
Simulation of Compressible Flow on a
Massively Parallel Architecture

DAN WILLIAMS AND LUC BAUWENS

Department of Mechanical Engineering, The University of Calgary, 2500 University DriveN. W.,
Calgary, Alberta T2N JN4, Canada; e-mail: {dnwillia, bauwens}@acs.ucalgary.ca

ABSTRACT

This article describes the porting and optimization of an explicit, time-dependent, com­
putational fluid dynamics code on an 8, 192-node Mas Par MP-1. The Mas Par is a very
fine-grained, single instruction, multiple data parallel computer. The code uses the flux­
corrected transport algorithm. We describe the techniques used to port and optimize the
code, and the behavior of a test problem. The test problem used to benchmark the flux­
corrected transport code on the MasPar was a two-dimensional exploding shock with
periodic boundary conditions. We discuss the performance that our code achieved on
the MasPar, and compare its performance on the Mas Par with its performance on other
acchitectures. The comparisons show that the performance of the code on the Mas Par is
slightly better than on a CRAY Y -MP for a functionally equivalent, optimized two-dimen­
sional code. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

~We have ported a computational fluid dynamics
application to the :\lasPar :\IP-1. The application
uses the flux-corrected transpor1 (FCTJ algorithm
[1], and consist:-; of a set of Fortran subroutines
that are collective~\- referred to bv the name of the . .
main suLroutine. LCPFCT. In addition to the
main subroutine, several auxiliary subroutines
can be used to define the geometry. source terms,
and boundary conditions. The code solves the
coupled sets of multidimensional nonlinear con­
servation laws that describe reactive and nonreac­
tive gas dynamics.

LCPFCT itself can handle Cartesian. cylindri­
caL sphericaL or user-defined coordinate svs-

Rt>ceived :\Ia\· 1 99-t
Revised Oect:rnher 19<)-t

© 1993 by John Wiley & Son~. Inc.

Scientific Programming. \"ol. -+. pp. 19:3-201 (1'J9:))
CCC 1 038-92H/9.'i/0:3019:3-09

terns. Alternate sets of boundary conditions can
be selected by making the appropriate choice of
arguments to the subroutine calls. Besides inflow,
outflow, or reflecting wall conditions in any coor­
dinate system, LCPFCT can also handle periodic
boundary conditions. :\lultidimensional problems
are solved using the method of fractional steps
[5]. The computational grid can be nonuniform.
and can move during a time step. allowing the
user to perform Lagrangian or sliding rezone cal­
culations.

This article describes our porting and optimiza­
tion of FCT on the MasPar. First we give a general
description of the flow model and the FCT algo­
rithm. Second, we give a brief overview of the
MasPar architecture. Third, we briefly describe
the two-dimensional blastwave problem with peri­
odic or solid-wall boundan· conditions which we
use as a benchmark. Fourth, we discuss the hur­
dles involved in adapting the basic LCPFCT com­
pressible fluid dynamics module, to a form com­
patible with and efficient on the MasPar. Finally,
we summarize the performance of our code on the

194 WILLIAMS A:\D BAL\\:E\S

MasPar. We compare the results of running our
two-dimensional code on the .MasPar to equiva­
lent benchmarks on other architectures including
the CRA Y Y-MP and the Connection Machine
CM-2.

2 THE FLOW MODEL AND ALGORITHM

Our flow model is based on the inviscid, time­
dependent, multidimensional Euler equations of
gas dynamics. This includes three con;:;ervation
laws, for mass, momentum, and energy. In the
inviscid model, shocks appear as mathematical
discontinuities. The ;:;olution that we seek is the
weak solution to the differential equation that sat­
isfies the integral form of the equations. From a
physical standpoint, in the presence of ,.;hocb, the
integral form is the proper form of the consen·a­
tion statement, The FCT algorithm is used to solve
each of the coupled conservation equations defin­
ing the gas dynamic system.

FCT is an explicit, nonlinear, monotone
method designed to enforce positivity and causal­
ity on the numerically computed solution. These
constraints ensure that the numerical solution ap­
proximates the solution of the consen·ation laws
in integral form. Positivity and causality would Le
lost in the numerical approximation if one did not
ensure that the finite-difference scheme is con­
servative. FCT satisfies the monotonicity require­
ment: it implements profile-dependent nonlinear
corrections to the truncation-error terms. which
ensures that no new numerically produced max­
ima or minima occur near shocks or contact dis­
continuities. The FCT algorithm ensures fourth­
order phase accuracy in smooth regions of the
flow and guarantees conservation, monotonicity.
and positivity in regions with steep gradients. An
extensive discussion and anaksis of FCT has
been published by Boris and Book [1 J.

FCT is second order accurate in space. Second
order accuracy in time is achieved Ly splitting the
time step. First a half time step computation is
executed and then the intermediate, time-cen­
tered values of the physical variables are u,.;eJ to
evaluate the source terms for the full time step. To
ensure second order accuracy, the time step must
be small enough so that the cell a\·eraged values of
the physical variables do not change appreciably
during the time step. Direction splitting [6] allows
for multidimensional FCT calculations. In a two­
dimensional problem this is accomplished by sep­
arating each gas dynamic equation into its respec-

tive x andy part,.;. First each y-direction column in
the grid is integrated, and then the x-dirt>ction
rows are integrated. Direction splitting creates a
bias that will eventuallv break the snnmt>tn· of a . . .
solution, depending on which direction is inte­
grated first. This can be eliminated by performing
two calculations, x-y then y-x, and an·raging the
results.

FCT is a "uniform"' algorithm in which. at each
time step every cell undergoes the ,.;ame numerical
operations regardless of the values of the physical
variables in that cell. It is therefore ideallv suited
for massively parallel processing on a single in­
struction, multiple data ISI\ID) architt>cture ,uch
as the \lasPar.

FCT is abo well suited for ,.;imulating high­
speed compressible flow. "'e are intere:'itt>d in JWr­
forming simulation~ that include combustion.
Other numerical scht>mes ~uch as PP:\1 piecewise
parabolic method (PP\1) [2] or monotonic up­
stream-centered scheme for cunsen·ation laws
(\ICSCL) [11] would be appropriate for combus­
tion simulations. but we have choben FCT be­
cause of its simplicity and its good track rt>cord in
combustion. It has been used succe,.,,..fulh· for
combustion simulation bY other researchers such
as Oran et al. [6. 7. 8]. Thibault et al. [10~. and
Zhang et al. [13 J .

3 THE MASPAR

The \'lasPar ~vstem architecture indudt>s a pro­
cessor ele1nent arraY. an array control unit. and a . .
Cl\lX workstation as a front end. The front end
manages program execution and user interface.
"'hen there is a nt>ed for paralld ext>cution. the
front end sends the program for execution to tht>
processor array. The 8,192 processors are orga­
nized in a two-dimensional array topnlof.'Y (128 X

64), in a SI\ID architect urt>. In a SI\ID arc hi tec­
tu~e, all the processors simultaneously perform
the same operation on differt>nt data as one ;;inglt>
stream of instructions is broadcast to all proct>s­
sors by the array control uuit. The \lasPar \IP-1· s
theoretical peak performance i;, 650 \1/lop/ s ;,in­
gle precision and 290 \Iflop/ s double preci,;iun.

There are three types of communication on the
\1asPar. First., there are communications from the
array control unit to the pnwt>ssor array wlwre the
array control unit broadcasts data or instructions
to all processors in the array simultaneously. St>c­
ond, nearest neighbor data communications are
carried out by the X-net. The X-net is an eight-

way, two-dimensional toroidal mesh that allows a
processor to communicate with its nearest neigh­
bors. Finally, communication between arbitrary
processors i,; carried out by a hierarchical cross­
bar called the global router.

Interprocessor communication i,; required
when a processor requires data that are not resi­
dent in its local memory. X-net communication
will be used if the data reside on a neighboring
processor. In this case. the performance penalty is
low because X-net communication is fast. If the
data do not reside on a neighboring processor.
global router communication will be used. While
router communication i,; efficient. it is much
slower than X-net communication-the X-net has
approximately 16 times the bandwidth of the
router.

Another more costly type of communication is
array sloshing between the front end and the pro­
cessor array. Array sloshing has a profound effect
on performance and occurs in several circum­
stances. First, if an array that has been allocated
on the processor array is accessed in a serial (For­
tran 77) manner. it will be sloshed to the front
end. To avoid this situation. serial acces,; on the
processor array should be avoided. Likewise.
when an arrav has been allocated on the front
end. and a subroutine is called that use,; this arrav
in a parallel context, the array will be sloshed from
the front end to the proces,-or array and back
again when the routine exits. To avoid this, com­
piler directives can be used to force allocation on
the processor array at declaration time. Even
more costlv than the latter two cases is the slosh­
ing of a CO.\I.\101\" block of arrays. This can be
avoided in the same manner a,.; for indi\·idual ar­
rays.

4 TWO-DIMENSIONAL BLASTWAVE
COMPUTATION

The problem used to benchmark F< :T on the
.\IasPar is a two-dimensional blastwave computa­
tion with periodic boundary conditions. This com­
putation involves both supersonic and subsonic
flows with interacting shocks and a high degree of
symmetry. The blastwave problem may not be a
significant real-world problem. but it is a good
benchmark for computational fluid dynamic
(CFD) codes. It is a good benchmark hecaww the
solution is very symmetric, it maintain,; this sym­
metry for a long time. and a good CFD code

Sl~ll"LA TIO~ OF CO.\IPRESSIBLE FLOW 195

should resolve the shockwaves within a few cells
while maintaining the symmetry of the solution.
Also, this problem was previously used by Oran et
a!. [5], and using the same problem allowed us to
compare our results.

The computation is initialized with a high-den­
sity, high-pressure square of fluid that is 32 cells
on each side. The square is situated in a doubly
periodic mesh 128 cells on each side. The square
region in the center of the domain begins with a
density 15 times the background density and a
pressure 30 times the background pressure. The
contact surface that defines the interface between
the initial high pressure material and the low pres­
sure material is tracked by using an additional
species variable in the computations. This com­
putation is a good benchmark for a CFD model
because it should retain its symmetry for a long
time, and because periodic or solid wall boundary
conditions should give the same solution as long
as the symmetry is maintained.

Figures 1 and 2 show contours of pressure and
location of the contact surface for several time
steps during the simulation. During the simula­
tion, the up-down symmetry is eventually broken
by round-off error arising from the limited preci­
sion of the floating-point calculations. Symmetry
across the 45° degree diagonals is eventually bro­
ken by the truncation errors in the time step split­
ting. 1hese errors appear to be larger than the
round-off errors.

~~hen the unconfined high-pressure gas is re­
leased. a shock forms that races out from the
edges of the initial square. The contact surface
closely follows behind the shock. Figure 1 shows
the development of the pressure contours for six
time step~. By step 500 the initially square shock
has progressed through a circular phase and con­
tinues to change shape. By step 1..500 the shock
has reflected from the ends of the computational
domain and has begun to recompress the material
inside the contact surface. As time proceeds to
step 10,000 the shocks become progressively
weaker, and become oriented parallel with the
sides of the domain .

~chereas the shock patterns become simpler as
time progresses, the vorticity caused by the shock
interactions with the contact surface warps the in­
terface into increasingly complex patterns. The
vorticity is generated by the baroclinic source term
in the vorticity equation. This term is nonzero
when the gradients of density and pressure are not
aligned. The misalignment is created by the shock
reflecting from the corners of the domain, which

196 WILLIAMS A;\"D BAL\VE~S

D
T1mesttpO

Tuncstcr 5fXXl T1m~tcp 8000 T1mcstcp 10001

FIGURE 1 Pressure contours at six time step;; for the square],]astwmc problem.

weakens the shock. The shocks reflect back
through the interface creating more vorticity.

5 PORTING AND OPTIMIZING FCT

The MasPar can be programmed in either :\1PL.. a
parallel extension to C, or .\IPF. an implementa­
tion of a subset of Fortran 90. \\'e used version
3.012 of MasPar's high-performance Fortran
compiler "mpfortran" or .\IPF. In .\1PF, parallel
operations are expressed with the Fortran 90 ar­
ray extensions. Arrays are treated as unitary ob­
jects rather than requiring them to be iterated
through one element at a time, as in standard For­
tran 77. MPF generates code for both the front
end and the processor array, effecti,·ely making
the details of the architecture transparent to the
programmer. However. programming style will di­
rectly affect performance.

Optimization of FCT on the :\fasPar required
two main issues to be addressed: making effective

use of the processor array and nununization of
communication cost. In SI.\ID architectures. oper­
ations performed on a subset of the processor ar­
ray, such as single lines or columns. or boundary
nodes. cost as much in cycles as operations on the
whole array. Thus. constructs detaling. for in­
stance .. with the boundaries separately from the
main arrays can eaf'ily double the computation
time, and they are advantageously concatenated
with the main operations. In addition, unwanted
interprocessor con1munication can occur if arrays
are not correctly allocated on the processor array.
It was critical to ensure that all arrays were prop­
erly aligned on the processor array in order to
minimize communication overhead.

Porting the code involved getting the code to
run on the processor array, and optimizing the
code on the processor array. Fir;;t, since the sub­
routines were originally written in F011ran 77. they
were converted to Fortran 90 using the .\lasPar
version of Pacific-Sierra's YAST-2.-t.OlL
(DPVAST) translator. The rran,.;lator searches the

Sl\ll L\TIO:\" OF CO\IPRESSIBLE FLO \X. 197

D
T1mestcpO T1mestrp 500

FIGURE 2 Contact surface locations at six time steps for thf' square blastwave problem.

Fortran 77 code for scalar "do'' loops and con­
verts them to the Fortran 90 arrav notation, which
is understood by the processor array. The code as
translated by DPYAST ran very poorly-the tem­
poral performance was much less than one time
step per second.* Optimization of the code was
carried out in several stages de&eribed below, and
the results of optimization are summarized in Ta­
ble 1.

Stage one dealt with CO:\L\IOl\" block alloca­
tion. The original blocks contained both scalar
and array data, and as a result. the compiler allo­
cated them on the front end. Since the arrays in

*Hackney [of: defines temporal performance as the inverse
of the execution time [RT = T- 1(N;pJ:, wh~n·l\ is the problem
size and pis the number of processors. Temporal performance
is measured in solutions per second (sol/s) or time steps per
second (tstep/ s). It i;; a good metric for comparing different
algorithms when solving a certain benchmark problem because
it tells you which algorithm solves the problem the fastest.

the blocks were used in Fortran 90 array con­
structs, the whole block had to be sloshed to the
processor array. By removing all CO:\I:\10!\"
blocks, and passing the block elements a,.; param­
eters to the subroutines, we improved the tempo­
ral performance by a factor of 2. This was still
unsatisfactorv.

Stage two consisted of altering the implementa­
tion of direction splitting. The original LCPFCT
subroutines were one dimensional. Two-dimen­
sional problems were handled by calling the one­
dimensional subroutines row bv row, and
then column bv column. This minimizes scratch
memory-a desirable feature on a vector ma­
chine, but leads to poor performance on a SI:\ID
architecture. For example, for a 128 X 128 grid, a
row or column array will contain only 128 ele­
ments. \Vhen the one-dimensional subroutines
are called with a 128-element array only 128 pro­
cessors will be used at a time, resulting in a perfor­
mance that is less than 1.0% of the peak perfor-

198 \X"ILLI:\:\IS :\."D B:\U\E:\S

Table 1. Effect of the Optimization (Hesolution: 128 X 128)

Stage

DP\-:\ST
1
2
:3
4
.)

6

Tempoml
Perfonnann~

ltstqllsJ

().();3

0.06
:3.0:3
-t.SS
S.:J6
S.H8
7.14

mance of the machine. The code was rewrittt·n
such that all the rows were dealt "-ith in a ;-;inf!le
operation and then all the cohunn,.;. Thi,.; can be
done because adjacent rows or columns are inde­
pewlent uf uue another during thi, computation.
This stage improved the temporal performaJH'e to
approximately :3 tstPp/s.

The profiler was used in ,;taf!e three to find
out which parts of the code used the most CPC
time. The profiles showed that approximately
70% of the time wa:; spent in the LCPFCT sub­
routine. and a large pPrcentage of the -time wa,;
spent in calculating the boundary conditions. The
DP\'AST version of the code u,;pd two one-dimen­
sional arravs to store the results of the boundarY . .
calculations. These arrays could not be properly
aligned with the main two-dimensional arrays. To
eliminate the communication penalty that rPsult,;
from this situation. the code that dt>alt with the
Loundan· calculations was rewritten. and tlw
results of the boundan· calculations were stored in
the main two-dimensional arravs. In addition. in
the original implementation. periodic boundary
conditions were controlled by setting the ntlue of a
double precision flag to either zpro or one. The
code was modified to use a logical flag and an IF­
THE.K-ELSE block instead. As a result of the
modifications performed in this stage the temporal
performance improved to -l.5.S tstep/s.

Stage four consisted of replacing some of the
subroutine array parameters with C0:\1:\IOI\
blocks. As a result of eliminating the CO:\L\10:\
blocks in stage two of the optimization. a signifi­
cant amount of m·erhead had heen created from
passing a large number of array parameter:; to the
subroutines. The original CO:\niOJ\' Ll()(·ks con­
tained both array and scalar data, CO:\L\IOI\
blocks that contain onh· arra,·s. and no scalar . .
data will be properly allocated on the processor
array. Replacing some of the subroutine array ar­
guments with CO:\niOl\" blocks reduced the over-

Benchmark
PPrf<mnarH-e

,'.\lllop/ ;,-IH I •it;

Time to P<·rfonn

Opt i 111 iza tion
'hr,

:2.0
:~.0

1."i. ()
:3.0
:3. ()
:2.0
1.0

head. This stal!e further imJHO\ed the temporul
performance to :l.:)6 tstep/s.

In stage fi,·e. analy,;is of the code profile,., indi­
cated that some overhead was !wing incurred due
to ruutt·r cotllllllllliL·ation. lwnube ;,OJJle of the
subroutirw calls included arguments that \\Trt'

parts of arrays. This situation is handled by copy­
ing into a temporary array throuf!h ust> of the
router, which is time consuming. The code was
modified to eliminate the router opt>rations and
temporal performance increased to ;~.88 tstep/ s.

Further impron"Illt'Ill wa,.; obtaiued iu ,.;tage ,;ix
by aligning all array allocations. The current com­
piler implementation maps arrays dirt>ctly on the
processor array based upon declaration indices.
without any optimization attempt. Some of our ar­
rays needed to include boundary nodes. while
some others did not. and we had declared tlwm
with their minimal size. which caust>d unneces­
sary shifting of whole arrays to occur. which is
costly and can be avoided by proper array decla­
ration. By changing the declaration indices we
aligned the array allocations and impnAed the
temporal performance to a!Jout 7 hlt'p/s.

6 RESULTS AND DISCUSSION

Table 1 presents a summary of the effects that
each stage of optimization had upon the JWrfor­
mance of FCT. The benchmark performance was
calculated as suggested by Hockney [-t]. t The

T llockrwy [-t: defirw' lwrwl11nark perforrnanc•• "'the ratio
of thP lwnchmark floatill!(-point <>fWration flop) count Fh(:\)
and the I'XPCUtion tinw T(.'\':p) [Hh = Fh(.'\')/T(N:pf. n .. ,
lwnchmark ,,..rfonllafl('(' w·rwrally has llllits of rnillion float­
in!(-point opt·r·ation' pt'r ""·orrd :.\lflop/sl. The lwnclunark
flop count for our code wa!"i obtained by countin~ opt·rations

also as Sllf!f!<'>;tt'd by Hockrwy [-t: 1+. -.X= 1 flop:..;., Y = -t
flop: t'xp. sin. co,. t>tc ... = 8 flop: if ;x .rei. Y) = 1 flop;.

SL\Il.L\TlO:\ OF CO\IPRESSIBLE FLO\,. 199

Table 2. FCT Benchmark Performam·t> for Differt>nt Grid Sizes

Grid Size

1:28 X 6-f
1:28 X 1:28
2.')6 X 1:28
:236 X 236
.')!:2 X 31:2

Sin;!le Precision

Ru (.\lllop/s

l-t6
108
1:26
1:38
1:'-t

largest improvenwnt in pt>rformance was obtained
in staiW t\n>. which rPq uired tilt' code to lw com­
pletely n~written. The other stagPs resulted in
modest improvements. but were much les,; time
consuminf! than ,.;taf!e two. Overall. optimization
of FCT on the .\[asPar wa,.; In· far the mo,.;t timP­
con,.;urning ta,.,k. while the tran,;latioll proce:-i:'i
(DPYAST stage) wa:'i relatively ;;traif!htforward.
Table 1 effectively dt>monstrate,.; the :'iignificance
of optimization. By modifyinf! thP "·ay in which the
code was written we improved the performance by
a factor of approximately 2-tO o\·er the DPYAST
version. At this point hnwevPr. further impro,·e­
ment would require rewriting a fully two-dimen­
sional version of FCT for the .\IasPar. not using
direction splitting.

Table 2 shows the benckmark performance
achieved with the optimized version of the code.
The first row of Table 2 (128 X 6-f) corresponds to
a problem with an array size that can be mapped
optimally onto the proces,;or arrav. In this case

180

170

160

~ --o- Singlr Precision
-Q-Doublr Prrcbion

~ ..
D. 150
Q = ' (
6 140
... .. 130 ;
E \

'\\, peak

2-f
18
:21
:z:~

:29

Double Preci~ion

% peak

90 31
81 28
87 30
9:3 32

lnsuffir·iPnt m<>mnrv

there is a nununum in communication overhead
because none of the array;; have to be mapped
into multiple layers of processor mt'mory. For the
128 X 128 case a drop of about 2.3% in single
precision. and about 10% in doublt> precision
performance is observed. Thi,; would be due to the
communication overhead created bv one extra
layer of memo1·y having to be allocated. Table 2
also shows the percentage of the peak perfor­
mance attained by FCT. Since we have imple­
mented two-dimensional FCT computations us­
ing direction splitting. the peak performance that
our code could attain is reduced bv at least a fac­
tor of two. This is because the rows and columns
of the grid are dealt with separately. With a fully
two-dimensional version of FCT this problem
could be fixed, but would require substantial re­
writing of our original code. Taking this into con­
sideration our results are quite good.

Figure 3 shows the dependence of benchmark
performance on the problem size. After the initial

j)

/
I v

/,
~r:f

120
~ .. \ v

110 =-
~ 100 ..
j

90 ..
1:

~ 80

70

u

....
r ~,.. p-

I
1000 10000 100000 1000000

NumberorMrsh Points

FIGURE 3 Dependence of benchmark performance on the problem size.

200 WILLIA:\18 A:'\D BAC\"\E'iS

drop in benchmark performance. when changing
from an 128 X 64 to a 128 X 128 grid, the perfor­
mance increases at an approximately logarithmic
rate as the problem size increases. This is becau;;e
the ratio of floating-point operations to communi­
cation overhead is increasing. The incremental
changes in benchmark performance seem to be
much more dramatic for the single precision than
double precision, because communication m·er­
head is independent of the precision.

Timings and floating-point performance for
FCT on various architectures are presented in Ta­
ble 3, which includes the current figures and data
from Oran et a!. [.S J. Timings are shown for two
typical vector supercomputers, the CRA Y Y -~IP
and the Fujitsu YPX240. The timing for the :\la;;­
Par as compared to the Cray is competitive, with
the ~fasPar approximately 7'Yo fastPr. The Fujitsu
is a much faster machine than either the Crav or
the ~fasPar, with a theoretical peak performance
of2.5 Gflop/s. The timings shown in Table 3 were
obtained without any attempt to optimize the code
on the Fujitsu, and should be susceptible to im­
provement relatively easily.

Another parallel architecture was also Included
for comparison. The Connection .\lachine C\1-2
has a Sl~1D architecture similar to the \lasPar.
The MasPar timing is 43% faster than the Con­
nection ~achine. FCT on the Connection \la­
chine was written in a parallel implementation of
C called C* (C star) by Oran et a!. [5 J. while the
code was written in Fortran 90 on the .\lasPar.
The final two platforms presented for comparison
are both single processor RISC workstations.

Further optimization of our code could be ob­
tained by writing a fully two-dimensional wrsion
of LCPFCT, but this would require starting on~r
from scratch. Due to our limited time on the \las­
Par we did not perform this step. l\ow that we
have a fully optimized version of LCPFCT that
uses direction splitting there are several po:-;sibili-

ties for using the code to perform real-world ,;imu­
lations. \Ve now hm·e the a),ility to perform large
scale direct simulations of both IHHHPacting and
reacting flows. A combu;;tion model is currently
being addt>d to the code so that we can simulate
detonations and reacting flows in combustors.
Our results only consiuered rectangular domains.
To anJid the drastic performance degradation. in­
volved with simulating flow through more complex
domains, techniques such as domain dPcomposi­
tion, and mapping of rectangular ;;ubdomains on
the processor array topology would be required. Jn
any eYent. finite-difference algorithms are arf!Ua­
bly not the most suitable for complex geometries.

7 CONCLUSIONS

The :\lasPar· s SI\ID architecture i;-; well suited for
explicit finite-difference Euler soh er~ because the
problem can be optimally mapped onto the ma­
chine topology. and the algorithm require~ that
the same operations be performed at all cells at all
time steps. Optimization required that we rewrite
the code to calculate the uirection-:'iplit rows or
columns simultaneously (in parallel). which can
be done since adjacent row~ or columns are inde­
pendent of one another during such a computa­
tion. Apart from syntax modifications. further op­
timization was carried out by modifying the
boundary condition calculations so that they were
aligned with the main arrays. We ha,·e improved
performance by a factor of 2-tO through the de­
scribed optimizations.

In general, Fortran 90 parallel code is ea~ier to

write and work with, and shorter than the corre­
sponding scalar code. The performance of FCT
on the ~lasPar is slightly better than on CRA Y Y­
MP (1 CPU). and is also faster than on the Con­
nection ~lachine C~l-2. The \fasPar has been rel­
atively user friendly and easy to program, and the

Table 3. Benchmarks for the Two-Dimensional Blast Problem
(Resolution: 128 X 128)

Computer Type

MasPar MP-1 (8, 192 K)
CM-2 (8,192K) [5]
CRAY Y-~1P (1 CPlJ) [5]
Fujitsu VPX240
IBM RS6000/950
HP 90001710

Temporal Performance
(tstt'p/ s)

7.14
5.00
6.67
14.3
0.96
0 .. 55

Benchmark Performance
(:\!flop/ s-6-+ bit)

81
57
76

170
11

6.2

profiling and optimrzmg tool,; are eff(•ctive. The
results show that the .\lasPar is a suitable com­
puter on which to carry out multidimensional FCT
computations.

REFERENCES

[1 J .1. 1'. Bori~ and D. L. Book. ··Solution of the conti­
nuity eqtwtion hy tlw HWtlwd of flux-rorrerted
tran,;port.·· .lletluuls Comput. P/n·s. 1nl. 16. pp.
85-129. Jl)-:'tJ.

[2' P. CoiiPia and P. H. \X.oodwanl. ···nw pit>cewi~•·
parabolic nwthod ii'P.\1 for ;ra~-dynamit·al ,;imu­
lations ... J. Cmnput. l'h.1·s., Yol. :>-t. pp. 1-:'-t-
201. 198-t.

[6]

[-:''

Di:-.oital [, Jlli pnwn t Corporation. lJLCmpfl l'arul­
le/ Fortrun H1:{en•nn• .llruwul . .\lanwnl. .\lA:
Di;rital E<ruipm<'nt <:nrporation. 1 ()<12.
H. \\ . llorkrwY. ··_-\ franwwork for lwnrhmark
rwrfonnan<'f' anak~i~... COIIIfJitf. /Jenrhmurks.
pp. 6.)--:'b. 199:3.
E. S. (han. J. 1'. Bori~. and H. 0. \\'haley. "Ex­
plorin;r fluid dynami•·s on a conm·rtion rna-

chine ... SupercomfHtl. Her .. 1990.
E. S. Oran and .1. P. Boris . . Yumeri('(t! Simulrttion
of Rear/ire Flute. ~ew York: Ebe1·ier. 198'.
E. S. Oran. 1. P. Bori~. T. R. Yntm;r. and .1. .\1.
Pirone. "~urnerical Simulation of Detonations in
llydro;ren-:\ir and .\lt•thane-:\ir .\lixtuw~ ... Pro­
ceedinf!S u.f the I ~th Symposium ,Jnternatiorwl)

SI.\ICL\ TIO~ OF CO.\IPRESSIBLE FLO\\. 201

on Combustion. Pittsburgh: The Combustion In­
stitute, 1981. pp. 1641-16-+9.

[8] E. S. Oran, T. R. Young. and J.P. Boris, "Appli­
cation of Time-Dependent :\'umerical.\lethods to
the Description of ReactiYe Shocks,'' Proceedings
of the 17th Symposium (International) on Com­
bustion. Pittsburgh: The Combustion Institute,
19?9, pp. 4.3-54.

[9] D. F. Snelling. "A philosophical perspective on
perfonnance measurement.... Compul. Bench­
marks. pp. 9?-10:3. 199:3.

[10] P. A. Thibaulc F. Zhang, J. Penrose. and A. Sul­
mistras, "~umerieal .\lodeling of Detonation
Driven Hollow Projectiles.,. Proceedings of the
Second Annuol Conferenre of the CFD Society of
Canoda. Toronto: l'nivcrsity of Toronto Press.
199-t. pp. 39.5--+02.

[11J B. van LeN. "Towards the ultimate conserYative
difference scheme. \·. A second-order sequel to
Godwwv·s method ... J. Compul. Phys .. vol. .32.
pp. 101-1:36. 19-:'9.

[12] D. \Yilliarns. K. Grewal. C. Schuh. and L.
Bauwen~. ·'A Finite Difference CFD Code on a
SI.\ID Architecture ... Proceedings 55'93 1/igh
Performance Computing: .Yew 1/orizons, 1 99.3.
pp .. 331-.3:36.

[13] F. Zhang. D. Tran. 1. Penrose. C. Yee. and P. A.
Thibault. '·~umerical Studies of Detonation
Propagation in .\fixtures of Combustible Gases
and Inert Dust.,. Proceedings of the Second An­
nual Conference of the CFD Society of Canada.
Toronto: Cnh•ersit,1· of Toronto Press. 199-1. pp.
261-268.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

