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ABSTRACT

Flows in estuarial and coastal regions may be described by the shallow-water equa-
tions. The processes of pollution transport, sediment transport, and plume dispersion
are driven by the underlying hydrodynamics. Accurate resolution of these processes
requires a three-dimensional formulation with turbulence modeling, which is very de-
manding computationally. A numerical scheme has been developed which is both stable
and accurate—we show that this scheme is also well suited to parallel processing,
making the solution of massive complex problems a practical computing possibility. We
describe the implementation of the numerical scheme on a Kendall Square Research
KSR-1 multiprocessor, and present experimental results which demonstrate that a prob-
lem requiring 600,000 mesh points and 6,000 time steps can be solved in under 8 hours
using 32 processors. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

Environmental impact studies relating 1o estuarial
or coastal regions invariably involve computa-
tional flow simulation with additional simulation
for the transport of pollution. sediment. or ther-
mal plumes. The equations to be solved are
known as the shallow-water equations which are
based on the Navier—Stokes and continuity equa-
tions. with the assumption that the pressure
everywhere in the flow is simply hydrostatic. The
formulation may be simplified further by making
the “*depth-averaged™” assumption where velocity
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is assumed uniform across the water depth. Com-
putational schemes for such two-dimensional
(depth-averaged) flows have been in existence
since the pioneering work of Leendertse [6] and
have proved useful in predicting flows in “well-
mixed”” conditions.

However, the turbulent boundary laver velocity
profile will not be typical of a steady unidirectional
current when flow curvature effects and eddy
shedding are significant. This has obvious impli-
cations for predicting the transport of pollution—
usually released near the sea bed—where the ver-
tical distribution of velocity and turbulence
(mixing) processes has an important influence.
For sediment transport the near bed velocity and
turbulence characteristics are also of vital impor-
tance. When buoyant plumes are released from
power station outfalls, vertical motion is clearly
significant to plume dispersion. Overall it can be
seen that computation of the shallow-water equa-
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tions in three-dimensional form is highly desir- those aspects of the architecture and program-
able. ming mode] relevant to this study. Before embark-

Casulli and Cheng [1] developed a semi-im- ing on the parallelization process, several optimi-
plicit, Lagrangian finite-difference scheme as an zations were performed on the original, sequential
alternative to a Eulerian, alternating direction-im- code; these are described in Section 5. Section 6
plicit scheme [10] avoiding the need for upwind details the parallelization strategy and the prob-
differencing to give stability and the time step limi- lems encountered in its stepwise dppthtlon 1o the
tation of the Courant condition due to convective optimized code. Section 7 presents run-time
terms. Casulli and Cheng applied their scheme to results obtained on the KSR-1. which confirm the
tidal flows in the San Francisco Bay and the Ven- suitability of the numerical scheme to parallel pro-
ice Lagoon reporting good results. cessing. Furthermore. the sources of overhead in

Stansby and Lloyd [8] refined this scheme and the parallel version are identified and analyzed.
applied it to the less spectacular, but probably We conclude with Section 8 in which we outline
more hydrodynamically demanding, case of flow future enhancements in the physical and numeri-
around a circular island with sloping sides gener- cal model and their consequences for paralleliza-
ating vortex shedding (see Fig. 1). The choice of tion.

this simple geometry was motivated by the desire
to validate the model before applving it to real-

world estuaries (see Section 8). Hence, the output 2 THE THREE-DIMENSIONAL

of the program was compared to detailed mea- SHALLOW-WATER MET
surements obtained from a laboratory tank. re-
sulting in good agreement [7].

Typical simulations require the order of 10° are as follows
mesh points and several thousand time steps. On

HOD

The three-dimensional shallow-water equations

scalar computers this would be compurationally du u du + 0 du w du _
prohibitive. Even on a modest vector processor. at dx oy 0z
the Cray EL-98, the code required excessive com- _ o 4 Ba (3211 d U) 9 (u < 1 ou )
T . . g iy 2 2
puter time {days) for large problems. In this article ox p \dx ay dz \ p 3z
we investigate the use of parallel processing for o . u dv » w w v _
producing such simulations within practical time at dx ay 0z
scales. _,m , pa (820 a%) L9 <M1'6v)
Section 2 introduces briefly the underlving & 6y p \ox? 6)'3 dz \p 9z
physical model and the numerical scheme. The 9 n
resulting algorithm and its memory requirements = f ds + _. W7 dz
are explained in detail in Section 3. Section 4
gives an overview of the target parallel platform. where z; is the bed elevation above a reference
the Kendall Square Research KSR-1, focusing on level and % is the water surface elevation: x. y. =
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FIGURE 1 Surface flow after 2.000 time steps in the simulation.
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are Cartesian coordinates: u. v. w are the corre-
sponding velocity components: g is acceleration
due to gravitv; p is water density (assumed con-
stant): and u;- and py are vertical and horizontal
mixing coefficients. The boundary conditions at
the bed are

Ju 5 ov 5
:u'l"a—_ = Tr My 5__ =Ty

where 77 and 7° are the & and v components of the
shear stress. respectively. At the surface no wind is
assumed. so that

i
#’8: “’8: ’

In the laboratory experiment described in the
previous section. the water is initially stationary
and the water level horizontal. The inlet flow rare
is then increased with time as a quarter sinusoid
and maintained after a specitic time step at a con-
stant value to represent a steady current. At the
outlet boundary. the velocities u and ¢ are given
zero normal gradients and the water depth is
fixed. At the two side walls. v and the normal gra-
dients of u and 7 are set to zero.

The original formulatdon of the numerical
scheme proposed by Casulli and Cheng [1! used a
uniform mesh in the vertical direction. constant
vertical and horizontal mixing coefficients. and
the Chezy coefficients to give bed boundary con-
ditions. In order to give an accurate representation
of bed and water-surface conditions. Stansby and
Llovd [8] introduced the o-coordinate system o =
(z — m)/(n — z¢) for the vertical direction. defining
the bed surface by its roughness height. This en-
ables a turbulence model for the vertical direction
to be incorporated: Stansby and Llovd proposed a
simple two-layer mixing length model for rough-
turbulent flow. Furthermore. they introduced for
horizontal mixing a mixing coefficient propor-
tional to depth and friction velocity.

The finite-difference mesh used in the numeri-
cal computation is a staggered rectangular system
with a “*wet/drv"” boundary crossing the horizon-
tal mesh obliquely (giving wet and dry cells). This
is not a severe limitation since velocities close to
the shoreline with gently sloping beds tend to be
quite small. The o-coordinate system entails a
fixed number of vertical cells at each horizontal
mesh point. We will refer to the number of mesh
points in each spatial direction by n,, n,. and n..
and to the corresponding coordinates bv x(i

H‘
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1. . ..y (=1 .n), and z (k =
1.. . ..n).

An important feature of the numerical scheme
is the Lagrangian treatment of the convective
terms. This avoids the need in conventional
Eulerian schemes (e.g., TRISULA [10]) to gener-
ate stability through upwind differencing with
some inevitable numerical viscosity. The terms in-
volving surface elevation gradient and vertical
mixing are handled implicitly for stability,
whereas the terms involving horizontal mixing are
handled explicitly. The equations are solved as
fully coupled in both horizontal directions pro-
ducmﬂ' at each time step a pentadigonal system of
equations for the new values of n at each grid
point in the horizontal plane. Schemes which in-
volve uncoupling (alternating direction schemes)
require smaller time steps to be used for equiva-
lent accuracy.

3 THE APPLICATION PROGRAM: SW3D

In this section we describe the structure of a For-
tran 77 program, SW3D, which implements the
three-dimensional shallow-water method de-
scribed in Section 2. The version of SW3D which
forms the starting point for the parallelization pro-
cess had previously been run on a Cray EL-98
system.”

The main computational effort of SW3D is con-
tained within a subroutine called LXY, which is
sketched in the pseudo code shown in Figure 2.
We distinguish between actual array elements
{(written in truetype font) and mathematical ob-
jects and operations (using standard notation).
For instance, A"/ denotes a n. X n. tridiagonal
matrix which depends on the index pair (i, j),
while u(i, j, k) represents the (i, j, k)-th
element of the arrav storing the values of u. The
vectors by and b, in BU_CU and BV_CV are fixed,
and n; in SETUP implies a numbering scheme of
the n, X n, pentadiagonal matrix P.

Most of the work in LXY is devoted to setting up
the matrix P and right-hand side r of the linear
system Pe = r which is solved for the new surface
elevation. For each time step the sequence of op-
erations is as follows: first, code segments FU and
FV evaluate, for every grid point, the finite-differ-
ence operator arising from the explicit terms for
convection and horizontal mixing, and store the
values into arrays fu and fv, respectively. Next,
segments BU_CU and BV_CV each solve (for every
(i, j)) two tridiagonal linear systems of dimen-
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do t = 1, maxt

FU

doi=1, n,
doj=1,n,
dok=1,n,
compute Lagrangian convection and horizontal diffusion terms in
store result in fu(i,j,k)

FV

doi=1, n,
doj=1,n,
dok=1,n,
compute Lagrangian convection and horizontal diffusion terms in v
store result in fv(i,j,k)

BU_CU

doi=1, n;
doj=1,n,
setup n, X n, tridiagonal matrix At using values stored in u
bu(i,j) = o7 (AGD) gy
setup n.-dimensional vector b7} using values stored in fu
cu(i,j) = b7 (AGD) 71 pD)
BV_.CV

doi=1, n,
doj=1,n,
setup n, X n, tridiagonal matrix A6 using values stored in v
bu(i,j) = b7 (AC9) by
setup n.-dimensional vector b7 using values stored in fv
ev(i,3) = bT (AC) 7 pti)
SETUP

doi=1, n,
doj=1,n,
compute 5 non-zero entries of row n;; of P using bu(i,j), bu(i+1,j), bv(i,j), bv(i,j+1)
compute element n;; of r using cu(i,j), cu(i+1,j), cv(i,j), cv(i,j+1)

PENTA
solve pentadiagonal system Pe = r; store results in array e
COPY
copy u into uold, v into vold
UPDATE-U

doi=1, n,
doj=1,ny
setup m, x n. tridiagonal matrix A7) using values stored in uold
setup n,-dimensional vector (/) using values stored in fu and e
u(i,j,k) = k-th element of (A¢)) 7" (9
UPDATE-V

doi=1, n,
doj=1,n,
setup n, x n, tridiagonal matrix A®7) using values stored in vold
setup n,-dimensional vector b0} using values stored in fv and e
u(i,j,k) = k-th element of (A(i’j))_l L)
UPDATE-W

doi=1, n,
doj=1,n,
dok=1,n,
compute w(i, j,k) using values stored in u and v

FIGURE 2 SW3D’'s main computational cvele—subroutine LXY.



THRELE-DIMENSIONAL SHALLOW-WATER ESTUARY MODEL 159

sionn n_.. which result from the implicit vertical
mixing term. The dot product of the solution of
these svstems with a given vector is stored in ar-
ravs bu. cu and bv. cv. respectively. Segment
SETUP uses this information to compute the en-
tries of P and r. PENTA solves the pentadiagonal
svstem. leaving the solution in array e.

Having copied the current values of u and v
into uold and vold (COPY}. the new « and ¢
velocities are computed in segments UPDATE-U
and UPDATE-V. respectively. Here a further tri-
diagonal system is solved for each index pair
(i, j), giving the new velocities for all values of
k. The final segment of LXY. UPDATE-W. com-
putes the new w velocities.

It is important to clarify the treaument of dry
points. For those indices (1, j). where (2, vy, 34
i5s above the water. the loops FU. FV. BU_CL.
BU_CV. UPDATE-U. UPDATE-V. and UP-
DATE-W do nothing except set the corresponding
arrayv elements to zero.

Figure 2 contains only the most computa-
tionally significant segments of LXY. Further code
such as the calculation of the new water depth
using the new surface elevation or the tlooding of
dry points are not included. This code will. how-
ever. not be neglected when analvzing the run-
time.

To determine the memory requirements we in-
troduce the notation {n;. . . Ny to denote m-
dimensional arravs with ny X .
point elements. Hence. the arrays bu and bv are
of tvpe (n,. n,). while P is stored in an array of
type (dn,. n,). Since the tridiagonal matrices are
set up on demand. one array of wvpe {(n.. 3] suf-
fices, otherwise it would be necessary to store
2n,n, of these. Clearly the memory needed is
dominated by the seven three-dimensional arravs
fu. fv. u. v. w. uold. and vold of tvpe (rn,. n,.
n.). The original code uses six further arrays of the
same type (see Section 3} leading. for 64-bit float-

. X n,, floating-

ing-point numbers. to a memory requirement of at
least 13 X n, X n,. X 8 byvtes. For n, = 329. n, =
105, and n. = 22. the values used in this study.
this represents a memory requirement of nearly 80

Mbvte.

4 THE KENDALL SQUARE
RESEARCH KSR-1

The KSR-1 is a virtual shared memory multipro-
cessor. The machine consists of processor—mem-
ory pairs (cells) arranged in a hierarchy of search

groups. each group containing 32 cells. The vir-
tual memory is implemented on the physicallv dis-
tributed memories by a combination of operating
svstem soltware and hardware support through
the KSR ALLCACHE search engine. The OS
manages page migration and fault handling in
units of 16 Kbyte. The ALLCACHE engine man-
ages movement of 128 byte subpages within the
svstem. Movement of subpages is therefore cheap
compared to the movement of pages. The imple-
mentation described in this work is for the 64 cell.
double search group. KSR-1 installed at Man-
chester University.*

Each cell is a 20 MHz. super-scalar. RISC chip
with a peak 64-bit floating-point performance of
40 Mflop/s (achieved with a multiplv—add in-
struction) and 32 Mbyte of memory. Two instruc-
tions may be issued per cvcle: the instruction pair
consists of one load/store or i/o instruction and
one floating-point or integer instruction. The cells
in a single group are connected by a unidirectional
slotted ring network with a bandwidth of 1
Gbyte/s. The two search groups of the Manches-
ter machine are connected by a further unidirec-
tional slotted ring network with a bandwidth of +
Gbyte/s, where up to 34 groups can be attached.

The ALLCACHE memory system is a direc-
toryv-based system which supports full cache co-
herency in hardware. Data movement is request
driven:.a memory read operation which cannot be
satisfied by a cell's own memory generates a re-
quest which traverses the hierarchy of rings and
returns a copy of the dara item to the requesting
cell. A memory write request which cannot be sat-
isfied by a cell's own memory results in that cell
obtaining exclusive ownership of the data item—
the data item moves to the requesting cell. In the
process. as the request traverses the memory sys-
tem. all other copies of the data item are invali-
dated. thus maintaining cache coherence through
an invalidate-on-write policy.

The machine has a Unix-compatible dis-
tributed operating system—the Mach-based
OSF/1—allowing mulduser operation. The pro-
gramming model supported is primarily that of
program directives placed in the user code (For-
tran 77 and to some extent, C. [53]). The directives
may be placed manually or automatically (by a
pre-processor, KAP). A run-time support system,
PRESTO, and underlying Posix-based threads
model support the user directives. The run-time

* Running KSR OS version R1.1.4.1. October 20. 1993
and compiler version 1.0. May 11, 1993,
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system and threads are also directly accessible
through a standard library interface.

4.1 KSR-1 Memory Latencies

The KSR-1 processor has a level 1 cache. known
as the subcache. The subcache is 0.5 Mbyite in
size, split equally berween instructions and data.
The data subcache is two-wayv set associative with

a random replacement policy. The cache line of

the data subcache is 64 bytes ‘hall a subpage).
There is a two-cvele pipeline from the subcache
to registers. A request satisfied within the muain
cache of a cell results in the transfer of half a =ub-
page 10 the subcache with a lutency of 18 eveles
(0.9 us;. A request satisfied remotely from the
main cache of another cell on the same ring resulis
in the transfer of a whole subpage with a latency of
around 150 clock cyeles (7.5 =i This value has
to be muliiplied by a factor of 3 if the request is
satistied by a cell of the second ring. A request for
data not currenty cached in any cell's memory
results in a wraditional. high lateney. page fault 10

disk.

4.2 Memory System
Behavior—Alignment and Padding

In order for a thread to access data on a subpage.
the page in which the subpage resides must be
present in the cache of the processor on which the
thread executes. If the page is not present. a page
miss  occurs and the operating svstem  and
ALLCACHE system combine to make the page
present. If a new page causes an old page in the
cache 10 be displaced. the old page is moved o the
cache of another cell il possible. If no room can be
found for the page in any cache. the page is dix-
placed to disk. Moving a page 10 the cache of an-
other cell is much cheaper than paging 10 disk.
Performance of applications is virtual memory
svstems can sufler from the phenomenon of false
sharing: if two threads. running on different cells.
request separate data items which reside on the
same subpage. that subpage may continually
thrash back and forth between cells. Most virtual
memory svstems have (o contend with false shar-
ing at the OS page level. which is tvpically several
kilobvtes in size. On the KSR-1 the unit of move-
ment around the svstem is the relatively small
128-byte subpage. At this size. ensuring that data
structures accessed by several threads do not
cause thrashing can be achieved simply by en=ur-
ing that the structures are padded out 10 a sub-

page boundary and that they are aligned so as to
begin on a subpage boundary. This is most simply
achieved through suitable declaraton of data
structures: e.g.. padding the inner dimension of
multidimensional arravs.

4.3 KSR Fortran Directives

The directives provided support the 1’0110\\‘i11:~r
three forms of parallel construet:

1. Parallel sections support the execution of
multiple code segments in parallel.

2. Parallel regions support the execution of
muliiple copies of the same code segment in
parallel.

3. Tile families support the execution of loop
nests in parallel A loop nestis considered 1o
define an iteration space which may be par-
ttioned into tiles. Mualtiple tiles may be exe-
cuted in parallel. The tle familv is a special-
ized version of a parallel region. wilored 10
the regular iteration spaces found in Fortran
Do loops. This form ol parallelism is the
most common in Fortran programs. The
svntax was described previously [4 . but we
shall outline the most important features
here. The tile dirceiive takes the following
form:

c*ksr* tile (index_list, [options])

[loop nest]

c*ksr* end tile

This divides the iteration =pace of the loop nest
into a number of rectangular pieces tilest. These
tiles are then scheduled 1o be executed in parallel.
The index_list allows the programmer 1o spec-
ifv which iterators are 1o be tiled. The options ul-
low specification of the number of threads 1o be
used. and a choice of scheduling strategies. There
are two strategies which are of interest in this
study: slice and mod. The slice srategy di-
vides the iteration space into p roughly equally
sized tiles. The mod strategy divides the iteration
space into more than p tiles {where possible . and
schedules them on p threads in a modulo fashion.
For either strategy the size of the tiles can be fixed
by the programmer. or determined at run-time. In
the latter case the tile size will normally be chosen
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as a multiple of 16 to help avoid false sharing of
subpages. The options also allow scalar variables
to be declared as private or reduction variables.
In the case of a reduction variable results are ac-
cumulated in local copies of the variable. and
code is generated which reduces these to a single
variable at the end of the tiled loop.

5 SEQUENTIAL OPTIMIZATIONS

The original code consisted of nearly 1.000 lines
of Fortran code. handling PENTA through IT-
PACK [3]. a 9,000 line Fortran package which
offers seven iterative methods to solve sparse lin-
ear systems with symmetric positive definite or
mildly nonsyvmmetric coefficient matrices. The Ja-
cobi conjugate gradient (JUG) method was chosen
because of its convergence properties. As pro-
posed by Casulli and Cheng [1], the code was de-
veloped for vector processors, running initially on
a Cray EL-98 with an optimized version of IT-
PACK. The code was transferred to the KSR-1
and compiled without any change. We always
used the highest optimization level of the compiler
(-02 option). Furthermore, ITPACK was com-
piled on the KSR-1 with the -r8 option. Other-
wise all floating-point variables. which are de-
clared as DOUBLE PRECISION. would be
handled as 128-bit values.

It is important to note that one cell does not
have enough memory to cope with the required 80
Mbvte. causing a considerable amount of data to
be placed on the memory of other cells. Hence.
the sequential program suffers communication
overhead since it has to perform some remote data
accesses. Analysis of the code led 1o following op-
timizations.

1. Reducing memory requirements: From
Figure 2 we can see that the most natural
loop orders are ijk (i.e.. 1 outermost. K in-
nermost) or jik, where i runs over the x
dimension. j over the y dimension. and k
over the z dimension. Because the algorithm
is applied 10 shallow-water problems. the
index space of k is much smaller than that
of i or j. Casulli and Cheng {1] suggest that
the proposed algorithm is suited for vector-
ization: efficient vectorization would re-
quired flipping the loop order to make the
innermost loops the longest. i.e., kij orkji
order. This “‘unnatural’ loop ordering was
implemented in the original code provided

here only in FU and FV: the remaining
computations used loop order ijk. As the
Cray vectorizing compiler reported that loop
bodies in FU and FV were too long to vec-
torize, the loop bodies were split in two.
This involved the storage of intermediate
data into six arrays of type (n,. n,, n.). By
reversing this splitting we avoided the tem-
porary arrays, reducing the number of
three-dimensional arrays to seven, and the
total memory required to around 43 Mbyte.
This in turn reduced the number of remote
accesses.

Avoiding bad stride: All loops over 1, j.
and k were converted to ijk order. Since
Fortran arravs are stored column wise. the
seven three-dimensional arravs were de-
clared of tvpe (n.. n,, n;) thus achieving a
correlation between loop nest order and the
layout of arrays in memory. This is vital for
achieving a high rate of data reuse in a hier-
archical memory system. A minor side effect
of k being the innermost array index is the
fact that the solution of the tridiagonal sys-
tems in UPDATE-U and UPDATE-V can
be stored directly into u and v, respectively,
rather than having to use an intermediate
vector.

Stripping ITPACK: As a first step. the path
followed by the JCG call through the library
routines was identified and isolated: almost
7,500 lines of unnecessary code were de-
leted. Furthermore, the routines SCAL and
UNSCAL were modified. ITPACK calls the
former before the first iteration to scale the
matrix, the right-hand side and the initial
solution. After convergence, the scaling is
reversed. In LXY the unscaling of the ma-
trix and right-hand side is not necessary
since they are not used after PENTA. Hence
UNSCAL was reduced to a single loop.
which was inlined, to unscale the solution.
The modification of SCAL was motivated
retroactively bv the necessity to parallelize
ITPACK. The matrix is scaled by ITPACK
such that all diagonal elements have the
value 1. To perform the unscaling. the origi-
nal diagonal elements are stored at the be-
ginning of the one-dimensional array con-
taining all nonzero elements of the sparse
matrix. This implies shifting the off-diago-
nal elements. an operation that is inherently
sequential. Therefore, the sparse matrix
structure is constructed accordingly in
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SETUP, i.e., the diagonal elements were
stored at the beginning. and the rest after-
wards. The consequences for SCAL are the
avoidance of the shifting, and the simplifi-
cation of the search for the diagonal ele-
ments.

The correctness of these code transformations
was confirmed in separate runs by dumping test
data to a file after each time step and comparing

them with the values from the original version of

the code. A new version was only dC(‘t‘[)!t‘d if the
files were identical.

The effort invested in these sequential changes
has a significant pavoll-—the elapsed time for five
time steps was reduced from nearly 2.750 seconds
in the original code to about 600 seconds. Nearly
86% of this enhancement is as a result of the
avoidance of bad stride by declaring the three-
dimensional arravs as (n.. n,.. n;). ()n a veclor
processor {on which the code was developed;
stride has little impact. since the memory on such
an architecture is basically “"flat.” In a hierarchi-
cally structured memory, however. ensuring maxi-
mum reuse of data is vital 10 obtain eihmem code.
The reduction of data and stripping of ITPACK
resulted in 13% and 1% improvement in execu-
tion time, respectively. The 1otal amount of work
invested in these optimisations. including the time
required 1o become acquainted with the airromhm
and the code. was about 7 person-davs (we con-
sider 1 person-day 10 be 8 hours of dedicated
work ).

6 PARALLELIZATION

The version containing all sequential optimiza-
tions proposed in Section 5 was the starting point
for parallelization. Table 1 shows in detail the
contribution of the different parts to the total run-
time of LXY: computations of similar structure
have been grouped together since they can be par-
allelized in a similar way. REST accounts for all
minor computations scattered throughout LXY.

including COPY.

LXY was parallelized stepwise. the sequence
order—reflected in the following subsections—
being determined by the magnitude of the execu-
ton time given in Table 1. The only exception was
PENTA which was left 10 the end, because the
loops in ITPACK have a different structure w all
the others in LXY. The parallelization strategy for
loops notin PENTA is already implied in quw 2.
The obvious and successful approach is 10 split
the x. y plane evenly among all threads and let
each one work independemly on its portion of the
plane. This is achieved by uling the loops over 1
and j. thus:

cxksr* tile (i, j, strategy=slice,
private=(k})
do i=1, nx
do j =1, ny
do k=1, nz

c*ksr* end tile

Here the index space of 1 and ] is partitioned
by PRESTO {the KSR run-time system) into con-
tguous tiles which are disiributed between all
threads such that each gets exactly one (xlice
strategy). All variables are shared (i.e.. just one
copy exists which can be accessed by all threads}
except the tiled index variables and those explic-
itly listed as private.

A detsiled analvsis showed that the proposed
approach is indeed valid. The shared data consist
basically of all arrays of size at least n, X n, je.g..
fu. v. and e}. Tiling of the loops results in correct
execution since only the thread “owning™ an in-
dex pair (i, J) updates the corresponding ele-
ment of any shared arrav. and the tile statenients
impose the necessary  synchronization  points
which prevent threads from starting the execution
of a subsequent loop nest undl all other threads
have completed the current loop nest.

Note that the island is mapped onto the threads
depending on the chosen partitioning of the x. y
plane. This could lead in some partitionings o
load imbalance. since no computation is per-
formed on dry grid points {see Section 3). Because

Table 1. Elapsed Times in Seconds for Five Time Steps for the Optimized Sequential Version of LXY
BU_CLU. UPDA-
TE_U.
FU. FY BV_CV. UPDATE-V S PENTA UPDATE_W REST Total
375 158 2 15 13 608
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the size of the island is small compared to the
estuary, the load imbalance is negligible. For a
complex estuary with irregular wet/dry bound-
aries a more sophisticated load-balancing strategy
is required (see Section 8).

Figure 2 shows that some communication of
data between threads is necessary in SETUP,
caused when a thread owning index pair (i, j)
but not (i+1, j)
bu(i+1, j). The set up of the tridiagonal matri-
ces (and to a lesser extent some of the right-hand
sides) as well as the computation in UPDATE-W
cause similar, regular communication patterns. In
FU and FV. however, the communication pattern
depends on the data and is therefore unpredicta-
ble and irregular (see Section 6.1). The situation
in PENTA will be described in Section 6.6.

The performance results presented in Section 7
confirm the validity of this approach. The follow-
ing subsections report insights and experiences
gained during the process of parallelizing the vari-
ous segments of LXY. This parallelization process
required approximately 10 person-davs.

accesses, for instance,

6.1 FU and FV

The main difficulty encountered in adding the tile
directives (to these and all other loops) was the
identification of the private variables. Having
done this for FU and FV. we discovered. using
PRESTO information. an important amount of
load imbalance cause by an uneven assignment of
indices to threads. We therefore decided to take
manual control of the size and distribution of tiles
in order to improve load balance. In Section 7 we
will give more details and report on the results
obtained.

We would like to stress the ease of parallelizing
FU and FV on a virtual shared memory architec-
ture like the KSR-1. As we have already men-
tioned. the communication pattern in these steps
is unpredictable: for each (i, j,k) we need the
velocity at that grid point (x,. y;. z4) and at the
point (x; — a. v; — b. 4 = ¢). where a. b, and ¢
depend on the actual values of u(i, j, k).
v(i, j, k.andw(i, j, k). Since (x; — a.y; —
b. zx — c) is usually not a grid point. its velocity is
obtained by interpolating the velocities of the eight
cell corners containing it (the two-dimensional an-
alog is shown in Fig. 3).

On a message-passing architecture each pro-
cess would have to find out where the information
concerning (x; — a. v; — b, 5, — ¢) is stored. send a
message to the corresponding process. and wait

(xi.yj)

(xi-a, yj-b)

FIGURE 3 Two-dimensional Lagrangian interpola-
tion.

for the data to arrive. Note that this protocol is
complicated by the fact that the “~“owner™ of (x; —
a, v; — b. zx — c) does not know who is going to
contact him. or when. Alternatively. the processes
could exchange “‘halo™ data, but significant
amounts of the communicated data would be un-
used. On the KSR-1, the remote accesses to array
elements at (x; — a. y; — b, z; — ¢) are automati-
cally handled by the ALLCACHE memory
svstem.

6.2 BU_CU, BV_CV, UPDATE-U,
UPDATE-V

Since the tridiagonal svstems in these four seg-
ments are solved in parallel. each thread needs its
own copy of the coefficient and right-hand side
arravs. Because KSR Fortran does not support
private arravs. a technique called array expansion
had to be applied. Hereby, an array is expanded

from (ny.. . . .nn)w (.. . .., p)wherep
is the number of threads. so that thread (i =
1.. . .. p)uses the memory locations starting at
index (1. . Lm.d

Having done this. the measured run-time of the
parallel version was disappointing. Using GIST. a
ool for logging and visualizing events. serious
load imbalance was detected.

Information from PRESTO revealed that some
loops over i run from 1 to n, and others from 2 to
n,. Tiling the former causes the first thread to start
with index 1 and finish with some m;. while in the
latter case the same thread handles the range
2.. . .. my + 1. Hence. data locality is not pre-
served. a situation which can lead to a significant
number of remote data accesses. This was
avoided by embracing all loops in LXY by a KSR
Fortran affinity region [4]. which ensures that for
different tiled loops. the same values of indices are
scheduled to the same threads. even though the
loop bounds may be different. Although this mea-
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sure did not solve the load imbalance problem
and showed almost no performance benefit, we
maintained it to ease experimenting with different
tile sizes and strategies.

Finally we turned to PMON, a tool that gathers
hardware monitoring statistics. This information
showed that some threads had an extremely high
rate of cache subpage misses, that is they were
accessing a large number of data items located on
other cells. Since this did not occur in BU or BY,
we searched for some differences in the code
which might account for this, and identified the
‘‘privatized’” arravs as the source of the problem.
The scalar expansion of arrays is an example
where the effect of false sharing (see Section 4.2)
can be severe. For instance. the elements A (nz,
3, 1) andA(1, 1, i +1) lie in consecutive mem-
ory locations. the first being written to by thread .
the second bv thread [ + 1 If these two 8- b\te
data items happen to be on the same 128- b_\te
subpage, this subpage is moved back and forth,
causing unnecessary communication. The smaller
the original array is (in our case it has only 3n.
elements), the hlgher the degree of false shannfr in
the extended array. By paddmu all extended ar-
rays to subpage boundaries. we eliminated this
effect and achieved much better load balancing.

8.3 UPDATE-W

After the experience gained in the previous steps.
tiling this loop. including identifving the private
variables and expanding some arrays, was trivial.

6.4 REST

The REST segments consist mainly of smaller
loops scattered throughout LXY. Although they
account for verv little of the sequential execution
time, it was important to parallelize them. as oth-
erwise significant data movement will occur. Most
of these loops are similar to COPY and were tiled
trivially. Some other loops cover only the bound-
aries of the domain. The bodies of these loops
should ideallv be performed by the threads that
own the corresponding x, y index pairs. However
this is not easv to perform on the KSR-1 and since
the performance gain would not justify the effort.
we did not parallelize them. At the end of LXY.
the flooding and drying of cells in the horizonal
plane is handled. Introducing parallelism in these
final loops would result in several threads writing
to the same memory location, making the use of
locks or critical regions necessary, and again any

performance gain would not justifv the effort in-
volved.

6.5 SETUP

Due to the steps undertaken when optimizing the
sequential code. it was straightforward 1o set up
the pentadiagonal matrix in pardllel maintaining
the correct (sequental) order of the rows.

6.6 PENTA

In the optimized sequential version the call of the
JCG routine in ITPACK took only 6.7% of the to-
tal time. but this increased as the parallelization
steps progressed. Eventually. having carried out
parallelization of all other segments. about half of
the elapsed time (using 16 cells) was spent in
PENTA.

ITPACK handles vector operations through
level 1 BLAS-like routines while mairix—vector
multiplications are adapted to the structure of the
data tvpe containing the sparse matrix. These
subroutines contain a single loop of length .V
(where Vis the dimension of the linear svstem—in
our case N = n,n,.) as opposed 10 two outermost
loops of length n, and n, encountered in the pre-
vious sections. Therefore we tiled ITPACK loops
specifving that they should not be part of the en-
closing affinity region.

As a consequence, some data movement will
occur at the beginning and the end of the iterative
procedure. After the first iteration. most data are
local and do not move to other threads. Commun-
ication takes place in each iteration due to the
scatter and gather of vectors in GAXPY-like oper-
ations (4x + b) with a sparse matrix A. and the
reduction phase in the parallel execution of dot
products.

Note that the influence of rounding errors can
change the result of parallelized floating-point
vector sums. Therefore we maintained one se-
quential and one parallel version of the dot prod-
uct. The former was used to check the correctness
of all changes (as mentioned in Section 5), the
latter for run-time measurements.

Finallv. it is important to note that we are cop-
ing with some load imbalance in the parallelized
version of JCG. Tile sizes produced by PRESTO
are by default a muliiple of 10 (see Section 4.3).
Changing PRESTOs default (for instance to a
multiple of one) leads to better load balance. but
results in false sharing. Our experiments showed
that in this wrade-off between load imbalance and
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false sharing. the former caused the smaller per-
formance penaliv. This can be explained by not-
ing that most operations in JCG are level 1 BLAS-
like routines. where the ratio of accessed data to
computation is high. We therefore maintained the

original PRESTO default value.

7 RESULTS

To obtain consistent run-time measurements we
removed from our experiments the output of data.
During a typical produection run output is only
produced infrequenty. Furthermore. we per-
formed six tme steps but measured only the
elapsed tme for the second to the sixth. Hereby
we masked out the influence of the first time step
which on the KSR-1 is more expensive than sub-
sequent ones. due 1o page misses caused by ac-
cessing uninitialized data for the first time. In a
normal run consisting of thousands of time steps
the effect of this is negligible.

When comparing the sequential and parallel
run-times. we had to conzider that the parallel
execution of {loating-point sums in PENTA will
perturb the data. and consequently the number of
iterations performed by JCG mayv differ in the se-
quential and parallel version. In our experi-
ments—time steps two to six—this did not oceur.
resulting in a “fair’” comparison. Longer runs us-
ing the parallel version have shown that the num-
ber of iteration steps performed by JCG has a
small variance. It is therefore reasonable 1o ex-
trapolate the performance results of short runs 1o
long ones.

A profile of the code showed that subroutine
TRIL which merely interpolates the velocity of an
interior cell point from the velocities at the ejght
corner points. iz called nearly 1 million times in
every time step. All other subroutines are called
considerably fewer times and conwin considera-
bly more computation. We decided therefore o
inline TRI at compile time. but no other routines.

Before presenting the obtained results. we de-
scribe the chosen tile size and tiling strategy for all
lf)(»[)s outside PENTA. Louad balance is usually

achieved by having more tiles than cells and dis-
tributing the tiles in a modulo fashion. When we
did this howexer. we discovered that the memory
requirements per thread were not decreasing with
the number of cells. Remember that our problem
requires around 43 Mbyte of memory and that
each thread should access roughly one pth part of
it, where p is the number of cells. This effect can
be explained by considering the lavout of Fortran
arravs within the KSR-1 memory architecture.
Note that n. X n, X 8 bytes =16 I\b\te. which is
the size of a page. Thus. the access for instance of
u(k0, jO, 10) will cause the page containing the
elements u(k, j, 10) (A = 1. .n..j =
1.. . ..n,)to become resident on the requesting
cell. With the modulo tiling strategy. we can ex-
pect that each thread will use almns[ every value
of i. Hence. alinost every page is requested by
every thread. even though only a few of its sub-
pages are actually used by any one thread. Note
that this false sharing of pages is different from the
false sharing of subpages encountered in Section
6.2. To avoid this problem we let each thread
work on exactly one tile of size {n,/p! X n, {equiv-
alent o tiling over 1 in a slice fashion; so that
each of the p threads requires only a pth of all
pages and accesses all subpages within them. This
does however result in some load imbalance—see
below.

Table 2 contains the run-times obtained fol-
lowing the above experimental description. Each
run was repeated three times: Table 2 presents
the best value of three. Furthermore. all runs were
executed with the allocate_cells command. which
ensures exclusive use of a given number of cells.
By specifving in the tile statements the same nuni-
ber of threads as allocated cells. we achieved a
one-to-one mapping between cells and threads.
Finally. for the experiments using up to 32 cells.
we ensured that all the cells were on the same ring.

Note the discrepancy between the sequential
and the one-cell parallel time. This can be ex-
plained by the increase in memory requirements
caused by arrayv expansion. Note also that the four
cell time is less than half that on two cells. When
using one or two cells. there is not enough memory

Table 2. Elapsed Time Per Time Step in Seconds for the Sequential and Parallel Version of SW3D
Number of Cells
1 {seq) 1 {par 2 + 8 16 2+ 32 +0 +8 36
122 126 62.9 30.3 15.8 8.3 5.6 +.7 +.3 3.6 3.5
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to hold all of SW3D’s data, and it is necessary for
the operating svstem to place some data in other
cells” memories. With four or more cells. however
there is enough memory. and the number of re-
mote accesses are considerably reduced. We also
see that the use of more than 48 cells gives almost
no further reduction of the run-time.

Figure 4 shows the simulation performance in
time steps per second. The naive ideal perfor-
mance is the reciprocal of the naive ideal time.
which is computed by simply dividing the execu-
tion time of the optimized sequential code by the
number of cells. To check that extrapolation of
our results 1o long runs is indeed valid, we ran
6.000 time steps on 32 cells (using both rings).
This simulation took 7 hours 47 minutes. which
corresponds to 0.21 timesteps per second. the
same value as we obtained from measuring five
time steps.

We have performed an analvsis of the parallel
overheads in order 10 identifv the major factors
causing the discrepancy between the naive ideal
and the actual performance. We define the total
overhead as the difference between the actual
measured time and the naive ideal time. We then
apportion the total overhead into four categories
as follows:

1. Unparallelised code. This is the overhead
incurred due to the parallel version contain-
ing sections of sequential code.

2. Load imbalance. This is the overhead that
results from processors having (o wait at a
svnchronization point for other processors
to finish their parallel tasks.

3. Memoryv accesses. This the overhead due 1o
the parallel and sequendal versions spend-
ing different amounts of tume accessing
data. Note that data accesses include both
local (same cell) and remote accesses.

4. Svnchronization and scheduling. This is the
overhead caused by the implementation of
svnchronisation points (in SW3D these are

all  barrier svnchronisations).  and  the
scheduling of dles o threads by the
PRESTO run-time  svstem.  These are

grouped together because theyv are hoth as-
sociated with the addiiion of tile directives
to the code.

Note that this analvsis is somewhat compli-
cated by the fact that the sequential version makes
a substantial number of remote memory accesses.
because there is 100 much data to fit in the mem-
orv of a single cell. This makes the naive ideal time
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somewhat pessimistic. and results in negative val-
ues of memory access overhead. In such a situa-
tion the time spent by the parallel version in mak-
ing remote data accesses is a useful additional
statistic. as it gives a better impression of the per-
formance loss resulting from communication of
data between processors.

The results of this analvsis for 16, 32, and 48
cells are displaved in Table 3. The analysis shows
that the total overheads are increasing as the
number of cells increases. such that on 48 proces-
sors the overhead accounts for nearly 30% of the
measured execution time. This suggests that with
the present parallelization strategy. it is unlikely
that the execution time could be redu( ed below 3
seconds per time step for a problem of this size. no
matter how many processors were used.

Itis clear thatload imbalance is the most signifi-
cant source of overhead. About hall of this load
imbalance can be attributed to the uneven assign-
ment of indices to threads. since 16. 32. and 48
are not divisors of n,. For example. using 32 pro-
cessors the tile size Is 11. which results in two
processors being idle. This could be ameliorated
by transforming all double-nested loops over 1
and j into one loop from 1 to n, X n,.

The remaining load imbalance cannot be ex-
plained by wuneven assignment of indices to
threads in PENTA (see Section 6.6). Using hard-
ware monitoring information we discov ered thatin
many of the uled loops. some threads are stalled
waiting for data almost twice as long as others.

Table 3. Overhead Analysis per Time Step
Number of Cells
16 32 +8

Measured time 8.30 +.75 3.60
Naive ideal time 7.60 3.80 2.55
Total overhead 0.70 0.95 1.05
Unparallelized
code overhead 0.40 0.40 (.40
Load-imbalance
overhead 0.70 0.75 0.4>
Memory access
overhead -0.60 —-0.45 0.00
Svynchronization/

scheduling

overhead 0.20 0.25 0.30
Remote access
time 0.15 0.15 0.15

Note. All times are in seconds and are given to the nearest
0.05 seconds.

although all have the same workload. This addi-
tional stalling is not caused by remote accesses.
but by subcache misses. The implication of this is
that for certain values of i and j there is consider-
ably more overhashing (and hence displacement}
of subcache lines, than for others. The precise
cause of this is currently not clear. but we believe
it may be a side effect of having a number of large
arravs with a varietv of sizes. More research is
needed to understand and overcome this over-
head source. since it causes significant degrada-
tion of performance with increasing numbers of
cells.

The next most important source of overhead is
the unparallelized code. Most of this code is con-
cerned with setting boundary conditions. and
again with some more effort it may be possible to
parallelize some of these sections. although, of
course, doing so may increase the overheads from
other sources. There is litlle that can be done to
reduce the cost of synchronization and tile sched-
uling. In each tme step around 200 parallel loops
are executed (there is some variation depending
on the number of steps required in the conjugate
gradient solver). Experiments have shown that
each parallel loop incurs a synchronization and
scheduling overhead of 1 ms for small numbers of
cells. rising to 1.4 ms on 56 cells. Finally we note
that remote data accesses are the least significant
source. of performance loss. hence there is no
point in attempting to reduce the number of re-
mote accesses before the other more significant
sources of overhead have been addressed.

8 FUTURE WORK

After the validation of the code with'a simple ge-
ometry. we intend to apply it to a real-world estu-
. Bideford Bay (southwest United Kingdom).

v»hxch is used as a benchmark to allow a standard-
ized approach to the testing and comparison of
modeling software used for hydrodynamic and
bacterial dispersion modeling [11]. This will re-
quire a more sophisticated load-balancing strat-
egv in order to cope efficiently with highly irregular
wet/drv boundaries which may be changing
markedly with time. One possible strategy consists
of allowing the boundaries between the partitions
of the horizontal plane to change as the simulation
proceeds, in such a way as to equalize the time
spent by each processor [2].

Section 7 showed that further analysis is neces-
sary to understand and overcome some overhead



168 KORN ET AL.

sources, particularly the load imbalance. and the
remaining unparallelized code. Note that the load
imbalance problems should be solved by a dv-
namic load-balancing strategv. It would also be
interesting to verify the parallelization strategy on
other virtual shared memory architectures, bllCh
as the Cray T3D and Convex Exemplar.

There are several planned enhancements to the
computational model, including pollution trans-
port, sediment transport, and plume dispersion.
Also a more sophisticated turbulence model in-
volving the transport of Revnolds stresses directly
is planned. Algorithms for biological and chemical
behavior of pollutants are also desirable. Since the
governing equations for each of these additions
are of essentially similar form to those studied
here, and are assumed to be largely uncoupled
from the hydrodynamics equations, we can expect
to apply the same algorithmic structure and paral-
lelization strategy.

We also envisage some enhancements to the
numerical scheme, including the avoidance of the
time step limitation due to the explicit treatment of
horizontal mixing. This could be achieved by an
implicit treatment, possibly as a fractional step
process. A greater challenge. especially for paral-
lelization, will arise from the introduction of adap-
tive mesh refinement. For example we might
adopt a strategy where mesh sizes are successively
halved in proportion to the inverse of water depth
and spatial flow gradients, e.g., vorticity [9].

9 CONCLUSIONS

We have described the parallelization of a three-
dimensional shallow-water estuary model on the
Kendall Square Research KSR-1. Although the
semi-implicit Lagrangian scheme was initially de-
scribed as an algorithm well suited for vectoriza-
tion [1], we have found that its parallelization is
natural and easy to perform, resulting in excep-
tionally efficient execution.

Recall that the time stepping solution process
revolves around the solution of a pentadiagonal
system of equations describing the evolution of the
surface elevation. This system of equations can
itself be solved in parallel, but parallelism can also
be exploited in all other major computation seg-
ments such as the set up of the matrix and right-
hand side coefficients for the system describing
the new surface elevation. These matrix coeffi-
cients and right-hand side terms result from the
solution of a set of independent tridiagonal sys-

tems of equations. one at each grid point in the
horizontal plane. The parallel algorithm partitions
the horizontal plane equally between threads.
each one setting up and solving a group of inde-
pendent tridiagonal svstems. This partitioning ap-
proach is used for all other code segments. except
for the conjugate gradient solver itself.

In practical terms we have demonstrated that a
simulation which would require several days of
CPU time on a powerful workstation or a modest
vector processor can be run overnight on 32 cells
of a KSR-1. We have also found that the develop-
ment process. consisting of sequential optimiza-
tions followed by an incremental parallelization
strategy. has given very good performance without
an excessive amount of programmer effort. We
have performed an analvsis of the sources of over-
head in the parallel version of the code. which has
allowed us 10 identfy the aspects of the parallel-
ization strategy which are most in need of atien-
tion should it prove desirable 1o further reduce the
run-time by using more processors.
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