
A Parallel Processing Approach to
Transition Prediction for Laminar Flow
Control System Design

R. W. FORD 1 AND D. I. A. POLL2

1Centre for Novel Computing, Department of Computer Science, The University of Manchester, Oxford Rd.,
Manchester, Ml3 9PL, U.K.; e-mail: rupert@cs.man.ac.uk
2Department of Engineering, The Unh·ersitx of Manchester, Oxford Rd., Manchester, M 13 9PL, U.K.; e-mail:
diapoll@fsl.eng.man.ac.uk

ABSTRACT

The performance of transport aircraft can be considerably improved if the process by
which the wing boundary layer becomes turbulent can be controlled and extensive
areas of laminar flow maintained. In order to design laminar flow control systems, it is
necessary to be able to predict the movement of the transition location in response to
changes in control variables, e.g., surface suction. At present, the technique which is
available to industry requires excessively long computational time-so long that it is not
suitable for use in the "design process." Therefore, there is a clear need to produce a
systP.m which delivers results in near realtime, i.e., irr seconds rather than hours. This
article details how parallel computing techniques on a KSR-1 produce these perfor­
mance improvements. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

In order to sustain an aircraft in straight and level
flight, two fundamental conditions must be satis­
fied. The first is that the lifting force generated by
the wings must be equal to the weight and the
second is that the thrust from the engines must be
equal to the drag.

The drag force opposes the motion of the air­
cr.aft and acts in the direction of flight. It is made

Received Mav I 994
Revised Dec~mber I 99-t

© 199.5 by John "'iley & Sons. Inc.
Scientific Programming, Vol. 4. pp. 20.3-21? (1995)
CCC 10.58-92H/9.5/0:3020:3-15

up of two components, these being the pressure
drag and the viscous drag. Pressure drag is pro­
duced by the variation of the air pressure acting
on the aircraft surface and is closelv related to the
lift force-in fact, it is the penalty that must be
paid to produce the lift. Viscous drag, on the other
hand, is the result of tangential, or shearing
forces, because, as a result of viscosity, air sticks
to the surface.

On a typical transport aircraft in the cruise con­
dition, the two components of the drag are ap­
proximately equal i.e., 50% of the drag is due to
the action of viscosity. This means that a substan­
tial fraction of the fuel which an aircraft carries is
there to overcome viscous drag. It follows that, if
the viscous drag can be reduced, a substantial
saving in fuel and, consequently, operating cost is
possible.

204 FORD A~D POLL

In flight, the effect of air viscosity is confined to

a very thin layer close to the aircraft-the so­
called boundary layer. On the surface viscous
forces require that the flow speed must be zero.
However, a few millimeters above the surface the
air must be traveling at almost the fli~ht srwed of
the aircraft.

The motion of air within this thin boundarv
layer takes one of two possible forms. It may set up
a simple, steady flow where each layer of air slips
slowly over its neighbor-this i;;; called the laminar
condition. The alternative is an unsteadv flow with
almost random fluctuations causinf! the various
lavers of air to be mixed violenth· with one an-. .
other-this is the turbulent condition.

l\"ot surprisingly. a turbulent flow produn·,.
more viscous drag than the laminar one-the ratio
is approximately 10: 1. At \cry low speed,-_ f!tm·,.
are always laminar. However. a" spt·Pd is in­
creased, there comes a stage at which laminar flow
becomes unstable to the small disturbance,; which
are always present in reality. At hi;.dwr :-pPed,;.
these disturbances are amplified and. wlwn the
amplitudes are sufficiently large. there is a break­
down and turbulent flow is produced. -

It follows that. for a ~i,·en aircraft confi;ruration.
there is a flight speed abon· which the !HJundary
layer flow will be turbulent and the viscous draf!
will be large. Cnfortunately. for all but the small­
est aircraft. the boundary layers are turbulent in
the cruise condition.

Vntil recently this situation was accepted as
unavoidable and aircraft desil!ns haw been opti­
mized on the assumption that boundary layer flow
would always be turbulent. However, it has been
known for over 60 years that. if some of the air in
the boundary layer could be sucked throuf!h the
surface, then the speed at which laminar Jlow be­
comes unstable can be increased.

The effect of suction is sufficiently powerful for
laminar flows to be achieved at typical aircraft
cruise conditions when the suction velocitv is onlv . .
0.05% of the flight speed (i.e., only about 10
em/ s!). If suction could be engineered, the drag of
an aircraft could be reduced bv as much as :30%.
This would represent a quantum leap in aircraft
performance since, in the current commercial cli­
mate, an aircraft which could deliver a 5% drag
improvement relative to its competitors would
capture the entire market.

There are two major obstacles to the develop­
ment of an aircraft which uses the surface suction
technique for laminar flow control (LFC). The first
is the provision of a suitable porous surface

through which the air can be drawn. This has al­
ways been a serious problem "ince, in the past.
surfaces which were porous did not hm·e i!oud
load-bearing properties. However. this difficulty is
now effectiveh' resolved because of the recent de­
velopment of the laser perforating technique. This
enables traditional aerospace materials-titanium.
aluminium. steeL and t>ven composite materiu,l-to
be drilled with millions of holes as small as ;)() J-tlll
in diameter, placed in any desired pattern. with
any desired spacinf!. This lean's the ~pcond proiJ­
Iem which is that. in ordt>r to produce a desif-!11 for
an LFC ;-.vstem. it is JlecPssan· to lw able 10 e,.,ti-. .
mate the conditions under which the boundary
layer flow will undergo a ··tran,.,ition· · from tlw
laminar to turhuknt state . .\lorPo\er. it is Jlt'tTs­
sary to be able to produce these estimate~ sufli­
ciemly quickly ,.,o that a t'<lll\t'lltional dt·,.if-!11 pro­
cess is not slowed do\n1.

The problem of predictinf! the conditions
necessary for the onset of tran,.ition i,- a particu­
larly challenging one. In fact. at present. there is
no complete theory for transition. :'\pn·rtlwless.
various semi-empirical methods haYe !wen devel­
oped o\·er the years and some are appropriate for
use in design.

Of these. the one which i,; most accurate and
allows for all the important paramett>r;;; i.e .. flow
compressibility (mach number). ,.;urface tempera­
ture (heat transfPr). and wall transpiration !suc­
tion) is the e' method. This is ba,;ed on an ap­
proximate formulation of the stability problem fur
a bound an· lavPr which. when solved bv a sttitahle . . .
numerical technique. produces dispersion rela­
tions for the unsta],]e disturbances. These rela­
tions are used to track the disturbance amplitude
development and an empirical critPrion is u,-ed to
determine the breakdown (transition onset) condi­
tion.

However. while the e' technique allows for all
the physical effects which can influence tranf'i­
tion, it requires a great deal of computation-so
much so that the elapse time between predictions
is far too long for it to be described as a design
tooL One possible solution to this problem is the
application of parallel computing techniques.

This article chronicles the parallelization of a
laminar to turbulent transition prediction code,
de,eloped by the LFC group. in the Department
of Engineering, at the Cniwrsity of .\lanchester.

Section 2 introduces modeling techniques for
the onset of turbulence and Section 3 describes
the parallelism inherent in the solution method.
Section 4 introduces the KSR-1 and discusses

both the scalar optimization,; and parallelization
method;; used. Finallv, Section;) summarizPs dw
main conclusions of tiw article and SPction b di,..;­
cus:;es future "·ork.

2 ALGORITHM DESCRIPTION

2.1 Solution Methods

The «eneral problem of predicting the onset of
~ ~ . 1 transition in a flow is extremely complex. Stnct y

speaking. the complete approarh requires the full
unsteadv 1\avier-Stokes equations to be solved
for a ra~ge of di,.;turbance:;, which span the com­
plete spectrum of freestream fluctuation:;. surface
roughness, surface ,·ibration. and sound. Such a
calculation would have to be performed with very
fine resolution of len~h and time scale:; and it
would be necessary to specify every possible form
of disturbance in order to ascertain which were
amplified most rapidly . .\loreover. the computa­
tions would have to be carried out sufficiently far
downstream to capture the nonlinear processes
which lead to laminar flow breakdown and the
ultimate establishment of turbulent flow. Even
with the most powerful machines currently avail­
able. such calculations are only possible for sim­
ple flows under highly restrictive and ultimately
unrealistic conditions. e.g .. fully developed pipe
flow with temporally developing disturbances. For
en~neerin(J" purposes. when the basic flows are

~ ~ .

much more complex, an alternative approximate
approach is called for.

A major simplification of the problem is pro­
duced by limiting the consideration to the devel­
opment of small amplitude di:;turbances in a
boundar-y laver flow. since this allows linearization
of the go~·er~ing equation. This approach was first
proposed in the 1920s by Prandtrs group in G6t­
tingen [1 J. The complete analysis is available in
ma~w standard texts, e.g., ;\-lack[2J but, in es­
senc~, the arguments run as follows.

1. The instantaneous fluid properties are ex­
pressed in terms of a mean component plus

1' - + I a fluctuating component, e.g., u = u u ,
P=p+p',etc.

2. It is assumed that the complete unsteady
flow satisfies the l\avier-Stokes equations.

3. The amplitudes of the disturbed quantities
are assumed to be sufficiently small for
products of fluctuating components to be
negligible.

L\:\11:\.\R FLO\"'\" COYfHOL SYSTDI DESIG:\" 205

.Y. The mean flow is assumed to satisfy the
sreadv,boundarylayerequations.

a. The ~ormal-to-surface component of the
velocitv is assumed to be negligibly small
compa.red with the streamwise component.
Thus the flow is taken to be parallel.

Having taken the above steps the resulting
equations for the disturbance com~onents. are
found (by inspection) to have harmomc solutiOns.
Since the problem has been linearized. a general
disturbance can be constructed by superimposing
normal modes of the form

u'(x, y, z. t) = Fly)eia.r+/3=-wt (1)

where. in generaL a, {3. and ware complex quanti­
ties. Bv substituting expressions for the distur­
bance .quantities of the form of Equation 1 into
the governing equation, a system of equa.tions is
obtained which can be used to determme the
characteristics of traveling waves propagating
through the flow. These waves are known as
Tollmien-Schlichting (T -S) waves. It is interest­
ing to note that, originally, the above stability
analvsis was carried out in the absence of any ex­
peri~ental evidence that such waves could exist.
Verification of the existence of T -S waves and
their precursor role in the process of boundary
laver transition was not provided until the 1940s
b; Schubauer and Skramstadt[.3J.

. Finallv, in order to produce further simplifica­
tion the.flow mav be assumed to be incompressi­
ble;' it is then p~ssible to show that. for a two­
dimensional boundan· laver, the most unstable
wave propagate in th~ m~an flow direction. i.e ..
f3 = 0[4 J. Consequently, from the point of view of
transition prediction, only two-dimensional dis­
turbances need to be considered. This being the
case the stability problem reduces to the solution
of a single, fourth order ordinary differential
equation:

(d2)
2

[(d2) dy 2 - a
2 v = iR (aU- w) dy 2 - a 2

(2)

d2U] A -a--v
dy2

subject to the boundary conditions:

v(O) = o, dv(O)Idy = o
v(y)- 0, dv(y)ldy- 0 asy- 00 (3)

206 FORD A:\0 POLL

This is known as the Orr-Sommerfeld (0-S)
equation. From the point of view of the present
exercise it is important to note that this equation
depends on local conditions only. i.e., there are no
terms involving derivatives with respect to .r. This
means that the stabilitv characteristics are not af­
fected by the upstream history. For a wave of fixed
frequency, w" convecting through a given flow at
a specified local Reynolds number. R. the 0-S
equation provides two relationships (real and
imaginary part) among the three unknown quanti­
ties a" a;, and w;. Therefore. in order to close the
problem, an extra condition is reyuired. ln the
early days of stability computation. the final step
was to assume that the disturbance l!rew in tinw
but not in space. i.e .. a; was zero. This produced a
well-posed mathematical problem. However. in
the physical world in which waves art> obsPrwd to
propagate in the mean flow direction a slightly
more realistic approach is to assume that the dis­
turbances grow in space but not in time. i.e .. w; is
zero. This spatial form for the T -S Wa\·e is the
preferred option for use in transition prediction.

Solutions to the 0-S equation permit the
calculation of the dispersion relation for the dis­
turbance waves of a specified freyuency. The
secondary problem then is how to use this infor­
mation to predict the onset of transition. It has
already been noted that breakdown of laminar
flow occurs when the amplitude of amplified tra\·­
eling disturbances becomes large. From Equation
1, it is immediately apparent that for a wave of
fixed frequency. iL at the point of neutral stability.
x 0 , the disturbance amplitude is A0 then at station
x, where x > xo:

In general, the boundary layer will change its
thickness and Reynolds number between any two
stations and, consequently. a; will vary with x.
However for the purposes of evaluating a;. it is
assumed that locally the flow does not ,·ary with x.
Hence, the amplitude ratio relation is only ap­
proximate. 1'\evertheless, it is a quantity which can
be readilv calculated and it does bear some rela­
tionship to the stability of the mean flow.

By examining a range of experiments in which
transition was observed, it has been proposed that
transition onset correlates with the condition
where the wave which has undergone the greatest
total amplification has just reached an amplitude
ratio of e9 , i.e.,

(;))

This io; the basis of tht' so-called t'' transition
method when the critical !transition <m,;et) value
for;\" in low disturbance environments is 4.

2.2 Numerical Method

The boundary layer (see Fig. 1) will. in /!t'neral.
vary in thickness alon!! the aerofoil. TlwreforP. we
soh·e the 0-S equation at a numlwr of equally
spaced positions along the aerofoiL finding the
wave amplification rail'S at each: tht>,;t> po~itions
are denoted ··stations.·':\ pa11icular wa\·e·s am­
plification rate cmTt>><p<mds to the imaf!inary part
of its wavenumber a;. At each station the 0-S
equation is solvPd 'finding CX 1 \ for a nt1mlwr of
equally spaced frPquPiwie;;: tlw numlwr and
bounds of the;.,e are specifit>d.

An initial wavenumber approximation a mu,-t
be ~up plied by the u><er for the lowest fn•q1wn<·y at
the first station. \\'hen the actual wavPnumber
corresponding to that frequency has lwen calcu­
lated. the frequency is pertllrbed and a new
wa\·enumber found for the perturbed frequency.
The original and perturbed ndues are then uo;ed
to make an approximation to the wavenumber ,-o­
lution. for the next frequency. at the same ,;tation
(Fig. 2a shows the dependencies. at the first ,.;ta­
tion. denoted by vertical arrows).

\\'hen the instabilities for each frequency at a
station have been calculated the results are
stored. The wavenumber correspondinl! to the
lowest frequency (f1 in Fig. 2a) is then used as an
approximation to the waveiHunher for the lowest
frequency at the next station (Fif!. 2b shows the
dependencies here, denoted by horizontal ar­
rows): this method is possible as the boundary
layer and velocity profile are slowly varying (there­
fore adjacent solutions have similar values). Thus.

FIGURE 1

air velocity profile freestream

boundary
layer

aerofoil surface

Typical boundary layer wlocity profile.

a: b:
user user
input ----....f input --....

fl-fl-fl-·

l 12 12 12 t t1 t3 t1
l l f ,.
t4 t

4

t
4 t

FIGURE 2 Dqwnlkneil·s of fn·truerwie,.; and station,.;.

once thP initial wavenumber approximation has
been supplied. ,.;ub,.;equPnt approximations arP
generated automatically.

To soln· dw OS equation. findinl! a wa\·Pnum­
ber solution from an initial approximation at each
frequency and station. we LISP a shooting
method[5 j. The slwotinl! method soh·es botmdm...­
valuP problems (to find the solution for an ordi~
nary tlifferential equation betwePn two points with
known boundary conditions:. In this ca,.;p the
freestream give,; <mP boundary condition and the
aerofoil the otlwr (,;ee Equation :3). An approxi­
mation is supplied at one boundarY and the sys­
tem of ordinary diffprential equati~ms intewa;ed
to the other boundary (from the freP,;tream to the
aProfoilJ. This is repeated with another approxi­
mation. In our algorithm the two approximations.
Z 1 and Z :1 • are integrated at the samP tinw. The
integrator used is a fourth order Runf!e-Kutta in­
tegrator.

The shooting method we use suffers from the
problem of parasitic error wnwth. For thi" case (a

two-dimensional wan· in a two-Jimen,.;ional
boundary layer) the two ,.;olution,.; Z 1 and Z ·1

each con:'ii:'ih of four componPnh. Z :1 grow,.; morP
rapidly "·irh decrpa,.;inl! y than Z 1 • The para:-;itic
error follows Z :1 and when tht' difference in mag­
nituJe of Z :1 and Z 1 bt:>cornt':'i ~ufficit>nth· larue

- r
Z 1 i~ no longer independent of Z :l . Before thi"
occurs we apply Gram-Schmidt orthonormaliza­
tion: in fact we do this for each iteration. The large
solution z::1; is normalized component by cnmpo­
n~nt to give the new solution:

(6)

where the overbar refers to a complex conjugate
and {} a scalar product. Z 1 is then replaced by:

z l: = (Z' 11- {Z:J Z'1 } z-::·1,)1\'Z 12 1)112 (7) flPW flf'U' flPU' _ _

L.\\11'\.\R FLO\\. CO'\TROL SYSTE\1 DESIG'\ 207

where the underbar refers to the quantity in the
numerator. The numerical integration proceeds
with the new values of Z 1 and Z :-1 •

A linear combination of Z 1 and Z :-1 can be
found which satisfies the bounJarv conJition
ll (0) = 0 at the aerofoil but will not satisfy the
condition .,; (0) = 0 unle,.;s the wavenumbe~ ap­
proximation is an eil!envalue of the equation (the
correct value). The residual.,; (0) can therefore be
found.

The real part of the wa,·enumber approxima­
tion .. ar is pt:>rturhed by a small amount Llar anJ
the integration repeated. The imaginary part of
the wavenumber approximation a, is then per­
turbed by a small amount Lla1 and the integration
repeated. Corrections oar and oa, to the initial ap­
proximation~ a, and a,. are obtaineJ from the rP­
sidual and numerical approximations to deriva­
tives using Equations 8 and 9:

(8)

(9)

The corrected a 1 and ar are used to start a new
iteration anJ the process continues until oar and
oa, are reduced below a preset criterion. This
method is a quasi 1\"ewton-Raph,on search.

2.3 Algorithm in Context

So far we have not discussed how initial data.
such as wavenumber and velocity profiles. for the
aerofoil are calculated. This section overviews this
process.

We begin with an aerofoil and its corresponding
pressure distribution. A simplified diagram of an
aerofoil is given in Figure 3. This shape has a sur­
face static pressure distribution which is of the
form given by Figure -i.

Once a particular aerofoil shape is chosen the
pressure distribution, corresponding to that
shape, is used as input to a mean flow code. This

air How ____. ____. ____. ____.

suction holes to control
the boundary layer

--------"\.

FIGURE 3 Aerofoil.

208 FORD A:'\D POLL

pressure

position

FIGURE 4 Pressure di~tribution along aerofoil.

problem calculates the various boundary layer pa­
rameters needed at each station. such a~ Reynold . .;
number. boundary layer thickness. and velocity
profile; its output is used as input to the ,.;tability
code. These two programs are separated so that
certain control parameters can be set and others
checked before running the time consuming sta­
bility program.

The control parameters we set are the initial
wavenumber approximation for the first fre­
quency at the first station. the frequency-range to
be examined, and the number of frequencies
within this range.

It is known from previous experience that in
practice two-dimensional instability waws tend to
occur within the region 500-5,000 Hz. There­
fore, the first time the instability program is run. a
spread of frequencies across this range is exam­
ined for a number of stations along the aerofoil.
typically 50-100 stations and 5-1 0 frequencies.
The first run is effectively exploratory, to find
which frequencies and stations to concentrate on.
\Ve then rerun the program with a greater number
of frequencies and stations over the range of inter­
est, typically 100-400 stations and 10-40 fre­
quencies. This process may be repeated two or
three times before a sufficiently accurate picture is
obtained.

The output consists of two files. a large diag­
nostic file which records virtuallv all relevant \·ari­
ables, and a file which gives the amplification rate
(a;) for each frequency at each station.

a; is the amplification rate at a station (for a
particular frequency). To convert this into an am­
plitude ratio, a; needs to be integrated along the
aerofoil. The natural log of the amplitude ratio is
then plotted against position along the aerofoil for
each frequency; an example is shown in Figure 5.

Figure 5 shows a number of amplitude ratio
plots for various frequencies. It is the profile of

4

aerofoil position

FIGL'RE 5 Amplitude ratio~.

these frt>q ueuei~es. i.e .. the largest amplitude ratio
at any given position along the aeroi(Jil. that is
important when predicting v.·here turbulence
starts. This is because turbulence only twgins
above a certain (experimentally detennined) value
of 1'\, regardless of which frequency first reaches it.

2.4 Available Parallelism

This section dis<'usses the parallelism apparent
from the numerical method described in Section
2.2.

Pipelined Station Parallelism

"-hen examining Figure 2b it is clear that compu­
tation for frequencies at a station can begin once
the wavenumber for the first frequency (f1) of the
preYious station has been calculated: this gi,·es a
parallel pipeline effect demonstrated in Figure 6.

ln Figure 6 the maximum overlap (number of
stages in the pipeline) is the number of frequen-

Parallel Streams

2

3

4

3

2

FIGUHE 6 Overlapped solutions.

fl
~

fi+MI fl
~

f2 fi+MI fl
~ •

f2+M2 f2 fi+MI

• f2+M2 f2

• •
f2+M2

• •
•

FIGURE 7 :\laximum ~tation on·rlap.

cies per station. In fact the overlap i,; l!reater than
thi,; a,; a station doe,; not rely on the pPrturbed
frpquencies wa\·Pnumher solution for the prt>vious
station: it can proceed as soon as the actual
wavenumber for the frequency at the previous sta­
tion has been calculated. This effect is tihO\nl in
Figure?.

Thus the potential number of stages in the
pipeline (a,;surninl! all wavenumber frequency
pairs take the samP time) is two times the number
of frequencies per station. As will he seen in the
next section the pipeline is efff'ctivel~· reduced to

that shown in Figure 6 when the frequency and
perturbed frequency are parallt>lized.

Frequency and Perturbed Frequency

As described in Section 2.2. the wavenumber is
solved for each frequency and for that frequency
perturbed. The perturbation allow,; a wavenum­
ber approximation to be extrapolated for the next
frequency at that station.

At first glance one would expect these two solu­
tion to be independent: however to decrease the
number of iterations needed to converge for the
perturbed frequency, our sequential algorithm
uses the wavenumber solution of the frequency
itself: this imposes a dependency.

To enable these two solutions to proceed in
parallel the same wavenumber approximation
used for the frequency can be used for the per­
turbed frequency. This change in the algorithm
may increase the amount of computation as the
solution to the perturbed frequency could take
longer to converge.

Another possible problem is that for a particu­
larly bad wavenumber approximation the per­
turbed frequency may not converge-therefore

LA:\11:\"AR FLov;· CO:'-ITROL SYSTEM DESIGl\; 209

• •
• •

FIGURE 8 Station and frequency parallelism.

the parallel algorithm i,=.; potentially less stable
than the sequential algorithm. This problem can
be eliminated as, on failure. the parallel algorithm
can revert to its sequential form. For all test cases
examined so far this has not been required. The
parallelism so far described is shown in Figure 8.

Wavenumber Approximations

For each frequency, the wavenumber approxima­
tion and perturbations of its real and imaginary
parts (ar and a,) are integrated through the bound­
ary layer. As suggested in Section 2.2. these are
indepe.ndent and can therefore be calculated m
parallel.

The parallelism so far described is shown in
Figure 9. It shows a potential loss of efficiency
when parallelizing at the frequency and perturbed
frequency level described in the previous section.
In the example given one solution converges in two
iterations while the other takes three.

a) One frequency b) all levels so far.
Example with 4 frequencies
per station

11li
I ill

FIGURE 9 Nested parallelism.

210 FORD AND POLL

integz<ll

integ z<3l ___ ,___ ..

orthonormalize
z<lJ and z<3>

FIGURE 10 Integration of solutions.

Integration of Solutions

Each wavenumber approximation and perturbed
values of its real and imaginary parts has two de­
pendent solutions Z\1) and Z ;j. These are inte­
grated from the edge of the boundary layer to the
aerofoil (see Section 2.2). Each integration is in­
dependent, however orthonormalization is ap­
plied at each step (see Fig. 10).

3 PROGRAMMING TECHNIQUES

The codes described in this article were written
and are maintained by the LFC group in the aero­
nautics department of The Cniversity of .\Ianches­
ter, U.K. The stability code is called .\lelissa.

Melissa is written in standard Fortran 77 and as
a result has run without modification on all plat­
forms tried. The code itself is approximately
1,000 lines long.

The 0-S solver utilized in .\1elissa was taken
from an earlier, more general purpose code, writ­
ten in FortraniV. Due to both the language used
and the original authors' coding practice in this
earlier code, the 0-S solver section of .\Ielissa has
a typical "dusty deck" form.

3.1 Code Restructuring

To help understand the algorithm used to soh-e
the 0-S equation and make the code more read­
able certain code restructuring was performed.

Loops implemented with a counter and condi­
tional branch using a GOTO were converted into
DO loops. Redundant loops and code segments
associated with the equation solver performing
obsolete functions were removed. Tangled control
flow and conditional GOTOs were converted into
their IF THEN ELSE form. A number of redun­
dant input variables and input variables read
more than once were removed. Large code frag­
ments were converted to subroutines to aid read-

ability. Finally some C0.\1.\101\" blocks were re­
moved and variables passed as arguments.

3.2 The Kendall Square Research KSR-1

The scalability of shared memory multiprocessors
has traditionally been limited to tens of proces~ors
due to memory access contention. As a result it
has been widely accepted that distributed memory
is the key to scalable parallel machines. however
these machines have been notoriouslv difficult to
program.

The KSR-1 is a distributed memon· machine
that provides a single address space. supported by
proprietary hardware [6]. the advantage)wing a
shared memory programming model for the user.
This technique has been termed virtual shared
memory (YS.\1). This term can cause confusion as
the KSR-1 also supports virtual memory (Y.\1)
with an address space of 1 million .\!bytes (2-+0).

Each KSR-1 processor is a 20 .\1Hz RISC-style
superscalar 64-bit unit operating at 20 .\lips and
40 .\lflop/ s (peak). A KSR-1 system contains from
8 to L088 processors with a peak performance
range from 320 to 43,520 .\Hlop/ s.

Each processor has 0.5 .\lbyte of subcache ..
split equally between instructions and data, and
32 .\lbyte of cache. It is therefore a nonuniform
memory access (1\L-.\IA) style memory system. In
this svstem instructions and data are not bound to
specific physical locations, rather they migrate to
where they are being referenced: this is termed a
cache-only memory architecture (C0.\1..\).

The interconnect topology is a two-level hierar­
chy of slotted unidirectional rings, known as ringO
and ring1. Each ringO can have a maximum of 32
processor memory pairs and has a bandwidth of 1
Gbyte/ s. The ring1 connects up to 34 ringOs and
has a bandwidth of 1-4 Gbyte/s depending on
configuration. The KSR-1 at .\1anchester is a 6-i­
processor machine.

A thread (termed pthread by KSR) is a sequen­
tial flow of control within a process and is the un­
derlying mechanism used to execute the parallel
constructs available to Fortran programmers.
These constructs-parallel regions, parallel sec­
tions, and tile families-form a high-level inter­
face to pthreads. The user inserts these parallel
constructs, seen as cornments to other compilers,
around appropriate blocks of codes. A pthread
library for thread creation, barriers, locks, condi­
tion variables, etc., can be accessed directly by the
programmer if a finer level of control is required.

3.3 Scalar Optimization on the KSR-1

The core element of Melissa, the 0-S equation
solver originally included the case of oblique
waves (three-dimensional waves); the values of
these were set to zero in the input files. The redun­
dant code associated with this was removed.

Two core functions, in which nearly all compu­
tation takes place, were each called twice with the
same input parameters. These two calls were re­
placed by a single call and the result shared.

The innermost functions are called millions of
times and have little work within them. These were
manually inlined reducing the calling overhead.

In combination these scalar optimizations pro­
duced over fourfold improvement in solution time
(see Section 4.3).

3.4 Parallelization on the KSR-1

Parallel Stations

In "Pipelined Station Parallelism" we describe
the potential parallelism available by overlapping
station solutions (see Fig. 6). As the overlap is
equal to the number of frequencies per station the
maximum parallelism that can be usefully em­
ployed is equal to the number of frequencies.

If, for example there are 4 frequencies, thread 1
will be used to calculate stations 1, 5, 9, etc.,
thread 2 will calculate stations 2, 6, 10, etc., and
so on (see Fig. 11).

This ensures that all threads are kPpt as busy as
possible and minimizes the number of threads
used. As mentioned in "Pipelined Station Paral­
lelism" this is, in fact, an oversimplification. To

Station
2 3 4 5 6 7 8

Thread
2 3 4

2"' !"' 3 2 "'

4 3 2ll
4 3 2

4 3

4

FIGURE 11 Maximum station parallelism.

LA1\II~AR FLOW CO:\'TROL SYSTEM DESIGN 211

create the appropriate number of threads on the
KSR-1 we use a parallel region directive. A func­
tion is called within the parallel region which re­
turns a unique value to each thread and is used in
combination with an explicit modulo function to
ensure each thread only calculates the appropri­
ate stations.

We now need to delay the thread at the next
station until the thread at the current station has
calculated the a solution for its first frequency. To
implement the above we use a "mutex"; this al­
lows only one thread through a section of code at a
time (the first frequency calculation is effectively
an ordered critical section) and a condition vari­
able to ensure that the pthreads obtain the mutex
in the correct order. These were implemented us­
ing calls to appropriate KSR pthread libraries.
The code implementing this is shown below.

C*KSR* parallel region(numthreads=
C*KSR*&NFREQ,private=(I,mynum, istat))

mynum=ipr _mid ()
DO I=l,NSTAT

IF(mod(I,NFREQ).EQ.mynum)THEN
call pthread_mutex_lock

& (mul, is tat)
IF(ftag(I) .EQ .. false.)THEN

call pthread_ cond_
& wait(icond(I), mul, istat)

END IF
CALL STATIONS(..)

END IF
END DO

C*KSR* end parallel region

The condition flag (flag (I)) is initialized to
false for all instances except for I=l. If the
"wrong" thread grabs the mutex it yields on a
pthreacLconcLwai t () until it is woken by the
thread which has calculated the previous station
wavenumber. ·when a thread has finished calcu­
lating the wavenumber required for the next sta­
tion to start, it unlocks the mutex, sets flag (I +1)
to true, and wakes the next thread if it is sleeping
on the condition variable; this is shown below:

IF (I.NE.NSTAT) flag(I+l)=.true.
call pthreacLmutex_unlock(rnul, istat)
IF (I.NE.NSTAT) THEN

call pthreacLconcLsignal (icond
& (I+l), istat)
END IF

A problem found in the use of parallel regions
and condition flags is in the KSR-1 's Fortran77

212 FORD A!\'D POLL

a: without 110 lock
110
fl

f2

f3

f4

b: with 110 lock

0
0

0

FIGURE 12 Owrlappin;r 1/0.

optimization: it assunws the code run;; ;;eq uen­
tially making appropriate optimizations. 1t i,;
therefore possible for the compiler to ··optimize
out" a condition yariable as. sequentially. the
condition is alwavs true. On the KSR-1 ,;uch t:'X­

plicit locks need to be deelared volatile. Thi;.; i,;
a Fortran77 extension which stop,; the-compiler
from optimizing that variable.

Other necessarv modifications to the code in­
volved making wavenumber results for the first
frequency global so that the next station could
read them and sequentializing the output to a file:
this occurs after all the wayenumbers haYe been
calculated at a station. This latter change was im­
plemented with a naiYe spin lock condition vari­
able.

It ensues that we cannot neglect the time taken
for each thread to complete l/0 bdure calculating
the wavenumber solution;;; for its frequencie;;. This
overhead can be reduced by adding another lock
and condition variable, allowing the thread for a
station to proceed w1th its l/0 as soon as the l/0
has been dealt with by the preyious station (see
Fig. 12).

Parallel Frequencies

As discussed in "Frequency and Perturbed Fre­
quency" the algorithm requires modification to
calculate the wavenumber for the frequency and
perturbed frequency in parallel. This involves em­
ploying the same wavenumber approximation by
both the frequency and perturbed frequency. To
implement this we need only change one IF state­
ment. To run this in parallel we add the KSR tile
directive given below:

C*KSR* TILE (FREQ, teamid=iteaml)
DO FREQ=l, 2

CALL PERT (...)
END DO

C*KSR* END TILE

The teamid argument to the tile directin~ i;-; dis­
cussed in ""Teams and :\e:;ted Paralleli:-;m.·'

Parallel Wavenumber Approximations

As discussed in ··\\·an•numlwr Approximation,;··
the wavenumber approximation and perturl,a­
tion;.; of its real and imaginary pans arP intc>gratt·d
through tlw boundary layc>r. As in tlw prn ious
section to implemelll this we simply need to add
the KSR tile dirc>ctive given lwlow:

C*KSR* TILE(PERT, teamid=iteam2)
DO PERT=1,3

CALL WAVE (...)
END DO

C*KSR* END TILE

The teamid argument to the> tile dirt>cti\P i;-; dis­
cussed in ··Teams and :\p,;ted Paralleli,;m. · ·

Integration of Solutions

As discussed in ""lntt>gration of Solutions·· each
integration step of the two dependent :'iolutions
Z 1 ' and Z :i can be exeeutt>d in parallel. lwweyer.
this is not true for the whole integration due to the
orthonormalization of the :'iolutions (see Fig. 10).
This was implenwnted using the KSR parallt>l ,.;pc­
tions directive. ,.;pe below:

DO J=I,NSTEPS
C*KSR* parallel sections
& (teamid=iteam3)
C*KSR* section

CALL INTEG(AZ, ..)
C*KSR* section

CALL INTEG(CZ, ..)
C*KSR* end parallel sections

CALL MODOR(CZ, ..)
CALL ORTHO(AZ, CZ, ..)

END DO

The teamid argument to the parallel sections di­
rective is discussed in '"Teams and l\'ested Paral­
lelism."

Inner Functions

\\~hen the code is examined we obsf-rve some in­
ner function,.; which could be called in parallel.
For example. functions Land Ll independently
search for the appropriate velocity and accelera­
tion data. respectively. However. althou~h a lar~e
proportion of the computational timf' is spent in
these routines, the time per call i,.; too small to
obtain anv benefit on the KSR-1.

Teams and Nested Parallelism

~When a parallel construct is encountered. thP ap­
propriate number of threads are allocated to the
work within it. To achieve this. threads which
have alreadv been created and have fini,;hed their
previously allocated work an~ utilized: such
threads are kept in an '·idle pool.,. If there are not
enough threads in the idle pool then threads are
created to make up the shortfall.

As threads start referencing instructions and
variables. the appropriate data are fetched from
remote processors (if there i:-; no instance of those
data in the correct state locallv). \\~hen threads
finish their work they return to the idle pool.

If another parallel construct is encountered
later. which accesses the same variables. it is sen­
sible to use the same threads and processors that
executed previously. as the processors· local
memory may still have valid copies of data. If the
same construct is encountered. then the instruc­
tion cache may also still have valid copies of in­
struction code, and the thread will have the cor­
rect data structures associated with it. The idea of
data reuse here is, of course. the same as reuse of
cache on a single processor machine.

To ensure the same threads and processors are
used for subsequent parallel constructs we use
"teams" of threads. A team is created with a de­
fined number of thrf'ads. This team can then he
referenced in association with a number of paral­
lel constructs and the same threads associated
with the team will be utilized each time it is called.

Teams of threads were implemented for each
level of parallelism in the code. Another important
effect of using teams is observed when the granu­
larity of work is close to that of the start up cost of
the construct and the construct is called many
times: this is because a team reduces subsequent
construct start up overheads by a significant
margin.

A subtle problem in the use of teams arises
when parallelism is nested. This is due to run-time

L\\11:\":\R FLO\\. CO:\"TROL SYSTE:\1 DESIG:.\' 213

thread creation. A team groups together a number
of threads including the currently active thread.
thus sets of calls to create appropriately sized
teams at the beginning of the code are not desired.
It must be the active thread, arriving at the parallel
construct, that creates the team. Therefore the
team is created (once) at the same nested level as
the parallel construct.

4 PERFORMANCE REALIZATION

4. 1 Test Data

As outlined in Section 2.3, we first apply a low
resolution search to find the frequencies and aero­
foil positions of interest: wf' dwn do a more de­
tailed analvsis around these areas. The low reso­
lution search typically use;; 3-10 frequencies and
50-100 stations. The high resolution analysis
typically uses 10-40 frequencies and 1 00-•fOO
stations.

In this article we use two test cases to represent
these different resolutions. Test case A has 4 fre­
quencies and 40 stations. Tese case B has 40 fre­
quencies and 100 stations.

4.2 Results

The results reported in this article were achieved
on the KSR-1/64 at Manchester University. Tim­
ing runs were taken in a multiuser en,ironment.
To ensure the exclusive use of the appropriate
number of processors during the runs and to mini­
mize interference from other users, cells were allo­
cated exclusively to the program during its execu­
tion. This was achieved with the command
1 allocate_cells -An 1 , where n is the number
of processors and -A avoids 'loaded' cells such as
those with ethemet cards. All results shown in the
next sections are the average of three consecutive
runs and all timings were made using the unix
timer "time."

Results for varying numbers of processors are
presented as temporal performance graphs[?].
The dotted line in each graph is the "naive ideal"
line lp = l 8 /p (often termed "linear speedup"),
where t., is the elapsed time for the serial program
for a fixed problem size and lp is the elapse time
for the same problem size on p processors.

Other results are presented in tabular form in
which we give absolute time and solutions per sec­
ond. A solution is defined as the calculation of the

214 FORD A:\D POLL

wavenumber for one frequency (and its perturbed
complement) at a station.

The results described in this article extend work
reported in Ford[8].

4.3 Single Cell

A number of scalar optimizations have been ap­
plied to the code during the course of our work.
Table 1 shows the performance improvements oL­
tained. The solution rates differ for the two cases
as case B has a better conveqrence rate for the
iterative method used to solve the 0-S equation.

4.4 Parallel Stations

The temporal performances for cases A and B for
increasing numLers of processors are shown in
Figures 13 and 14, respectively.

The two results in each graph (Sand Sio) repre­
sent the advantage of performin~ 1/0 as soon as it
is possible to do so: this effectively increases the
pipeline length (see Fig. 12).

The performance results ··drop away" from the
naive ideal line due to two major factors.- The first
is that we run out of overlapped work to do: note
that this is not a sharp cut off. as the pipeline
overlap varies during the run due to the iterative
method used. The second effect is due to the over­
head of '·filling up"' the pipeline. This effect is
more prominent in case B (Fig. 14). as the ratio of
the pipeline length (a function of the number of
frequencies) to the number of stations is larger
than in case A.

4.5 Parallel Frequencies

To implement parallel frequencies we modified
the algorithm (see Section 2.4, "Frequency and
Perturbed Frequency"). Table 2 shows perfor­
mance comparisons for the serial code and the
parallel version run both serially, and in parallel,
for test cases A and B. The parallel algorithm runs
more slowly than its sequential counterpart. The
temporal performance of cases A and B with the

Table 1. Sequential Optimizations

Version

A: Original
A: Optimized
B: Original
B: Optimized

Elapsed Time

6m Os
1m 28s
1h 51m 31s
25m 17s

soils

0.4-t
1.82
0.60
2.64

Table 2. Parallel Frequencies

Version

A: sequential
A: par 1 eell
A: par 2 cells
B: sequential
B: par 1 cell
B: par 2 cells

1m 27.7s
1m 3-t.h
S5JJS
2.Sm 16.8s
29m 19.0s
15m 1-t ..),;

~ol I,;

1.82
1. 70
2.88
2.64
2.27
•t.:37

0.08 ,-----,r---.-~----,----.--,.-~---.----,

0.07

0.06

0.05

:::: 0.04

0.03

0.02

.;i:l = // /// /~/:...-... _ _ _· -----~

0.01

0"------'-----'---'----'---'---'-----'-----'---'
0 2 3 4 5 6 7 8 9

processors

FIGURE 13 Case A paralld ,.,ration,.;.

parallelism of parallel frequencies and parallel
stations combined is shown in Fi!!ures 15 and 16.
respectively. Again the two graphs show the ad­
vantage of performing 1/0 as soon as it i:-; pos,.;ible
to do so.

Parallelizing at the frequency lewl has the ad­
vantage of reducing the pipeline length Lut has the
disadvantage of modifying the algorithm to a less
efficient form. Figures 15 and 16 show that paral­
lel frequencies are only beneficial when the pipe­
line length is large. i.e .. close to the number of

0.025

s --+--

0.02 Sio ~
naive -------

0.015

-
0.01

.·
/

16 24 32 40 48 56
processors

FIGURE 14 Case B parallel stations.

0.1

0.09

0.08

0.07

0.06

:::; 0.05

0.04

0.03

0.02

001

2 4

s­
Sio -+­

naive ····-­
S+F -<>-­

Sio+F-~--,.__ ___ ___
A&-4""---e---o --~

6 8 10 12 14 16 18
processors

FICUHE l;j Ca,;e A para lid ,.;tation~ and fn·queneies.

:-;tations and that for small numbers of proeessors
it i:i better to pamlldize at tht• station level only.

The interesting feature,;; in the parallel station
and parallel frequency line (S + F) in Fi1-rtu-e 16
are the subject of ongoing work.

4.6 Parallel Wavenumber Solutions

Table 3 shows the performance results when soh-­
ing wavernunher solutions in parallel. The tempo­
ral performances of cases A and B. when the par­
allelism of parallel wavcnumbers and parallel
stations is combined. as shown in Figures 17 and
18, respecti\·ely.

The results of parallelizing at the station level
only are also shown for comparison. There is a
clear advantage in parallelizing at the wavenum­
ber level as we obtain improved performance in
both cases A and B. In case A the improvement is
due to the increa:o;e in the amount of parallelism

0.025

0.02

0.015

-<::

O.oJ

0.005

0
0

s -+--­

Sio-
naive
S+F -<>­

Sio+F-

8 16 24 32 40 48 56
processors

L\\IL'\ \R FLO\'r CO.';TROL SYSTE\1 DES! G.'; 215

Table :3. Parallel \Vavenumbers

Version

A: sequential
A: :3 cells
B: sequential
B: :J cells

Elapsed Time

1m 27."?s
3:~.9s

2:')m 16.8s
Sm .)7.9,;

sol/ s

1.82
-+. '72
2.6-+
-:'.·H

available. In case B this impnwerm~nt results in
better peformance for the number of processors
used: a major part of this is due to the reduction of
the pipeline overhead.

4.7 Parallel Integration

When the integration was parallelized as de­
scribed in Section 2.i, '·Integration ofSolutiom;,"
the program ran more slowly. The degradation in
performance is due to the startup oYerhead of the

0.15

- 0.1

0.05

s­
Sio-

naive -·----·
Sio+W -<>--

0 ~--~~--~----~----~----~----~
0 4 8 12

processors
16 20 24

FIGURE 17 Case A parallPI station~ and wavt>num­
bers.

0.02

s 0.015

0.01

0.005

0 ~--~--~--~--~----~--~--~~
0 8 16 24 32 40 48 56

processors

FIGUHE 18 Case B parallel ;;tations and wawnum-
FIGUHE 16 Ca~e B parallel station,; and frequencies. bers.

216 FORD A'\D POLL

Table 4. Parallel Integrations

Version

A: sequential
A: sections 2 cells
A: reduced 2 cells

Elapsed Time

1m 27.?s
4m 9.4s
1m 13.5s

sol/ s

1.3:2
(). 6-t
:2.18

KSR parallel section construct being close or
greater than the work inside each section. To re­
duce this overhead we expanded the KSR parallel
sections (see Section 2.4, "Integration of Solu­
tions") outside the integration loop, thus reducing
the number of section startups. This was achieved
by duplicating the loop and synchronizing manu­
ally via shared variables*, see below.

C*KSR* parallel sections(teamid=
C*KSR*& iteam3, private=J)
C*KSR* section

DO J=l,NSTEPS
CALL INTEG(AZ, ..)
DONE_INTEG(J)=.TRUE.

20 IF (.NOT.DONE_ORTHO(J)) GOTO 20
END DO

C*KSR* section
DO J=l,NSTEPS

CALL INTEG (CZ, ..)
10 IF (.NOT.DONE_INTEG(J)) GOTO 10

CALL MODOR (CZ, ..)
CALL ORTHO (AZ,CZ, ..)
DONE_ORTHO(J)=.TRUE.

END DO
C*KSR* end parallel sections

Table 4 shows the performance of these differ­
ent versions. Clearly we only obtain a modest im­
provement in the solution time when parallelizing
sections.

5 CONCLUSIONS

We have shown that for a typical low resolution
search, we can reduce the solution time from min­
utes to near interactive times. In test case A, we
have reduced the solution time from 6 minutes to

under 8 seconds on 24 processors (this is the
maximum number of processors that can be use­
fully employed on this problem size).

* The premise here is that manual synchronization incurs
less overhead than parallel sections.

\Ve have also dt>monstrated that for a typical
high resolution search, we can reduce tlw :-;olution
time from hours to seconds. In test ca:-;e B. we
have reduced the ,.;olution time from onT 1 hour
51 minutes to under -!0 seconds on 5-i proces,.;ors.

These results were obtained by a combination
of scalar optimization and parallelization. Scalar
optimization accounts for over fourfold imprpve­
ments in the results.

These results open up the pos;;ibility of much
larger runs involving more stations and frequen­
cies. However, more significantly. we demonstrate
near iteractive performance for smaller runs,
enabling a transformation of search methods and
opening up new possibilities for this methods use
in industry.

The algorithm has a reasonable amount of
functional parallelism (for the :;tandards of to­
day's machines) but would not be classified as
being massively parallel; useful parallelism on the
KSR-1 is limited to six times the number of fre­
quencies in a run. The majority of this parallelism
is coarse grained with little communication and
should therefore be efficient on both shared mem­
ory and distributed memory machines.

There is further parallelism available, within
which a large amount of the total execution time is
spent: however, the time per call is too small to
exploit on the KSR-1.

Conceptually, a message-passing style would
be a natural way to exploit the functional parallel­
ism available and svnchronization needed in this
algorithm, particula"rly at the level of parallel sta­
tions. However, the combination of a shared
memorv model and dvnamic thread control on the
KSR-1: coupled wid{ automatic thread and data
migration. offered significant advantages wht>n
parallelizing the existing sequential program.
These features enabled each level of parallelism to
be separately parallelized with little code modifi­
cation: thev also enabled each level and combina­
tions of le,:els to be incrementally dewloped and
tested; finally .. we could effective ignore thread
placement and the migration of shared data.

6 FUTURE WORK

The algorithm described here models incompres­
sible fluid flow. A compressible wrsion is now op­
erational: this has similar characteristics but is
more computationally intensive. The compres­
sible code will be the subject of future paralleliza­
tion efforts.

• •

from
user ""' •

FIGURE 19 :"ew parallelism stratefrY·

•

The dependency of a station on the previous
station may be broken by "inputting" an accurate
initial wavenumber approximation either at every
station or, more feasibly. groups of stations. This
would increase the amount of parallelism avail­
able and reduce the functional pipeline overhead
(see Fig. 19). The accuracy of initial wavenumber
approximations is one of the current focuses of the
LFC group.

The algorithm described here is also con­
strained to a two-dimensional flow. A three-di­
mensional ver;;ion of their model is now opera­
tional. The three-dimensional code will again
increase the computational requirements. In this
case a different parallelization stratebry will also
have to be adopted, as the three-dimensional ver­
sion imposes new orderings on the computation
(such as dependt>ncies across the wing).

Work aimed at improving the efficiency of a
search procedure in one of the core routines, elim-

LA;\Il:'\AR FLOW CO:\'TROL SYSTEM DESIGI'i 217

inating any further redundant work and reducing
the parallel overheads of thread start-up, may
also yield further performance benefits .

ACKNOWLEDGMENTS

This work was supported by the Esprit Projects 2716-
AMUS and 625.3-SHIPS. Th~ authors would also like to
thank members of the Centre for Novel Computing and
Laminar Flow Control Group for their invaluable ad­
vice.

REFERENCES

[1] H. Schlichting, Boundary-Layer Theory. New
York: McGraw-Hill.

[2] L. M. Mack. "Boundary layer linear stability the­
ory, special course on stability and transition of
laminar flow." Advisory Group for Aerospace Re­
search and Development, AGARD Report l'io. 709,
March 1984.

[3] G. B. Schubauer, and H. H. Skramstad, "Laminar
boundary oscillations and stability of laminar
flow," NACA Report 909.

[4] H. B. Squire, "On the stability of three-dimen­
sional disturbances of viscous fluid between paral­
lel walls,'' Proc. R. Soc. [A]. vol. 142. pp. 621-
628, 19.3.3.

[5] R. L. Burden, NumericalAna{ysis (4th ed.). PWS­
KEi\T. 1939.

[6] KSR -1 Programming Manuals, 170 Tracer Lane,
Waltham, MA, 1993.

[7] R. A. Hackney, "Framework for benchmark per­
formance analysis," Supercomputer, vol. 43. pp.
9-22, 1992.

[3] R. W. Ford, "ProceedingsofSuperComputingEu­
rope '9.3," Utrecht. Holland. February 22-24,
1993.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

