A Parallel Processing Approach to
Transition Prediction for Laminar Flow

Control System Design

R. W. FORD! AND D. 1. A. POLL?

Centre for Novel Computing, Department of Computer Science, The University of Manchester, Oxford Rd.,

Manchester, M13 9PL, U.K.; e-mail: rupert@cs.man.ac.uk

2Department of Engineering, The University of Manchester, Oxford Rd., Manchester, M13 9PL, U.K.; e-mail:

diapoll@fs] .eng.man.ac.uk

ABSTRACT

The performance of transport aircraft can be considerably improved if the process by
which the wing boundary layer becomes turbulent can be controlled and extensive
areas of laminar flow maintained. In order to design laminar flow control systems, it is
necessary to be able to predict the movement of the transition location in response to
changes in control variables, e.g., surface suction. At present, the technique which is
available to industry requires excessively long computational time—so long that it is not
suitable for use in the “design process.” Therefore, there is a clear need to produce a
system which delivers results in near realtime, i.e., i seconds rather than hours. This
article details how parallel computing techniques on a KSR-1 produce these perfor-
mance improvements. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

In order to sustain an aircraft in straight and level
flight, two fundamental conditions must be satis-
fied. The first is that the lifting force generated by
the wings must be equal to the weight and the
second is that the thrust from the engines must be
equal to the drag.

The drag force opposes the motion of the air-
craft and acts in the direction of flight. It is made

Received May 1994

Revised December 1994

© 1995 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 4. pp. 203-217 (1995}
CCC 1058-9244/95/030203-15

up of two components, these being the pressure
drag and the viscous drag. Pressure drag is pro-
duced by the variation of the air pressure acting
on the aircraft surface and is closely related to the
lift force—in fact, it is the penalty that must be
paid to produce the lift. Viscous drag, on the other
hand, is the result of tangential, or shearing
forces, because, as a result of viscosity, air sticks
to the surface.

On a typical transport aircraft in the cruise con-
dition, the two components of the drag are ap-
proximately equal i.e., 50% of the drag is due to
the action of viscosity. This means that a substan-
tial fraction of the fuel which an aircraft carries is
there to overcome viscous drag. It follows that, if
the viscous drag can be reduced, a substantial
saving in fuel and, consequently, operating cost is
possible.

204 FORD AND POLL

In flight, the effect of air viscosity is confined 10
a very thin layer close to the aircraft—the so-
called boundary layver. On the surface viscous
forces require that the flow speed must be zero.
However, a few millimeters above the surface the
air must be traveling at almost the flight speed of
the aircraft.

The motion of air within this thin boundary
layer takes one of two possible forms. It mayv set up
a simple, steady flow where each laver of air slips
slowly over its neighbor—this is called the laminar
condition. The alternative is an unsteady flow with
almost random fluctuations causing the various
lavers of air to be mixed violemly with one an-
other—this is the wurbulent condition.

Not surprisingly. a wurbulent flow produces
more viscous drag than the laminar one—the ratio
is approximately 10: 1. At very low speeds. {lows
are alwavs laminar. However. as speed is in-
creased, there comes a stage at which laminar flow
becomes unstable to the small disturbances which
are alwavs present in realitv. At higher speeds.
these disturbances are amplified and. when the
amplitudes are sufficienty large. there is a break-
down and turbulent flow is produced.

It follows that. for a given aireraft configuration.
there is a flight speed above which the boundary
laver flow will be turbulent and the viscous drag
will be large. Unfortunately. for all but the small-
est aircraft, the boundary lavers are turbulent in
the cruise condition.

Until recenty this situation was accepted as
unavoidable and aircraft designs have been opti-
mized on the assumption that boundary laver flow
would always be turbulent. However, it has been
known for over 60 vears that. if some of the air in
the boundary laver could be sucked through the
surface, then the speed at which laminar flow be-
comes unstable can be increased.

The effect of suction is sufficiently powerful for
laminar flows to be achieved at typical aircraft
cruise conditions when the suction velocity is only
0.05% of the flight speed (i.e., only about 10
cm/s!). If suction could be engineered, the drag of
an aircraft could be reduced by as much as 30%.
This would represent a quantum leap in aircraft
performance since, in the current commercial cli-
mate, an aircraft which could deliver a 5% drag
improvement relative to its competitors would
capture the entire market.

There are two major obstacles to the develop-
ment of an aircraft which uses the surface suction
technique for laminar flow control (LFC). The first
is the provision of a suitable porous surface

through which the air can be drawn. This has al-
wavs been a serious problem since. in the past.
surfaces which were porous did not have good
load-bearing properties. However, this difficulty is
now effectively resolved because of the recent de-
velopment of the laser perforating technique. This
enables traditional aerospace materials—titanium.
aluminium. steel. and even composite materigl—to
be drilled with millions of holes as small as 50 um
in diameter, placed in any desired pauern. with
any desired spacing. This leaves the second prob-
lem which is that. in order 10 produce a design for
an LFC system. it is necessary to be able 1o esti-
mate the conditions under which the boundary
laver flow will undergo a ““transition” from the
laminar to turbulent state. Moreover. it is neces-
sarv 10 be able 10 produce these estimates sulfi-
ciendy quickly so that a conventional design pro-
cess is not slowed down.

The problem of prediciing the conditions
necessary for the onset of transition is a particu-
larly challenging one. In fact. at present. there is
no complete theory for wansition. Nevertheless.
various semi-empirical methods have heen devel-
oped over the vears and some are appropriate for
use in design.

Of these. the one which is most accurate and
allows for all the important parameters ie.. flow
compressibility (mach number). surface tempera-
ture (heat transfer). and wall transpiration {suc-
tion) is the e method. This is based on an ap-
proximate formulation of the stability problem for
a boundary laver which. when solved by a suitable
numerical technique. produces dispersion rela-
tions for the unstable disturbances. These rela-
tions are used 1o track the disturbance amplitude
development and an empirical criterion is used to
determine the breakdown {transition onset} condi-
tion.

However. while the e technique allows for all
the physical effects which can influence transi-
tion, it requires a great deal of computation—so
much so that the elapse time between predictions
is far too long for it to be described as a design
tool. One possible solution to this problem is the
application of parallel computing techniques.

This article chronicles the parallelization of a
laminar to turbulent transiton prediction code.
developed by the LFC group. in the Deparument
of Engineering. at the University of Manchester.

Section 2 introduces modeling techniques for
the onset of turbulence and Section 3 describes
the parallelism inherent in the solution method.
Section 4 introduces the KSR-1 and discusses

both the scalar optimizations and parallelization
methods used. Finally, Section 5 summarizes the
main conclusions of the article and Sectiion 6 dis-
cusses [uture work.

2 ALGORITHM DESCRIPTION

2.1 Solution Methods

The general problem of predicting the onset of
transition in a flow is extremely complex. Strictly
speaking. the complete approach requires the full
unsteady Navier—Stokes equations to be solved
for a range of disturbances, which span the com-
plete spectrum of freestream fluctuations. surface
roughness, surface vibration. and sound. Such a
calculation would have to be performed with very
fine resolution of length and time scales and it
would be necessary to specily every possible form
of disturbance in order to ascertain which were
amplified most rapidly. Moreover. the computa-
tions would have to be carried out sufticiently far
downstream to capture the nonlinear processes
which lead to laminar flow breakdown and the
ultimate establishment of turbulent flow. Even
with the most powerful machines currently avail-
able. such calculations are only possible for sim-
ple flows under highly restrictive and ultimately
unrealistic conditions. e.g.. fully developed pipe
flow with temporally developing disturbances. For
engineering purposes, when the basic flows are
much more complex, an alternative approximate
approach is called for.

A major simplification of the problem is pro-
duced by limiting the consideration to the devel-
opment of small amplitude disturbances in a
boundary layer flow. since this allows linearization
of the governing equation. This approach was first
proposed in the 1920s by Prandil’s group in Got-
tingen[1]. The complete analysis is available in
many standard texts, e.g., Mack[{2] but, in es-
sence, the arguments run as follows.

1. The instantaneous fluid properties are ex-
pressed in terms of a mean component plus
a fluctuating component, e.g., U= + u’,
P=p+p', etc.

2. It is assumed that the complete unsteady
flow satisfies the Navier—Stokes equations.

3. The amplitudes of the disturbed quantities
are assumed to be sufficiently small for
products of fluctuating components to be

negligible.

LAMINAR FLOW CONTROL SYSTEM DESICN 205

4. The mean flow is assumed to satisfv the
steady, boundary laver equations.

5. The normal-to-surface component of the
velocity is assumed to be negligibly small
compared with the streamwise component.
Thus the flow is taken to be parallel.

Having taken the above steps the resulting
equations for the disturbance components are
found (by inspection) to have harmonic solutions.
Since the problem has been linearized. a general
disturbance can be constructed by superimposing
normal modes of the form

u'lx, v, z. t) = Fy)efartheol (1)

where. in general. «, 8, and w are complex quanti-
ties. By substituting expressions for the distur-
bance quantities of the form of Equation 1 into
the governing equation, a system of equations is
obtained which can be used to determine the
characteristics of traveling waves propagating
through the flow. These waves are known as
Tollmien—Schlichting (T—8) waves. It is interest-
ing to note that, originally, the above stability
analysis was carried out in the absence of any ex-
perimental evidence that such waves could exist.
Verification of the existence of T—S waves and
their precursor role in the process of boundary
laver transition was not provided until the 1940s
by Schubauer and Skramstadt[3].

Finally, in order to produce further simplifica-
tion, the flow may be assumed to be incompressi-
ble; it is then possible to show that. for a two-
dimensional boundary laver. the most unstable
wave propagate in the mean flow direction, i.e..
B = 0[4]. Consequently, from the point of view of
transition prediction, only two-dimensional dis-
turbances need to be considered. This being the
case the stability problem reduces to the solution
of a single, fourth order ordinary differential
equation:

d? . i d?
(W N 239(‘;= iR [<°‘L/ — (dv2 - “2) 2)
~a

subject to the boundary conditions:

¥(0) = 0, d¥(0)/dy = 0
Hy)— 0, dd(y)/dy—>0asy—»> = (3)

206 FORD AND POLL

This is known as the Orr—Sommerfeld {0-8)
equation. From the point of view of the present
exercise it is important to note that this equation
depends on local conditions only. i.e.. there are no
terms involving derivatives with respect 10 2. This
means that the stabilitv characieristics are not af-
fected by the upstream history. For a wave of fixed
frequency, w,, convecting through a given flow at
a specified local Reynolds number. R the O-5
equation provides two relationships (real and
imaginary part) among the three unknown quanti-
ties a,. ;. and w;. Therefore. in order 10 close the
problem. an extra condition is required. In the
early davs of stability computation. the final step
was to assume that the disturbance grew in time
but notin space. i.e.. a; was zero. This produced a
well-posed mathematical problem. However. in
the physical world in which waves are observed 1o
propagate in the mean {low direction a slightly
more realistic approach is to assume that the dis-
turbances grow in space but not in time. i.e.. w; is
zero. This spatial form for the T—5 wave is the
preferred option for use in transition prediction.

Solutions to the O-8 equation permit the
calculation of the dispersion relation for the dis-
turbance waves of a specified frequency. The
secondary problem then is how to use this infor-
mation to predict the onset of transition. It has
already been noted that breakdown of laminar
flow occurs when the amplitude of amplified trav-
eling disturbances becomes large. From Equation
1, it is immediately apparent that for a wave of
fixed frequency, if, at the point of neutral stability,
xg, the disturbance amplitude is Ay then at station
x, where x > xq:

Al/Ay = exp(f (—a)dx) {4)

In general, the boundary laver will change its
thickness and Revnolds number between any two
stations and, consequently. «; will vary with .
However for the purposes of evaluating a;. it is
assumed that locally the flow does not vary with x.
Hence, the amplitude ratio relation is only ap-
proximate. Nevertheless. itis a quantity which can
be readily calculated and it does bear some rela-
tionship to the stability of the mean flow.

By examining a range of experiments in which
transition was observed, it has been proposed that
transition onset correlates with the condition
where the wave which has undergone the greatest
total amplification has just reached an amplitude
ratio of €°, i.e.,

A) - =
—/=\N=9 5)
ln("l” Vo= D)

This is the basis of the so-called ¢ (ransition
method when the critical {transition onset) value
for N in low disturbance environments is 9.

2.2 Numerical Method .

The boundary laver {see Fig. 1) will. in general.

vary in thickness dl()nrr the deml(nl lllelefme we
solve the 0—8 equation at a number of equally
spaced positons along the aerofoid. finding the
wave amplification rates at each: these positions
are denoted ““stations.”” A particular wave’s am-
plification rate corresponds to the imaginary part
of its wavenumber a;. At each station the O-8
equation is solved ‘finding . for a number of
equally spaced frequencies: the number and
bounds of these are specified.

An initial wavenumber approximation a must
be supplied by the user for the lowest frequency at
the first station. When the actual wavenumber
corresponding 1o that frequency has been calcu-
lated. the frequency is perturbed and a new
wavenumber found for the perturbed frequency.
The original and perturbed values are then used
to make an approximation to the wavenumber so-
lution. for the next frequency. at the same station
(Fig. 2a shows the dependencies. at the first sta-
tion. denoted by vertical arrows).

When the instabilities for each frequency at a
station have been calculated the results are
stored. The wavenumber corresponding to the
lowest frequency (fy in Fig. 2a) is then used as an
approximation to the wavenumber for the lowest
frequency at the next station (Fig. 2b shows the
dependencies here. denoted by horizontal ar-
rows): this method is possible as the boundary
laver and velocity profile are slowly varving (there-
fore adjacent solutions have similar values). Thus.

air velocity profile

—_—
— freestream
S—-—

P s s g e e e e
____’
— boundary
— layer
E
>

aerofoil surface

FIGURE 1 Typical boundary layver velocity profile.

®
g

user - user
input input

T
~<—"N<——,;M——M—_:ﬂ

[}
[

[}

'S
S
S
B~

-<—"'=-—-;M—'-M——h
o<——"'a-—,;’~——'n——h

FIGURE 2 Dependencies of frequencies and stations.

once the initial wavenumber approximation has
been supplied. subsequent approximations are
generated automatically.

To solve the OS5 equation. linding a wavenum-
ber solution from an inital approximation at each
frequency and statdon. we use a shooting
method{5]. The shooting method solves boundary
value problems (to find the solution for an ordi-
nary differential equation between two points with
known boundarv conditions:. In this case the
freestream gives one boundary condition and the
aerofoil the other (see Equation 3]. An approxi-
mation is supplied at one houndary and the sys-
tem of ordinary differential equations integrated
to the other boundary {from the freesiream to the
aerofoil). This is repeated with another approxi-
mation. In our algorithm the two approximations.
Z' and Z?. are integrated at the same time. The
integrator used is a fourth order Runge—Kutta in-
tegrator.

The shooting method we use suffers from the
problem of parasitic error growth. For this case (a
two-dimensional wave in a (wo-dimensional
boundary laver) the two solutions Z' and Z*
each consists of four components. Z# grows more
rapidly with decreasing v than 7', The parasitic
error follows Z* and when the dilference in mag-
nitude of Z* and Z' becomes sufliciently large
Z'" is no longer independent of Z . Before this
occurs we apply Gram-Schmidt orthonormaliza-
tion: in fact we do this for each iteration. The large
solution Z* is normalized component by compo-
nent to give the new solution:

Z3. =273 /{ZR‘Z:':s}u/z 6)

where the overbar refers to a complex conjugate
and {} a scalar product. Z'" is then replaced by:

Zle= TV~ ZLZVZENZ L ()

LAMINAR FLOW CONTROL SYSTEM DESIGN 207

where the underbar refers to the quantity in the
numerator. The numerical integration proceeds
with the new values of Z' and Z'%.

A linear combination of Z'' and Z# can be
found which satisfies the boundary condition
d (0) = 0 at the aerofoil but will not satisfy the
condition ¥ (0) = 0 unless the wavenumber ap-
proximation is an eigenvalue of the equation (the
correct value). The residual 7 (0) can therefore be
found.

The real part of the wavenumber approxima-
tion. «, is perturbed by a small amount Aa, and
the integration repeated. The imaginary part of
the wavenumber approximation e, is then per-
turbed by a small amount Ae, and the integration
repeated. Corrections 8a, and 8¢, to the initial ap-
proximations @, and «, are obtained from the re-
sidual and numerical approximations to deriva-
tives using Equations 8 and 9:

d d .
Py I A S PN = _9 \ QN
[aa U, (O)] Sa, [aa, v, \O/] S v, (0) (8)

r

[i 17 (O)] da, — [-a— v; (O‘)] Sa; = =¥, (0} (9)

da, da; ’

The corrected a; and «, are used to start a new
iteration and the process continues until de, and
da; are reduced below a preset criterion. This
method is a quasi Newton—Raphson search.

2.3 Algorithm in Context

So far we have not discussed how initial data.
such as wavenumber and velocity profiles. for the
aerofoil are calculated. This section overviews this
process.

We begin with an aerofoil and its corresponding
pressure distribution. A simplified diagram of an
aerofoil is given in Figure 3. This shape has a sur-
face static pressure distribution which is of the
form given by Figure 4.

Once a particular aerofoil shape is chosen the
pressure distribution, corresponding to that
shape, is used as input to a mean flow code. This

suction holes to control
the boundary layer

FIGURE 3 Aerofoil.

208 FORD AND POLL

pressure

position

FIGURE 4 Pressure distribution along aerofoil.

problem calculates the various boundary laver pa-
rameters needed at each station. such as Reynolds
number. boundary laver thickness. and velocity
profile; its output is used as input 10 the stability
code. These two programs are separated so that
certain control parameters can be set and others
checked before running the time consuming sta-
bility program.

The control parameters we set are the inital
wavenumber approximation for the first fre-
quency at the first station. the frequency range to
be examined, and the number of frequencies
within this range.

It is known from previous experience that in
practice two-dimensional instability waves tend to
occur within the region 500-5.000 Hz. There-
fore. the first time the instability program is run. a
spread of frequencies across this range is exam-
ined for a number of stations along the aerofoil.
typically 50—100 stations and 5—10 {requencies.
The first run is effectively exploratory, to find
which frequencies and stations to concentrate on.
We then rerun the program with a greater number
of frequencies and stations over the range of inter-
est, typically 100—400 stations and 10—40 fre-
quencies. This process may be repeated two or
three times before a sufficiently accurate picture is
obtained.

The output consists of two files. a large diag-
nostic file which records virtually all relevant vari-
ables, and a file which gives the amplification rate
(«;) for each frequency at each station.

a; is the amplification rate at a station (for a
particular frequency). To convert this into an am-
plitude ratio, a; needs to be integrated along the
aerofoil. The natural log of the amplitude ratio is
then plotted against position along the aerofoil for
each frequency; an example is shown in Figure 5.

Figure 5 shows a number of amplitude ratio
plots for various frequencies. It is the profile of

aerofoil position

FIGURE 5 Amplitude ratios.

these [requencies. i.e.. the largest amplitude ratio
at any given position along the aerofoil. that is
important when predicting where turbulence
starts. This is because turbulence only begins
above a certain {experimentally determined) value
of N, regardless of which frequency first reaches it

2.4 Available Parallelism

This section discusses the parallelism apparent
from the numerical method described in Section

2.2

Pipelined Station Parallelism

When examining Figure 2b it is clear that compu-
tation for frequencies at a station can hegin once
the wavenumber for the first frequency {f1) of the
previous station has been calculated: this gives a
parallel pipeline effect demonstrated in Figure 6.

In Figure 6 the maximum overlap (number of
stages in the pipeline) is the number of frequen-

Parallel Streams

input\\f |

RV
REE
R

FIGURE 6 Overlapped solutions.

f
[S
f+Af, f|
—_—
fz f] +Afl f 1
—_—P e
f2+Af2 f2 fl +Afl
d f2 +Af2 f2
* ¢ f2+Af2
hd °
L]

FIGURE 7 Maximum station overlap.

cies per station. In fact the overlap is greater than
this as a station does not rely on the perturbed
frequencies wavenumber solution for the previous
station: it can proceed as soon as the aciual
wavenumber for the frequency at the previous sta-
tion has been calculated. This effect is shown in
Figure 7.

Thus the potential number of stages in the
pipeline (assuming all wavenumber frequency
pairs take the same time) is two times the number
of frequencies per staton. As will be seen in the
next section the pipeline is effectively reduced to
that shown in Figure 6 when the frequency and
perturbed frequenm are parallelized.

Frequency and Perturbed Frequency

As described in Section 2.2. the wavenumber is
solved for each frequency and for that frequency
perturbed. The perturbation allows a wavenum-
ber approximation to be extrapolated for the next
frequency at that station.

At first glance one would expect these two solu-
tion to be independent: however to decrease the
number of iterations needed to converge for the
perturbed frequency, our sequential algorithm
uses the wavenumber solution of the frequency
itself: this imposes a dependency.

To enable these two solutions to proceed in
parallel the same wavenumber approximation
used for the frequency can be used for the per-
turbed frequency. This change in the algorithm
may increase the amount of computation as the
solution to the perturbed frequency could take
longer to converge.

Another possible problem is that for a particu-
larly bad wavenumber approximation the per-
turbed frequency may not converge—therefore

LAMINAR FLOW CONTROL SYSTEM DESIGN 209

fl+AflI

fI+AT]

f1+Af]] [f]]
. .

FIGURE 8 Station and frequency parallelism.

the parallel algorithm is potendally less stable
than the sequential algorithm. This problem can
be eliminated as. on failure. the parallel algorithm
can revert to its sequential form. For all test cases
examined so far this has not been required. The
parallelism so far described is shown in Figure 8.

Wavenumber Approximations

For each frequency, the wavenumber approxima-
tion and perturbauons of its real and imaginary
parts (a, and) are integrated through the bound-
ary laver. As suggeated in Section 2.2, these are
independent and can therefore be calculated in
parallel.

The parallelism so far described is shown in
Figure 9. It shows a potential loss of efficiency
when parallelizing at the frequency and perturbed
frequency level described in the previous section.
In the example given one solution converges in two
iterations while the other takes three.

b) all levels so far.]
Example with 4 frequencies
per station

a) One frequency

FIGURE 9 Nested parallelism.

210 FORD AND POLL

a+AY;
o a+AQ,
integ Z\V
integ z3
orthonormalize
Z'V and Z¥
- - L]
L - *

FIGURE 10 Integration of solutions.

Integration of Solutions

Each wavenumber approximation and perturbed
values of its real and imaginary parts has two de-
pendent solutions Z" and Z#. These are inte-
grated from the edge of the boundary laver to the
aerofoil (see Section 2.2). Each integration is in-
dependent, however orthonormalization is ap-
plied at each step (see Fig. 10).

3 PROGRAMMING TECHNIQUES

The codes described in this article were written
and are maintained by the LFC group in the aero-
nautics department of The University of Manches-
ter, U.K. The stability code is called Melissa.

Melissa is written in standard Fortran 77 and as
a result has run without modification on all plat-
forms tried. The code itself is approximately
1,000 lines long.

The O-S8 solver utilized in Melissa was taken
from an earlier, more general purpose code, writ-
ten in FortranlV. Due to both the language used
and the original authors’ coding practice in this
earlier code, the O—S solver section of Melissa has
a typical “‘dusty deck’ form.

3.1 Code Restructuring

To help understand the algorithm used to solve
the O—S equation and make the code more read-
able certain code restructuring was performed.
Loops implemented with a counter and condi-
tional branch using a GOTO were converted into
DO loops. Redundant loops and code segments
associated with the equation solver performing
obsolete functions were removed. Tangled control
flow and conditional GOTOs were converted into
their [F THEN ELSE form. A number of redun-
dant input variables and input variables read
more than once were removed. Large code frag-
ments were converted to subroutines to aid read-

ability. Finally some COMMON blocks were re-
moved and variables passed as arguments.

3.2 The Kendall Square Research KSR-1

The scalability of shared memory multiprocessors
has traditionally been limited to tens of processors
due to memory access contention. As a result it
has been widely accepted that distributed memory
is the key to scalable parallel machines. however
these machines have been notoriously difficult 1o
program.

The KSR-1 is a distributed memory machine
that provides a single address space. supported by
proprietary hardware [6]. the advantage being a
shared memory programming model for the user.
This technique has been termed virtual shared
memory {VSM). This term can cause confusion as
the KSR-1 also supports virtual memory (VM)
with an address space of 1 million Mbytes (2+9).

Each KSR-1 processor is a 20 MHz RISC-style
superscalar 64-bit unit operating at 20 Mips and
40 Mflop/s (peak). A KSR-1 system contains from
8 to 1,088 processors with a peak performance
range from 320 to 43.520 Mflop/s.

Each processor has 0.5 Mbvie of subcache,
split equally between instructions and data. and
32 Mbyte of cache. It is therefore a nonuniform
memory access (NUMA) stvle memory system. In
this system instructions and data are not bound to
specific physical locadons, rather they migrate to
where they are being referenced; this is termed a
cache-only memory architecture (COMA).

The interconnect 1opology is a two-level hierar-
chy of slotted unidirectional rings, known as ring0
and ringl. Each ring0O can have a maximum of 32
processor memory pairs and has a bandwidih of 1
Gbyte/s. The ringl connects up to 34 ring0s and
has a bandwidth of 1-4 Gbyte/s depending on
configuration. The KSR-1 at Manchester is a 64-
processor machine.

A thread (termed pthread by KSR) is a sequen-
tial flow of control within a process and is the un-
derlying mechanism used to execute the parallel
constructs available to Fortran programmers.
These constructs—parallel regions, parallel sec-
tions, and tile families—form a high-level inter-
face to pthreads. The user inserts these parallel
constructs, seen as comments to other compilers,
around appropriate blocks of codes. A pthread
library for thread creation, barriers, locks. condi-
tion variables, etc., can be accessed directly by the
programmer if a finer level of control is required.

3.3 Scalar Optimization on the KSR-1

The core element of Melissa, the O—S equation
solver originally included the case of oblique
waves (three-dimensional waves); the values of
these were set to zero in the input files. The redun-
dant code associated with this was removed.

Two core functions, in which nearly all compu-
tation takes place, were each called twice with the
same input parameters. These two calls were re-
placed by a single call and the result shared.

The innermost functions are called millions of
times and have little work within them. These were
manually inlined reducing the calling overhead.

In combination these scalar optimizations pro-
duced over fourfold improvement in solution time
(see Section 4.3).

3.4 Parallelization on the KSR-1

Parallel Stations

In “Pipelined Station Parallelism™ we describe
the potential parallelism available by overlapping
station solutions (see Fig. 6). As the overlap is
equal to the number of frequencies per station the
maximum parallelism that can be usefully em-
ployed is equal to the number of frequencies.

If, for example there are 4 frequencies, thread 1
will be used to calculate stations 1, 5, 9, etc.,
thread 2 will calculate stations 2, 6. 10, etc., and
so on (see Fig. 11).

This ensures that all threads are kept as busy as
possible and minimizes the number of threads
used. As mentioned in ‘‘Pipelined Station Paral-
lelism’” this is. in fact, an oversimplification. To

Station Thread
1 23 45 6 7 8 1 2 3 4
\ N

2 \ 2 1.\

P ¥ N 3PN

4 13 b 1\ 4 03 1

4 13 12 k\ k\ 4 13 32

43 R N 2 \4 3

4 13 72 k\ 3)2 k\ 4

4 3 2 3t 4 3 12 il

4 3 32 4 3 32

4 13 4 13

4 4

FIGURE 11 Maximum station parallelism.

LAMINAR FLOW CONTROL SYSTEM DESIGN 211

create the appropriate number of threads on the
KSR-1 we use a parallel region directive. A func-
tion is called within the parallel region which re-
turns a unique value to each thread and is used in
combination with an explicit modulo function to
ensure each thread only calculates the appropri-
ate stations.

We now need to delay the thread at the next
station until the thread at the current station has
calculated the a solution for its first frequency. To
implement the above we use a ‘““mutex’’; this al-
lows only one thread through a section of code at a
time (the first frequency calculation is effectively
an ordered critical section) and a condition vari-
able to ensure that the pthreads obtain the mutex
in the correct order. These were implemented us-
ing calls to appropriate KSR pthread libraries.
The code implementing this is shown below.

C*KSR* parallel region(numthreads=
C*KSR*&NFREQ, private= (I, mynum, istat))
mynum=ipr_mid ()
DO I=1,NSTAT
IF (mod (I, NFREQ) . EQ. mynum) THEN
call pthread_mutex_lock
& (mul, istat)
IF (flag(I) .EQ. .false.) THEN
call pthread_ cond-

& wait (icond(I), mul, istat)
ENDIF
h CALL STATIONS(..)
ENDIF
END DO

C*KSR* end parallel region

The condition flag (flag (I)) is initialized to
false for all instances except for I=1. If the
“wrong’’ thread grabs the mutex it yields on a
pthread_cond_wait () until it is woken by the
thread which has calculated the previous station
wavenumber. When a thread has finished calcu-
lating the wavenumber required for the next sta-
tion to start, it unlocks the mutex, sets flag (I+1)
to true, and wakes the next thread if it is sleeping
on the condition variable; this is shown below:

IF (I.NE.NSTAT) flag(I+1)=. true.
call pthread mutex unlock (mul, istat)
IF (I.NE.NSTAT) THEN

call pthread _cond_signal (icond
& (I+1), istat)
ENDIF

A problem found in the use of parallel regions
and condition flags is in the KSR-1’s Fortran77

212 FORD AND POLL

a: without /O lock
1/0

b: with I/0O lock
f1
f2

0
-]
- 0
3 l
f4 i I

FIGURE 12 Overlapping 1/0.

optimization; it assumes the code runs sequen-
tially making appropriate optimizations. 1t is
therefore possible for the compiler to “optimize
out” a condition variable as. sequentially. the
condition is always true. On the KSR-1 such ex-
plicit locks need 10 be declared volatile. Thisis
a Fortran77 extension which stops the-compiler
from optimizing that variable.

Other necessary modifications 1o the code in-
volved making wavenumber results for the first
frequency global so that the next station could
read them and sequentializing the output tc a file:
this occurs after all the wavenumbers have been
calculated at a station. This lauer change was im-
plemented with a naive spin lock condition vari-
able.

It ensues that we cannot neglect the time taken
for each thread to complete 170 belore calculating
the wavenumber solutions for its frequencies. This
overhead can be reduced by adding another lock
and condition variable. allowing the thread for a
station to proceed with its 1/0 as soon as the 170
has been dealt with by the previous station (see

Fig. 12).

Parallel Frequencies

As discussed in ‘‘Frequency and Perturbed Fre-
quency”’ the algorithm requires modification to
calculate the wavenumber for the frequency and
perturbed frequency in parallel. This involves em-
ploying the same wavenumber approximation by
both the frequency and perturbed frequency. To
implement this we need only change one IF state-
ment. To run this in parallel we add the KSR tile
directive given below:

C*KSR* TILE (FREQ, teamid=iteaml)
DO FREQ=1, 2
CALL PERT(. . .)
END DO
C*KSR* END TILE

The teamid argument to the tile directive is dis-
cussed in ““Teams and Nested Parallelism.”” .

Parallel Wavenumber Approximations

As discussed in ““Wavenumber Approximations™
the wavenumber approximation and perturba-
tions of its real and imaginary parts are integrated
through the boundary laver. As in the previous
section to implement this we simply need 1o add
the KSR tile directive given below:

C*KSR* TILE (PERT, teamid=iteam2)
DO PERT=1, 3
CALL WAVE (. ..)
END DO
C*KSR* END TILE

The teamid argument to the tle directive is dis-
cussed in “*“Teams and Nested Parallelisin.™

Integration of Solutions

As discussed in “Integration of Solutions™ each
integration step of the two dependent solutions
Z "V and Z'* can be executed in parallel. however.
this is not true for the whole integration due o the
orthonormalization of the solutions (see Fig. 10).
This was implemented using the KSR parallel sec-
tons directive. see below:

DO J=I, NSTEPS
C*KSR* parallel sections
& (teamid=iteam3)
C*KSR* section
CALL INTEG(AZ, . .)
C*KSR* section
CALL INTEG(CZ, . .)
C*KSR* end parallel sections
CALL MODOR(CZ, . .)
CALL ORTHO (AZ, CZ,..)
END DO

The teamid argument to the parallel sections di-
rective is discussed in ‘““Teams and Nested Paral-
lelism.™

Inner Functions

When the code is examined we observe some in-
ner functions which could be called in parallel.
For example. functions U and Ul independenty
search for the appropriate velocity and accelera-
tion data. respectively. However, although a large
proportion of the computational time is spent in
these routines, the time per call is too small to
obtain any benefit on the KSR-1.

Teams and Nested Parallelism

When a parallel construct is encountered. the ap-
propriate number of threads are allocated to the
work within it. To achieve this. threads which
have already been created and have finished their
previously allocated work are utlized: such
threads are kept in an “idle pool.”” If there are not
enough threads in the idle pool then threads are
created to make up the shortfall.

As threads start referencing instructions and
variables, the appropriate data are fetched from
remote processors (if there is no instance of those
data in the correct state locally). When threads
finish their work they return to the idle pool.

If another parallel construct is encountered
later. which accesses the same variables, it is sen-
sible to use the same threads and processors that
executed previously, as the processors’ local
memory mav still have valid copies of data. If the
same construct is encountered. then the instruc-
tion cache may also still have valid copies of in-
struction code. and the thread will have the cor-
rect data structures associated with it. The idea of
data reuse here is, of course. the same as reuse of
cache on a single processor machine.

To ensure the same threads and processors are
used for subsequent parallel constructs we use
“teams’’ of threads. A team is created with a de-
fined number of threads. This team can then be
referenced in association with a number of paral-
lel constructs and the same threads associated
with the team will be utilized each time it is called.

Teams of threads were implemented for each
level of parallelism in the code. Another important
effect of using teams is observed when the granu-
larity of work is close to that of the start up cost of
the construct and the construct is called many
times: this is because a team reduces subsequent
construct start up overheads by a significant
margin.

A subtle problem in the use of teams arises
when parallelism is nested. This is due to run-time

LAMINAR FLOW CONTROL SYSTEM DESIGN 213

thread creation. A team groups together a number
of threads including the currently active thread.
thus sets of calls to create appropriately sized
teams at the beginning of the code are not desired.
It must be the active thread, arriving at the parallel
construct, that creates the team. Therefore the
team is created (once) at the same nested level as
the parallel construct.

4 PERFORMANCE REALIZATION

4.1 Test Data

As outlined in Section 2.3, we first apply a low
resolution search to find the frequencies and aero-
foil positions of interest: we then do a more de-
tailed analysis around these areas. The low reso-
lution search typically uses 5—10 frequencies and
50—100 stations. The high resolution analysis
tvpically uses 10—40 frequencies and 100-400
stations.

In this article we use two test cases to represent
these different resolutions. Test case A has 4 fre-
quencies and 40 stations. Tese case B has 40 fre-
quencies and 100 stations.

4.2 Rqsults

The results reported in this article were achieved
on the KSR-1/64 at Manchester University. Tim-
ing runs were taken in a multiuser environment.
To ensure the exclusive use of the appropriate
number of processors during the runs and to mini-
mize interference from other users, cells were allo-
cated exclusively to the program during its execu-
tion. This was achieved with the command
'allocate_cells -An', where nis the number
of processors and -A avoids ‘loaded’ cells such as
those with ethernet cards. All results shown in the
next sections are the average of three consecutive
runs and all timings were made using the unix
timer ‘‘time.”’

Results for varying numbers of processors are
presented as temporal performance graphs[7].
The dotted line in each graph is the ““naive ideal”
line ¢, = t,/p (often termed ‘“‘’linear speedup”’),
where ¢, is the elapsed time for the serial program
for a fixed problem size and ¢, is the elapse time
for the same problem size on p processors.

Other results are presented in tabular form in
which we give absolute time and solutions per sec-
ond. A solution is defined as the calculation of the

214 FORD AND POLL

wavenumber for one frequency (and its perturbed
complement) at a station.
The results described in this article extend work

reported in Ford[8].

4.3 Single Cell

A number of scalar optimizations have been ap-
plied to the code during the course of our work.
Table 1 shows the performance improvements ob-
tained. The solution rates differ for the two cases
as case B has a better convergence rate for the
iterative method used to solve the O—5 equation.

4.4 Parallel Stations

The temporal performances for cases A and B for
increasing numbers of processors are shown in
Figures 13 and 14. respectively.

The two results in each graph (S and Sio) repre-
sent the advantage of performing 1/0 as soon as it
is possible 1o do so: this effectively increases the
pipeline length (see Fig. 12).

The performance results “*drop away’” from the
naive ideal line due to two major factors’ The first
is that we run out of overlapped work 10 do; note
that this is not a sharp cut off. as the pipeline
overlap varies during the run due 1o the iterative
method used. The second effect is due to the over-
head of “filling up™ the pipeline. This effect is
more prominent in case B (Fig. 14). as the ratio of
the pipeline length (a function of the number of
frequencies) 10 the number of statons is larger
than in case A.

4.5 Parallel Frequencies

To implement parallel frequencies we modified
the algorithm (see Section 2.4, “‘Frequency and
Perturbed Frequency”). Table 2 shows perfor-
mance comparisons for the serial code and the
parallel version run both serially, and in parallel,
for test cases A and B. The parallel algorithm runs
more slowly than its sequential counterpart. The
temporal performance of cases A and B with the

Table 1. Sequential Optimizations

Version Elapsed Time sol/s
A: Original 6m Os 0.44
A: Optimized 1m 28s 1.82
B: Original 1h 51m 31s 0.60
B: Optimized 25m 17s 2.64

Table 2. Parallel Frequencies

Version Elapsed Time sol/s
A: sequential Tm 27.7s 1.82
A: par 1 cell 1m 34.1s 1.70
A: par 2 cells 55.0s 2.88
B: sequential 25m 16.8s 2.64
B: par 1 cell 29m 19.0s 2.27
B: par 2 cells 15m 14.5s 4.37
0.08 ————
0.07 } S -]
0.06 | ’ :
0.05 R
Z004 |]
0.03 E
0.02 1
001 } E
0 l 1 1 1 I n) n 1
0 i 2 3 4 S 6 7 8 9

processors

FIGURE 13 Casc A parallel stations.

parallelism of parallel frequencies and parallel
stations combined is shown in Figures 15 and 16.
respectively. Again the two graphs show the ad-
vantage of performing 1/0 as soon as it is possible
to do so.

Parallelizing at the frequency level has the ad-
vantage of reducing the pipeline length but has the
disadvantage of modifving the algorithm to a less
efficient form. Figures 15 and 16 show that paral-
lel frequencies are only beneficial when the pipe-
line length is large. i.e.. close to the number of

0.025 : : . . : . ,
S — p

o2} Sio — 1
0.015 |]
001 ;
0.005]

0 X .

0 8 16 24 32 40 48 56

Processors

FIGURE 14 Case B parallel stations.

009 |
008 |
0.07 }
0.06 |
=005}
0.04 }
0.03 |
002}
001 |/

0 "’ A 1 § — 1 A 1 - 1

G 2 4 6 3 10 12 4 16 18
Processors

FIGURE 15

Case A paralle! stations and frequencies.

stations and that for small numbers of processors
it is better to parallelice at the station level only.

The interesting features in the parallel station
and parallel frequency line (S + F) in Figure 16
are the subject of ongoing work.

4.6 Paraliel Wavenumber Solutions

Table 3 shows the performance results when solv-
ing wavenumber solutions in parallel. The tempo-
ral performances of cases A and B. when the par-
allelism of parallel wavenumbers and parallel
stations is combined. as shown in Figures 17 and
18. respectively.

The results of parallelizing at the station level
only are also shown for comparison. There is a
clear advantage in parallelizing at the wavenum-
her level as we obtain improved performance in
both cases A and B. In case A the improvement is
due to the increase in the amount of parallelism

0.025 . . , —rr : ,
002]
0.015 1
" 001 i
0.005 |
O A i i £, £ [l i
0 8 16 24 32 4 M8/ 56
Pprocessors

FIGURE 16 Case B parallel stations and frequencies.

LAMINAR FLOW CONTROL SYSTEM DESICON

215

Table 3. Parallel Wavenumbers

Version Elapsed Time sol/s
A: sequential Tm 27.7s 1.82
A: 3 cells 33.9s +.72
B: sequential 25m 16.8s 2.64
B: 3 cells 8m 57.9s 744

available. In case B this improvement results in
better peformance for the number of processors
used: a major part of this is due to the reduction of
the pipeline overhead.

4.7 Parallel Integration

When the integration was parallelized as de-
scribed in Section 2.4, “Integration of Solutions.”
the program ran more slowly. The degradation in
performance is due to the startup overhead of the

0.2 . . . S i,
§ —~—
Sio ——
naive - r i
OB F SioeW o S

= 01t]
0.05 J
0 *‘I i 3 i i i i
0 4 8 12 16 20 24
pfmCSSOfS
FIGURE 17 Case A parallel stations and wavenum-
bers.
0.03 — . — ;
06.025 E
0.02 E
= 0.015 R
0.01 p
0.005 |
0 ; . ; . \ . .
0 8 16 24 312 40 48 sé6
prﬂCCSSOTS
FIGURE 18 Case B parallel stations and wavenum-
bers.

216 FORD AND POLL

Table 4. Parallel Integrations

Version Elapsed Time sol/s
A: sequential 1m 27.7s 1.82
A: sections 2 cells 4m 9.4s 0.64
A: reduced 2 cells 1m 13.5s 2.18

KSR parallel section construct being close or
greater than the work inside each section. To re-
duce this overhead we expanded the KSR parallel
sections (see Section 2.4, ‘‘Integration of Solu-
tions”’) outside the integration loop, thus reducing
the number of section startups. This was achieved
by duplicating the loop and synchronizing manu-
ally via shared variables*, see below.

C*KSR* parallel sections (teamid=
C*KSR*& iteam3, private=J)
C*KSR* section
DO J=1, NSTEPS
CALL INTEG(AZ, ..)
DONE_INTEG (J)=. TRUE.
20 IF (.NOT.DONE_ORTHO (J)) GOTO 20
END DO i
C*KSR* section
DO J=1, NSTEPS
CALL INTEG (CZ,..)
10 IF (.NOT.DONE_INTEG (J)) GOTO 10
CALL MODOR (CZ, ..)
CALL ORTHO (AZ,CZ,..)
DONE_ORTHO (J)=. TRUE.
END DO
C*KSR* end parallel sections

Table 4 shows the performance of these differ-
ent versions. Clearly we only obtain a modest im-
provement in the solution time when parallelizing
sections.

5 CONCLUSIONS

We have shown that for a typical low resolution
search, we can reduce the solution time from min-
utes to near interactive times. In test case A, we
have reduced the solution time from 6 minutes to
under 8 seconds on 24 processors (this is the
maximum number of processors that can be use-
fully employed on this problem size).

* The premise here is that manual synchronization incurs
less overhead than parallel sections.

We have also demonstrated that for a wvpical
high resolution search, we can reduce the solution
time from hours 10 seconds. In test case B. we
have reduced the solution time from over 1 hour
51 minutes to under 40 seconds on >4 processors.

These results were obtained by a combination
of scalar optimization and parallelization. Scalar
optimization accounts for over fourfold impropve-
ments in the results.

These results open up the possibility of much
larger runs involving more stations and frequen-
cies. However, more significantly. we demonstrate
near iteractive performance for smaller runs,
enabling a transformation of search methods and
opening up new possibilities for this methods use
in industry.

The algorithm has a reasonable amount of
functional parallelism (for the standards of to-
day’s machines) but would not be classified as
being massively parallel; useful parallelism on the
KSR-1 is limited to six times the number of fre-
quencies in a run. The majority of this parallelism
is coarse grained with little communication and
should therefore be efficient on both shared mem-
ory and distributed memory machines.

There is further parallelism available, within
which a large amount of the total execution time is
spent: however, the time per call is too small to
exploit on the KSR-1.

Conceptually, a message-passing style would
be a natural way to exploit the functional parallel-
ism available and synchronization needed in this
algorithm. particularly at the level of parallel sta-
tions. However, the combination of a shared
memory model and dynamic thread control on the
KSR-1, coupled with automatic thread and data
migration. offered significant advantages when
parallelizing the exisiing sequential program.
These features enabled each level of parallelism to
be separatelyv parallelized with litde code modifi-
cation; thev also enabled each level and combina-
tions of levels to be incrementally developed and
tested; finally. we could effective ignore thread
placement and the migration of shared data.

6 FUTURE WORK

The algorithm described here models incompres-
sible fluid flow. A compressible version is now op-
erational; this has similar characteristics but is
more computationally intensive. The compres-
sible code will be the subject of future paralleliza-
tion efforts.

from from from
user ™y

S N

FIGURE 19 New parallelism strategy.

The dependency of a station on the previous
station may be broken by “inputting”” an accurate
initial wavenumber approximation either at every
station or, more feasibly. groups of stations. This
would increase the amount of parallelism avail-
able and reduce the functional pipeline overhead
(see Fig. 19). The accuracy of initial wavenumber
approximations is one of the current focuses of the
LFC group.

The algorithm described here is also con-
strained to a two-dimensional flow. A three-di-
mensional version of their model is now opera-
tional. The three-dimensional code will again
increase the computational requirements. In this
case a different parallelization strategy will also
have to be adopted, as the three-dimensional ver-
sion imposes new orderings on the computation
(such as dependencies across the wing).

Work aimed at improving the efficiency of a
search procedure in one of the core routines, elim-

LAMINAR FLOW CONTROL SYSTEM DESIGN 217

inating any further redundant work and reducing
the parallel overheads of thread start-up, may
also vield further performance benefits.

ACKNOWLEDGMENTS

This work was supported by the Esprit Projects 2716-
AMUS and 6253-SHIPS. The authors would also like to
thank members of the Centre for Novel Computing and
Laminar Flow Control Group for their invaluable ad-
vice.

REFERENCES

[1} H. Schlichting, Boundary-Layer Theory. New
York: McGraw-Hill.

[2] L. M. Mack. “‘Boundary laver linear stability the-
ory, special course on stability and transition of
laminar flow.”” Advisory Group for Aerospace Re-
search and Development, AGARD Report No. 709,
March 1984.

(3] G.B. Schubauer, and H. H. Skramstad, “*Laminar
boundary oscillations and stability of laminar
flow,”” NACA Report 909.

[4] H. B. Squire, **On the stability of three-dimen-
sional disturbances of viscous fluid between paral-
lel walls,”” Proc. R. Soc. [A]. vol. 142, pp. 621~
628, 1933.

[5] R. L. Burden, Numerical Analysis (4th ed.). PW'S-
KENT. 1989.

[6] KSR-1 Programming Manuals, 170 Tracer Lane.
Waltham, MA, 1993.

[7] R. A. Hockney, “Framework for benchmark per-
formance analysis,”” Supercomputer, vol. 48. pp.
9-22, 1992.

[8] R. W. Ford, “Proceedings of Super Computing Eu-
rope '93." Utrecht. Holland. February 22-24,
1993.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

