are of intere,;.t in thi,.;
study: slice and mod. Tlw slice :-;tralef!y di­
,·ides the iteration ,.;pa<"P into jJ rou!!!Jiy t•qually
sized tilt>,.;. The mod stratef!y divides the iteratiou
space into more tlum p tiles :where po,.;,.;il de). and
schedules dwm ou p thread,., in a modulo fa,.;hion.
For either ,.;trategy the size of tlw tilt's <"illl he fi.wd
by the prof!rammer. or determiued at run-time. In
the latter ca,.;e the tile ,.;ize willuonnall\' be chosen

THREE-DL\IE'\:-310'\AL SHALLO\,--\,.ATER ESTL'ARY MODEL 161

as a multiple of 16 to help avoid false sharing of
subpages. The options also allow scalar variables
to be declared as private or reduction variables.
In the case of a reduction variable results are ac­
cumulated in local copies of the variable. and
code is generated which reduces these to a single
variable at the end of the tiled loop.

5 SEQUENTIAL OPTIMIZATIONS

The original code consisted of nearly 1.000 lines
of Fortran code. handling PEl\TA through IT­
PACK [3], a 9,000 line Fortran package which
offers seven iterative methods to solve sparse lin­
ear systems with symmetric positive definite or
mildly nonsymmetric coefficient matrices. The Ja­
cobi conjugate gradient (JCG) mdhod was chosen
because of its convergence properties. As pro­
posed by Casulli and Cheng [1 J. the code was de­
veloped for vector processors, running initially on
a Cray EL-98 with an optimized version of IT­
PACK. The code was transferred to the KSR -1
and compiled without any change. \~·e always
used the highest optimization level of the compiler
(-02 option). Furthermore. ITPACK was com­
piled on the KSR-1 with the -r8 option. Other­
wise all floating-point variables. which are de­
clared as DOlJBLE PRECISIO~. would be
handled as 128-bit values.

It is important to note that one cell does not
have enough memory to cope with the required 80
Mbyte. causing a considerable amount of data to
be placed on the memory of other cells. Hence.
the sequential program suffers communication
overhead since it has to perform some remote data
acces,.;e,.;. Analy,.;i,.; of the code led to following op­
timizations.

1. Reducing memory requirements: From
Figure 2 WP can see that the most natural
loop orders are ijk (i.e., i outermost. kin­
nermost) or j ik, where i runs over the x
dimension. j over the y dimension. and k
over the z dimension. Because the algorithm
is applied to shallow-water problems. the
index space of k is much smaller than that
of i or j . Casulli and Cheng [1] suggest that
the proposed algorithm is suited for vector­
ization: efficient vectorization would re­
quired flipping the loop order to make the
innermostloops the longest. i.e., kij orkj i
order. This "unnatural" loop ordering was
implemented in the original code provided

here only in FU and FV: the remaining
computations used loop order ij k. As the
Cray vectorizing compiler reported that loop
bodies in FU and FY were too long to vec­
torize, the loop bodies were split in two.
This involved the storage of intermediate
data into six arrays of type (n.r, n,., n=). By
reversing this splitting we avoided the tem­
porary arrays, reducing the number of
three-dimensional arrays to seven, and the
total memory required to around 4.3 ..\lbyte.
This in tum reduced the number of remote
accesses.

2. Avoiding bad stride: All loops over i, j.
and k were converted to ij k order. Since
Fortran arravs are stored column wise. the
seven three-dimensional arravs were de­
clared of type (n=. n,., n.r) thus achieving a
correlation between loop nest order and the
layout of arrays in memory. This is vital for
achieving a high rate of data reuse in a hier­
archical memorv svstem. A minor side effect
of k being the innermost array index is the
fact that the solution of the tridiagonal sys­
tems in UPDATE-C and L'PDATE-Y can
be stored directly into u and v. respectively.
rather than having to use an intermediate
vector.

3. Stripping ITPACK: As a first step. the path
followed by the JCG call through the library
routines was identified and isolated: almost
7,500 lines of unnecessary code were de­
leted. Furthermore, the routines SCAL and
Cl\SCAL were modified. ITPACK calls the
former before the first iteration to scale the
matrix, the right-hand side and the initial
solution. After convergence, the scaling is
reversed. In LXY the unsealing of the ma­
trix and right-hand ,.;ide i,.; not necessary
since thev are not used after PEl\TA. Hence
Cl\SCAL was reduced to a single loop.
which was inlined. to unscale the solution.
The modification of SCAL was motivated
retroactively by the necessity to parallelize
ITPACK. The matrix is scaled bv ITPACK
such that all diagonal elements have the
value 1. To perform the unsealing. the origi­
nal diagonal elements are stored at the be­
ginning of the one-dimensional array con­
taining all nonzero elements of the sparse
matrix. This implies shifting the off-diago­
nal elements. an operation that is inherently
sequential. Therefore, the sparse matrix
structure is constructed accordingly in

162 KOR:'\ ET AL.

SETLP, i.e., the diagonal elements were
stored at the beginning. and the rest after­
wards. The consequences for SCAL an~ the
avoidance of the shifting, and the simplifi­
cation of the search for the diai!onal ele­
ments.

The correctness of these code transformations
was confirmed in separate runs by dumpinf! te:o;t
data to a file after each time step and comparin::r
them with the values from the original ,·ersion of
the code. A new version was only acceptt'd if the
files were identical.

The effort invested in these sequemial chan::res
has a significant payoff-the elapsed time for fin·
time steps was reduced from nearly :2.730 second,.;
in the original code to about 600 :-ecouds. :'\early
86% of this enhancement is as a result of the
avoidance of Lad striJe by dedariug the three­
dimensional arrays as (n=. n, .. n.r). On a n•ctor
processor (on which the code was dnelopedi
stride has little impact. since the nwmory on ~uch
an architecture is basicallv '"flat.·· In a hierarchi­
cally structured memory. however. ensuring maxi­
mum reu:;e of data is vital to obtain efliciel11 emit>.
The reduction of data and stripping c1f ITPACK
resulted in 13% and 1% improwment in execu­
tion time, respectively. The total amount of work
invested in these optimisations. including the time
required to become acquainted with the altroridun
and the code. was about 7 person-day~ (we con­
sider 1 person-day to be 8 hours of dedieated
work).

6 PARALLELIZATION

The version containin!! all seqtwntial optimiza­
tions proposed in Section ;) was the starting point
for parallelization. Table 1 shows in detail the
contribution of the different parts to the total run­
time of LXY: computations of similar structure
have been grouped to!!ether since they can be par­
allelized in a similar wav. REST accounts for all
minor computations scattered throughout LXY.
including COPY.

LXY was paralldized stepwise. the ~~"qurnct>
order-reflected in the following subsections­
bein::r determined by the magnitude of the execu­
tion time given in Table 1. The only exception wa~
PEl\TA which was left to the end, because the
loops in ITP.\CK have a different structure to all
the others in LXY. The puralldization stmtet-'Y for
loops not in PE:\TA is already implied in Fi~ur~· 2.
The obYious and successful approach is to ,.;plit
the x. y plane evenly among all threads a1:1d let
each one work independently on its portion of the
plane. This is achieved by tilin[! tlw loops o\·er i
and j. thus:

c*ksr* tile (i, j, strateg)=slice,
private=(k))

do i 1, nx
do j = 1, ny

do k = 1, nz

c*ksr* end tile

Here the index ;;pace of i and j is partitioned
by PRESTO (the KSR run-time ~y::<tem) into con­
tiguous tiles which are distributed between all
threads such that each gets exactly onf' (,-lief"
strate!!yj. All variables are shared (i.e .. ju,.;t oue
copy exists which can be accessed Ly all thread~;
except the tiled index variable,; and tho~e explic­
itly listed as prh·ate.

A detailed anal~ sis showed that the propo:-ed
approach is indeed mlid. The shared data eon:-i;;t
basically of all arrays of size at lea,.;t n,. x n, ,e.::r ..
fu, v. and e). Tiling of the loops re~ult~ in correct
execution since only the thrt:>ad "owning" an in­
dex pair (i, j) updates the corre,.;pondin_!! t>le­
ment of an\· shared arn.n·. awl the tile ,;tatement~ . .
impose the neces,;ary ,.;ynchronizatiou poim,.;
which pre,·ent thrt>ad,; from ,.,tanill{! the execution
of a sub:;equent loop nest until all other threads
have completed the current loop llt>:'l.

:\ote that the island is mapped onto tht:> thread,.;
dependinf! on the cho,;en partitiouin~ of the .r. ·'·
plane. This could lead in some partitioniu~,; to

load imbalance. fiince no computation i,; per­
formed on dry wid points !see ~eetion :3). Benm,;;e

Table 1. Elapsed Times in Seconds for Five Time Slt•ps for the Optimized Sequential Version of LX\'

Bl'_(:L. l'PD.\-
TE_C.

FLFV BLC\'. LPJHTE-\' SETlV PEYL\ LPIHTL\\ H. EST Total

375 158 -t1 15 ()08

THHEE-Dl\IE:\SIO:\:\L SIL\LLO\\--\C\TER ESTL\RY \IODEL 163

the size of the island is small compared to the
estuary, the load imbalance i:-; negligible. For a
complex estuary with irregular wet/ dry bound­
aries a more sophisticated load-balancing strate{:.ry
is required (see Section 3).

Figure ~ shows that some communication of
data between thread,; is necessary in SETCP,
caused when a thread owning index pair (i, j)
but not (i + 1, j) accesses. for instance.
bu (i + 1, j). The set up of the tridia!-!onal matri­
ces (and to a lesser extent some of the right-ham.!
sidt>s) as well as tht> computation in UPDATE-"­
cause similar. regular communication patterns. In
FC and FV. however, the communication pattern
depends on the data and is therefore unpredicta­
ble and irregular (see Section 6.1). The situation
in PEl\TA will be described in Section 6.6.

The performance re,;ults pre,;ented in Section 7
confirm the validity of this approach. The follow­
ing subsections report insight,; and experiences
gained during the procp,;,; of parallelizing tht> vari­
ous segments of LX Y. This parallelization process
required approximately 10 person-day,;.

6.1 FU and FV

The main difficulty encountered in addinl-! the tile
directives (to these and all other loop,;) was tht>
identification of the private variables. Havinl-!
done this for FL and FV. we discovered. usinl-!
PRESTO information. an important amount of
load imbalance cause by an uneven assignment of
indices to threads. ~-e therefore decided to take
manual control of the size and distribution of tiles
in order to improve load balance. In Section 7 we
will give more details and rqJOrt on the re:-;ult,;
obtained.

\'\'e would like to stress the ea,;e of parallelizinl-!
FL and F\" on a virtual shan·d mPnWIY architec­
ture like the K.SR-1. A,; we have alread\ nwn­
tioned. the conununication pattern in t!JPSP ,;tpp,;
is unpredictable: for each (i, j, k) we nPed the
velocity at that grid point (.r,. y1. Zk) and at the
point (.r; - a. :Vi - b. Zk = r). where a. b, and r
depend on the actual valuPs of u (i, j, k).
v (i, j , k) . and w (i, j , k) . Since (.r; - a. YJ -
b: Zk - c) is usually not a !!rid point. its velocity is
obtained by interpolating the velocities of the eil-!ht
cell corner:; containin~ it (the two-dinwnsional an­
alog is shown in Fil! .. 3).

On a message-passing architecture each pro­
cess would have to find out where the information
concerninl-! (.r;- a .. l~i- b, Zk- r) is stored. ~wnd a
message to the corresponding process. and wait

(xi.yj)

I~ ..______

---{x;.a. yj-b)

FIGURE 3 Two-dimensional Lat-rranl!ian interpola­
tion.

for the data to arrive. !\"ote that this protocol is
complicated by the fact that the ··owner·· of (.r;­
a, .l'} - b. Zk - c) does not know who is l!oing to
contact him. or wherL Alternatively. the processes
could exchange "halo'· data. but significant
amounts of the communicated data would be un­
used. On the KSR -1. the remote accesses to array
elements at (.r;- a .. l}- b. Zk - c) are automati­
callv handled bv the ALLCACHE memorv . .
svstem.

6.2 BU_CU, BV_CV, UPDATE-U,
UPDATE-V

Since the tridiagonal systems in these four seg­
ments are solved in paralleL each thread needs its
own copy of the coefficient and right-hand side
arrays. Because KSR Fortran does not support
private arrays. a technique called array expansion
had to be applied. Hereby. an array is expanded
from (n 1 •••.• n,) to (n 1 ••••• n,. p) where p
is the number of threads. so that thread i(i =

1. p) uses the memory locations starting at
index (1. nt. i 1.

Havinl-! done this. the measured run -time of the
parallel version was disappointin~. Lsing GIST. a
tool for lo~§!in~ and visualizinl-! Pvents. serious
load imbalance was detPcted.

Information from PRESTO revealed that some
loops over i run from 1 to n.r and others from 2 to
nx. Tilinl-! the former causes the tir,;t thread to stan
with index 1 and finish with some m 1 • while in the
latter case the same thread handles the range
2 , m 1 + 1. Hence. data locality is not pre­
served. a situation which can lead to a significant
number of renwte data accesses. This was
avoided by embracing all loops in LXY by a KSR
Fortran aflinity rPgion [-i]. which ensures that for
different tiled loop,;. the same val uPs of indices are
scheduled to the sanw threads. even thoul-!h the
loop bounds may bP different. Although this mea-

164 KORN ET AL.

sure did not solve the load imbalance problem
and showed almost no performance benefit, we
maintained it to ease experimentinl! with different
tile sizes and strategies.

Finally we turned to P:\10N, a tool that gathers
hardware monitoring statistics. This information
showed that some threads had an extremely hi;.rh
rate of cache subpage misses, that is they were
accessing a large number of data items located on
other cells. Since this did not occur in BC or BY.
we searched for some different:es in the code
which might account for this, and identified the
"privatized" arrays as the source of the problem.
The scalar expansion of arrays is an example
where the effect of false sharinl! (see Section 4.2)
can be severe. For instance, the element;; A (nz,
3, i) andA(1, 1, i +1) lieinconsecutivemem­
ory locations, the first being written to by thread i,
the second by thread i + 1. If these two 8-byte
data items happen to be on the same 128-Lyte
subpage, this subpage is moved back and forth,
causing unnecessary communication. The smaller
the original array is (in our case it has only 3n=
elements), the higher the degree of false sharing in
the extended array. By padding all extended ar­
rays to subpage boundaries. we eliminated this
effect and achieved much better load balancing.

6.3 UPDATE-W

After the experience gained in the previous steps.
tiling this loop, including identifying the private
variables and expanding some arrays, was tri,·ial.

6.4 REST

The REST segments consist mainly of smaller
loops scattered throughout LXY. Although they
account for very little of the sequential execution
time, it was important to parallelize them .. as oth­
erwise significant data mm·ement will occur. :\lost
of these loops are similar to COPY and were tiled
trivially. Some other loops cover only the bound­
aries of the domain. The bodies of these loops
should ideally be performed by the threads that
own the corresponding x, y index pairs. However
this is not easy to perform on the KSR-1 and since
the performance gain would not justify the eff011.
we did not parallelize them. At the end of LX Y.
the flooding and drying of cells in the horizonal
plane is handled. Introducing parallelism in these
final loops would result in several threads writing
to the same memory location, making the use of
locks or critical regions necessary, and again any

performance gain would not justify the effort in­
volved.

6.5 SETUP

Due to the steps undertaken when optimizing the
sequential code, it was straightforward to set up
the pentadiagonal matrix in parallel maintaining
the correct (sequential) order of the rows.

6.6 PENTA

In the optimized sequential version the call of the
JCG routine in ITPACK took only 6. 7% of the to­
tal time, but this increased as the parallelization
steps progressed. Eventually. havillf(carried out
parallelization of all other segments. about half of
the elapsed time (using 16 cells) was ;-;pent in
PEI\"TA.

ITPACK handles vector operations through
level 1 BLAS-like routines while matrix-n·ctor
multiplications are adapted to the structure of the
data type containing the sparse matrix. These
subroutines contain a single loop of length .V
(where ,Vis the dimension of the linear system-in
our case ,V = n,.n,.) as opposed to two outermost
loops of length nx and n,. encountered in the pre­
vious sections. Therefore we tiled ITPACK loops
specifying that they should not be part of the en­
dosing affinity region.

As a consequence. some data mo,·ement will
occur at the beginning and the end of the iteratiw
procedure. After the first iteration. mo~t data are
local and do not move to other threads. Commun­
ication takes place in each iteration due to the
scatter and gather of wctors in GAXPY -like oper­
ations !Ax + b) with a ~parse matrix A. and the
reduction phase in the parallel execution of dot
products.

1\"ote that the influence of rounding errors can
change the result of parallelized floatinf(-point
vector sums. Therefore we maintai1wd one se­
quential and one parallel version of the dot prod­
uct. The former was used to check the correctness
of all changes (as mentioned in Section 5). the
latter for run-time mea~urements.

Finally. it is important to note that we are cop­
ing with some load imbalance in the parallelized
version of JCG. Tile sizes produced by PRESTO
are by default a multiple of 16 (see Section ·t.:3).
Changing PRESTOs default (for in;;tance to a
multiple of one) leads to better load balance. but
results in false sharinf(. Our experiment~ ;;bowed
that in this trade-off between load imbalance and

THREE-DI\IE.\"SIO.\"AL SIL\LLO\'\"-\.L\TER ESTL\RY ~IODEL 165

false sharint!. tlw former cau~ed the smaller per­
formance penalty. Thi,.; can lw explain<>d by not­
ing that mo,.;t operation~ in JCG are level 1 BLA.S­
like routitws. wlwre tlw ratio of acce,.;:;ed data to
computation i:'i hit!h. \'..t:> then .. fore maintaint>d the
original PRESTO default vahw.

7 RESULTS

To obtain consistt:>nt run-tinw measurPmPnts we
rPmovPd from our t>xperiment,.; tlw output of data.
Durint! a typical production run output is only
prodtH"t:>d infrPqtwntly. FurtlwrmorP. ,n .. (Wr­
formt>d ,;ix tinw stt>ps but nwa:-;ured only dw
elap,.;nl tinw for tlw SPt"orHl to tlw sixth. HPrPby
WP rnaskPd nut the infliiPIH'P of tlw first tinw ,.;tep
which 011 tlw ~SH-1 is lllOrt"' expt->r!:-iin .. that! Sti!J­

SPCfliPllt onP,-. due to pai-!P mis,..es cau,;ed b~- ac­
ce,-sin:r uninitializt>d data for tlw fir:-;t tiuw. In a
normal run con,-istin:r of thousand,- of tiuw step,;
the effect of thi,; is rw;.di,l!ildt>.

\'..hen eomparint! tlw s~·quential and parallel
run-timt>s. we had to con,.;idPr that the parallel
ext:>cution of floatin!!-point sum,; in PE:\"TA will
pt>rturh tlw data. and con,;.Pqtwtlfl~ tlw ruuulwr of
iteration" performed hy .ICC may differ in the SP­
qtwntial and parallt>l n .. r,..ion. In ottr f'Xlwri­
ments-tinw Stf·'P" two to six-tlri" did not nr·cur.
resultint! in a ··fair·· compari,..on. Loll!!l'r run,; t!='­

in!! the parallel ver·,..ion han· ,..lwwn that tlw num­
ber of iteration ,.;tep,; performed by JCC ha,.; a
small varialll't"'. It is tlwreforP rea,.;onal dt• to ex­
trapolate tlw pf·rforrnarwt· rP,.;trlt,.; of short r11n,.; to
loll!! one,;.

A prolilt· of tlw code showed that ,..ul>n>tlline
THL which lllt'n·ly inrt·q•oiHt•·,., tlw \t·lo,·it~ of an
intt·rior n·ll point from dw \·elm·itiP,; at the t'i!!ht
corn..-r point,;. i,.; •·allt-d rwarly I million tinw,.; in
eyery time ,.;tt•p. :\ll otlwr ,..,tf,routirw,.; an· called
considt·rahh- f<·w..-r tinw" and n•ruain <"orhidPra­
Lly more computation. \\-e decided then·fore to
inline TRI at compile time. IHrt no other routirw,.;.

Bd'ore pre,.;c>ntin!! the ol>tained re,.;u[t,.._ we de­
~cribe the cho,.;r·n tile sizP and tilin!! strale!!y for all
loops ouhidP PE\TA. Load lwlance i,., usuallY . .

achieved by lun·ing more tiles than cells and dis­
tributing the tiles in a modulo fashion. \\.hen we
did this however. we discovered that the memorv
requirements per thread were not decreasing with
the number of cells. Remember that our problem
requires around 4;3 :\lbyte of memory and that
each thread should access roughly ont' pth part of
it. where p is the number of cells. This effect can
be explained by considering the layout ofF ortran
arravs within the KSR-1 memorv architecture. . .
l\'ote that n= X n,. X 8 bytes = 16 Kbyte. which is
the size of a page. Thus. the access for instance of
u (kO, j 0, iO) will caust:> the page containin:r the
elements u (k, j, iO) (k = L n=. j =

1. n,. J to become resident on the requestin:r
ct>ll. \'.'ith the modulo tiling strate~-- we can ex­
pect that each thread will use almost t:>vt>ry value
of i. HencP. almost every paw· is requested by
every thread. even thou:rh only a few of irs sub­
pages are actually u,.;t>d by an~- one thread. i\'ote
that this false sharint! of pa!!e" is different from the
false sharing of suhpat!e,; encountered in Section
6.2. To avoid thi,; problt:>m wt' let each thread
work on exactly one tile of size r rz.r/ p 1 X n,. (equiv­
alent to tilin!! mer i in a slice fa,.;hion; so that
each of the p threads requires only a pth of all
pages and acee,.;se,.; all ""bpat!es within them. Thi,­
doe,.; however n·,.;11lt in some load imhalanct>-see
hdow.

Table :2 comains tlw run-times obtained fol­
lowint! the above exrwrimental description. Each
run was repeated three time,.;: Tablt> 2 prt:>senb
the ht:>st value of thrt:>e. Furthermore. all rurh were
executed with tlw al!ocute_rel!s command. which
en,-ures exclusi,-e tbt~ of a l!ivPn numht>r of ct>lls.
By ,.;pecifyin:r in the tile statt:>ments the same num­
lwr of thread,.. a:- allocated cell:-.. 'n· achieYt"d a
one-to-one mappin!! hetwPen cell,- and thrPads.
Finally. for the experiment,; usillt! up to :32 cells.
we ensured that all the cell,; were on tlw samt:> rini!.

:\'ote the di,..crepancy lwtwet·n the ,.;equemial
and the one-cell parallel time. This can be ex­
plained by the increa,.;e in memory rt:>quiremenr,.;
caused by array expan,.;ion. :\'ote al:-;o that dte four
cdl time is less than half that on two cell,;. \'.'hen
usinl! one or two cells. there is not enoui!h memory

Tablt" 2. Elapsed Timt• Pt"r Time Step in Seeonds for the St>qut'ntial and Parallel Version of SW:~D

.\"umlll'r of c,•lb

1 (,;pq I 1 (pari 1() :2-t :3:2 -tO

1:2:2 1:26 6:2. <) 1.">.1'1 ;).6 -t.: 3.6 3.31

166 KOR:'\ ET .\L.

to hold all of S\C3D"s data. and it is necessarv for
the operatin~ system to place some data in other
cells' memories. ""ith four or more cells. however
there is enough memory. and the number of re­
mote accesses are considerabh- reduced. ,,.e also
see that the use of more than -±8 cells gives almost
no further reduction of the run-time.

Figure 4 shows the simulation performance in
time steps per second. The naive ideal perfor­
mance is the reciprocal of the naive ideal time.
which is computed by simply dividin!! the execu­
tion time of the optimized sequential code by the
number of cells. To check that extrapolation of
our results to long runs is indeed valid. we ran
6.000 time steps on :32 cells (using both rin!!s.l.
This simulation took 7 hours -±7 minutes. whieh
corresponds to 0.21 timesteps per second. the
same n1lue as we obtained from mea,.;urin!! five
time steps.

""e have performed an analysis of the parallel
overheads in order to identify the major factors
causing the discrepancy between the naive ideal
and the actual performance. ,,.e define the total
overhead as the difference between the actual
measured time and the nain· ideal time. "·e then
apportion the total overhead into four categories
as follows:

0.4

0.35
u
Q)
(/) .._
(/) 0.3 c.
Q)

Ui
Q)

E 0.25
E,
Q)
(.)
c 0.2 (1j

E .._
0
't:
Q) 0.15

Cl.
c
0

~ 0.1
"3
E

(/)

0.05

0

Actual
Naive Ideal

'

12 4 8 16

1. Cnparallelised code. This is the uverlu·ad
incurred due to the parallt'l Yersion contain­
ing sections of sequential code.

2. Load imbalance. This is the merlwad that
results from processors havinf! to wait at a
synchronization point for other proces~or,.;
to finish their parallel tasks.

3. .\lemory acces~es. This the m·erhead d,ue to

the parallel and sequential Yersions spend­
in~ different amounts of time acce;-;sin~

data. 1\"ote that data acct"sses include !Joth
local (,.;ame cell) and remote accesses.

-i. Synchronization and schedulill!!· Thi,.; is the
m·erhead cau,.;ed by the implementatiou of
synchronisation points (in s"·:3D these arl'
all barrier s\·nchronisations '· and the
scheduling of tiles to threads IJ\· the
PRESTO run-time ~\~tcm. Thc~e are
!!rouped to~ether because they are IH1th a~­
sociated with the addition of tile directiws
to the code.

1\"ote that this analysis 1s ,.;omewhat t·ompli­
cated by the fact that the sequential Yersion makes
a substantial number of remote memory acn~,.;,.;es.
because there is too much data to fit in the mem­
ory of a sin~le cell. This makes the naiYe ideal time

24 32 40 48 56
Number of cells

FIGL'RE 4 Simulation performanl'e of S\'\:3D.

TIIHEE-DI\11-:-'SIO-'.\L SIL\LLO\\ -\C\TEH ESTL\RY \IODEL 167

somewhat pessimistic. and re,;ulh in nef!atiYe val­
ues of memory acces,.; overhead. In such a situa­
tion the time spent by dw parallel \ersion in mak­
ing remote data accesses is a useful additional
statistic. as it givt•,; a better impres,.;ion of the per­
fornlance loss resultinf! from communication of
data between processor,.;.

The result,.; of this anah-sis for 16. :3:2. and -tB
cells are di,;played in Tah!P :~. Tlw analy,.;is shows
that tlw total overheacb are increasinf! a,; the
number of cells increases. such dmt on -tB pn>ees­
sors the o\erhead accounts for rwarh :3()'1o of the
measured execution time. This sugge,.;ts that with
the present parallPiization strate1-':·· it is unlikPiy
that the execution time could lw reduced lwlow :3
seconds per time step for a problem of this size. no
rnatter how many pron•,.;sor,., \n•re u,.;Pd.

It is dear that load im!Jalance i:-; the most signifi­
cant source of overhead. About half of this load
imbalance can be attrilnlted to tlw uneven assign­
ment of indices to threads. since 1 b. :3:2. and -tB
are not divisors of n_,.. For example. u,.;ing :3:2 pro­
cessors the tile size is 11. which results in two
processor,.; being idle. Thi,.; could be ameliorated
by transforming all double-rwsted loops over i
and j into one loop from 1 to n . .- X n, ..

The remaining load imbalance cannot he ex­
plainPd by unevPn assignment of indices to

threads in PEl\TA (see Section 6.6;. Lsing hard­
ware monitoring information we discm·erecl that in
many of the tiled loops. some threads are stalled
waiting for data almost twice as !on!! as others.

Table 3. Owrhead Analysis per Time Step

.\umlwr of (:elb

16 :~:2 -t8

.\ka~un·d tirne s.:w -t. -:'.) :3.60
-'ain' iclt·al tinw '7. lJO :3.80 :2.SS
Total overhead (). 70 0. <):) 1.0.)
L nparallt·lized
emit• ov<-'rhf'tHI (J. -tO 0.-tO 0.-tO
Load -imLalance
overhead 0.70 0.7;) (J. -t.)

M_emory acce,;s
overhead -0.60 -0.-t.) 0.00
Svnchron iza tion I

,.;chPdulinl!
overhead 0.20 0.2:> 0.:30

Remote access
time 0.1;) 0.13 0.15

1\'ote. :\II tirnPs an· in set·tnuJs and an-· ~in-·n to du· rH·an·st

()_();) Se{'OflcJ,;.

although all have the same workload. This addi­
tional stalling is not caused Ly remote accesses.
but Ly subcache misses. The implication of this is
that for certain values of i and j there is consider­
ably more overhashing (and ht>nce displacement)
of subcache lines, than for others. The precise
cause of this is current!,- not clear. but we believe
it may be a side effect of havinl! a number of large
arravs with a varietv of sizes. ~lore research is . .
needed to understand and overcome this over-
head source. since it causes sif!nificant degrada­
tion of performance with increasing numbers of
cells.

The next most important source of overhead is
the unparallelized code. ~lost of this code is con­
cerned with setting boundary conditions. and
again with some more effort it may be possible to
parallelize some of these sections. although, of
course. doing so may increase the overheads from
other sources. There is little that can be done to
reduce the cost of svnchronization and tile sched­
uling. In each time step around 200 parallel loops
are executed r:there is some variation depending
on the number of steps required in the conjugate
gradient solver). Experiments ha,·e shown that
each parallel loop incurs a synchronization and
scheduling overhead of 1 ms for small numbers of
cells. risintr to 1.-t ms on .')6 cell:'i. Finally we note
that remote data accpsses are the least significant
source_ of performance loss. hence there is no
point in attempting to reduce the number of re­
mote accesses before the other more significant
sources of overhead have been addressed.

8 FUTURE WORK

After the validation of the code with a simple ge­
ometry. we intend to apply it tu a real-world estu­
ary. Bideford Bay (southwest Lnited Kingdom).
which is used as a benchmark to allow a standard­
ized approach to the testing and comparison of
modeling software used for hydrodynamic and
bacterial dispersion modeling [11]. This will re­
quire a more sophisticated load-balancing strat­
egy in order to cope efficiently with highly irregular
wet/ dry boundaries which may be changing
markedly with time. One possible strategy consists
of allowing the boundaries between the partitions
of the horizontal plane to change as the simulation
proceeds, in such a way as to equalize the time
spent by each proce~sor [2].

Section 7 showed that further analysis is neces­
sarv to understand and overcome some overhead

168 KORN ET AL.

sources, particularly the load imbalance. and the
remaining unparallelized code. l\ote that the load
imbalance problems should be solved by a dy­
namic load-balancing strategy. It would also be
interesting to verify the parallelization strategy on
other virtual shared memory architectures, such
as the Cray T3D and Convex Exemplar.

There are several planned enhancements to the
computational model, including pollution trans­
port, sediment transport, and plume dispersion.
Also a more sophisticated turbulence model in­
volving the transport of Reynolds stresses directly
is planned. Algorithms for biological and chemical
behavior of pollutants are also desirable. Since the
governing equations for each of these additions
are of essentiallv similar form to those studied
here, and are assumed to be largely uncoupled
from the hydrodynamics equations, we can expect
to apply the same algorithmic structure and paral­
lelization strategy.

We also envisage some enhancements to the
numerical scheme, including the avoidance of the
time step limitation due to the explicit treatment of
horizontal mixing. This could be achie"~ed by an
implicit treatment, possibly as a fractional step
process. A greater challenge, especially for paral­
lelization, will arise from the introduction of adap­
tive mesh refinement. For example we might
adopt a strategy where mesh sizes are successively
halved in proportion to the inverse of water depth
and spatial flow gradients, e.g., vorticity (9].

9 CONCLUSIONS

We have described the parallelization of a three­
dimensional shallow-water estuarv model on the
Kendall Square Research KSR-1. Although the
semi-implicit Lagrangian scheme was initially de­
scribed as an algorithm well suited for vectoriza­
tion [1], we have found that its parallelization is
natural and easy to perform, resulting in excep­
tionally efficient execution.

Recall that the time stepping solution process
revolves around the solution of a pentadiagonal
system of equations describing the evolution of the
surface elevation. This system of equations can
itself be solved in parallel, but parallelism can also
be exploited in all other major computation seg­
ments such as the set up of the matrix and right­
hand side coefficients for the system describing
the new surface elevation. These matrix coeffi­
cients and right-hand side terms result from the
solution of a set of independent tridiagonal sys-

tems of equations, one at each grid point in the
horizontal plane. The parallel algorithm partitions
the horizontal plane equally between threads.
each one setting up and soh·ing a !!roup of inde­
pendent tridiagonal systems. This partitioning ap­
proach is used for all other code segments. except
for the conjugate gradient solver itself.

In practical terms we have demonstrated that a
simulation which would require several days of
CPU time on a powf:'rful workstation or a modest
vector processor can be run overnight on :32 cells
of a KSR-1. ~-e have also found that the develop­
ment process. consisting of sequential optimiza­
tions followed by an incremental parallelization
strategy. has given very good performance without
an excessive amount of programmer effort. \,.e
have performed an analysis of the sources of over­
head in the parallel version of the code. which hail
allowed us to identify the aspects of the parallel­
ization strategy which are most in need of atten­
tion should it prove desirable to further reduce the
run-time by using more processors.

ACKNOWLEDGMENTS

This work was funded bv ESPRIT project 6253
(SHIPS).

REFERENCES

[1] V. Casulli and R. T. Cheng. ··Semi-implicit finite
difference methods for three-dimensional ~hallow
water flow," Int.]. ,\iumericul J1ethods Fluids.
vol. 15. pp. 629-6-tS. 1992.

[2] G. K. Egan. G. D. Hiley. and J. ~1. Bull. Proceed­
ings of the 5th A CJJ International Conference on
Supercomputing. 199-l.

[3] D. R. Kincaid, J. R. Respe;;s, D. ~1. Young. and
R. G. Grimes, ·'JTPACK 2C: A Fortran package
for solving large sparse linear systems by adapti,·e
accelerated iterative methods.'· ACJ1. Trans .
. tfath. Software, vol. 8. pp. 302-322. 1982.

[4] K. S. R.. KSR FORTRA:'\ Programming. Kendall
Square Research. 170 Tracer Lane, \'l;'altham.
MA, February 15, 1992.

[5] K. S. R., KSR Parallel Programming Guide, Ken­
dall Square Research, 170 Tracer Lane. \'l;'al­
tham, MA, February 15. 1992.

[6] J. J. Leendertse, "AspPcts of a <"omputational
model for long period water wave propagation ...
Memorandum R:\1-529-t-PR. Hand. Corp .. Santa
:\1onica, California, 196 7.

[7] P. M. Lloyd and P. K. Stansby. Proceedings of

THREE-DL\IE:\SIO:\AL SHALLOW-""ATER ESTUARY MODEL 169

lrli/H symposium on lluces-Ph.1·sical and Su­
merical Jlodelling. Vancu1wer. Canada. 199-J.

[8] P. K. Stansby and P. ~L Lloyd. ··A sPmi-implicit
Lat.rrant-rian scheme for 3-D :;hallow-water flow
with 2-layer turbulence modeL,. Ent-rineering De­
partment R<'port. C niver,;ity of .\lane hester. 199-t
(Submitted to Int. }. :Ywnerical Jfethods Fluids).

[9] C. P. Thompson. G. K. Leaf. and]. \"an Ro,.;en­
dale. ··A dynamically adaptive rnultip;rid algo­
rithm for the iJH"ompres,;iblf• i"avier-Stoke,; equa­
tions-ntlidation and modd problems.·· Argonne

National Laboratory Preprint MCS-1 o:J-0989.
1991.

[1 OJ Delft Hydraulics, "TRISlJLA: a program for the
computation of non-steady flow and transport
phenomena on curvilinear coordinates in 2 or 3
dimensions,"' Delft Hydraulics, April 1993.

[11] WRc. "Specification for benchmark testing pro­
gramme for models for thP purpose of marine hy­
drodynamic and bacterial dispersion modelling.· •
FWR Project P-00?, WRc, Henley Road. Buck­
ing-hamshire SL? 2HD, England. October 199:3.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

