
Reviews

Introduction to Parallel Programming, by Steven Brower. ISBN 012-128-4700, 1989, $45.00, 422 pp.,
hardbound. Available from Academic Press, Inc., 1250 Sixth Ave., San Diego, CA 92101 or 21-28
Oval Rd., London NW1 7DX. UK.

DETAILED SUMMARY

Is it useful? This highly practical book is useful for the scientific programmer who wants
to learn about parallel programming, primarily for those learning to program in the
shared memory model. It is also useful as a reference, with a cookbook style that will
help the programmer to parallelize most common classes of loops. By adding to its
existing exercises, it would also be usable as a textbook.
Interesting features: All of the software for all programs in the book are available on
floppy disk, in C and Fortran, from the author.
Problems: The book's primary weakness is in its production quality. The typesetting of
equations is primitive and confusing. The figures are crudely drawn and their graphical
design is often confusing. Finally, there are occasional textual mistakes that could have
been caught by the editor. While these flaws diminish the quality of the book, they do not
severely impact the content.

Another possible problem is the book's bias toward the environment provided by
bus-based multiprocessors, such as the Encore. Increasingly, parallel computers do not
have the uniform access to memory or the kind of process scheduling provided in this
model. For maximum performance on many machines, the user would need to consider
issues not covered in this book, such as data distribution.
Conclusion: This book is a useful introduction to parallel programming for the experi
enced scientific programmer, who has no previous knowledge of parallel program
ming, and who wants a practical presentation.

In the last 5 years we have seen parallt>l computers
supercede tht> ''traditional" vector computt>rs as
the world's fastest computers. The typical i-icit>n
tific programmer, who is more intert>sted in getting
scientific results quickly than in playing with new
machines .. can no longer ignore this new class of
machines. Although computer scientists may
someday make it possible for '·dusty-deck'' codes

Reviewed .lurw 199.3

© 1993 LY .John \'riley&: ~on,. Inc.

Scientific Prol!rarnrning. \'oL -t. pp. 11.)-11 il 199;)!

CCC 1038-9244/%/0201 L)-0-t

to run faster on parallel computers just hy rt>com
piling. this day seems a long way off. The scientific
programmer who wants to take advantage of the
new supercomputers must learn to write parallel
programs.

Brawer's practical book is designed for the sci
entific programmer who is ready to take the
plunge into parallt>l computing. Brawer carefully
leads the experienced scientific programmer into
the world of shared memory .. locks, and loop de
pendencies. He assumes only that the reader has
programmed in a procedural language like For
tran, C, Pascal, or Ada. and knows nothing about
parallel computers, parallel programming, or ad-

116 REVIEWS

vanced mathematics. All new terms and concepts
are carefully defined, in just enough detail for
practical understanding, and there are lots of ex
amples.

The book is not specific to any programming
language, programming environment, operating
system, or architecture. However, the model is
clearly that of shared memory architectures, like
the Cray, Encore, Sequent, BBN TC2000, or
KSR. Although many of the concepts in the book
apply to all parallel programming models, the
book is less directly applicable for programmers
using a message-passing machine (such as lntels
or nCUBEs) or using a data-parallel model (such
as that used by Maspar or Thinking Machines). In
particular, all of the examples used shared
memory.

Brawer chose to use a subset of Fortran for the
example programs, all of which are available sep
arately (inC or Fortran) on floppy disk. Since they
are restricted to an elementary subset of Fortran,
the programs could be easily rewritten in another
language, such as C. For example, one could eas
ily adapt them for use with the p4 package from
Argonne Laboratories, which is a freely available
parallel programming library that can run on
nearly every parallel computer or workstation net
work, and is similar to Brawer's model.

The book is well organized, beginning with an
introduction to the basic ideas of parallel com
puter architecture, programming models. pro
cesses, shared memory, and synchronization. It
then delves deeply into the issues of loop schedul
ing and data dependencies, familiar issues to the
vector computer programmer. Finally, it covers
performance issues, and several diverse sample
applications, such as discrete event simulation.
line fitting, integration, traveling salesman, and
Gaussian elimination. Throughout, Brawer works
through examples to demonstrate shared and pri
vate variables, the importance of synchronization.
and so forth.

Brawer devotes four chapters to the issues of
loop scheduling and data dependencies. which
may be handled by the compiler in some environ
ments. l\'onetheless. the rest of the book is still
valuable reading for any beginning parallel pro
grammer.

Message-passing compouter architectures have
become popular recently. The book focuses on
shared memory, although many concepts (such as
synchronization and scheduling) apply to message
passing as well. Furthermore, despite the preva
lence of message-passing architectures (including

cluster-based computing) I expect that shared
memory will become the predominant program
ming model for scientific programming, regardless
of architecture.

Finally, although compiler support for data
parallel programming is improving (e.g., the high
performance Fortran [HPF] project), the book's
loop-scheduling information is useful for pro
grammers who cannot wait for that support, and
for those who want a better understanding of what
the compiler is doing. In addition, the book also
contains several examples of irregular problems
that would not easilv fit the mold of most data
parallel languages.

1. Introduction
2. Tiny Fortran
3. Hardware and Operating Systems

Models
4. Processes, Shared :\1emory. and Simple

Parallel Programs
o. Basic Parallel Programming Techniques
6. Barriers and Race Conditions
7 Introduction to Scheduling

;.Jested Loops
8. Overcoming Data Dependencies
9. Scheduling Summary

10. Linear Recurrence Relations
Backward Dependencies

11. Performance Tuning
12. Discrete Event. Discrete Time Simula-

tion
13. Some Applications
14. Semaphores and Events
15. Programming Projects

Appendix A. Equivalent C and Fortran Constructs
Appendix B. EPF: Fortran 77 for Parallel Program

ming
Appendix C. Parallel Programming on a l. niproces

sor Lnd!:'r Cnix
Bibliography
Index
Order Form for Parallel Programs on
Disk!:'tte

FIGURE 1 Table of contenh.

David Kotz
Dartmouth College

Department of Computer Science
Hanover. Sll 08755

e-mail: djk@cs.dartmouth.edu

REVIEWS 117

FORTRAN 90 Explained, by Michael Metcalf and John Reid. ISBN 0-19-853772-7, 1990 (reprinted
1993), 35.00 Swiss Francs, 306 pp., softbound. Available from Oxford University Press, Inc., 200
Madison Ave., New York, NY 10016.

The nature of scientific programming has changed
considerably from the 19.SOs when the term "for
mula translation" was, by and large, an accurate
description of the task. The last 40 years have
witnessed huge improvements in algorithms,
hardware speed, and memory capacity. Conse
quently, scientific programs that manipulate com
plex data structures, such as nonuniform meshes
or multilevel grids, and exploit the potential of
multiprocessor architectures are nowadays com
monplace.

These enormous changes have been reflected
in the evolution of Fortran from the 66 standard
through the 77 standard to the more recently in
troduced 90 standard. Some constructs which
were originally significant (such as the EQLIYA
LENCE statement for partitioning a limited main
memory) are now virtually redundant while other
constructs have become highly desirable (such as
encapsulation mechanisms to organize complex
computations). There are many and various dif
ferences between the 77 and the 90 standards (al
though the former is a subset of the latter). Al
though several of the novel features are of dubious
merit there are hugely significant additions:

1. Ylechanisms which facilitate the definition
of dynamic and user-defined types

2. Data -parallel array operations
3. Powerful encapsulation methods
4. An intrinsic library of scientific operations

The provision of these features should greatly aid
the task of constructing scientific software.

The FORTRAI\ 90 standard [1] acts as the
definition of the language. Like many reference
manuals it is suitable for investigating particular.
very detailed queries rather than providing an
overview of the entire language. On the other hand
FORTRA,V 90 Explained both defines the under
lying constructs and is arranged in such a way that
it can be read from cover to cover. In essence. the
content of the book is a distillation of the standard
with an approachable presentation. The fact that

both authors were involved in the design of the
language has helped to make the book both thor
ough and consistent with the standard.

The early chapters describe respectively, lexi
cographic tokens and types, expressions and as
signments, and control statements. Thereafter,
new features are illustrated with appropriate pro
gram fragments. Each chapter contains an exer
cise section and solutions are provided in an ap
pendix. A number of the constructs of FORTRAN
90 have been marked for possible future removal;
these are listed in a self-contained appendix. In
addition, the authors have selected a number of
other features of the language which are consid
ered to be redundant; these are defined in the
final chapter of the book. Both the appendix and
the final chapter are surprisingly short.

One disadvantage of the organization is that in
formation about a particular topic may be dis
persed. For example, pointer variable de clara
tions are described in one chapter, pointer
assignment is outlined in another, and allocation I
deallocation is discussed in a third.

In generaL each linguistic feature is "ex
plained" with (i) a syntactic outline, (ii) an infor
mal description, and (iii) an illustrative example.
For the most part the definitions are clear and
understandable. When descriptions are difficult
to follow the problem often lies with the construct
rather than the explanation. For example, it is dif
ficult to see how the declaration

INTEGER, PARAMETER : : LONG
SELECTED_REAL_KIND(9,99)

could be made appetizing. It is possible to quibble
about some descriptions. For example,

1. Pointers are not described in terms of loca
tion to value bindings

2. The first illustrative example of a "recursive
function" is complex, indirect, and involves
a function parameter

118 REYIE\'rS

3. The distinction between bounded and un
bounded DO iterations is not highlighted

4. An infinite recursion is described with the
expression '·loop over itself forever.··

However. the weaker definitions are relati\"ely
rare.

I consider the book to be primarily a reference
work. The details of the constructs of Fortran 90
are adequately defined: there is. however. a lim
ited explanation of the more general scheme of
things. For example. there is not a convincing jus
tification for, and explanation of. the importance
of modules (an abstract data type definition may
have the beneficial effect of isolating occurrences
of pointers to a single section of program text and,

as a result, simplifying the task of reasoning 1 • Be
that as it may. 1 consider FORTRA.\" 90 E.rp/uined
to be the best current book on thi,.; ,.;uhject matter.

REFERENCE

[1] lnlerrwtionol S'tondord. ISO/IEC 1.):3lJ. 1991.

Alan Stewart
The (Jueen 's Cniuf'rsit_r of BE'({ast
Deportment of Computer Science

Be({ast BT 7 JXY
:Vortlzf'rn frPlarul

e-mail: astewart(fi cs. q ub. nc .uk

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

