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ABSTRACT 

In this article, we present a program generation strategy of Strassen's matrix multiplica­
tion algorithm using a programming methodology based on tensor product formulas. In 
this methodology, block recursive programs such as the fast Fourier Transforms and 
Strassen's matrix multiplication algorithm are expressed as algebraic formulas involv­
ing tensor products and other matrix operations. Such formulas can be systematically 
translated to high-performance parallel/vector codes for various architectures. In this 
article, we present a nonrecursive implementation of Strassen's algorithm for shared 
memory vector processors such as the Cray Y-MP. A previous implementation of Stras­
sen's algorithm synthesized from tensor product formulas required working storage of 
size 0(7n) for multiplying 2n x 2n matrices. We present a modified formulation in which 
the working storage requirement is reduced to 0(4n). The modified formulation exhibits 
sufficient parallelism for efficient implementation on a shared memory multiprocessor. 
Performance results on a Cray Y-MPB/64 are presented. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Tensor products (Kronecker products) have been 
used to model algorithms with a recursive compu­
tational structure that occur in application areas 
such as digital signal processing [ 6, 15], image 
processing [ 16], linear system design [ 5 ~. and sta­
tistics [7]. In recent years, a programming meth­
odology based on tensor products has been suc­
cessfully used to design and implement high­
performance algorithms to compute fast Fourier 
Transforms (FFT) [12, 14] andmatrixmultiplica-
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tion [10, 13] for shared memory vector multipro­
cessors. A set of multilinear algebra operations 
such as tensor product and matrix multiplication 
are used to express block recursive algorithms. 
These algebraic operations can be systematically 
translated into high-level programming language 
constructs such as sequential composition, itera­
tion, and parallel/vector operations. Tensor prod­
uct formulas representing an algorithm can be 
algebraically manipulated to restructure the com­
putation to achieve different performance charac­
teristics. In this way, the algorithm can be tuned to 

match the underlying architecture. 
Matrix multiplication is an important core com­

putation in many scientific applications. Conven­
tional matrix multiplication of 2" X 2" matrices 
requires 0(8") operations. In 1969, V. Strassen 
proposed an algorithm for matrix multiplication 
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[17] that employs a computationally efficient 
method to compute the product of 2 x 2 matrices 
using only seven multiplications. A recursive ap­
plication of this algorithm for multiplying 2" X 2" 
matrices requires only 0(7") operations, com­
pared with 0(8") for conventional matrix multipli­
cation. Efficient parallel implementations of this 
algorithm have been described in [1, 10]. This 
algorithm has been used for fast matrix multipli­
cation in implementing Level 3 BLAS [9] and lin­
ear algebra routines [2]. 

In this article, we describe the tensor product 
formulation of Strassen's matrix multiplication al­
gorithm, and discuss program generation for 
shared memory vector processors such as the Cray 
Y-MP. Achieving high performance on these ar­
chitectures requires operating on large vectors and 
reducing memory bank conflicts, at the same time 
exploiting c:oarse-grained parallelism. We show 
how the tensor product formula of Strassen's al­
gorithm can be manipulated to operate on full 
vectors ·with unit stride. An important feature of 
the generated code is that it employs no recursion. 

The initial formulation presented in r 10] n·­
quired a working array of size 0(7") for the multi­
plication of 2" X 2" matrices. \Ve present a modi­
fied formulation that significantly reduces the size 
of working array to 0(4"). This reduction is made 
possible through the reuse of working storage. \Ve 
describe how this memory reuse can be captured 
in tensor product formulas with the use of a selec­
tion operator. \Ve present a strategy for automatic 
code synthesis from tensor product formulas con­
taining a selection operator. The modified formu­
lation exhibits sufficient parallelism for efficient 
implementation on a vector-parallel machine 
such as the Cray Y-\1P. In addition, we express 
Winograd's variation [3 J using our notation and 
describe its translation to a programming code. 
Winograd's variation uses the same number of 
multiplications, but a smaller number of mldi­
tions, than the original Strassen's algorithm. 

This article is organized as follows. Section 2 
contains an overview of the tensor product nota­
tion. A formulation of Strassen 's algorithm using 
this notation is presented in Section :3, along with 
a discussion on how the formulation can be modi­
fied to achieve reduction in working storage. 
Section 4 presents a strategy for automatic code 
generation from a tensor product formula. \Vino­
grad's variation of the Strassen's algorithm is also 
presented. Section 5 presents performance results 
on the Cray Y-MP. Conclusions are presented in 
Section 6. 

2 AN OVERVIEW OF THE TENSOR 
PRODUCT NOTATION 

In this section, we give a brief overview of the ten­
sor product notation and the properties that arc 
used in this article. Let A E rzJtmxn and B E 'lftpxq_ 

The tensor product A 0 B is the block matrix ob­
tained by replacing each element a;.j by the matrix 
a,,jB, i.e., 

A0B= 

\Vhenever all the involved matrix products are 
valid, the following properties hold: 

Property 2.1 (Tensor Product) 

1. A 0 B 0 C =A 0 IB 0 C) = (A 0 B) 0 C 
2. (A0B)(C0D)=AC0BD 
:3. A 0 B = (A 0 In:(l"' 0 B)= (/"' 0 B)(A 0111 ) 

4. (A 0 B)T =AT 0 BT 
u. (A 0Bt 1 =A~ 1 0B-1 

6. (0;'o~/ A1B 1 ) = (0;',~ 11 A;) (0;',~/ B,) 
7 fi;::C1

1 (A, 0 B,) = fi;',~11 A; 0 fi;:,:-;1
1 B, 

8. lmn = fm 0 In 

where/,. represents then X n identity mHtrix. fl;~-; 11 
A, A,~ tA 11 ~:e ... Ao, and 0;~~11 A,= An-- 1 0 An~2 
0 ... 0Ao. 

A matrix basis Ef:'/' is an m X n rnatirx with a 
one in the i-th row and the j-th column and zeros 
elsewhere. A vector basis is a colun1n vector of 
length m with a one in the i-th position and zeros 
elsewhere. If the basis E;:'j" of an m x n matrix is 
stored by rows, it is isorrw.rphic to the tensor prod­
uct of two vector bases e;n 0 ej'- The tensor prod­
uct of two vector bases ej" 0 ej' is equal to the 
vector ba -i- e"'" · ,m K:A '" -· ""' 'l'l · " s ·in+j·. I.e ... c, '61 ci - cin+i· 1e tensor 
producr of two vector bases ej" 0 ~/' is called a 
tensor basis. If the basis elements are ordered lex­
ic:ographieRily then 

e"' 0 · · · 0 e"' = 
11 lr 

Expressing a vector basis e,l1 as the tensor produet 
of vector bases e;~'' 0 ··· 0 e;~'', where J/ = m 1 X ··· X 

mt and ik = (i div Jh) mod mk, .\1" = Hi=k+1 m;, 
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A11 = 1 is called the factorization of the vector 
basis, e.g., the vector basis e~2 can be factorized 
into the tensor bases ey 0 e{ 0 e5 or ej 0 e~. 
Expressing a tensor basis e;:• 0 · · · 0 e'f; as a vector 
basis e;:~~fl'n,+···+i,_,,,+,; is called linearization of the 
tensor basis. For example, the tensor basis e~ 0 ej 
can be linearized to give the vector basis e~2 . 

One of the permutations used frequently in the 
representation of algorithms in tensor product for­
mulas is the stride permutation. Stride permuta­
tion L';" is defined as 

L"'" (em 0 en 1 = e" 0 e"' n t .1 ) ~J t 

L';" permutes the elements of a vector of size mn 
with stride distance n. This permutation can be 
represented as an mn X mn transformation. For 
example, L~ can be represented by the matrix 

1 0 0 0 0 0 :ro xo 

0 0 1 0 0 0 ;1:1 xz 

0 0 0 0 1 0 X:~ X4 
L~x 

0 1 0 0 0 0 X;-; X1 

0 0 0 1 0 0 X4 X.~ 

0 0 0 0 0 1 Xc .) X' ;) 

The stride permutation has the following proper­
ties: 

Property 2.2 (Stride Permutation) 

1 !£"'") -1 = £mn 
· \ n m 

2. L~;' = L~''L~'1 

3. L~·'' = (L~1 0 f,)(Ir 0 L;') 

A permutation of the form lm 0 Lft1 0!11 is called a 
tensor permutation. 

The following theorem illustrates how a tensor 
product of two matrices can be commuted by ap­
plying a stride permutation. 

Theorem 2.1 (Communtation Theorem) If A is 
an m X m matrix and B is an n X n matrix, then 
L;;"'(A 0 B)= (B 0 A)L~w. 

Pairwise multiplicaiton between two vectors im­
plies the product between the corresponding ele-

ments of those vectors, e.g., 

xo Yo XoYo 

* 

Yn-1 Xn-1Yn-1 

If the elements X; andy, are themselves subma­
trices, then x;y; corresponds to matrix multiplica­
tion between them. 

3 A TENSOR PRODUCT FORMULATION 
OF STRASSEN15 ALGORITHM 

Strassen' s matrix multiplication algorithm is 
based on a computationally efficient way of multi­
plying 2 X 2 matrices using only seven multiplica­
tions ~ 17]. Consider the matrix multiplication C = 
AB, where 

[
coo co1] 

CJO C11 

Strassen's algorithm can then be written as fol­
lows. First, the following intermediate values are 
calculated. 

to = (aoo + a11 )(boo + b11) 

t1 = (a10 + a11 )boo 

tg = a11(-boo + b10) 

t4 = (aoo + ao1)b11 

l.-; = ( -aoo + aw)( boo + bo1) 

t6 = (ao1-a11)(b10 + b11) 

Then the individual elements of C are given by: 

Coo = to + l:J - t 4 + t6 

C10 = t1 + l:J 

c11 = to - t1 + tz + l-; 

In matrix notation, this can he represented as: 

C = Sc(S,,A * SJJ) 
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where 

1 0 0 1 1 0 0 

0 1 0 1 1 0 0 

1 0 0 0 0 0 1 

s" = 0 0 0 1 'S~; = -1 1 0 

1 0 1 0 0 0 0 

-1 1 0 0 1 0 1 

0 0 1 1 0 1 0 

and X ll, ami Care vectors of length 4, and repre­
sent the storage of matrices A, B, and C in column 
major fonn. The notation "'T correspond,.; exactly to 
the vec(A) notation [8], however, we shall use the 
former for readability purposes. The matrices S(/, 
Sh, and S, are termed basic operators., and do not 
have to he explicitly generated, hut specify which 
operations have to be performed on specif-ic com­
ponents of the input vectors. 

The above formulation can be easilv extended 
to matrices of size 2" X 2" by considering a,1• bit. 
and ci; to be blocks of size 2"- 1 X 2"-1. First. we 
describe the block recursive storage of matrices in 
memory. Let X be any 2" X 2" matrix. At the top 
level, X can be viewed as: 

[
Xoo 

X= 
Xw 

A vector I representing an r-level block recursive 
represemation of X is recursively defined as: 

X= 

Xoo 

Xo1 

X11 

"·ith the houndan· condition that Y is the column 
major representation of any 2"_,. X 2"-,. block Y. 
An example of block recursive storage is given in 
Figure 1. 

Let A. B, and C he the one-level block recursi.-e 
representation of 2" X 2" matrices A. B, and C. 
Strassen·s algorithm for computing C = AB can lw 
written as: 

1 

0 
1 0 0 1 -1 0 1 

-1 
0 1 0 1 0 0 0 

0 , and S,. 
0 0 1 0 1 0 0 

1 
1 -1 1 0 0 1 0 

0 

1 

where *11-1 denotes pairwise matrix multiplication 
between matrices of size 2"-l X 2" 1• \\ce refer to 
the above as one-level block recursive Strassen' s 
algorithm. In this ease, the intermcdiatP values li 

are 2"- 1 X 2"-1 block matrices. and block matrix 
multiplications are performed using conventional 
matrix multiplicat.ion. This algorithm can be con­
veniently viewed in terms of a recursion tree (Fig. 
2), where the root node correspond,; to the update 
of C, and the leaf nodes correspond to the e.-alua­
tion of the intermediate values. The steps marked 
by 0 refer to computations that require working 
memory . .\'ote that all the intermediate values can 
be computed in parallel. because there are no 
data dependences between them. Each interme­
diate value requires a working memory of 0('±"- 1 ). 

Hence, a one-level block recursive Stra~sen ·s al­
gorithm requires a total working storage of size 
0(7 . '±"- 1 ). 

Even though the above formulation has been 

A!o 

FIGL:RE 1 Three-level hlflck recursive 6toraf!e. 
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7 blocks of size 4n-I each 

FIGURE 2 Recursion tree of depth 1 for Strasscn· s 

an additional savings in the total number of arith­
metic operations required to compute the matrix 
produce Strassen's algorithm can be n'cursiYt>ly 
appl.i_:d_!o com1.mte the block multiplications also. 
Let A, B, and C be the !-level block recursive rep­
resentations of 2" X 2" matrices A. B. and C. The 
computation of Cis described by the following for­
mulation [10]: 

algorithm. where 

given for matrix sizes of the form 2" X 2". it is 
straightforward to generalize the implementation 
to handle arbitrarv dimensions of matrices A and 
B. A common technique used is to pad thP matri­
ces with rows and colun1ns of zeros to increase the 
matrix sizes to the next higher powers of two. 
compute the extended matrix product. and then 
extract the desired result l1 '7]. Another approach 
[ 4 _ is to drop the last rows and columns from the 
computation to achieve even dimension,.; and then 
compute the partial matrix product. The complete 
matrix product is then obtained with a rank-k up­
date (k = 1 .. 2, 3). 

3.1 Block Recursive Strassen's 
Algorithm: Breadth-First Evaluation 

ln one-level application of Strassen· s algorithm, 
2"- 1 X 2"- 1 block multiplications were computed 
using conventional matrix multiplication. To get 

. . . 
I~ 

S".t = Q9i-1 S o.. I - no !J o.. , o.. \ , ;=o c IC::J .... ~~ 1- i=n- 1 \ ""!/ \6) .. S(. VY /-+~~-~~~, 

and *11 -t denotes pairwise multiplication between 
blocks of size 2"-1 X 2"-1. This computation can 
be interpreted as a breadth-first evaluation of the 
recursion tree shown in Figure;). Each intermedi­
ate block matrix t1 is itself computed using Stras­
sen's algorithm yielding intermediate subblocks 
t,o, . . . lth· This process is recursively applied 
until blocks of size 2"-1 X 2"- 1 . "·hich are tlwn 
computed using conventional matrix multiplica­
tion. Following our convention, D denotes com­
putation that requires working storage. The work­
ing array requirement in this case is 0('714"-1). ln 
the extreme case. Strassen·s algorithm can be ap­
plied recursively down to blocks of size 2 X 2. and 
such an (n- 1)-level (or n-level) Strassen·s algo-

. . . 

i blocks of sire 4n·l each 

FIGURE 3 !-Level block recursive Strassen's algorithm. 
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Table 1. Comparison of Operation Counts for Stra;.;;.;en's Algorithm and Conventional Matrix 
Multiplication 

Algorithm 

M~1 

STR 
BLOCK_STR 

Additions 

8" 
6(?"- 4") 

6 . 4k("7n-k _ qn-k) 

rithm would requ1re a working storage of s1ze 
0(7"). 

Table 1 presents the total number of operations 
required for multiplying two matrices of size 2" X 

2". ~M denotes conventional matrix multiplica­
tion, STR refers to an n-level block recursive 
Strassen's algorithm, and BLOCK_STR denotes a 
(n- k)-level block recursive Strassen's algorithm. 
STR has a lower operation count than "'[\I only for 
n 2:: 10. The expression for the operation count for 
BLOCK_STR has a minima at k = 3 for all integer 
values of nand k. Fork = :~ .. BLOCK_STR has a 
lower operation count than YI:'VI for rz 2:: 'f. Hence. 
block Strassen's algorithm is better than conven­
tional matrix multiplication in terms of total oper­
ation count even for small values of n. However, 
for implementation on a shared memory vector 
machine such as the Cray Y -YIP. a lower opera­
tion count does not imply smaller execution time. 
because the effect of vector length and stride also 
comes into play. 

3.2 Block Recursive Strassen's 
Algorithm: Depth-First Evaluation 

An /-level Strassen's algorithm requires fewer op­
erations than conventional matrix multiplication 
when the number of levels lis increased. An opti­
mal value is attained at n - l = .3. HoweveL the 
working storage requirement for an /-level algo­
rithm is 0(714"-1), and hence increases exponen­
tially with an increase in l. This high storage 
requirement comes due to the breadth-first ex­
pansion of the recursion tree in which all the inter­
mediate values have to be stored. 

To achieve reduction in working o;torage. we 
can perform the computation of Strassen's algo­
rithm using a depth -first expansion of the recur­
sion tree. Instead of expanding all the leaves in the 
recursion tree, we only compute a subtree, and 
use the results obtained from that subtree to up­
date C. This process io; repeatedly applied until all 
the subtrees are evaluated. It is necessarv to en-

Operation Count 

Multiplication~ Total 

8" 
"7n 

2. 8" 
:n+l - 6. 4/1 

?"-'(2 · Rk + ?J · qk) - 6 · 4" 

sure that no redundant computation is performed. 
The memory requirement for the algorithm in this 
case will be the memory requirement for a single 
subtree, because the same space can be reused for 
the evaluation of different subtrees. 

For the 2 X 2 case, the algorithm is modified as 
follows. t is a temporary variable that is used to 
store intermediate values. 

Step 1: t = (aoo + att)(boo + btt): 
coo = t; c11 = t 

Step 2: t = (ato + a11)buo; 
Cto = t; Ctt = Ctt - t; 

Step 3: t = aoo(bot - btt) 
Cot = l; Ctt = Ctt + t; 

Step 4: t = att(-boo + bto) 
coo = coo + l; Cto = Cto + t: 

Step 5: t = (aoo + aot)btt; 
coo = coo - t; Cot = Cot + t; 

Step 6: t = (-aoo + a10)(boo + bot): 
Ctt = Ctt + t; 

Step 7: t = (ao1 - att)(bto + btt); 
coo = coo + t; 

Now the extra memory requirement is of only one 
element, because the same memory location can 
be reused to evaluate different t;'s. In the original 
formulation, seven memory locations are required 
because all the intermediate values are calculated 
before the update of C is performed. The total 
number of arithmetic operations is unchanged. 

We now formulate the concept of memory re­
duction using the tensor product framework. De­
fine DJ to be a 7 X 7 matrix with d_;/ = 1 and zeros 
elsewhere. Note that "':iJ=oD] = f.,. Ylemory reduc­
tion for a 2 X 2 case can be formulated in matrix 
notation as: 

6 

C = L (ScD;~)[(D7S")A * (D's,)B] 
j=O J J ' 
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D] is termed as a selection operator and selects 
subsets of the input vector on which the computa­
tion is to be performed. 

This framework can be extended to multiplying 
matrices of size 2" X 2". We begin with the one­
level Strassen's algorithm and assume that the 
data matrices are stored in a one-level block re­
cursive form. The tensor product formula to com­
pute C = AB can then be written as: 

6 

C = L (S,D7 0 /_,,~,) 
j~O J 

We can apply memory reduction at multiple levels 
by performing the same operation recursively on 
the smaller blocks. Assuming that the matrices are 
stored in an /-level block recursive form, an /-level 
Strassen's algorithm with memory reduction can 
be formulated as: 

E = . ± [((~ s,n') 0 !.,,~~)(((~ n' s") r~o }• r~o 1· 
Jo.Jt····.jt-1=0 

We refer to the above formulation as the partial 
evaluation form of Strassen's algorithm. The 
computation specified in the above formulation 
can be described using the recursion tree shown in 

• • • 

~ 

Figure 4. The current intermediate blocks being 
computed are represented by D. Working storage 
is required for the intermediate blocks from the 
leaf node being computed, to the root of the recur­
sion tree. Hence, the working storage required is 
O(L!~1 4"-') = 0(4t'). 

3.3 Combining Breadth-First and 
Depth-First Evaluations 

The * operator in the tensor product formula for 
partial computation refers to pairwise matrix mul­
tiplication. Each block matrix multiplication in 
the pairwise matrix multiplication can itself be 
performed using complete evaluation. Hence, we 
have a three-level hierarchy. At the highest level, 
partial evaluation is performed till blocks of size 
2"-1 X 2"-1. Then complete evaluation is per­
formed till blocks of size 2k X 2k are reached, after 
which conventional matrix multiplication is ap­
plied. This can be expressed in the ten:-;or product 
notation as: 

Cps = . ± _ [((~ S,D1~) 0 !.,,~~)(((~ D] s,) 
}0· ·}I·· 1-0 r=O r=O 

0 f.,,~)A *cs, I ( (@, n;s~,) 0 f.,,~~) B)] 

where *cs,~1 denotes pairwise matrix multiplication 
between blocks of size 2"-1 X 2"-1 using complete 
evaluation, C' cs corresponds to each block 
pairwise multiplication during the partial evalua-

• 

FIGURE 4 /-Level block recursive Strassen's algorithm with memory reduction. 
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tion .. which itself is evaluated using an (l- k)-level 
Strassen's algorithm .. and *Ill/; denotes pairwise 
matrix multiplication between blocks of size 2k X 

2k using conventional matrix multiplication. 
The root of the recursion tree is defined to be at 

level 0. At level i. a working array of size 0( '±"-;) is 
required to store the intermediate results of partial 
evaluation. The breadth-first expansion of the last 
(l- k) levels requires a working array of 0(7"-l-k · 
4k). Hence, the total memory requirement is 
0(2.,':._11 4"-i + 7n-l-k. 4k) = o(4" + 7"-1-k. 4'} 
Even for moderate values of n and small valuPs of 
l, this represents a significant savings compared 
with 0(7"-k · 4k) for complete evaluation. If the 
matrices are of size /V X :V where ,y is not a power 
of 2, the technique of padding can be used .. 
and the memory requirement with reduction 
will be o(4 11~'1 + 7!lg\]-l-k · 4k) compared with 
0(7llg \l-k · '±k) for complete evaluation. 

3.4 Matrix Storage in Main Memory 

The formulation presented in the previous sec­
tions assumes for simplicity of presentation that 
the data matrices are stored in a block recursive 
form. However. when implementing a block recur­
sive algorithm on a shared memory machine, ma­
trices are usually stored in a row major or column 
major form. We have implemented Strassen's al­
gorithm using Fortran on the Cray Y-YIP. hence 
the data matrices are stored in memon· in column 
major form. The tensor product formula to con­
vert a 2" X 2" matrix from a column major forn1 to 
a k-level block recursive form is given by [11]: 

R"·k is termed as a conversion operator. There are 
two ways in which storage conversion can be im­
plemented. One way is to perform explicit conver­
sion from row I column major form to a block re­
cursive form through data movement. HoweveL a 
more efficient way is to merge the conversion op­
erator into the computation in Strassen's algo­
rithm, which results in a modification of the data 
array indexing functions. The modified tensor for­
mulation for Block Strassen' s algorithm is: 

E = (R''·kt1S;•·k[Rn.ks;;·kff *k R"·kS;;·kJ{ 

= s-n.k[S-"·kA *k· §n.kJ3] c (J h 

where 

n-k-1 

§~.k = Il 
i=O 

n-k-1 

S'// = Il 
i=O 

§n.k 
c 

0 

Il 
i=n-k~l 

[ IJ /0, J ·)n A-, 
\ _, 161 :2 0 L':jnA ,-/ 

With /-level memory reduction, the above formu­
lation is modified into: 

6 [( (I-I ))(( 1-1 E = L §n.k 0 0 D 7 0 D 7 
. . . c j, ;. 

JO·JF')I-t ~o r~O r~O 

4 CODE GENERATION FOR VECTOR 
PROCESSORS 

4.1 Block Strassen's Algorithm 

Matrix factorizations form the basis of translating 
tensor product formulas by mapping the opera­
tions implied by the formula to program con­
structs in a high-level programming language. The 
translation process starts with the top-level ab­
straction and generates more refined code as it 
proceeds to lower-level abstractions. At each 
level, semantically equivalent program constructs 
are chosen to replace mathematical operations. 
Efficient programs can be synthesized from tensor 
product formulas by exploiting the regular com­
putational structure expressed by such formulas. 
The tensor product formulation of block recursive 
algorithms usually involves certain basic compu­
tations, such as Sa, 5 6 , and S,. in the case of Stras­
sen's algorithm. It is sometimes necessary to use 
manually optimized codes for these basic compu­
tations to achieve high performance. 
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\Ve now illustrate the code generation strategy 
with an example. Let B be an m X n matrix, and X 
be a vector of size np. Consider the application of 
(/P 0 B) to X i.e., 

X[O : n- 1J 

X[n: 2n- 1: 

X[ (p - 1 )n : pn - 1: 

BX[O: n- 1] 

BX[n: 2n- 1] 

BX[(p - 1)n : pn- 1j 

This can be interpreted asp copies of B acting in 
parallel on p disjoint segments of X. resulting in a 
vector of size mp. Hence. Y = (If' 0 B)X can be 
implemented as: 

Code[Y = (lp 0 B)Xl == doall i = 0, p - 1 
Code[Y[in: (i + 1)n- 1] 

= BX[in: (i + 1)n- 1]] 
enddoall 

Once an algorithm is expressed using the tensor 
product framework, efficient implementation can 
be obtained by algebrically manipulating the ten­
sor product formula. For example, consider the 
implementation of 

where Y, B, and X are vectors as described before. 
Lsing the commutation rule, it can be determined 
that 

(B 0 I I = L"'P(/ 0. B)L111' pJ m p 1./Y fJ 

Hence, one implementation to compute Y might 
be to permute X according to L;t, perform (/" 0 
B). and permute the result according to L~:"· A 
more efficient implementation would be to incor­
porate the stride permutations into the indexing of 
the input and output data arrays. The above can 
be written as: 

i.e., 

Y [ 0 : mp - 1 : p J 

Y[1 : mp - 1 : p l 

Y[p - 1 : mp - 1 : p; 

l~::: ~J 0 · · ·B 

X[O: np 

X[1: np 

1 : p] 

1 : pl 

X[p - 1 : np - 1 : p J 

Hence, the code can be written as 

Code[Y = (B 0 /")X]== doall i = O,p- 1 
Code[Y[in: (i + 1)n- 1 :PI 
=BX[in: (i + l)n- 1 :pll 

enddoall 

Let us consider the code generation for (n- k)­
level block Strassen· s algorithm for multiplying 
211 X 211 matrices. Assume that the matrices are 
stored in a (n - k)-level block recursive format. 
and that at the lowe,.;t leveL pairwise multiplica­
tion between blocks of size 2k X '2.k is performed. 
For simplification, we shall assume that no mem­
ory reduction is performed. The tensor product 
formulation of this algorithm is given by (see Sec­
tion 3.4): 

C' = s-~~.k[s-~~·kA- * S-;".kB-1 
c (l k h -

The formula for block Strassen's algorithm con­
tains the operations §;:·k, §;;·k, *k, and §;~·k. All the 
operations except *k are linear operations and 
hence require an array operand. Operation *k is a 
bilinear operation and requires two array oper­
ands. Each operation corresponds to an assign­
ment statement that stores its result in an arrm· 
that may be used as input data for the subsequent 
assignment or represents the final output. Tempo­
rary arrays representing working arrays are de­
noted by T;. The above formula then translates to 
the following high -level code: 
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To 

T1 

S-n.k4-
" ' 

T'o = To *k T1 
-C = 5n.k'T' ,:J, 1 (l 

The assignment statements are composed se­
quentially to preserve the semantics of compu­
tation. However, the above sequential composi­
tion is not unique. For example. the assignment 
statements for ._5;;·kA and !hklJ can be in any order 
because there are no data dependences b~twcen 
them. 

s;;·k, s;:·k, and s~:·k have the form 

[TI Fi] where Fi 
·=1 

{ 

(lr,(i) OP Q9 Is) 

= (fr;0L"'111
' 0[:) 

and OP is a basic operator 

The generic tensor product formula Y = (lr, 0 
OP 0 ls.)X can be implemented as a fully parallel 
doubly nested loop: 

doall i1 = 0, r; - 1 
doall i2 = 0, s; - 1 

Code[OP,YXi1,i2] 
enddoall 

enddoall 

Any tensor permutation that may be present 
results in a modification of the array indexing 
functions. Different implementations of the above 
formula are possible by changing the order and/ or 
blocking the inner loops, as they are fully permut­
able. However, different orderings of the inner 
loops result in different data access patterns. 
These in turn will have different performance 
charateristics on systems with hierarchical/inter­
leaved memories. 

Consider the application of the tensor product 
formula ll;;,1 fi to a vector X. The product term 
corresponds to a sequential outer loop in which 
the output of the ph stage is fed as input to the (i + 
1 )lh stage, i = 1, n - 1. Only two arrays are re­
quired for this operation. The input array for the 
i1h step can be reused as the output array for the 
(i + 1 )'1 step. At the end of each iteration, the 
arrays are swapped (which can be implemented 
trivially simply by swapping the pointers to the two 
arrays) and the resulting pseudocode is: 

To.,___ X 
do i = L n 

Code[T1 = ;:To] 
Swap(T1, To) 

end do 

At the end of the last iteration, T1 contains the 
result of [fi;;,1 F; 1X. s;:·k, S{;·k, and /hk have the 
above form, and code can be easily generated for 
them. 

The pairwise multiplication *k performs a se­
quence of 7"-k matrix multiplications of 2" x 2k 
blocks. Let the input vectors be T0 and T, corre­
sponding to the evaluation of §;;·kif and §;;·klJ. re­
spectively. All elements of a given block are stored 
consecutively in the input arrays. Pseudocode for 
the operation T2 = To *k T1 is presented below: 

doall i = 0, 7n-k - 1 
T2 f i4k : (i + 1 )4k - 1] ,l!atrix/vfultip(v 
(T0 [i4k: (i + 1)4k- 1], T1[i4k: (i + 1)4k­

enddoall 
11\ 

Jl 

w:1ere i\Ialrixilfultip(v refers to conventional ma­
trix multiplication between blocks of size 2k X 2k 
stored in column major form. 

4.2 Memory Management for Depth-First 
Evaluation 

Consider the tensor product formula: 

The summation operator in the formulation of 
partial evaluation eorn~sponds to a ;;equential 
loop nest.. with the i1

" loop performing a depth-first 
evaluation of the i1

" level in the recursion tree. At 
each level, there are seven :-;ubtrees that need to he 
evaluated. Evaluation of each subtree i;; followed 
by an update of its parent. After the update, work­
ing storage used by that subtree can be reused for 
the computation of the next subtree at that level in 
the recursion tree. The loop structure hence looks 
like the following: 
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do Jo 0,6 
Code [T~ = DhSaA] I* partial evaluation *I 
Code [ Tg = Dj

0
SbB] I* partial evaluation *I 

do jl = 0, 6 
Code[T~ 7 -

DJ,Sa~] I* partial evaluation *I 
Code [T~ = D},S~] 

do j 1-1 = 0, 6 
Code [T~-1 

Code [Tb- 1 

Code [T~-1 

Code [T~-2 

enddo 

I* partial evaluation *I 

I* partial evaluation *I 
I* partial evaluation *I 
I* complete evaluation *I 
I* update of parent *I 

Code [ T~ = D},ScTcJ 
enddo 

I* update of parent *I 

Code [ C = Dj0ScT~] 
enddo 

I* update of parent *I 

4.3 Implementation of Winograd's 
Variation 

Strassen's algorithm uses 18 scalar additions and 
7 scalar multiplications to multiply 2 x 2 matri-
ces. \Vinoarad 

0 presented a rnore efficient algo-
rithm, which uses 15 scalar additions and 7 scalar 
multiplications [3]. The Winograd's variation is 
based on the following three matrix operations: 

-1 1 0 1 

1 0 0 0 

0 0 1 0 

u>~~ == 1 1 0 0 

0 1 0 1 

1 -1 1 -1 

0 0 0 1 

1 0 -1 1 

1 () 0 0 

0 1 () () 

w" = 0 0 -1 1 

1 0 1 0 

() 0 () 1 

1 -1 -1 1 

0 1 1 0 0 0 0 

1 1 () 1 0 0 1 
and TV, 

1 1 0 0 1 1 () 

1 1 0 1 1 0 0 

The Winograd's variation for multiplying 2 X 2 
can be written as the matrix formula 

co_o ao_o bo_o 

CJ.O a1.o b1.0 w,. W~, *Wi! 
ho.1 co.1 ao.1 

C1.1 a1.1 bu 

The generated code of operations T¥,, W1,, and 
W" contains some common terms. For example, 
ao.o - a1.o is evaluated twice in a direct implemen­
tation of W,,. The key to reducing the number of 
additions in Winograd's variation is to evaluate a 
common term only once. We factorize W,, W1, 

and We to eliminate the common terms: 
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W= a 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

1 0 1 0 0 0 0 

0 0 0 0 0 0 1 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 

0 () 0 0 0 

1 0 0 0 0 

() 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

1 0 -1 0 0 0 0 

1 () 0 0 0 0 0 

0 1 0 () 0 0 -1 

0 0 1 0 0 1 0 

0 1 0 0 1 0 0 

0 -1 

0 1 

0 0 1 0 0 

0 0 0 0 () 

() 

0 

0 

0 

0 

0 1 () () () 0 

() 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 -1 1 0 

0 1 0 0 0 0 () 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 0 

1 0 0 () 0 0 0 

0 1 0 1 0 0 0 

0 1 0 0 1 0 0 

0 0 () 0 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

() 0 0 0 0 0 1 

0 

1 

0 

1 

0 

0 

0 

0 0 0 

0 0 0 

0 1 0 

1 0 0 

1 0 1 

0 0 0 

0 () 1 

0 0 

1 0 

0 1 

() 0 

0 () 

0 0 

() 0 -1 1 

-1 () 1 0 

() 0 0 1 

0 0 0 0 

. and 

0 1 1 0 0 0 0 

1 1 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 () 0 () 

0 0 0 0 1 0 () 

0 0 0 0 0 1 0 

() 0 0 0 0 0 1 

There are 15 rows containing two nonzero ele­
ments in the matrix factorizations of II'~, Wt, and 
f/i;., which correspond to the 15 additions in 
~linograd's variation of Strassen' s algorithm. The 
rows containing a single one are implemented 
as data movement, and those containing- all zeros 
are equivalent to null operations. The indices of 
input and output array elements of ff" are speci­
fied by the permutation operations in a tensor 
product formula and are computed similar 
to those of Sa. Let p;, 0 s i < 4, be the indices 
of the input array elements, and q;. 0 s i < 7, 
be the indices of the output array elements. The 
computation T = Tf;,A on a vector A of length 
7 is translated to the following sequence of 
assignments: 

Code[T = WaA] = T[q1] 

T[q2j 

A[po] 

A[p2] 

T[q4j 

T[q6] 

T[qo] 

T[qs] 

A[po1 - A[p1] 

A[p1] + A[p:3j 

A 

T[ qt] + T[ q4] 

-T[qo] + T[q2] 

The implementation of Winograd's variation is 
simply a replacement of the translated code of H;-;, 
Wb, and TV,. for the code of 5", Eh, and Sc in the 
corresponding implementation of Stra,;sen's algo­
rithm. 
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Table 2. Execution Times for Block Strassen's Algorithm with ,1\clemory Reduction 

n = 8 n=9 n = 10 

SGEMM: .109 s ('HO \'!Flop) 
SGEMMS: .09~) s (291 \!Flop! 

SCEJJJJ: .868 :o ~:310 MFlop) SGEJJ.ll: 6.95 s (:HJ9 \lFlop 
SCLl!MS: 66:>, (28;) \lFlop) SGI::J!JJS: .:r.o9 ~ (284 \1Flop) 

k=3k=4k=5k bk="'!k 3 k=4 k=S k=b k="'! k=?, k=-t k=3 k=6 k=? 

0 .468 .179 .103 .09:3 .098 
(55) (1:36) (2.:r6) (291) (:JO;J) 

1 .474 .182 .106 .095 , 10:3 3.292 1.268 
(:"r'"'\ 11331 (239) l285) (293) (;'i6: (1:35) \•JV; \ ; 

2 .476 .186 , 108 .096 :3.:308 1.284 
(5't) (130) (236) (282) (551 (1331 

3 .494 .200 114 :3.348 1.315 
(52) (121) (221) (54) (1:30) 

4 .548 .228 :3.4?:-i 1.412 
{.:t7) (106) (.32) (121) 

5 .671 :3.85":" 1.619 
(38) (47) (1 051 

6 4.665 
(39) 

'7 

5 PERFORMANCE RESULTS ON THE CRAY 
Y-MP 

Performance statistics were gathered for different 
matrix sizes, different block sizes, and different 
levels of partial evaluation. Table 2 shows perfor­
mance for execution on a single processor. All ex­
ecution times are in seconds. The numbers in pa­
rentheses display performance in megaflops. 
Empty fields indicate that the program could not 
be run due to lack of sufficient memory. The ma­
trix size is 2" X 2", the level of partial evaluation is 
l, and the block size at which conventional matrix 
multiplication is applied i;; 2" X '2". The execution 
times for the Block Strm;;;en';; algorithm is com­
pared with the Cray Scientific Library routines 
SGEiv!JV!, which implements conventional matrix 

.666 .69? 
(28":') (:30:3) 

.736 .672 .712 
(1:35) (284) (297) 
7-t6 .67-t ."'10 8.92 5.19 4.72 4.98 

(238) (283) (297) (135) (241) 128-t) :298) 
."'6'7 .686 23.:3 9.1:3 5.2() 4.78 s.o:.i 
(2:12) (278:: (.SS) (132) 12:36) 1:281) :29:)) 
.815 2:3.S 9.:38 5.42 4.86 
1218) (54) (128) (2:3 1) (2?6) 

24.4 10 02 ;),'76 

(;)2) (120) 1217) 
27.1 11.42 
(47) \1 ();)) 
32.8 
(:39) 

multiplication, and SGEV!MS, which implements 
Strassen's matrix multiplication. Because 
SGEMkl and SGEJfJJS are independent of l and 
k, the times for those are given only once for each 
value of n. SGE"f]VJ is used for block matrix multi­
plication in the Block Strassen' s algorithm. 

For any value of/, the lowest execution time 
occurs for k = 6 because the vector length on the 
Cray Y -MP is 64. The megaflop:- for k = 7 are 
higher than those fork = 6 for the same value on n 
and l. Rut, the f~xecution time fork = 7 is longt~r 
because a larger number of arithmetic operations 
are performed. 

The execution times and megat1ops for k = 6. 
l = 0 are comparable (slightly better) to that of 
SGE:\L\18. There is a performance degradation 
due to a slight increase in the number of memory 

Table 3. Execution Times fork = 6 on Two Proeessors 

Block Suassen 

n SGEMMS l = () [= I l = 2 l = 3 l = 4 

8 .050 .047 .053 .055 
(594) (574) (513) (497) 

9 .356 .331 .3'71 .378 .389 
(592) (576) (513) (505) (490) 

10 2.51 2.63 2.67 2.?6 
(589) (510) (502) (486) 
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Table 4. Execution Times for k = 6 on Eight Processors* 

n SGEMJHS l = 0 {= 1 

8 .016 (84.7%) .022 (54.2%1 .018 (81.8%) 
9 .10 (91.3%) '11 (77.3%) .14 (73.2%) 

10 .84 (78.4%) 

* Percentages of 8-cpu obtained are gin·n in parentheses. 

operations as l increases for any fixed nand k = 6. 
However, the difference is quite small, which is 
evident from the execution times. 

Table 3 gives the performance when the pro­
gram was run on two processors. A fixed value of 
k = 6 was chosen because this resulted in the best 
performance in the single processor case. Again, 
the performance when l 0 is slightly better than 
that of SGEM/1!/S. For larger values of/, the perfor­
mance degmdes hy About 12%. Table 4 shows the 
performance results for eight processors. Because 
the programs were run in a nondedicated mode on 
the Cray Y-MP, we were unable to get all the eight 
processors for the entire execution of the program. 
The numbers in parentheses give the percentage 
of 8-cups available for execution. 

The amount of extra memory required has 
been given in Figure 5 for different values of n and 
l. It can be easily seen that there is an order of 
magnitude improvement even for small values of/. 
A value of k = 6 was chosen because it is for this 
block size that the execution times are minimum. 

6 CONCLUSIONS 

~r e have shown how tensor product formulas ex­
pressing Strassen's matrix multiplication algo­
rithm can be translated to efficient parallel pro­
grams for shared memory multiprocessors. This 
translation process is part of a more general pro­
gramming methodology for designing high-perfor­
mance block recursive algorithms for shared and 
distributed memory machines. The methodology 
uses a mathematical notation based on tensor 
products for expressing block recursive algo­
rithms. Algebraic manipulation of these formulas 
yields mathematically equivalent formulas that 
result in implementations with different perfor­
mance characteristics. A large nubmer of pro­
grams can be generated to search for efficient im­
plementations. Tensor products give a powerful 
method to generate these equivalent implementa-

Block Strasscn 

l = 2 l = 3 4 

.022 (74.6%) 

.13 (80.<.l%) .15 (76.0%) 
1.04 (70.9%) 1.02 (74.0%) 1.14 (70 .. 3%) 

lions Automatically. As wa:o illustrated in this 
article, programs generated from tensor product 
formulas compare favorably with the best hand­
coded ones. 

This article presents an implementation of the 
Strassen's algorithm on a shared memory multi­
processor such as the Cray Y -.\IP. ln the Y -.VIP,. 
memory is organized into banks, and in the ab­
sence of bank conflicts, all memory accesses take 
the same amount of time. However. in distributed 
memory multiprocessors such as the Cray 'r:JD, 
where each processor has its own local memory, a 
local memory access can be significantly faster 
than a remote access. Hence, an efficient imple­
mentation on a distributed memorv machine re­
quires partitioning the algorithm in such a manner 
that remote accesses are minimized. 

Tensor product formulas can also be used to 
specify regular data distributions for arrays. Given 
a tensor product formula with a specified distribu­
tion of its input and output arrays, the interpro­
cessor communication cost incurred by the imple­
mentation can be determined. If the cost of 
eommunication is high, it might be more efficient 

Memory Words xJO 6 

2 3 

n= 8 ......... .. 
n=9 
n=!O-

4 

l 

FIGURE 5 Memory requirements for working arrays. 
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to perform a data redistribution before the com­
putation, to bring the arrays into a form where the 
computation is local to the processors, if the over­
head of data distribution is lower than the benefit 
gained due to the communication cost reducing to 

zero. We are currently examining these issues and 
are working on an implementation on the Cray 
T3D. 

Both formula modification and program gener­
ation are capable of being automated. ·we are cur­
rently implementing this methodology in an expert 
system EXTE~T (Expert System for Tensor For­
mula Iranslation) that assists in the development 
of parallel programs for numerical algorithms on 
various computer architectures. Currently, the 
system generates Fortran programs for the Cray 
Y-.\1P. The expert system employs various heuri:o­
tics to automatically generate alternative tensor 
product formulas, translate tensor product formu­
las to programs for various parallel architectures, 
test the produced programs, and analyze the test 
results. 
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