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ABSTRACT 

This article describes the porting and optimization of an explicit, time-dependent, com­
putational fluid dynamics code on an 8, 192-node Mas Par MP-1. The Mas Par is a very 
fine-grained, single instruction, multiple data parallel computer. The code uses the flux­
corrected transport algorithm. We describe the techniques used to port and optimize the 
code, and the behavior of a test problem. The test problem used to benchmark the flux­
corrected transport code on the MasPar was a two-dimensional exploding shock with 
periodic boundary conditions. We discuss the performance that our code achieved on 
the MasPar, and compare its performance on the Mas Par with its performance on other 
acchitectures. The comparisons show that the performance of the code on the Mas Par is 
slightly better than on a CRAY Y -MP for a functionally equivalent, optimized two-dimen­
sional code. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

~We have ported a computational fluid dynamics 
application to the :\lasPar :\IP-1. The application 
uses the flux-corrected transpor1 (FCTJ algorithm 
[ 1], and consist:-; of a set of Fortran subroutines 
that are collective~\- referred to bv the name of the . . 
main suLroutine. LCPFCT. In addition to the 
main subroutine, several auxiliary subroutines 
can be used to define the geometry. source terms, 
and boundary conditions. The code solves the 
coupled sets of multidimensional nonlinear con­
servation laws that describe reactive and nonreac­
tive gas dynamics. 

LCPFCT itself can handle Cartesian. cylindri­
caL sphericaL or user-defined coordinate svs-
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terns. Alternate sets of boundary conditions can 
be selected by making the appropriate choice of 
arguments to the subroutine calls. Besides inflow, 
outflow, or reflecting wall conditions in any coor­
dinate system, LCPFCT can also handle periodic 
boundary conditions. :\lultidimensional problems 
are solved using the method of fractional steps 
[5]. The computational grid can be nonuniform. 
and can move during a time step. allowing the 
user to perform Lagrangian or sliding rezone cal­
culations. 

This article describes our porting and optimiza­
tion of FCT on the MasPar. First we give a general 
description of the flow model and the FCT algo­
rithm. Second, we give a brief overview of the 
MasPar architecture. Third, we briefly describe 
the two-dimensional blastwave problem with peri­
odic or solid-wall boundan· conditions which we 
use as a benchmark. Fourth, we discuss the hur­
dles involved in adapting the basic LCPFCT com­
pressible fluid dynamics module, to a form com­
patible with and efficient on the MasPar. Finally, 
we summarize the performance of our code on the 
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MasPar. We compare the results of running our 
two-dimensional code on the .MasPar to equiva­
lent benchmarks on other architectures including 
the CRA Y Y-MP and the Connection Machine 
CM-2. 

2 THE FLOW MODEL AND ALGORITHM 

Our flow model is based on the inviscid, time­
dependent, multidimensional Euler equations of 
gas dynamics. This includes three con;:;ervation 
laws, for mass, momentum, and energy. In the 
inviscid model, shocks appear as mathematical 
discontinuities. The ;:;olution that we seek is the 
weak solution to the differential equation that sat­
isfies the integral form of the equations. From a 
physical standpoint, in the presence of ,.;hocb, the 
integral form is the proper form of the consen·a­
tion statement, The FCT algorithm is used to solve 
each of the coupled conservation equations defin­
ing the gas dynamic system. 

FCT is an explicit, nonlinear, monotone 
method designed to enforce positivity and causal­
ity on the numerically computed solution. These 
constraints ensure that the numerical solution ap­
proximates the solution of the consen·ation laws 
in integral form. Positivity and causality would Le 
lost in the numerical approximation if one did not 
ensure that the finite-difference scheme is con­
servative. FCT satisfies the monotonicity require­
ment: it implements profile-dependent nonlinear 
corrections to the truncation-error terms. which 
ensures that no new numerically produced max­
ima or minima occur near shocks or contact dis­
continuities. The FCT algorithm ensures fourth­
order phase accuracy in smooth regions of the 
flow and guarantees conservation, monotonicity. 
and positivity in regions with steep gradients. An 
extensive discussion and anaksis of FCT has 
been published by Boris and Book [ 1 J. 

FCT is second order accurate in space. Second 
order accuracy in time is achieved Ly splitting the 
time step. First a half time step computation is 
executed and then the intermediate, time-cen­
tered values of the physical variables are u,.;eJ to 
evaluate the source terms for the full time step. To 
ensure second order accuracy, the time step must 
be small enough so that the cell a\·eraged values of 
the physical variables do not change appreciably 
during the time step. Direction splitting [ 6] allows 
for multidimensional FCT calculations. In a two­
dimensional problem this is accomplished by sep­
arating each gas dynamic equation into its respec-

tive x andy part,.;. First each y-direction column in 
the grid is integrated, and then the x-dirt>ction 
rows are integrated. Direction splitting creates a 
bias that will eventuallv break the snnmt>tn· of a . . . 
solution, depending on which direction is inte­
grated first. This can be eliminated by performing 
two calculations, x-y then y-x, and an·raging the 
results. 

FCT is a "uniform"' algorithm in which. at each 
time step every cell undergoes the ,.;ame numerical 
operations regardless of the values of the physical 
variables in that cell. It is therefore ideallv suited 
for massively parallel processing on a single in­
struction, multiple data ISI\ID) architt>cture ,uch 
as the \lasPar. 

FCT is abo well suited for ,.;imulating high­
speed compressible flow. "'e are intere:'itt>d in JWr­
forming simulation~ that include combustion. 
Other numerical scht>mes ~uch as PP:\1 piecewise 
parabolic method (PP\1) [2] or monotonic up­
stream-centered scheme for cunsen·ation laws 
(\ICSCL) [11] would be appropriate for combus­
tion simulations. but we have choben FCT be­
cause of its simplicity and its good track rt>cord in 
combustion. It has been used succe,.,,..fulh· for 
combustion simulation bY other researchers such 
as Oran et al. [6. 7. 8]. Thibault et al. [10~. and 
Zhang et al. [ 13 J . 

3 THE MASPAR 

The \'lasPar ~vstem architecture indudt>s a pro­
cessor ele1nent arraY. an array control unit. and a . . 
Cl\lX workstation as a front end. The front end 
manages program execution and user interface. 
"'hen there is a nt>ed for paralld ext>cution. the 
front end sends the program for execution to tht> 
processor array. The 8,192 processors are orga­
nized in a two-dimensional array topnlof.'Y ( 128 X 

64 ), in a SI\ID architect urt>. In a SI\ID arc hi tec­
tu~e, all the processors simultaneously perform 
the same operation on differt>nt data as one ;;inglt> 
stream of instructions is broadcast to all proct>s­
sors by the array control uuit. The \lasPar \IP-1· s 
theoretical peak performance i;, 650 \1/lop/ s ;,in­
gle precision and 290 \Iflop/ s double preci,;iun. 

There are three types of communication on the 
\1asPar. First., there are communications from the 
array control unit to the pnwt>ssor array wlwre the 
array control unit broadcasts data or instructions 
to all processors in the array simultaneously. St>c­
ond, nearest neighbor data communications are 
carried out by the X-net. The X-net is an eight-



way, two-dimensional toroidal mesh that allows a 
processor to communicate with its nearest neigh­
bors. Finally, communication between arbitrary 
processors i,; carried out by a hierarchical cross­
bar called the global router. 

Interprocessor communication i,; required 
when a processor requires data that are not resi­
dent in its local memory. X-net communication 
will be used if the data reside on a neighboring 
processor. In this case. the performance penalty is 
low because X-net communication is fast. If the 
data do not reside on a neighboring processor. 
global router communication will be used. While 
router communication i,; efficient. it is much 
slower than X-net communication-the X-net has 
approximately 16 times the bandwidth of the 
router. 

Another more costly type of communication is 
array sloshing between the front end and the pro­
cessor array. Array sloshing has a profound effect 
on performance and occurs in several circum­
stances. First, if an array that has been allocated 
on the processor array is accessed in a serial (For­
tran 77) manner. it will be sloshed to the front 
end. To avoid this situation. serial acces,; on the 
processor array should be avoided. Likewise. 
when an arrav has been allocated on the front 
end. and a subroutine is called that use,; this arrav 
in a parallel context, the array will be sloshed from 
the front end to the proces,-or array and back 
again when the routine exits. To avoid this, com­
piler directives can be used to force allocation on 
the processor array at declaration time. Even 
more costlv than the latter two cases is the slosh­
ing of a CO.\I.\101\" block of arrays. This can be 
avoided in the same manner a,.; for indi\·idual ar­
rays. 

4 TWO-DIMENSIONAL BLASTWAVE 
COMPUTATION 

The problem used to benchmark F< :T on the 
.\IasPar is a two-dimensional blastwave computa­
tion with periodic boundary conditions. This com­
putation involves both supersonic and subsonic 
flows with interacting shocks and a high degree of 
symmetry. The blastwave problem may not be a 
significant real-world problem. but it is a good 
benchmark for computational fluid dynamic 
(CFD) codes. It is a good benchmark hecaww the 
solution is very symmetric, it maintain,; this sym­
metry for a long time. and a good CFD code 
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should resolve the shockwaves within a few cells 
while maintaining the symmetry of the solution. 
Also, this problem was previously used by Oran et 
a!. [ 5], and using the same problem allowed us to 
compare our results. 

The computation is initialized with a high-den­
sity, high-pressure square of fluid that is 32 cells 
on each side. The square is situated in a doubly 
periodic mesh 128 cells on each side. The square 
region in the center of the domain begins with a 
density 15 times the background density and a 
pressure 30 times the background pressure. The 
contact surface that defines the interface between 
the initial high pressure material and the low pres­
sure material is tracked by using an additional 
species variable in the computations. This com­
putation is a good benchmark for a CFD model 
because it should retain its symmetry for a long 
time, and because periodic or solid wall boundary 
conditions should give the same solution as long 
as the symmetry is maintained. 

Figures 1 and 2 show contours of pressure and 
location of the contact surface for several time 
steps during the simulation. During the simula­
tion, the up-down symmetry is eventually broken 
by round-off error arising from the limited preci­
sion of the floating-point calculations. Symmetry 
across the 45° degree diagonals is eventually bro­
ken by the truncation errors in the time step split­
ting. 1hese errors appear to be larger than the 
round-off errors. 

~~hen the unconfined high-pressure gas is re­
leased. a shock forms that races out from the 
edges of the initial square. The contact surface 
closely follows behind the shock. Figure 1 shows 
the development of the pressure contours for six 
time step~. By step 500 the initially square shock 
has progressed through a circular phase and con­
tinues to change shape. By step 1..500 the shock 
has reflected from the ends of the computational 
domain and has begun to recompress the material 
inside the contact surface. As time proceeds to 
step 10,000 the shocks become progressively 
weaker, and become oriented parallel with the 
sides of the domain . 

~chereas the shock patterns become simpler as 
time progresses, the vorticity caused by the shock 
interactions with the contact surface warps the in­
terface into increasingly complex patterns. The 
vorticity is generated by the baroclinic source term 
in the vorticity equation. This term is nonzero 
when the gradients of density and pressure are not 
aligned. The misalignment is created by the shock 
reflecting from the corners of the domain, which 
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FIGURE 1 Pressure contours at six time step;; for the square ],]astwmc problem. 

weakens the shock. The shocks reflect back 
through the interface creating more vorticity. 

5 PORTING AND OPTIMIZING FCT 

The MasPar can be programmed in either :\1PL.. a 
parallel extension to C, or .\IPF. an implementa­
tion of a subset of Fortran 90. \\'e used version 
3.012 of MasPar's high-performance Fortran 
compiler "mpfortran" or .\IPF. In .\1PF, parallel 
operations are expressed with the Fortran 90 ar­
ray extensions. Arrays are treated as unitary ob­
jects rather than requiring them to be iterated 
through one element at a time, as in standard For­
tran 77. MPF generates code for both the front 
end and the processor array, effecti,·ely making 
the details of the architecture transparent to the 
programmer. However. programming style will di­
rectly affect performance. 

Optimization of FCT on the :\fasPar required 
two main issues to be addressed: making effective 

use of the processor array and nununization of 
communication cost. In SI.\ID architectures. oper­
ations performed on a subset of the processor ar­
ray, such as single lines or columns. or boundary 
nodes. cost as much in cycles as operations on the 
whole array. Thus. constructs detaling. for in­
stance .. with the boundaries separately from the 
main arrays can eaf'ily double the computation 
time, and they are advantageously concatenated 
with the main operations. In addition, unwanted 
interprocessor con1munication can occur if arrays 
are not correctly allocated on the processor array. 
It was critical to ensure that all arrays were prop­
erly aligned on the processor array in order to 
minimize communication overhead. 

Porting the code involved getting the code to 
run on the processor array, and optimizing the 
code on the processor array. Fir;;t, since the sub­
routines were originally written in F011ran 77. they 
were converted to Fortran 90 using the .\lasPar 
version of Pacific-Sierra's YAST-2.-t.OlL 
(DPVAST) translator. The rran,.;lator searches the 
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FIGURE 2 Contact surface locations at six time steps for thf' square blastwave problem. 

Fortran 77 code for scalar "do'' loops and con­
verts them to the Fortran 90 arrav notation, which 
is understood by the processor array. The code as 
translated by DPYAST ran very poorly-the tem­
poral performance was much less than one time 
step per second.* Optimization of the code was 
carried out in several stages de&eribed below, and 
the results of optimization are summarized in Ta­
ble 1. 

Stage one dealt with CO:\L\IOl\" block alloca­
tion. The original blocks contained both scalar 
and array data, and as a result. the compiler allo­
cated them on the front end. Since the arrays in 

*Hackney [of: defines temporal performance as the inverse 
of the execution time [RT = T- 1(N;pJ:, wh~n·l\ is the problem 
size and pis the number of processors. Temporal performance 
is measured in solutions per second (sol/s) or time steps per 
second (tstep/ s ). It i;; a good metric for comparing different 
algorithms when solving a certain benchmark problem because 
it tells you which algorithm solves the problem the fastest. 

the blocks were used in Fortran 90 array con­
structs, the whole block had to be sloshed to the 
processor array. By removing all CO:\I:\10!\" 
blocks, and passing the block elements a,.; param­
eters to the subroutines, we improved the tempo­
ral performance by a factor of 2. This was still 
unsatisfactorv. 

Stage two consisted of altering the implementa­
tion of direction splitting. The original LCPFCT 
subroutines were one dimensional. Two-dimen­
sional problems were handled by calling the one­
dimensional subroutines row bv row, and 
then column bv column. This minimizes scratch 
memory-a desirable feature on a vector ma­
chine, but leads to poor performance on a SI:\ID 
architecture. For example, for a 128 X 128 grid, a 
row or column array will contain only 128 ele­
ments. \Vhen the one-dimensional subroutines 
are called with a 128-element array only 128 pro­
cessors will be used at a time, resulting in a perfor­
mance that is less than 1.0% of the peak perfor-
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Table 1. Effect of the Optimization (Hesolution: 128 X 128) 

Stage 

DP\-:\ST 
1 
2 
:3 
4 
.) 

6 

Tempoml 
Perfonnann~ 

ltstqllsJ 

().();3 

0.06 
:3.0:3 
-t.SS 
S.:J6 
S.H8 
7.14 

mance of the machine. The code was rewrittt·n 
such that all the rows were dealt "-ith in a ;-;inf!le 
operation and then all the cohunn,.;. Thi,.; can be 
done because adjacent rows or columns are inde­
pewlent uf uue another during thi, computation. 
This stage improved the temporal performaJH'e to 
approximately :3 tstPp/s. 

The profiler was used in ,;taf!e three to find 
out which parts of the code used the most CPC 
time. The profiles showed that approximately 
70% of the time wa:; spent in the LCPFCT sub­
routine. and a large pPrcentage of the -time wa,; 
spent in calculating the boundary conditions. The 
DP\'AST version of the code u,;pd two one-dimen­
sional arravs to store the results of the boundarY . . 
calculations. These arrays could not be properly 
aligned with the main two-dimensional arrays. To 
eliminate the communication penalty that rPsult,; 
from this situation. the code that dt>alt with the 
Loundan· calculations was rewritten. and tlw 
results of the boundan· calculations were stored in 
the main two-dimensional arravs. In addition. in 
the original implementation. periodic boundary 
conditions were controlled by setting the ntlue of a 
double precision flag to either zpro or one. The 
code was modified to use a logical flag and an IF­
THE.K-ELSE block instead. As a result of the 
modifications performed in this stage the temporal 
performance improved to -l.5.S tstep/s. 

Stage four consisted of replacing some of the 
subroutine array parameters with C0:\1:\IOI\ 
blocks. As a result of eliminating the CO:\L\10:\ 
blocks in stage two of the optimization. a signifi­
cant amount of m·erhead had heen created from 
passing a large number of array parameter:; to the 
subroutines. The original CO:\niOJ\' Ll()(·ks con­
tained both array and scalar data, CO:\L\IOI\ 
blocks that contain onh· arra,·s. and no scalar . . 
data will be properly allocated on the processor 
array. Replacing some of the subroutine array ar­
guments with CO:\niOl\" blocks reduced the over-

Benchmark 
PPrf<mnarH-e 

,'.\lllop/ ;,-IH I •it; 

Time to P<·rfonn 

Opt i 111 iza tion 
'hr, 

:2.0 
:~.0 

1."i. () 
:3.0 
:3. () 
:2.0 
1.0 

head. This stal!e further imJHO\ed the temporul 
performance to :l.:)6 tstep/s. 

In stage fi,·e. analy,;is of the code profile,., indi­
cated that some overhead was !wing incurred due 
to ruutt·r cotllllllllliL·ation. lwnube ;,OJJle of the 
subroutirw calls included arguments that \\Trt' 

parts of arrays. This situation is handled by copy­
ing into a temporary array throuf!h ust> of the 
router, which is time consuming. The code was 
modified to eliminate the router opt>rations and 
temporal performance increased to ;~.88 tstep/ s. 

Further impron"Illt'Ill wa,.; obtaiued iu ,.;tage ,;ix 
by aligning all array allocations. The current com­
piler implementation maps arrays dirt>ctly on the 
processor array based upon declaration indices. 
without any optimization attempt. Some of our ar­
rays needed to include boundary nodes. while 
some others did not. and we had declared tlwm 
with their minimal size. which caust>d unneces­
sary shifting of whole arrays to occur. which is 
costly and can be avoided by proper array decla­
ration. By changing the declaration indices we 
aligned the array allocations and impnAed the 
temporal performance to a!Jout 7 hlt'p/s. 

6 RESULTS AND DISCUSSION 

Table 1 presents a summary of the effects that 
each stage of optimization had upon the JWrfor­
mance of FCT. The benchmark performance was 
calculated as suggested by Hockney [ -t]. t The 

T llockrwy [ -t: defirw' lwrwl11nark perforrnanc•• "'the ratio 
of thP lwnchmark floatill!(-point <>fWration flop) count Fh(:\) 
and the I'XPCUtion tinw T(.'\':p) [Hh = Fh(.'\')/T(N:pf. n .. , 
lwnchmark ,,..rfonllafl('(' w·rwrally has llllits of rnillion float­
in!(-point opt·r·ation' pt'r ""·orrd :.\lflop/sl. The lwnclunark 
flop count for our code wa!"i obtained by countin~ opt·rations 

also as Sllf!f!<'>;tt'd by Hockrwy [-t: 1+. -.X= 1 flop:..;., Y = -t 
flop: t'xp. sin. co,. t>tc ... = 8 flop: if ;x .rei. Y) = 1 flop;. 
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Table 2. FCT Benchmark Performam·t> for Differt>nt Grid Sizes 

Grid Size 

1:28 X 6-f 
1:28 X 1:28 
2.')6 X 1:28 
:236 X 236 
.')!:2 X 31:2 

Sin;!le Precision 

Ru (.\lllop/s 

l-t6 
108 
1:26 
1:38 
1:'-t 

largest improvenwnt in pt>rformance was obtained 
in staiW t\n>. which rPq uired tilt' code to lw com­
pletely n~written. The other stagPs resulted in 
modest improvements. but were much les,; time 
consuminf! than ,.;taf!e two. Overall. optimization 
of FCT on the .\[asPar wa,.; In· far the mo,.;t timP­
con,.;urning ta,.,k. while the tran,;latioll proce:-i:'i 
(DPYAST stage) wa:'i relatively ;;traif!htforward. 
Table 1 effectively dt>monstrate,.; the :'iignificance 
of optimization. By modifyinf! thP "·ay in which the 
code was written we improved the performance by 
a factor of approximately 2-tO o\·er the DPYAST 
version. At this point hnwevPr. further impro,·e­
ment would require rewriting a fully two-dimen­
sional version of FCT for the .\IasPar. not using 
direction splitting. 

Table 2 shows the benckmark performance 
achieved with the optimized version of the code. 
The first row of Table 2 (128 X 6-f) corresponds to 
a problem with an array size that can be mapped 
optimally onto the proces,;or arrav. In this case 

180 

170 

160 

~ --o- Singlr Precision 
-Q-Doublr Prrcbion 

~ .. 
D. 150 
Q = ' ( 
6 140 
... .. 130 ; 
E \ 

'\\, peak 

2-f 
18 
:21 
:z:~ 

:29 

Double Preci~ion 

% peak 

90 31 
81 28 
87 30 
9:3 32 

lnsuffir·iPnt m<>mnrv 

there is a nununum in communication overhead 
because none of the array;; have to be mapped 
into multiple layers of processor mt'mory. For the 
128 X 128 case a drop of about 2.3% in single 
precision. and about 10% in doublt> precision 
performance is observed. Thi,; would be due to the 
communication overhead created bv one extra 
layer of memo1·y having to be allocated. Table 2 
also shows the percentage of the peak perfor­
mance attained by FCT. Since we have imple­
mented two-dimensional FCT computations us­
ing direction splitting. the peak performance that 
our code could attain is reduced bv at least a fac­
tor of two. This is because the rows and columns 
of the grid are dealt with separately. With a fully 
two-dimensional version of FCT this problem 
could be fixed, but would require substantial re­
writing of our original code. Taking this into con­
sideration our results are quite good. 

Figure 3 shows the dependence of benchmark 
performance on the problem size. After the initial 
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FIGURE 3 Dependence of benchmark performance on the problem size. 



200 WILLIA:\18 A:'\D BAC\"\E'iS 

drop in benchmark performance. when changing 
from an 128 X 64 to a 128 X 128 grid, the perfor­
mance increases at an approximately logarithmic 
rate as the problem size increases. This is becau;;e 
the ratio of floating-point operations to communi­
cation overhead is increasing. The incremental 
changes in benchmark performance seem to be 
much more dramatic for the single precision than 
double precision, because communication m·er­
head is independent of the precision. 

Timings and floating-point performance for 
FCT on various architectures are presented in Ta­
ble 3, which includes the current figures and data 
from Oran et a!. [ .S J. Timings are shown for two 
typical vector supercomputers, the CRA Y Y -~IP 
and the Fujitsu YPX240. The timing for the :\la;;­
Par as compared to the Cray is competitive, with 
the ~fasPar approximately 7'Yo fastPr. The Fujitsu 
is a much faster machine than either the Crav or 
the ~fasPar, with a theoretical peak performance 
of2.5 Gflop/s. The timings shown in Table 3 were 
obtained without any attempt to optimize the code 
on the Fujitsu, and should be susceptible to im­
provement relatively easily. 

Another parallel architecture was also Included 
for comparison. The Connection .\lachine C\1-2 
has a Sl~1D architecture similar to the \lasPar. 
The MasPar timing is 43% faster than the Con­
nection ~achine. FCT on the Connection \la­
chine was written in a parallel implementation of 
C called C* ( C star) by Oran et a!. [ 5 J. while the 
code was written in Fortran 90 on the .\lasPar. 
The final two platforms presented for comparison 
are both single processor RISC workstations. 

Further optimization of our code could be ob­
tained by writing a fully two-dimensional wrsion 
of LCPFCT, but this would require starting on~r 
from scratch. Due to our limited time on the \las­
Par we did not perform this step. l\ow that we 
have a fully optimized version of LCPFCT that 
uses direction splitting there are several po:-;sibili-

ties for using the code to perform real-world ,;imu­
lations. \Ve now hm·e the a),ility to perform large 
scale direct simulations of both IHHHPacting and 
reacting flows. A combu;;tion model is currently 
being addt>d to the code so that we can simulate 
detonations and reacting flows in combustors. 
Our results only consiuered rectangular domains. 
To anJid the drastic performance degradation. in­
volved with simulating flow through more complex 
domains, techniques such as domain dPcomposi­
tion, and mapping of rectangular ;;ubdomains on 
the processor array topology would be required. Jn 
any eYent. finite-difference algorithms are arf!Ua­
bly not the most suitable for complex geometries. 

7 CONCLUSIONS 

The :\lasPar· s SI\ID architecture i;-; well suited for 
explicit finite-difference Euler soh er~ because the 
problem can be optimally mapped onto the ma­
chine topology. and the algorithm require~ that 
the same operations be performed at all cells at all 
time steps. Optimization required that we rewrite 
the code to calculate the uirection-:'iplit rows or 
columns simultaneously (in parallel). which can 
be done since adjacent row~ or columns are inde­
pendent of one another during such a computa­
tion. Apart from syntax modifications. further op­
timization was carried out by modifying the 
boundary condition calculations so that they were 
aligned with the main arrays. We ha,·e improved 
performance by a factor of 2-tO through the de­
scribed optimizations. 

In general, Fortran 90 parallel code is ea~ier to 

write and work with, and shorter than the corre­
sponding scalar code. The performance of FCT 
on the ~lasPar is slightly better than on CRA Y Y­
MP (1 CPU). and is also faster than on the Con­
nection ~lachine C~l-2. The \fasPar has been rel­
atively user friendly and easy to program, and the 

Table 3. Benchmarks for the Two-Dimensional Blast Problem 
(Resolution: 128 X 128) 

Computer Type 

MasPar MP-1 (8, 192 K) 
CM-2 (8,192K) [5] 
CRAY Y-~1P (1 CPlJ) [5] 
Fujitsu VPX240 
IBM RS6000/950 
HP 90001710 

Temporal Performance 
(tstt'p/ s) 

7.14 
5.00 
6.67 
14.3 
0.96 
0 .. 55 

Benchmark Performance 
(:\!flop/ s-6-+ bit) 

81 
57 
76 

170 
11 

6.2 



profiling and optimrzmg tool,; are eff(•ctive. The 
results show that the .\lasPar is a suitable com­
puter on which to carry out multidimensional FCT 
computations. 
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