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ABSTRACT 

The performance of transport aircraft can be considerably improved if the process by 
which the wing boundary layer becomes turbulent can be controlled and extensive 
areas of laminar flow maintained. In order to design laminar flow control systems, it is 
necessary to be able to predict the movement of the transition location in response to 
changes in control variables, e.g., surface suction. At present, the technique which is 
available to industry requires excessively long computational time-so long that it is not 
suitable for use in the "design process." Therefore, there is a clear need to produce a 
systP.m which delivers results in near realtime, i.e., irr seconds rather than hours. This 
article details how parallel computing techniques on a KSR-1 produce these perfor­
mance improvements. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

In order to sustain an aircraft in straight and level 
flight, two fundamental conditions must be satis­
fied. The first is that the lifting force generated by 
the wings must be equal to the weight and the 
second is that the thrust from the engines must be 
equal to the drag. 

The drag force opposes the motion of the air­
cr.aft and acts in the direction of flight. It is made 
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up of two components, these being the pressure 
drag and the viscous drag. Pressure drag is pro­
duced by the variation of the air pressure acting 
on the aircraft surface and is closelv related to the 
lift force-in fact, it is the penalty that must be 
paid to produce the lift. Viscous drag, on the other 
hand, is the result of tangential, or shearing 
forces, because, as a result of viscosity, air sticks 
to the surface. 

On a typical transport aircraft in the cruise con­
dition, the two components of the drag are ap­
proximately equal i.e., 50% of the drag is due to 
the action of viscosity. This means that a substan­
tial fraction of the fuel which an aircraft carries is 
there to overcome viscous drag. It follows that, if 
the viscous drag can be reduced, a substantial 
saving in fuel and, consequently, operating cost is 
possible. 
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In flight, the effect of air viscosity is confined to 

a very thin layer close to the aircraft-the so­
called boundary layer. On the surface viscous 
forces require that the flow speed must be zero. 
However, a few millimeters above the surface the 
air must be traveling at almost the fli~ht srwed of 
the aircraft. 

The motion of air within this thin boundarv 
layer takes one of two possible forms. It may set up 
a simple, steady flow where each layer of air slips 
slowly over its neighbor-this i;;; called the laminar 
condition. The alternative is an unsteadv flow with 
almost random fluctuations causinf! the various 
lavers of air to be mixed violenth· with one an-. . 
other-this is the turbulent condition. 

l\"ot surprisingly. a turbulent flow produn·,. 
more viscous drag than the laminar one-the ratio 
is approximately 10: 1. At \cry low speed,-_ f!tm·,. 
are always laminar. However. a" spt·Pd is in­
creased, there comes a stage at which laminar flow 
becomes unstable to the small disturbance,; which 
are always present in reality. At hi;.dwr :-pPed,;. 
these disturbances are amplified and. wlwn the 
amplitudes are sufficiently large. there is a break­
down and turbulent flow is produced. -

It follows that. for a ~i,·en aircraft confi;ruration. 
there is a flight speed abon· which the !HJundary 
layer flow will be turbulent and the viscous draf! 
will be large. Cnfortunately. for all but the small­
est aircraft. the boundary layers are turbulent in 
the cruise condition. 

Vntil recently this situation was accepted as 
unavoidable and aircraft desil!ns haw been opti­
mized on the assumption that boundary layer flow 
would always be turbulent. However, it has been 
known for over 60 years that. if some of the air in 
the boundary layer could be sucked throuf!h the 
surface, then the speed at which laminar Jlow be­
comes unstable can be increased. 

The effect of suction is sufficiently powerful for 
laminar flows to be achieved at typical aircraft 
cruise conditions when the suction velocitv is onlv . . 
0.05% of the flight speed (i.e., only about 10 
em/ s! ). If suction could be engineered, the drag of 
an aircraft could be reduced bv as much as :30%. 
This would represent a quantum leap in aircraft 
performance since, in the current commercial cli­
mate, an aircraft which could deliver a 5% drag 
improvement relative to its competitors would 
capture the entire market. 

There are two major obstacles to the develop­
ment of an aircraft which uses the surface suction 
technique for laminar flow control (LFC). The first 
is the provision of a suitable porous surface 

through which the air can be drawn. This has al­
ways been a serious problem "ince, in the past. 
surfaces which were porous did not hm·e i!oud 
load-bearing properties. However. this difficulty is 
now effectiveh' resolved because of the recent de­
velopment of the laser perforating technique. This 
enables traditional aerospace materials-titanium. 
aluminium. steeL and t>ven composite materiu,l-to 
be drilled with millions of holes as small as ;)() J-tlll 
in diameter, placed in any desired pattern. with 
any desired spacinf!. This lean's the ~pcond proiJ­
Iem which is that. in ordt>r to produce a desif-!11 for 
an LFC ;-.vstem. it is JlecPssan· to lw able 10 e,.,ti-. . 
mate the conditions under which the boundary 
layer flow will undergo a ··tran,.,ition· · from tlw 
laminar to turhuknt state . .\lorPo\er. it is Jlt'tTs­
sary to be able to produce these estimate~ sufli­
ciemly quickly ,.,o that a t'<lll\t'lltional dt·,.if-!11 pro­
cess is not slowed do\n1. 

The problem of predictinf! the conditions 
necessary for the onset of tran,.ition i,- a particu­
larly challenging one. In fact. at present. there is 
no complete theory for transition. :'\pn·rtlwless. 
various semi-empirical methods haYe !wen devel­
oped o\·er the years and some are appropriate for 
use in design. 

Of these. the one which i,; most accurate and 
allows for all the important paramett>r;;; i.e .. flow 
compressibility (mach number). ,.;urface tempera­
ture (heat transfPr). and wall transpiration !suc­
tion) is the e' method. This is ba,;ed on an ap­
proximate formulation of the stability problem fur 
a bound an· lavPr which. when solved bv a sttitahle . . . 
numerical technique. produces dispersion rela­
tions for the unsta],]e disturbances. These rela­
tions are used to track the disturbance amplitude 
development and an empirical critPrion is u,-ed to 
determine the breakdown (transition onset) condi­
tion. 

However. while the e' technique allows for all 
the physical effects which can influence tranf'i­
tion, it requires a great deal of computation-so 
much so that the elapse time between predictions 
is far too long for it to be described as a design 
tooL One possible solution to this problem is the 
application of parallel computing techniques. 

This article chronicles the parallelization of a 
laminar to turbulent transition prediction code, 
de,eloped by the LFC group. in the Department 
of Engineering, at the Cniwrsity of .\lanchester. 

Section 2 introduces modeling techniques for 
the onset of turbulence and Section 3 describes 
the parallelism inherent in the solution method. 
Section 4 introduces the KSR-1 and discusses 



both the scalar optimization,; and parallelization 
method;; used. Finallv, Section;) summarizPs dw 
main conclusions of tiw article and SPction b di,..;­
cus:;es future "·ork. 

2 ALGORITHM DESCRIPTION 

2.1 Solution Methods 

The «eneral problem of predicting the onset of 
~ ~ . 1 transition in a flow is extremely complex. Stnct y 

speaking. the complete approarh requires the full 
unsteadv 1\avier-Stokes equations to be solved 
for a ra~ge of di,.;turbance:;, which span the com­
plete spectrum of freestream fluctuation:;. surface 
roughness, surface ,·ibration. and sound. Such a 
calculation would have to be performed with very 
fine resolution of len~h and time scale:; and it 
would be necessary to specify every possible form 
of disturbance in order to ascertain which were 
amplified most rapidly . .\loreover. the computa­
tions would have to be carried out sufficiently far 
downstream to capture the nonlinear processes 
which lead to laminar flow breakdown and the 
ultimate establishment of turbulent flow. Even 
with the most powerful machines currently avail­
able. such calculations are only possible for sim­
ple flows under highly restrictive and ultimately 
unrealistic conditions. e.g .. fully developed pipe 
flow with temporally developing disturbances. For 
en~neerin(J" purposes. when the basic flows are 

~ ~ . 

much more complex, an alternative approximate 
approach is called for. 

A major simplification of the problem is pro­
duced by limiting the consideration to the devel­
opment of small amplitude di:;turbances in a 
boundar-y laver flow. since this allows linearization 
of the go~·er~ing equation. This approach was first 
proposed in the 1920s by Prandtrs group in G6t­
tingen [ 1 J. The complete analysis is available in 
ma~w standard texts, e.g., ;\-lack[2J but, in es­
senc~, the arguments run as follows. 

1. The instantaneous fluid properties are ex­
pressed in terms of a mean component plus 

1' - + I a fluctuating component, e.g., u = u u , 
P=p+p',etc. 

2. It is assumed that the complete unsteady 
flow satisfies the l\avier-Stokes equations. 

3. The amplitudes of the disturbed quantities 
are assumed to be sufficiently small for 
products of fluctuating components to be 
negligible. 
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.Y. The mean flow is assumed to satisfy the 
sreadv,boundarylayerequations. 

a. The ~ormal-to-surface component of the 
velocitv is assumed to be negligibly small 
compa.red with the streamwise component. 
Thus the flow is taken to be parallel. 

Having taken the above steps the resulting 
equations for the disturbance com~onents. are 
found (by inspection) to have harmomc solutiOns. 
Since the problem has been linearized. a general 
disturbance can be constructed by superimposing 
normal modes of the form 

u'(x, y, z. t) = Fly)eia.r+/3=-wt (1) 

where. in generaL a, {3. and ware complex quanti­
ties. Bv substituting expressions for the distur­
bance .quantities of the form of Equation 1 into 
the governing equation, a system of equa.tions is 
obtained which can be used to determme the 
characteristics of traveling waves propagating 
through the flow. These waves are known as 
Tollmien-Schlichting (T -S) waves. It is interest­
ing to note that, originally, the above stability 
analvsis was carried out in the absence of any ex­
peri~ental evidence that such waves could exist. 
Verification of the existence of T -S waves and 
their precursor role in the process of boundary 
laver transition was not provided until the 1940s 
b; Schubauer and Skramstadt[.3J. 

. Finallv, in order to produce further simplifica­
tion the.flow mav be assumed to be incompressi­
ble;' it is then p~ssible to show that. for a two­
dimensional boundan· laver, the most unstable 
wave propagate in th~ m~an flow direction. i.e .. 
f3 = 0[ 4 J. Consequently, from the point of view of 
transition prediction, only two-dimensional dis­
turbances need to be considered. This being the 
case the stability problem reduces to the solution 
of a single, fourth order ordinary differential 
equation: 

( d2 )
2 

[ ( d2 ) dy 2 - a
2 v = iR (aU- w) dy 2 - a 2 

(2 ) 

d2U] A -a--v 
dy2 

subject to the boundary conditions: 

v(O) = o, dv(O)Idy = o 
v(y)- 0, dv(y)ldy- 0 asy- 00 (3) 
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This is known as the Orr-Sommerfeld (0-S) 
equation. From the point of view of the present 
exercise it is important to note that this equation 
depends on local conditions only. i.e., there are no 
terms involving derivatives with respect to .r. This 
means that the stabilitv characteristics are not af­
fected by the upstream history. For a wave of fixed 
frequency, w" convecting through a given flow at 
a specified local Reynolds number. R. the 0-S 
equation provides two relationships (real and 
imaginary part) among the three unknown quanti­
ties a" a;, and w;. Therefore. in order to close the 
problem, an extra condition is reyuired. ln the 
early days of stability computation. the final step 
was to assume that the disturbance l!rew in tinw 
but not in space. i.e .. a; was zero. This produced a 
well-posed mathematical problem. However. in 
the physical world in which waves art> obsPrwd to 
propagate in the mean flow direction a slightly 
more realistic approach is to assume that the dis­
turbances grow in space but not in time. i.e .. w; is 
zero. This spatial form for the T -S Wa\·e is the 
preferred option for use in transition prediction. 

Solutions to the 0-S equation permit the 
calculation of the dispersion relation for the dis­
turbance waves of a specified freyuency. The 
secondary problem then is how to use this infor­
mation to predict the onset of transition. It has 
already been noted that breakdown of laminar 
flow occurs when the amplitude of amplified tra\·­
eling disturbances becomes large. From Equation 
1, it is immediately apparent that for a wave of 
fixed frequency. iL at the point of neutral stability. 
x 0 , the disturbance amplitude is A0 then at station 
x, where x > xo: 

In general, the boundary layer will change its 
thickness and Reynolds number between any two 
stations and, consequently. a; will vary with x. 
However for the purposes of evaluating a;. it is 
assumed that locally the flow does not ,·ary with x. 
Hence, the amplitude ratio relation is only ap­
proximate. 1'\evertheless, it is a quantity which can 
be readilv calculated and it does bear some rela­
tionship to the stability of the mean flow. 

By examining a range of experiments in which 
transition was observed, it has been proposed that 
transition onset correlates with the condition 
where the wave which has undergone the greatest 
total amplification has just reached an amplitude 
ratio of e9 , i.e., 

(;)) 

This io; the basis of tht' so-called t'' transition 
method when the critical !transition <m,;et) value 
for;\" in low disturbance environments is 4. 

2.2 Numerical Method 

The boundary layer (see Fig. 1) will. in /!t'neral. 
vary in thickness alon!! the aerofoil. TlwreforP. we 
soh·e the 0-S equation at a numlwr of equally 
spaced positions along the aerofoiL finding the 
wave amplification rail'S at each: tht>,;t> po~itions 
are denoted ··stations.·':\ pa11icular wa\·e·s am­
plification rate cmTt>><p<mds to the imaf!inary part 
of its wavenumber a;. At each station the 0-S 
equation is solvPd 'finding CX 1 \ for a nt1mlwr of 
equally spaced frPquPiwie;;: tlw numlwr and 
bounds of the;.,e are specifit>d. 

An initial wavenumber approximation a mu,-t 
be ~up plied by the u><er for the lowest fn•q1wn<·y at 
the first station. \\'hen the actual wavPnumber 
corresponding to that frequency has lwen calcu­
lated. the frequency is pertllrbed and a new 
wa\·enumber found for the perturbed frequency. 
The original and perturbed ndues are then uo;ed 
to make an approximation to the wavenumber ,-o­
lution. for the next frequency. at the same ,;tation 
(Fig. 2a shows the dependencies. at the first ,.;ta­
tion. denoted by vertical arrows). 

\\'hen the instabilities for each frequency at a 
station have been calculated the results are 
stored. The wavenumber correspondinl! to the 
lowest frequency (f1 in Fig. 2a) is then used as an 
approximation to the waveiHunher for the lowest 
frequency at the next station (Fif!. 2b shows the 
dependencies here, denoted by horizontal ar­
rows): this method is possible as the boundary 
layer and velocity profile are slowly varying (there­
fore adjacent solutions have similar values). Thus. 

FIGURE 1 

air velocity profile ... ... ... ... freestream 

boundary 
layer 

aerofoil surface 

Typical boundary layer wlocity profile. 
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once thP initial wavenumber approximation has 
been supplied. ,.;ub,.;equPnt approximations arP 
generated automatically. 

To soln· dw OS equation. findinl! a wa\·Pnum­
ber solution from an initial approximation at each 
frequency and station. we LISP a shooting 
method[5 j. The slwotinl! method soh·es botmdm...­
valuP problems (to find the solution for an ordi~ 
nary tlifferential equation betwePn two points with 
known boundary conditions:. In this ca,.;p the 
freestream give,; <mP boundary condition and the 
aerofoil the otlwr (,;ee Equation :3 ). An approxi­
mation is supplied at one boundarY and the sys­
tem of ordinary diffprential equati~ms intewa;ed 
to the other boundary (from the freP,;tream to the 
aProfoilJ. This is repeated with another approxi­
mation. In our algorithm the two approximations. 
Z 1 and Z :1 • are integrated at the samP tinw. The 
integrator used is a fourth order Runf!e-Kutta in­
tegrator. 

The shooting method we use suffers from the 
problem of parasitic error wnwth. For thi" case (a 

two-dimensional wan· in a two-Jimen,.;ional 
boundary layer) the two ,.;olution,.; Z 1 and Z ·1 

each con:'ii:'ih of four componPnh. Z :1 grow,.; morP 
rapidly "·irh decrpa,.;inl! y than Z 1 • The para:-;itic 
error follows Z :1 and when tht' difference in mag­
nituJe of Z :1 and Z 1 bt:>cornt':'i ~ufficit>nth· larue 

- r 
Z 1 i~ no longer independent of Z :l . Before thi" 
occurs we apply Gram-Schmidt orthonormaliza­
tion: in fact we do this for each iteration. The large 
solution z::1; is normalized component by cnmpo­
n~nt to give the new solution: 

(6) 

where the overbar refers to a complex conjugate 
and {} a scalar product. Z 1 is then replaced by: 

z l: = (Z' 11- {Z:J Z'1 } z-::·1, )1\'Z 12 1 )112 (7) flPW flf'U' flPU' _ _ 
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where the underbar refers to the quantity in the 
numerator. The numerical integration proceeds 
with the new values of Z 1 and Z :-1 • 

A linear combination of Z 1 and Z :-1 can be 
found which satisfies the bounJarv conJition 
ll (0) = 0 at the aerofoil but will not satisfy the 
condition .,; (0) = 0 unle,.;s the wavenumbe~ ap­
proximation is an eil!envalue of the equation (the 
correct value). The residual.,; (0) can therefore be 
found. 

The real part of the wa,·enumber approxima­
tion .. ar is pt:>rturhed by a small amount Llar anJ 
the integration repeated. The imaginary part of 
the wavenumber approximation a, is then per­
turbed by a small amount Lla1 and the integration 
repeated. Corrections oar and oa, to the initial ap­
proximation~ a, and a,. are obtaineJ from the rP­
sidual and numerical approximations to deriva­
tives using Equations 8 and 9: 

(8) 

(9) 

The corrected a 1 and ar are used to start a new 
iteration anJ the process continues until oar and 
oa, are reduced below a preset criterion. This 
method is a quasi 1\"ewton-Raph,on search. 

2.3 Algorithm in Context 

So far we have not discussed how initial data. 
such as wavenumber and velocity profiles. for the 
aerofoil are calculated. This section overviews this 
process. 

We begin with an aerofoil and its corresponding 
pressure distribution. A simplified diagram of an 
aerofoil is given in Figure 3. This shape has a sur­
face static pressure distribution which is of the 
form given by Figure -i. 

Once a particular aerofoil shape is chosen the 
pressure distribution, corresponding to that 
shape, is used as input to a mean flow code. This 

air How ____. ____. ____. ____. 

suction holes to control 
the boundary layer 

--------"\. 

FIGURE 3 Aerofoil. 
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pressure 

position 

FIGURE 4 Pressure di~tribution along aerofoil. 

problem calculates the various boundary layer pa­
rameters needed at each station. such a~ Reynold . .; 
number. boundary layer thickness. and velocity 
profile; its output is used as input to the ,.;tability 
code. These two programs are separated so that 
certain control parameters can be set and others 
checked before running the time consuming sta­
bility program. 

The control parameters we set are the initial 
wavenumber approximation for the first fre­
quency at the first station. the frequency-range to 
be examined, and the number of frequencies 
within this range. 

It is known from previous experience that in 
practice two-dimensional instability waws tend to 
occur within the region 500-5,000 Hz. There­
fore, the first time the instability program is run. a 
spread of frequencies across this range is exam­
ined for a number of stations along the aerofoil. 
typically 50-100 stations and 5-1 0 frequencies. 
The first run is effectively exploratory, to find 
which frequencies and stations to concentrate on. 
\Ve then rerun the program with a greater number 
of frequencies and stations over the range of inter­
est, typically 100-400 stations and 10-40 fre­
quencies. This process may be repeated two or 
three times before a sufficiently accurate picture is 
obtained. 

The output consists of two files. a large diag­
nostic file which records virtuallv all relevant \·ari­
ables, and a file which gives the amplification rate 
(a;) for each frequency at each station. 

a; is the amplification rate at a station (for a 
particular frequency). To convert this into an am­
plitude ratio, a; needs to be integrated along the 
aerofoil. The natural log of the amplitude ratio is 
then plotted against position along the aerofoil for 
each frequency; an example is shown in Figure 5. 

Figure 5 shows a number of amplitude ratio 
plots for various frequencies. It is the profile of 

4 

aerofoil position 

FIGL'RE 5 Amplitude ratio~. 

these frt>q ueuei~es. i.e .. the largest amplitude ratio 
at any given position along the aeroi(Jil. that is 
important when predicting v.·here turbulence 
starts. This is because turbulence only twgins 
above a certain (experimentally detennined) value 
of 1'\, regardless of which frequency first reaches it. 

2.4 Available Parallelism 

This section dis<'usses the parallelism apparent 
from the numerical method described in Section 
2.2. 

Pipelined Station Parallelism 

"-hen examining Figure 2b it is clear that compu­
tation for frequencies at a station can begin once 
the wavenumber for the first frequency (f1 ) of the 
preYious station has been calculated: this gi,·es a 
parallel pipeline effect demonstrated in Figure 6. 

ln Figure 6 the maximum overlap (number of 
stages in the pipeline) is the number of frequen-

Parallel Streams 

2 

3 

4 

3 

2 

FIGUHE 6 Overlapped solutions. 
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cies per station. In fact the overlap i,; l!reater than 
thi,; a,; a station doe,; not rely on the pPrturbed 
frpquencies wa\·Pnumher solution for the prt>vious 
station: it can proceed as soon as the actual 
wavenumber for the frequency at the previous sta­
tion has been calculated. This effect is tihO\nl in 
Figure?. 

Thus the potential number of stages in the 
pipeline (a,;surninl! all wavenumber frequency 
pairs take the samP time) is two times the number 
of frequencies per station. As will he seen in the 
next section the pipeline is efff'ctivel~· reduced to 

that shown in Figure 6 when the frequency and 
perturbed frequency are parallt>lized. 

Frequency and Perturbed Frequency 

As described in Section 2.2. the wavenumber is 
solved for each frequency and for that frequency 
perturbed. The perturbation allow,; a wavenum­
ber approximation to be extrapolated for the next 
frequency at that station. 

At first glance one would expect these two solu­
tion to be independent: however to decrease the 
number of iterations needed to converge for the 
perturbed frequency, our sequential algorithm 
uses the wavenumber solution of the frequency 
itself: this imposes a dependency. 

To enable these two solutions to proceed in 
parallel the same wavenumber approximation 
used for the frequency can be used for the per­
turbed frequency. This change in the algorithm 
may increase the amount of computation as the 
solution to the perturbed frequency could take 
longer to converge. 

Another possible problem is that for a particu­
larly bad wavenumber approximation the per­
turbed frequency may not converge-therefore 
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• • 
• • 

FIGURE 8 Station and frequency parallelism. 

the parallel algorithm i,=.; potentially less stable 
than the sequential algorithm. This problem can 
be eliminated as, on failure. the parallel algorithm 
can revert to its sequential form. For all test cases 
examined so far this has not been required. The 
parallelism so far described is shown in Figure 8. 

Wavenumber Approximations 

For each frequency, the wavenumber approxima­
tion and perturbations of its real and imaginary 
parts (ar and a,) are integrated through the bound­
ary layer. As suggested in Section 2.2. these are 
indepe.ndent and can therefore be calculated m 
parallel. 

The parallelism so far described is shown in 
Figure 9. It shows a potential loss of efficiency 
when parallelizing at the frequency and perturbed 
frequency level described in the previous section. 
In the example given one solution converges in two 
iterations while the other takes three. 

a) One frequency b) all levels so far. 
Example with 4 frequencies 
per station 

11li 
I ill 

FIGURE 9 Nested parallelism. 
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integz<ll 

integ z<3l ___ ,___ .. 

orthonormalize 
z<lJ and z<3> 

FIGURE 10 Integration of solutions. 

Integration of Solutions 

Each wavenumber approximation and perturbed 
values of its real and imaginary parts has two de­
pendent solutions Z\1) and Z ;j. These are inte­
grated from the edge of the boundary layer to the 
aerofoil (see Section 2.2). Each integration is in­
dependent, however orthonormalization is ap­
plied at each step (see Fig. 10). 

3 PROGRAMMING TECHNIQUES 

The codes described in this article were written 
and are maintained by the LFC group in the aero­
nautics department of The Cniversity of .\Ianches­
ter, U.K. The stability code is called .\lelissa. 

Melissa is written in standard Fortran 77 and as 
a result has run without modification on all plat­
forms tried. The code itself is approximately 
1,000 lines long. 

The 0-S solver utilized in .\1elissa was taken 
from an earlier, more general purpose code, writ­
ten in FortraniV. Due to both the language used 
and the original authors' coding practice in this 
earlier code, the 0-S solver section of .\Ielissa has 
a typical "dusty deck" form. 

3.1 Code Restructuring 

To help understand the algorithm used to soh-e 
the 0-S equation and make the code more read­
able certain code restructuring was performed. 

Loops implemented with a counter and condi­
tional branch using a GOTO were converted into 
DO loops. Redundant loops and code segments 
associated with the equation solver performing 
obsolete functions were removed. Tangled control 
flow and conditional GOTOs were converted into 
their IF THEN ELSE form. A number of redun­
dant input variables and input variables read 
more than once were removed. Large code frag­
ments were converted to subroutines to aid read-

ability. Finally some C0.\1.\101\" blocks were re­
moved and variables passed as arguments. 

3.2 The Kendall Square Research KSR-1 

The scalability of shared memory multiprocessors 
has traditionally been limited to tens of proces~ors 
due to memory access contention. As a result it 
has been widely accepted that distributed memory 
is the key to scalable parallel machines. however 
these machines have been notoriouslv difficult to 
program. 

The KSR-1 is a distributed memon· machine 
that provides a single address space. supported by 
proprietary hardware [ 6]. the advantage )wing a 
shared memory programming model for the user. 
This technique has been termed virtual shared 
memory (YS.\1). This term can cause confusion as 
the KSR-1 also supports virtual memory (Y.\1) 
with an address space of 1 million .\!bytes (2-+0 ). 

Each KSR-1 processor is a 20 .\1Hz RISC-style 
superscalar 64-bit unit operating at 20 .\lips and 
40 .\lflop/ s (peak). A KSR-1 system contains from 
8 to L088 processors with a peak performance 
range from 320 to 43,520 .\Hlop/ s. 

Each processor has 0.5 .\lbyte of subcache .. 
split equally between instructions and data, and 
32 .\lbyte of cache. It is therefore a nonuniform 
memory access (1\L-.\IA) style memory system. In 
this svstem instructions and data are not bound to 
specific physical locations, rather they migrate to 
where they are being referenced: this is termed a 
cache-only memory architecture (C0.\1..\). 

The interconnect topology is a two-level hierar­
chy of slotted unidirectional rings, known as ringO 
and ring1. Each ringO can have a maximum of 32 
processor memory pairs and has a bandwidth of 1 
Gbyte/ s. The ring1 connects up to 34 ringOs and 
has a bandwidth of 1-4 Gbyte/s depending on 
configuration. The KSR-1 at .\1anchester is a 6-i­
processor machine. 

A thread (termed pthread by KSR) is a sequen­
tial flow of control within a process and is the un­
derlying mechanism used to execute the parallel 
constructs available to Fortran programmers. 
These constructs-parallel regions, parallel sec­
tions, and tile families-form a high-level inter­
face to pthreads. The user inserts these parallel 
constructs, seen as cornments to other compilers, 
around appropriate blocks of codes. A pthread 
library for thread creation, barriers, locks, condi­
tion variables, etc., can be accessed directly by the 
programmer if a finer level of control is required. 



3.3 Scalar Optimization on the KSR-1 

The core element of Melissa, the 0-S equation 
solver originally included the case of oblique 
waves (three-dimensional waves); the values of 
these were set to zero in the input files. The redun­
dant code associated with this was removed. 

Two core functions, in which nearly all compu­
tation takes place, were each called twice with the 
same input parameters. These two calls were re­
placed by a single call and the result shared. 

The innermost functions are called millions of 
times and have little work within them. These were 
manually inlined reducing the calling overhead. 

In combination these scalar optimizations pro­
duced over fourfold improvement in solution time 
(see Section 4.3). 

3.4 Parallelization on the KSR-1 

Parallel Stations 

In "Pipelined Station Parallelism" we describe 
the potential parallelism available by overlapping 
station solutions (see Fig. 6 ). As the overlap is 
equal to the number of frequencies per station the 
maximum parallelism that can be usefully em­
ployed is equal to the number of frequencies. 

If, for example there are 4 frequencies, thread 1 
will be used to calculate stations 1, 5, 9, etc., 
thread 2 will calculate stations 2, 6, 10, etc., and 
so on (see Fig. 11 ). 

This ensures that all threads are kPpt as busy as 
possible and minimizes the number of threads 
used. As mentioned in "Pipelined Station Paral­
lelism" this is, in fact, an oversimplification. To 

Station 
2 3 4 5 6 7 8 

Thread 
2 3 4 

2"' !"' 3 2 "' 

4 3 2ll 
4 3 2 

4 3 

4 

FIGURE 11 Maximum station parallelism. 
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create the appropriate number of threads on the 
KSR-1 we use a parallel region directive. A func­
tion is called within the parallel region which re­
turns a unique value to each thread and is used in 
combination with an explicit modulo function to 
ensure each thread only calculates the appropri­
ate stations. 

We now need to delay the thread at the next 
station until the thread at the current station has 
calculated the a solution for its first frequency. To 
implement the above we use a "mutex"; this al­
lows only one thread through a section of code at a 
time (the first frequency calculation is effectively 
an ordered critical section) and a condition vari­
able to ensure that the pthreads obtain the mutex 
in the correct order. These were implemented us­
ing calls to appropriate KSR pthread libraries. 
The code implementing this is shown below. 

C*KSR* parallel region(numthreads= 
C*KSR*&NFREQ,private=(I,mynum, istat)) 

mynum=ipr _mid () 
DO I=l,NSTAT 

IF(mod(I,NFREQ).EQ.mynum)THEN 
call pthread_mutex_lock 

& (mul, is tat) 
IF(ftag(I) .EQ .. false. )THEN 

call pthread_ cond_ 
& wait(icond(I), mul, istat) 

END IF 
CALL STATIONS( .. ) 

END IF 
END DO 

C*KSR* end parallel region 

The condition flag (flag (I) ) is initialized to 
false for all instances except for I=l. If the 
"wrong" thread grabs the mutex it yields on a 
pthreacLconcLwai t () until it is woken by the 
thread which has calculated the previous station 
wavenumber. ·when a thread has finished calcu­
lating the wavenumber required for the next sta­
tion to start, it unlocks the mutex, sets flag (I +1) 
to true, and wakes the next thread if it is sleeping 
on the condition variable; this is shown below: 

IF (I.NE.NSTAT) flag(I+l)=.true. 
call pthreacLmutex_unlock(rnul, istat) 
IF (I.NE.NSTAT) THEN 

call pthreacLconcLsignal (icond 
& (I+l), istat) 
END IF 

A problem found in the use of parallel regions 
and condition flags is in the KSR-1 's Fortran77 
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FIGURE 12 Owrlappin;r 1/0. 

optimization: it assunws the code run;; ;;eq uen­
tially making appropriate optimizations. 1t i,; 
therefore possible for the compiler to ··optimize 
out" a condition yariable as. sequentially. the 
condition is alwavs true. On the KSR-1 ,;uch t:'X­

plicit locks need to be deelared volatile. Thi;.; i,; 
a Fortran77 extension which stop,; the-compiler 
from optimizing that variable. 

Other necessarv modifications to the code in­
volved making wavenumber results for the first 
frequency global so that the next station could 
read them and sequentializing the output to a file: 
this occurs after all the wayenumbers haYe been 
calculated at a station. This latter change was im­
plemented with a naiYe spin lock condition vari­
able. 

It ensues that we cannot neglect the time taken 
for each thread to complete l/0 bdure calculating 
the wavenumber solution;;; for its frequencie;;. This 
overhead can be reduced by adding another lock 
and condition variable, allowing the thread for a 
station to proceed w1th its l/0 as soon as the l/0 
has been dealt with by the preyious station (see 
Fig. 12). 

Parallel Frequencies 

As discussed in "Frequency and Perturbed Fre­
quency" the algorithm requires modification to 
calculate the wavenumber for the frequency and 
perturbed frequency in parallel. This involves em­
ploying the same wavenumber approximation by 
both the frequency and perturbed frequency. To 
implement this we need only change one IF state­
ment. To run this in parallel we add the KSR tile 
directive given below: 

C*KSR* TILE (FREQ, teamid=iteaml) 
DO FREQ=l, 2 

CALL PERT ( ... ) 
END DO 

C*KSR* END TILE 

The teamid argument to the tile directin~ i;-; dis­
cussed in ""Teams and :\e:;ted Paralleli:-;m.·' 

Parallel Wavenumber Approximations 

As discussed in ··\\·an•numlwr Approximation,;·· 
the wavenumber approximation and perturl,a­
tion;.; of its real and imaginary pans arP intc>gratt·d 
through tlw boundary layc>r. As in tlw prn ious 
section to implemelll this we simply need to add 
the KSR tile dirc>ctive given lwlow: 

C*KSR* TILE(PERT, teamid=iteam2) 
DO PERT=1,3 

CALL WAVE ( ... ) 
END DO 

C*KSR* END TILE 

The teamid argument to the> tile dirt>cti\P i;-; dis­
cussed in ··Teams and :\p,;ted Paralleli,;m. · · 

Integration of Solutions 

As discussed in ""lntt>gration of Solutions·· each 
integration step of the two dependent :'iolutions 
Z 1 ' and Z :i can be exeeutt>d in parallel. lwweyer. 
this is not true for the whole integration due to the 
orthonormalization of the :'iolutions (see Fig. 10 ). 
This was implenwnted using the KSR parallt>l ,.;pc­
tions directive. ,.;pe below: 

DO J=I,NSTEPS 
C*KSR* parallel sections 
& (teamid=iteam3) 
C*KSR* section 

CALL INTEG(AZ, .. ) 
C*KSR* section 

CALL INTEG(CZ, .. ) 
C*KSR* end parallel sections 

CALL MODOR(CZ, .. ) 
CALL ORTHO(AZ, CZ, .. ) 

END DO 

The teamid argument to the parallel sections di­
rective is discussed in '"Teams and l\'ested Paral­
lelism." 



Inner Functions 

\\~hen the code is examined we obsf-rve some in­
ner function,.; which could be called in parallel. 
For example. functions Land Ll independently 
search for the appropriate velocity and accelera­
tion data. respectively. However. althou~h a lar~e 
proportion of the computational timf' is spent in 
these routines, the time per call i,.; too small to 
obtain anv benefit on the KSR-1. 

Teams and Nested Parallelism 

~When a parallel construct is encountered. thP ap­
propriate number of threads are allocated to the 
work within it. To achieve this. threads which 
have alreadv been created and have fini,;hed their 
previously allocated work an~ utilized: such 
threads are kept in an '·idle pool.,. If there are not 
enough threads in the idle pool then threads are 
created to make up the shortfall. 

As threads start referencing instructions and 
variables. the appropriate data are fetched from 
remote processors (if there i:-; no instance of those 
data in the correct state locallv ). \\~hen threads 
finish their work they return to the idle pool. 

If another parallel construct is encountered 
later. which accesses the same variables. it is sen­
sible to use the same threads and processors that 
executed previously. as the processors· local 
memory may still have valid copies of data. If the 
same construct is encountered. then the instruc­
tion cache may also still have valid copies of in­
struction code, and the thread will have the cor­
rect data structures associated with it. The idea of 
data reuse here is, of course. the same as reuse of 
cache on a single processor machine. 

To ensure the same threads and processors are 
used for subsequent parallel constructs we use 
"teams" of threads. A team is created with a de­
fined number of thrf'ads. This team can then he 
referenced in association with a number of paral­
lel constructs and the same threads associated 
with the team will be utilized each time it is called. 

Teams of threads were implemented for each 
level of parallelism in the code. Another important 
effect of using teams is observed when the granu­
larity of work is close to that of the start up cost of 
the construct and the construct is called many 
times: this is because a team reduces subsequent 
construct start up overheads by a significant 
margin. 

A subtle problem in the use of teams arises 
when parallelism is nested. This is due to run-time 
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thread creation. A team groups together a number 
of threads including the currently active thread. 
thus sets of calls to create appropriately sized 
teams at the beginning of the code are not desired. 
It must be the active thread, arriving at the parallel 
construct, that creates the team. Therefore the 
team is created (once) at the same nested level as 
the parallel construct. 

4 PERFORMANCE REALIZATION 

4. 1 Test Data 

As outlined in Section 2.3, we first apply a low 
resolution search to find the frequencies and aero­
foil positions of interest: wf' dwn do a more de­
tailed analvsis around these areas. The low reso­
lution search typically use;; 3-10 frequencies and 
50-100 stations. The high resolution analysis 
typically uses 10-40 frequencies and 1 00-•fOO 
stations. 

In this article we use two test cases to represent 
these different resolutions. Test case A has 4 fre­
quencies and 40 stations. Tese case B has 40 fre­
quencies and 100 stations. 

4.2 Results 

The results reported in this article were achieved 
on the KSR-1/64 at Manchester University. Tim­
ing runs were taken in a multiuser en,ironment. 
To ensure the exclusive use of the appropriate 
number of processors during the runs and to mini­
mize interference from other users, cells were allo­
cated exclusively to the program during its execu­
tion. This was achieved with the command 
1 allocate_cells -An 1 , where n is the number 
of processors and -A avoids 'loaded' cells such as 
those with ethemet cards. All results shown in the 
next sections are the average of three consecutive 
runs and all timings were made using the unix 
timer "time." 

Results for varying numbers of processors are 
presented as temporal performance graphs[?]. 
The dotted line in each graph is the "naive ideal" 
line lp = l 8 /p (often termed "linear speedup"), 
where t., is the elapsed time for the serial program 
for a fixed problem size and lp is the elapse time 
for the same problem size on p processors. 

Other results are presented in tabular form in 
which we give absolute time and solutions per sec­
ond. A solution is defined as the calculation of the 
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wavenumber for one frequency (and its perturbed 
complement) at a station. 

The results described in this article extend work 
reported in Ford[8]. 

4.3 Single Cell 

A number of scalar optimizations have been ap­
plied to the code during the course of our work. 
Table 1 shows the performance improvements oL­
tained. The solution rates differ for the two cases 
as case B has a better conveqrence rate for the 
iterative method used to solve the 0-S equation. 

4.4 Parallel Stations 

The temporal performances for cases A and B for 
increasing numLers of processors are shown in 
Figures 13 and 14, respectively. 

The two results in each graph (Sand Sio) repre­
sent the advantage of performin~ 1/0 as soon as it 
is possible to do so: this effectively increases the 
pipeline length (see Fig. 12). 

The performance results ··drop away" from the 
naive ideal line due to two major factors.- The first 
is that we run out of overlapped work to do: note 
that this is not a sharp cut off. as the pipeline 
overlap varies during the run due to the iterative 
method used. The second effect is due to the over­
head of '·filling up"' the pipeline. This effect is 
more prominent in case B (Fig. 14). as the ratio of 
the pipeline length (a function of the number of 
frequencies) to the number of stations is larger 
than in case A. 

4.5 Parallel Frequencies 

To implement parallel frequencies we modified 
the algorithm (see Section 2.4, "Frequency and 
Perturbed Frequency"). Table 2 shows perfor­
mance comparisons for the serial code and the 
parallel version run both serially, and in parallel, 
for test cases A and B. The parallel algorithm runs 
more slowly than its sequential counterpart. The 
temporal performance of cases A and B with the 

Table 1. Sequential Optimizations 

Version 

A: Original 
A: Optimized 
B: Original 
B: Optimized 

Elapsed Time 

6m Os 
1m 28s 
1h 51m 31s 
25m 17s 

soils 

0.4-t 
1.82 
0.60 
2.64 

Table 2. Parallel Frequencies 

Version 

A: sequential 
A: par 1 eell 
A: par 2 cells 
B: sequential 
B: par 1 cell 
B: par 2 cells 

1m 27.7s 
1m 3-t.h 
S5JJS 
2.Sm 16.8s 
29m 19.0s 
15m 1-t .. ),; 

~ol I,; 

1.82 
1. 70 
2.88 
2.64 
2.27 
•t.:37 

0.08 ,-----,r---.-~----,----.--,.-~---.----, 
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0.01 .......... 

0"------'-----'---'----'---'---'-----'-----'---' 
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processors 

FIGURE 13 Case A paralld ,.,ration,.;. 

parallelism of parallel frequencies and parallel 
stations combined is shown in Fi!!ures 15 and 16. 
respectively. Again the two graphs show the ad­
vantage of performing 1/0 as soon as it i:-; pos,.;ible 
to do so. 

Parallelizing at the frequency lewl has the ad­
vantage of reducing the pipeline length Lut has the 
disadvantage of modifying the algorithm to a less 
efficient form. Figures 15 and 16 show that paral­
lel frequencies are only beneficial when the pipe­
line length is large. i.e .. close to the number of 

0.025 

s --+--

0.02 Sio ~ 
naive -------
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-
0.01 

.· 
/ 

16 24 32 40 48 56 
processors 

FIGURE 14 Case B parallel stations. 
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:-;tations and that for small numbers of proeessors 
it i:i better to pamlldize at tht• station level only. 

The interesting feature,;; in the parallel station 
and parallel frequency line (S + F) in Fi1-rtu-e 16 
are the subject of ongoing work. 

4.6 Parallel Wavenumber Solutions 

Table 3 shows the performance results when soh-­
ing wavernunher solutions in parallel. The tempo­
ral performances of cases A and B. when the par­
allelism of parallel wavcnumbers and parallel 
stations is combined. as shown in Figures 17 and 
18, respecti\·ely. 

The results of parallelizing at the station level 
only are also shown for comparison. There is a 
clear advantage in parallelizing at the wavenum­
ber level as we obtain improved performance in 
both cases A and B. In case A the improvement is 
due to the increa:o;e in the amount of parallelism 
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Sio-
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processors 
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Table :3. Parallel \Vavenumbers 

Version 

A: sequential 
A: :3 cells 
B: sequential 
B: :J cells 

Elapsed Time 

1m 27."?s 
3:~.9s 

2:')m 16.8s 
Sm .)7.9,; 

sol/ s 

1.82 
-+. '72 
2.6-+ 
-:'.·H 

available. In case B this impnwerm~nt results in 
better peformance for the number of processors 
used: a major part of this is due to the reduction of 
the pipeline overhead. 

4.7 Parallel Integration 

When the integration was parallelized as de­
scribed in Section 2.i, '·Integration ofSolutiom;," 
the program ran more slowly. The degradation in 
performance is due to the startup oYerhead of the 

0.15 

- 0.1 

0.05 

s­
Sio-

naive -·----· 
Sio+W -<>--

0 ~--~~--~----~----~----~----~ 
0 4 8 12 

processors 
16 20 24 

FIGURE 17 Case A parallPI station~ and wavt>num­
bers. 
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FIGUHE 18 Case B parallel ;;tations and wawnum-
FIGUHE 16 Ca~e B parallel station,; and frequencies. bers. 
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Table 4. Parallel Integrations 

Version 

A: sequential 
A: sections 2 cells 
A: reduced 2 cells 

Elapsed Time 

1m 27.?s 
4m 9.4s 
1m 13.5s 

sol/ s 

1.3:2 
(). 6-t 
:2.18 

KSR parallel section construct being close or 
greater than the work inside each section. To re­
duce this overhead we expanded the KSR parallel 
sections (see Section 2.4, "Integration of Solu­
tions") outside the integration loop, thus reducing 
the number of section startups. This was achieved 
by duplicating the loop and synchronizing manu­
ally via shared variables*, see below. 

C*KSR* parallel sections(teamid= 
C*KSR*& iteam3, private=J) 
C*KSR* section 

DO J=l,NSTEPS 
CALL INTEG(AZ, .. ) 
DONE_INTEG(J)=.TRUE. 

20 IF (.NOT.DONE_ORTHO(J)) GOTO 20 
END DO 

C*KSR* section 
DO J=l,NSTEPS 

CALL INTEG (CZ, .. ) 
10 IF (.NOT.DONE_INTEG(J)) GOTO 10 

CALL MODOR (CZ, .. ) 
CALL ORTHO (AZ,CZ, .. ) 
DONE_ORTHO(J)=.TRUE. 

END DO 
C*KSR* end parallel sections 

Table 4 shows the performance of these differ­
ent versions. Clearly we only obtain a modest im­
provement in the solution time when parallelizing 
sections. 

5 CONCLUSIONS 

We have shown that for a typical low resolution 
search, we can reduce the solution time from min­
utes to near interactive times. In test case A, we 
have reduced the solution time from 6 minutes to 

under 8 seconds on 24 processors (this is the 
maximum number of processors that can be use­
fully employed on this problem size). 

* The premise here is that manual synchronization incurs 
less overhead than parallel sections. 

\Ve have also dt>monstrated that for a typical 
high resolution search, we can reduce tlw :-;olution 
time from hours to seconds. In test ca:-;e B. we 
have reduced the ,.;olution time from onT 1 hour 
51 minutes to under -!0 seconds on 5-i proces,.;ors. 

These results were obtained by a combination 
of scalar optimization and parallelization. Scalar 
optimization accounts for over fourfold imprpve­
ments in the results. 

These results open up the pos;;ibility of much 
larger runs involving more stations and frequen­
cies. However, more significantly. we demonstrate 
near iteractive performance for smaller runs, 
enabling a transformation of search methods and 
opening up new possibilities for this methods use 
in industry. 

The algorithm has a reasonable amount of 
functional parallelism (for the :;tandards of to­
day's machines) but would not be classified as 
being massively parallel; useful parallelism on the 
KSR-1 is limited to six times the number of fre­
quencies in a run. The majority of this parallelism 
is coarse grained with little communication and 
should therefore be efficient on both shared mem­
ory and distributed memory machines. 

There is further parallelism available, within 
which a large amount of the total execution time is 
spent: however, the time per call is too small to 
exploit on the KSR-1. 

Conceptually, a message-passing style would 
be a natural way to exploit the functional parallel­
ism available and svnchronization needed in this 
algorithm, particula"rly at the level of parallel sta­
tions. However, the combination of a shared 
memorv model and dvnamic thread control on the 
KSR-1: coupled wid{ automatic thread and data 
migration. offered significant advantages wht>n 
parallelizing the existing sequential program. 
These features enabled each level of parallelism to 
be separately parallelized with little code modifi­
cation: thev also enabled each level and combina­
tions of le,:els to be incrementally dewloped and 
tested; finally .. we could effective ignore thread 
placement and the migration of shared data. 

6 FUTURE WORK 

The algorithm described here models incompres­
sible fluid flow. A compressible wrsion is now op­
erational: this has similar characteristics but is 
more computationally intensive. The compres­
sible code will be the subject of future paralleliza­
tion efforts. 
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The dependency of a station on the previous 
station may be broken by "inputting" an accurate 
initial wavenumber approximation either at every 
station or, more feasibly. groups of stations. This 
would increase the amount of parallelism avail­
able and reduce the functional pipeline overhead 
(see Fig. 19). The accuracy of initial wavenumber 
approximations is one of the current focuses of the 
LFC group. 

The algorithm described here is also con­
strained to a two-dimensional flow. A three-di­
mensional ver;;ion of their model is now opera­
tional. The three-dimensional code will again 
increase the computational requirements. In this 
case a different parallelization stratebry will also 
have to be adopted, as the three-dimensional ver­
sion imposes new orderings on the computation 
(such as dependt>ncies across the wing). 

Work aimed at improving the efficiency of a 
search procedure in one of the core routines, elim-
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inating any further redundant work and reducing 
the parallel overheads of thread start-up, may 
also yield further performance benefits . 
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