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ABSTRACT 

On most massively parallel architectures, the actual communication performance re­
mains much less than the hardware capabilities. The main reason for this difference lies 
in the dynamic routing, because the software mechanisms for managing the routing 
represent a large overhead. This article presents experimental studies on benchmark 
programs concerning scientific computing; the results show that most communication 
patterns in application programs are predictable at compile-time. An execution model 
is proposed that utilizes this knowledge such that predictable communications are di­
rectly compiled and dynamic communications are emulated by scheduling an appropri­
ate set of compiled communications. The performance of the model is evaluated, show­
ing that performance is better in static cases and gracefully degrades with the growing 
complexity and dynamic aspect of the communication patterns. © 1995 by John Wiley & 

Sons, Inc. 

1 INTRODUCTION 

Parallel architectures suffer from a recurrent 
problem. which is the large gap between peak and 
actual performance. Despite the progress in hard­
ware and software, most recent experimental 
studies [ 1. 6, 241 show that the actual perfor­
mance usually remains below the peak. One major 
cause of this sobering fact is the data transfer and 
especially the interconnection network. For in­
stance, recent studies [ 6, 11] show that the best 
performance figures are achieved by programs 
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that have the lowest remote data access to float­
ing-point operations ratio. 

Although communication seems to be the bot­
tleneck for parallel architectures. not much is 
known about the characteristics of the communi­
cations used by parallel programs. The first objec­
tive of this article is to give some experimental 
results about the statistical distribution of the 
communication patterns. The communications 
that are known at compile-time will be called 
static and those that can only be determined at 
run-time will be called dynamic. To obtain satis­
factory statistics, a significant benchmark set has 
been studied: this set amounts to around 25.000 
lines of code written in various dialects of parallel 
Fortran. The set is composed of two parts: The 
first is a set of scientific parallel codes, partially 
handwritten and partially generated by automatic 
parallelization; the second is a subset of library 
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routines from LAPACK. The dynamic (run-time) 
occurrences of both static and dynamic communi­
cation schemes have been gathered. The main 
result is that static communications are nearly ex­
clusive in parallelized code,; and dominant in uo;er 
programs, whereas the situation is much more 
complex in library routines. 

\Ve are interested in this taxonomy (static/ dy­
namic) not for classification purposes but because 
a considerable speedup in parallel computations 
can be achieved by a careful exploitation of the 
compile-time information about static communi­
cations. In fact.. a parallel execution model where 
the communications are computed at compile­
time can achieve the hardware's raw performance 
for the moo;t frequently used static communication 
schemes. This contrasts with the actual communi­
cation perforn1ance of most parallel architecture,;. 
which is dominated by the communication proto­
col overhead. However. the m·erall speedup must 
take into account the contribution,.; of all com­
munication types .. both static and dynamic (Am­
dahl's law). The task is then to assess the penalty 
of compiling the dynamic communications. This 
is verT difficult. hecausP manv factor,; arP in-. . 
volved .. and it is almost impossible to quantify 
thPir respective impact,; and interactions. ]\ever­
theless. meaningful results can be derived by eval­
uating. for broad classPs of communication 
scheme,;. the speedup achievPd on each elm;,.; by 
the static execution model. As a testbed. WP com­
part' the C~l-:J communication figures with tlw 
expected performance of the static model. Th(• 
speedup is significant. even in the dynamic ca,.;e. 

The rest of this article i,c.; organizPd as follows. 
The first ,c.;ection discu>i>it'S dynamic routing. the 
basic conununication nwchanisn1 of almost all 
parallel architectures. and the background of 
compiled communications. The second section 
presents a classification of cornrnunication 
schemes. The third section is devoted to the ex­
periments. methodolo~;y .. and results. Finally. we 
assess the cost of emulating dynamic communica­
tions in the static model and present the expected 
perforn1ance. 

2 BACKGROUND 

2.1 Dynamic Routing 

Almost all massively parallel architectures use 
asynchronous dynamic routing, which mean,; that 
the routing circuits in each network node deter­
mine the path of each message at run-time. This 
requires extra hardware (the routing circuits) and 

network bandwidth (the address header carried bv 
each message). The routing is asynchronous in the 
sense that the latency of the messages depends on 
the network load, thus is unknown: a processor/ 
network interface is necessary to synchronize the 
message and the computing threads. The over­
head of this interface is large: For instance .. it costs 
more than 90% of the latency of the Paragon ma­
chine [13], and it is from 3 to 90 J..tS for the CYI-5 
[20, 23]. 

One could expect that, for large data transfers. 
this overhead would ultimately vanish. In fact. a 
significant part of the effort in practical parallel 
programming is careful data organization in order 
to pack the data such that the transfers are of the 
appropriate size; a lot of research is devoted to 
sophisticated compilation techniques. such as 
message vectorization. with the same goal [28]. 
However.. the startup penalty is so high that Pffec­
tive use of the network is extremelY difficult. For 
instance .. to use half of the peak bandwidth of the 
network. the message size mu,;t be more than 1 
kilobvte for thP G\f -5: to reach full usc of the 
bandwidth. the messagp size must be more than 8 
kilobyte [ 61. 

Yloreover. parallel sciPntific program,.; arP 
highly synchronous. becau:oe communications 
come from parallel array statPments: in general. 
consecutive cornmunications must proceed only 
in lockstep fashion. Thus, the major opportunity 
to enlarge the message size comes from virlualiza­
tion. ln a data-parallellanguage. the parallelism is 
not limited: For instance. the FORALL instruc­
tion has the semantics of evaluating first the 
righthand side of an assignment. then performing 
the assignment. However. the available parallel­
ism on a particular computer is clearly limited by 
the number of proceo;sors. To take into account 
the limitation of the actual parallel computer.. the 
unlimited parallelism of the source code is folded 
on the limited parallel computer by automa­
tic or user-defined distributions such as cvclic. 
block, or block-cyclic. This is virtualization. 
For instance, consider the parallel assignment 
Forall (i = 0: 14) a(i) = b(i + 1) on a four-proces­
sor machine. Each processor has to iterate se­
quentially over its own piece of arrays a and b to 
exchange data and compute. In particular.. each 
processor sends to another one from three to four 
array elements; sending one piece of data by mes­
sage is highly inefficient: aggregating data to be 
sent to one processor in one message is known as 
message vectorization [ 16]. However. message 
vectorization is limited by the virtualization ratio 
(roughly speaking, the ratio between the size of a 



FORALL index set and the machine size). A high 
startup penalty limits the efficiency of massively 
parallel architecturt>s on huge problt>ms. This 
overhead can be greatly reduced if analyzing the 
communications at compile-time provides some 
knowledge of the communication behavior at run­
time. The hardware design and software tools that 
provide efficient means to use this knowledge have 
been developed in the PT AH project. They are 
beyond the scope of this article: the architecture is 
described in [ 4] and the principles of the compiler 
in [10]. 

The results presented in this article indicate 
that. at least in scientific programs. a large part of 
the communications can be determined from 
analvsis of source code. :VIoreoyer. almost all other 
programs proyide information that can be used to 
limit the communications overhead. ln fact. the 
idea that a lot of communication patterns in scien­
tific programs can be determined at compile-time 
is the cornerstone of vectorizers and automatic 
parallelizers. In the following sections .. we con­
sider a number of parallel programs, and quantify 
this idea. 

2.2 Compiled Communications 

In the static execution modeL all the parameters 
of the communications are computed at compile­
time. This model has been exemplified in the IB:VI 
GF11 [171. in the iWarp ConSet [2.5 ]. and by the 
Communication Compiler of TMC CM-2 [7]. The 
model assumes an off-line routed network. Off­
line means that the message paths are computed 
in the back-end compiler, by a "communication 
generator" that is an equivalent for communica­
tion of the code generator for computation. All the 
physical parameters of a communication are then 
computed at compile-time. At run-time. the 
switch settings are simply scheduled under pro­
gram control. This is opposite to the on-line rout­
ing model, where the message paths are deter­
mined at run-time, the network routing circuits 
acting on the addresses as an interpreter. The 
compilation problem is to embed the communica­
tion graph into the physical network. 

Off-line routing improves the network through­
put, by removing the overhead of address headers 
encapsulated within each message. As no more 
routing decisions have to be made, the latency can 
ultimately be reduced to the hardware propaga­
tion delay. Finally, shifting the routing task from 
run-time to compile-time allows more complex 
routing algorithms, resulting in better resource 
(links and buffers) utilization. Theoretical studies 
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[15 .. 21.. 22] show that. for somP interconnection 
networks. off-line routing is feasible in the sen,.;e 
that the off-line routing algorithm has acceptable 
complexity. and may be asymptotically optimal 
[19]. The practical experiment,.; on the C\I-2 [7! 
show that a one order of magnitude ;-;peedup can 
be achieved by off-line routing on the hypercube. 
without anv additional hardware: the simulated 
annealing algorithm provides global optimization 
of the link allocation. 

Off-line routing suppo,.;es that the communica­
tion generator may be fed with the communication 
graph. which has been constructed by the com­
piler. This issue is beyond the scope of thi:-; article: 
however. recent research in the message-passing 
framework [14, 28], and in the static framework 
[101 provides techniques to tackle this issue. 
:Moreover, these techniques remove the potential 
drawback of the first experiments on the C\1-2. 
which was the long compilation time: As a formal 
description of the graph can he exhibited, the 
complexity of the off-line routing process can be 
simplified in many cases. 

3 COMMUNICATION PATTERNS 

As our benchmarks are written in data parallel 
Fortran (C:Vl Fortran, Fortran 90. high-rwrfor­
mance Fortran [HPFJ), the following discussion 
uses an HPF syntax. However.. this only exempli­
fies the main data-parallel communication fea­
ture: The communications are implicit. derived 
from operations on parallel data structures (arrays 
in Fortran). ln HPF, parallel data operations 
come from, either FORALL loops or array nota­
tions, or Intrinsics that summarize multiple paral­
lel data operations. As each of these structures 
involves parallel array references. our taxonomy 
begins with a classification of parallel references. 

3.1 Parallel References 

A typical parallel construct is a nest of FORALL 
loops as illustrated next: 

Forall (i 1 = a1 b1 

For all ( iz a2 

Forall Un an bn Cn) 

A(e1 , e 2 , ... , en] = F(B[f1, f2, 
.. · , fnJ, · · ·) 

endforall 
endforall 

endforall 
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where ak and bk may depend on it for l < k. For 
shorL it can be summarized in the following 
pseudosyntax: 

Forall I in :5' 
A[f(I)] = F(B[g(I)], ... ) 

endforall 

where I is the vector of parallel indices (i1 , 

i2, .... in)· :5' is the convex polyhedron (see ex­
ample below) defining the loop bounds, A and B 
are two arrays, and finally. A l/(1)] and B[g(IJJ are 
two parallel reference:,;. 

A typical parallel reference is a reference to an 
m-dimensional arrav A. in a ne:ot of n FORALL 
loops: A[e1. e2, . .. , en,L where e, are functions 
of the FORALL subscripts (another syntax is the 
parallel array reference A[u 1 : b 1 : c 1 •...• an,: 
bm : c 111 ], which can be expressed with a FORALL 
syntax). Analytical analysis can be performed at 
compile-time only if the e1 are affine in the 
FORALL subscripts, with integer coefficients. i.e .. 

n 

ei = 2.a1JIJ + b1 . 
j~l 

An affine reference can be written A [JJI + C]. 
where JJ is a m X n integer matrix and L' a vector 
in Z"'. ~·e give an example from Jacobi's method 
for the Laplace solver: 

Forall (i=2:9,j=2:9) 
A (i, j) =(A (i-1, j) +A (i+l, j) +A (i, j-1) 

+A(i,j+l)) *0. 25 
endforall 

Here. there are five parallel reference:,; to A ( 1 store 
and 4 fetches): the first one ~4(i - 1. j)) may be 
expressed with: 

:'v/=(6 ~).c 

:5'= 

Affine references where J/ and l · onlv include 
numerical constants are called static and non­
static affine references are called parametric. For 
example the parallel reference A(i- 1.j) i:o static. 
whereas a reference such as A (i + k. j) will be 
parametric if k is a variable which is not a 

FORALL index, as in the following assignment: 

do k ... 
Forall i 

.. . =A(i + k) 

This scheme is dominant in LAPACK routine:,;. 
ln fact. a finer classification would be possible: 

If the vector C is a scalar variable .. the reference 
can occasionally be determined at compile-time: 
for instance, if U linearly depends on sequential 
loop subscripts, as in the previous example. How­
ever. using this information in the static execution 
model would require the unrolling of the sequen­
tial loop to compute the communication patterns. 
As the sequential index set is almost always too 
large to allow this optimization. there is no point in 
using a finer classification. 

In our benchmarks. nonlinear references were 
represented by gather and scatter operations. 
where the array subscripts are themselves arrav 
elements: the generic form being A [ L l /]]. 

3.2 FORALL Communications 

In the typical parallel instruction 

Forall I in :5' 
A[f(I)) = B[g(I)] + ... 

endforall 

the assignment creates corr1n1unication patterns 
where. for each/, the source is the processor own­
ing the reference B [g(I) ]. and the destination is the 
processor owning the reference A [f(l)]. The pat­
terns depend on the computation location rule 
and on the mapping. We consider the Owner 
Computes Rule, which is used by most existing 
parallel compilers and assumed by many re­
searchers in this field: it means that the comput­
ing processor is the destination processor. The 
mapping between arrays is created by the ALIGN 
directives. If an array is compressed along one di­
mension, the corresponding FORALL subscript 
must not be considered for classification because 
it is not a parallel dimension. For instance, if A is 
of dimension 2 and compressed along its second 
dimension. then A (i. j) is located on the same pro­
cessor as A(i, 0). \Vith these assumptions, a com­
munication occurs for each array in the righthand 
side of the parallel assignmenL if combining the 
mapping and the Owner Computes Rule does not 
result in an intraprocessor assignment. The com­
munication is labeled by the worse case of the two 



references, e.g .. left and right member affine static 
will re,.;ult in a static communication. but a one­
member nonaffine will result in a nonaffine com­
munication and so on. 

A typical usE' of thE' FORALL notation is to dt'­
scribt' partial permutations of thE' index ,;et. Al­
though the FORA.LL ,;yntax does not fJrt'cludt' 
more complex schenws. dficient programmin;r 
would encapsulate such patterns in intrin,.;ic,; to 
take advanta;re of dw global communication ft'a­
tures of the target architecturP. 

3.3 Intrinsic Communications 

In data-parallel Fortran lan;ruages. complex data 
transfers can be described by special functions 
that are part of intrinsics. The most important 
communication intrin,;ics implement multireduc­
tion (multiple many-to-one communication). 
multibroadcast (multiple one-to-many). special 
permutations. and gather/ scatter operations. 

The reduction intrinsics art' SUM. ALL. ANY. 
MAXVAL .. MINVAL. MAXLOC. MINLOC. Tlwy com­
pute tlw result of applying an associati\e operator 
to all the clements of their array argument. ThP 
respectiYe operators are sum. logical and. logical 
or. max. min: :\IAXLOC !resp. \11'\LOC': returns 
the location of thP maximal lresp. minimal! yaJup. 
The reduction intrin,.;ics have three panuneters: 
for instance. SUM (ARRAY, DIM, MASK) adds the 
elements of ARRAY along the dimen,.;ion DIM. se­
lecting the PlPmPnts dPscrilwd by MASK. \\. e con­
sidt'red that a reduction intrinsic is static as soon 
as the ARRAY parameter is a static reference and 
the DIM parmneter is a constant: Tlw unit ele­
ment of the operator \e.g .. 0 or 0.0 for a SUM. or 
IEEE -x for a floating-point MINVAL; can replace 
the masked rPferences. and this local te,.;t can be 
done at run-tirne. 

The intrinsic SPREAD allow,; hroadca,.;ts and 
segmented broadcasts: An n-dinwnsional array is 
replicated to create an 11 + 1 dimen,;ional one. 
The syntax is SPREAD (SOURCE, DIM, NCOP­

IES) : to cornpute tht> conHnunication schenw at 
compile-time. the SOURCE parameter mu,;t be a 
static reference and DIM n1ust lw a constant :in 
this case. the pattern is considered as static). In 
the following. we call broadcast a one-to-many 
pattern, multibroadcast a segmented broadcast. 
reduction a reduction that result,; in a :-;calar. and 
multirt'duction a segmented reduction. 

Examples of special permutations intrinsics are 
the cvclic and nonc,clic SHIFTS and TRANSPOSE. . . 
All these intrinsic;; :-;ummarize a FORALL per-
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mutation and require the same analy,;is. \lore 
complex intrinsics. such as MATMUL and DOT­
PRODUCT. are intended to allow an optimal imple­
mentation of basic lirwar algebra opPrators. These 
intrinsics will be considered as static if their pa­
rarneters are static or scalar constants. 

4 EXPERIMENTAL RESULTS 

4.1 The Benchmark Set 

Three benchmark sets haYe !wen analyzPd (TahiP 
1 ). The first. called :\PAC in the following. is the 
applications benchmark SE't for Fortran D and 
HPF of the :\orthea,;t Parallel Architecture Center 
at Syracu,;e L;nin~rsity [:2.) j. It includp,; <'omplPte 
applications and matlwmatical packagps for 
dense linear al;rebra. Some applications hm P t\n> 
different versions: the Cluster Spin and Hn i,.;ed 
Simplt'x haYe been rede,;igned for paralkli,-m. 
whereas the ConYPntional Spin and Simplex are 
the straightforward parallt>l n~rsion,; of tilt' wPII­
known sequential benchmarks. The ,.,econd set. 
called PRE .. is composed of outputs of ti1P auto­
matic parallelizt'r YAST 90 of Pacific Sierra He­
search \Yith some handcoded parts. PRE ha,.; I wen 
assemblt'd by J. K. Prentice from ()uctzal C:ompu­
tational Associates [:26,. The third is a lwncll!lwrk 
from lniititut Fran<;ais du Perrole :lFP:. \\ e have 
rewritten it as an llPF Yt'rsion and YalidatPd b\ 
IFP. The clas,.;ification of tlw lwnchmarks in three 
categories (kernel. application. and algorithm,;; 
follows the approach used in [2:. 

Apart from dw limitations of any lwnchrnark 
set compared with real applications. this bench­
mark set rnay be considered a,.; representati\t_' of 
dense computations. 1\o sparse code is included 
for tlw following reason: Although the prcscnt 
state of the art in al;rorithms for sparst' computa­
tions indeed favors <h-namic data :'itructures and 
communications. the situation is quickly C\ olving. 
Recent work r:J" focuses on the dynamic to ,.,tatic 
transformation: hence statistics in thi,; fiPid mm 
not be significant at tl1E' pre,;ent time. 

4.2 Methodology 

The tool used for analysis is a parser built from the 
Tiny tool ,.;et [29:: it consists of an intraproccdural 
constant propagation package and a program for 
autornatic reference analn;i,; ba,.;ed on tilt' ab­
stract syntactic repre,.;entation that WP deYeloped. 
The output of these tools is a characterization of 
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Table 1. The Analyzed Benchmarks 

Rt>ndnnark 
Set 

:\'PAC 

PRE 

IFP 

:'\arne 

PI IYSICS Conventional Spin 
PHYSICS Cluster Spin 
\'\' eather climate 
LAPACK Block-QR 
LAPACK Block-Cholesh 
LAPACK Block-LL 
2D-FFT 
Laplace Solver 
Gaussian Elimination 
:\'bodv 
Simplex 
Revised Simplex 
Livermore Fortran Kcrnt>l 
Gas Dnwmics 
Kepler 
IFP 

Size 
in lines 

lJT~ 

-~::>6 

1 "S:3 
1:380 
:)16 

2329 
201 
2h"? 

90 
H9 
62:3 
:):)6 

612-J: 
2:30-:' 

:2":'6 
3-t-:' 

each reference and intrinsic in the source COflf'. 

following the classification of Section 2. :\1~xt we 
evaluated the dynamic (run-time) frequencies of 
each communication type by manual examination 
of the code. 

4.3 Results 

Tables 2 to 5 present the statistics. Tables 2 and 4 

give the formal expression as a function of the 
parameters, respectively. for static and dynamir 
communication patterns:. Tables ;:3 and 5 give the 
numerical percentage of the total communication 
patterns. The first column is the benchmark 

Table 2. Formal Expression of Statie Communications 

:\utornatic 
Parallelization Languatre Catt•uorv r . 

:'\r) C\1 Fortran .\pplication 
:'\n C\l Fortran Application 
:'\o C\1 Fortran Application 
:\o C\1 Fortran Algorithm 
:'\o C\1 Fortran Algorithm 
:\o CM Fortran Algorithm 
:\o C.\[ Fortran Alw>rithm 
:\o C\[ Fortran Application 
:\o C\1 Fortran Al;:oritlnn 
'\o C.\1 Fonran Appli,·ation 
:\o C\1 Fortran Appliration 
:\o C.\1 Fortran .\pplieation 
Yes Fortran 90 Kenwl 
Yt>s Fortran 90 Application 
:\o Fortran <)() Application 
:\o IIPF .\ppli('ation 

name. The column labeled '·Loop Parameters"' in 
Tables 2 and 4 is the name of the program param­
eters that are used as sequential loops subscripts. 
For instance .. Cluster Spin shows three nested se­
quential loops: the indices are Jf .. the number of 
measures. and I and J. which are internal to the 
algorithm. The numbers in parentheses are the 
parameter values used for Tables 3 and 5. if nec­
essary: most of them were indicated by the ben­
chmark. The following columns give the total 
number of occurrences of each communication 
scheme, for a complete execution of the ben­
chmark: the column labeled .. Affine and Cyclic'' 
describes affine communications (all these com-

Benehwark Loop ParamPter~ .\flint• and Cw·li<· Broadc<ht Heduction ::C:Jwcial 

ClustPr Spin 
Conventional Spin 
\\'eather Climatt' 
L\PACK hlock-(lH 
LA.PACK block-<:holesky 
L:\P\CK block-Ll. 
2D-FFT 
Laplace Soher 
(;nussjan ElituinatJon 
:\bodv 
Simplex 
Revised Sirnplex 
Liverwore Fortran Kemel 
Gas Dyruunies 
Keplt>r 
IFP 

'\! 10(), I' 10. J ~:WO 
'\I .1 00 . I 101 
I ;?>• 
:\ ' 1000/. :\'B :(H · 

:\ 10001. :\B 16-t 
:\ 1 000 •. '<B :6-1: 

" :S12i 
I (1000i 

" <25.)) 
I 1000) 
I 10001 

I i1 0001 
I 21: 
I (10000' 
T :::Jb:SOOOI 
:\ ·.-t0001 

\1<:2 + :)] + :nJ. \!1 + 21 + 1.1• 
2\1 -tl + 1' 2\1 
6:261 + ;)()() 8001 + 200 -tO::ll + 100 <JI 

.. t:\/\B + " :2:\ 2:\/'\B + "\ 

-tl 
2:\ 
1 ;){ + ]() 

J + 2 
21 2I .)! + 1 
2-tl ()I 21 
161 :SI 

6T 
.39:\ 2 
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Table :3. Static Communications as a Percentage of the Total Communications 

Benchmark Affine and Cn:lic Broadca~t Reduction Special Total ,.;tatic 

Cluster Spin 33.4 
Conventional Spin 97.6 
Weather Climate :24.2 
LAPACK block-QR 0.0 
LAPACK bloek-Choleskv 0.0 
LAPACK block-LC 0.0 
2D-FFT 0.0 
Laplace Solver 80.0 
Gaussian Elimination SO.O 
l'body 100.0 
Simplex 0.0 
Revised Simplex 12 .. '1 
LiYennore Fortran Kernel 52.2 
Gas Dynamics 64.0 
Kepler 0.0 
IFP 100.0 

munications are translations .. apart of LAPACK 
block-QR where the scheme is a matrix trans­
pose): the "Broadcast" and "Reduction" 
colurnns are, in generaL multibroadcast;; and 
multireductions: the column "Special" gathers all 
the instances of the intrinsics MATMUL and DOT­
PRODUCT and, for the \\~eather Climate ben­
chmark, calls to the fast Fourier transfom (FFT) 
library routine. The column "Total" in Tables 3 
and 5 is the partial total of each broad class, static 
and dynamic. 

Most of the application benchmarks have a 
high percentage of static communications. the ex­
ceptions being Cluster Spin and Simplex. How-

Table 4. Formal Expression of U~·namic Communications 

Benchmark 

Cluster Spin 
Comentional Spin 
W'eather Climaw 
LAPACK block-()R 
LAPACK bloek-Cholcsh 
LAPACK hlock-LU 
2D-FFT 
Laplace Soh-er 
Gau;;sian Elimination 
l\bodv 
Simplex 
Revised Simplex 
Livermore F onran Kernel 
Gas Dynamics 
Kepler 
IFP 

Loop Parameter;; 

:\1 (Hl01 I (10i. .J 12001 
\1 tHJO, l (10· 
I (5 

.\l(lOOOJ.\B 6"+! 
id 
id 
.\1 (.S12) 
I :1000; 
.\ :z:;.;, 
I 1 0001 
I (1000) 
I (1000> 
I :21, 
I (100001 
T (36.)000! 
:\ (4000) 

2200 
8.\/.\B + -t\ 
\/'<B 
4.\1 + 2.\/.\B 
log2.\ + 1 

.\ 

0.0 16.8 0.0 :J0.2 
0.0 :2.4 0.0 100.0 

29.() 14.9 ().;3 69.0 
17.8 0.0 18.""' :36.S 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 20.0 0.0 100.0 
0.0 0.0 0.0 50.0 
0.0 0.0 0.0 100.0 

11 . 1 11.2 0.0 2:2.:3 
12.:J ;~ 1 .:.~ 0.0 56.:3 
0.0 19.6 "! .:3 76.1 

20.0 0.0 0.0 8"!. () 
0.0 0.0 100.0 100.0 
0.0 0.0 0.0 100.0 

ever, these benchmarks are particular implPmen­
tations of an application and have another version 
(Conventional Spin and Revised Simplex). which 
is much better for the static model. The IFP 
benchmark is especially interesting: From the se­
quential version, it was possible and even easy to 
write a fully static HPF version of the benchmark, 
without any change in the initial algorithm. 

The category Algorithms presents much more 
diverse results: 50% static communications for 
the l\'o-Bloek Gaussian Elimination. but oo;;, for 
LAPACK block-LC. The reason is that in the LA­
PACK subset, the applications are matrix decom­
position. but the implementations are block algo-

2200 

21 
21 

Paramt·tric 

Hcductiou 

.\ 

21 
I 
21 

~pecial 

;)"\ 

2.\/.\B 
2'< + .\/l\B 

."1\11.1 

I + 1 
I+ 1 
21 
il 



298 CAtTIER DE LAHACT A:\'D GER\1Al:\' 

Table 5. Dynamic Communications as a Percentage of the Total Communi£~atinns 

ParametriC' 

Benchmark Affiuc and Cvclic Broadcast Heduction Gather Scatlt'r Total 

Clu~ter Spin 0.0 0.0 
Conventional Spin 0.0 0.0 
\Veather Climate 15.5 15.:) 
LAPACK block-QH 36.8 0.0 
LAPACK block-Cholcsky 0.4 98.8 
LAPACK block-Lt 10.8 <i1.9 
2D-FFT 100.0 0.0 
Laplace Solver 0.0 0.0 
Gaussian Elimination 2:J.O 0.0 
:\'body 0.0 0.0 
Simplex :3:3.:3 11.1 
Revised Simplex 1S.8 12.5 
Liv('rmore Fortran Kernel 10.9 
Gas Dvnamics 0.0 
Kepler 0.0 
IFP 0.0 

rithms. As stated in [25], the target architectures 
were multiple instruction multiple data (~lL\JD) 

shared memory, and blockiag increases perfor­
mance in this ease by reducing memory traffic. 
The 0.-o-Biock version of the IT decomposition 
(the routine SGETF2) is fully parametric but with 
a much lower conununication count: 2:\" paramet­
ric MATMUL and N parametric translations. Ho'w­
ever, the applications are inherently dynamic, be­
cause they are sequential in either the rows or the 
columns of the basic matrix. A typical communi­
cation is 

MATMUL (A(J:N, 1:J-1), A(1:J-1, J)), 

where J is a sequential index. As .I ranges on·r the 
matrix linear size .. no loop unrolling may be con­
sidered. On the other hand, although the 2D FFT 
seems fully parametric. this is mostly an imple­
mentation artefact: The communication patterns 
of a FFT are the folding onto the processor set of 
the well-known butterf1ies. and are known at eom­
pile-timt>. at least if the array argument of the FFT 
is static. 

S PERFORMANCE EVALUATIONS 

The previous results indicate that the static com­
munications are frequent enough to dec;erve spe­
cific optimizations. such as the static execution 
model. However, Amdahl's law requires a com-

4.3 
0.0 
0.0 
0.0 

0.0 0.0 <i9.R 49.8 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 31.0 
0.0 26.? 0.0 6:3.5 
0.0 O.R 0.0 100.0 

<il.9 .5.'-l: 0.0 100.0 
0.0 0.0 0.0 100.0 
0.0 0.0 0.0 0.0 

2;) 0 0.0 0.1 ;)0.1 
0.0 0.0 0.0 0.0 

22.2 0.0 11.1 _,,..., ( 

6.2 0.0 6.2 4:3.: 
4.:3 0.0 4.:3 2:l.S 
0.0 0.0 16.0 16.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

parison with the speedup expected from these op­
timizations, and the penalty when executing dy­
namic cOininunications. This evaluation needs to 
take into account details of the hardware and soft­
ware underlying the static execution model. The 
basic assumptions are the following: 

1. The overall architecture is distributed mem­
ory .\11.\ID, with P processors. 

2. The network is strictly synchronous and 
controlled in a lockstep fashion. ln some 
sense. this is the single-program multiple 
data (SP.YlD) execution m<H.leL but us an as­
sumption at the hardware level. 

3. For each communication. the data incom­
ing from each processor has fixed size. 

4. The routing is ofT-line, which means that 
the routing switches do not proeess at all. 
They only orientate the messages according 
to a configuration giyen hy the processors 
before sending the whole data set. The con­
figuration of the switches for one data set is 
called a communication pattern. All the 
useful pattern,; (that the net\\'ork can use in 
a run) are compiled, 

5. The network can realize any permutation in 
constant time. This time is the basic unit of 
the network operations. and is called an ele­
menta~· step in the following. 

Among general-purpose commercial parallel ma­
chines, none has an interconnection network with 
these properties. However.. such a network has 



been successfully built for the GF1 L a research 
prototype of IB:\1. The iWarp network may be 
used in this mannec although the fact that it is 
primarily intended for message passing raises the 
cost in time of its static use: many research stu(i­
ies, especially in the field of optical interconnec­
tion networks, consider off-line routed networks 
[27]. For an in-depth pre::;entation of such net­
works. see [5, 9, 17]. 

w· e must stress that. as the network cannot do 
any on-line routing .. dynamic patterns have to be 
emulated by a sequence of static (i.e., compile­
time computed) patterns. The size of such a se­
quence is the emulation cost of dynamic com­
munications. 

In the following. we assume that the shape of 
the processor set matches exactly the shape of the 
arrays. and that each processor owns only one da­
tum, which has the prescribed size. The issues of 
generating code for cyclically or block-cyclically 
distributed arrays have been successfully treated 
in the PTAH compiler and are not described here. 
The impact of virtualization on performance will 
be outlined in a later section. 

5.1 Permutations 

\V e first consider the simplest parameter penn uta­
tions (shifts, cyclic shifts, transpositions) and 
study the ease of gather/ scatter operations later. 

Parametric Shihs 

A one-dimensional parametric shift nun' be de­
fined by three parameters: the domain hounds 
and the value of the shift. The following example 
shows a parametric Fhift where the domain i;-; lim­
ited by s and f and the shift value is k. 

For all (i = s: f) A. (i) = B (i+k) 

To cope with the domain parameters. the corn­
mllnication pattern is extended to all proces:'lors 
(using a temporary array) and the final store is 
conditioned by the membership to the domain. 
'Vithout virtualization.. the prt>vious code be­
conles: 

Forall (i 0: P-1) Temp(i) =B(i+k) 

Forall (i 0: P-1) 
Where (s <= i and i <= f) 

A (i) =Temp (i) 
endwhere 

endforall 
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l'\ow, parametric shifts depend only on one pa­
rameter, the value of the shift. It is possible to 
define all the communication patterns corn:­
sponding to all the shifts inside the processor set. 
and to use k (or k mod Pin the case of virtualiza­
tion) to select at run-time the appropriate com­
munication pattern. However. each pattern bas a 
significant storage cost; for instance O(P log P) 
bits for a Benes network, leading to O(P2 log P) for 
the P possible shifts (log means log2). A reason­
able solution is to use only power of two shifts, and 
to emulate the k-shift by the following procedure: 

PARAMETRIC_SHIFT(V,a,s,f) 
do i=l: P 

if ((a. AND. i) = 1) 

SHIFT(V, i, s, f) 
i = i*2 

en do 

where Vis the array to be shiftecL P the number of 
processors, s and f the limits of the domain of r·. u 
is the value of the shift. and !LVD is bitwi,;e. In this 
ease,. the actual value of u will he k. or k mod P if 
virtualization occurs. Thus. the emulation eosL 
which is the number of patterns to be scheduled, 
is log P. 

For multidimensional shifts like A (i. j) = B(i + 
k1 , j + k2 ) where A and B are matrices. the same 
method holds, except that we have to define the 
input paran1eter a as a vector. A;.,sui:ning that the 
n-dimensional processor geometry ( two-dimen­
sional in this example) is linearly mapped to a 
numbering of the processor set, in row (or column) 
major order, the (a 1 , a:2) vector ::;hift ultimately 
produces a shift with value pa 1 + a 2 , where p is 
the extent of the processor geometry in the first 
dimension. 

Parametric cydie shifts are split into two shifts. 
the modulo part and the nonmodulo part. A 
priori. 2 log P steps are needed but as we can 
interleave the two patterns. the number is only log 
P steps. 

Parametric Transpositions 

The general form is 

Forall (i=sl:fl, j=s2:f2) 
A ( i, j) =B (j, i) 

endforall 

The only parameter required is the domain of 
the transpo:-;ition. One solution is first to do a 
parametric shift of B so that B(sL s2) goes to 
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(0, 0). This can be done in log P steps. The result 
of this first shift is stored in a temporary array. 
Then the transposition of the temporary array 
takes only one step. Finally. the result is stored in 
A with a parametric shift. The whole operation 
takes 2/ogP + 1 steps. 

Gather and Scatter Operations 

These are the most difficult communications for 
the static paradigm. The data referenced are in an 
array dynamically computed. The scatter opera­
tion sorts an array B according to indice;; L: 

Forall i ... 
A(L(i) )=B(i) 

And the gather operation is: 

Forall i ... 
A(i)=B(L(i)) 

A parallel gather operation makes sense only if 
the mapping of the index set onto itself is a one­
to-one operation. Let array K be defined by 
K(L(i)) = i: the gather operation may be written as 
the scatter operation: A(K(i;) B(i). Building Kat 
run-time requires one gather operation. From 
this, a gather operation is amenable to two scatter 
operations. 

Lsually the gather operation i,.; used to pack an 
array into a smaller one, whereas the scatter oper­
ation expands an array. W"e assume first that the 
arravs have the same size and that there i,.; no 
conflict while reading or storing elements. \Ve 
study later array size differences and conflict,;. 

To emulate dynamic routing, the key idea [18] 
is to sort the destination addresses of the data to 
be routed. The sorting algorithm uses the princi­
ple of the odd-even merge sorting network. Figure 
1 shows this principle where the list L is to be 
sorted: if the message follows the number of the 
receiver, the network realizes the scatter operation 
communication A (L(i)) = B(i). At each stage of the 
sorting network, crossing links symbolize compar­
ison of two values and perhaps their exchange. 

As the switches do not have any logic, the net­
work cannot perform the cornparisons. ,,~e simu­
late each stage of the odd-even network hy a 
crossing of our network and a comparison inside 
the processors. As the links between the stages are 
static, it is possible to compile each corresponding 
permutation. The number of patterns to schedule 
is log P(log P + 1 )/2, i.e., O(log2 P). 

0®···-1> 3 

([)G) .... 5 1- <D<D 

<&>CD_., I 2-00 

Qi)@->-o 3 -IV® 

0®->-2 4 -()@ 

<D<D ..... 7 5- ([)G) 

(0@->- 6-~® 

<D~-4 7 -<D<V 
B L Sorting Network A 

FIGURE 1 Lsing an odd-even merge sortinl' network 
to realize a scatter operation communication. 

Consider the case where A is larger than B. In 
the example. let L be equal to 3, 5. 1, 0. 4. ? . 6 
and assume that the nenvork sorts the values into 
the sorted list 0. L 3, 4, 5. 6, ? . but the values are 
not all located at their destinations. However, 
sending them to their destination is a monotone 
routing problem. :Vlonotone means that the 
source-to-destination map is a monotone func­
tion. We can realize monotone routing using the 
greedy routing algorithm on the butterfly network. 
Monotone routing of a sorted list on hypercubie 
networks is conflict free [181. Figure 2 presents 
the example of monotone routing in the butterfly 
network. On stage k of the butterfly. the network 
transmits the data according to bit k of the desti­
nation address. 

msb__... lsb 

000 

001 <D--1 

011 

100 

101 

110 

111 ®-7 

o-
FIGURE 2 :\1onotone routing on a Butterflv network. 



Each stage of the butterfly is emulated by one 
permutation in our network and by the test of bit k 
(for stage k) by the processors. The number of 
permutations scheduled is O(log P). As monotone 
routing is conflict free. the routing process re­
mains very simple for the processing elements (no 
buffering or priority managing). 

Storing conflicts are prohibited for a scatter op­
eration. but reading conflicts are possible for a 
gather operation. In this case. the communica­
tions must be partially sequentialized. First, the 
odd-even sorting network sorts the destinations 
that can be realized without conflict. The sorted 
list shows repetitions at contiguous stages. These 
repetitions lead to conflicts while executing the 
monotone routing. If two idemical references are 
located on the Rame proceRRor. it stores one of 
them in a temporary buffer and carriPs on with the 
routing. then a second Rtage is started for the buf­
fered messages. After that. a second scatter oper­
ation takes place. This proeed.ure is expensh·e: 
however, the rnost complex case is where a multi­
east is hidden in the gather operation. and thus 
will also be expensive with any routing medm­
nism. 

5.2 Broadcasts 

Broadcasts and multibroadcasts have two possi­
ble origins: one-to-many gather operations and 
the SPREAD intrinsic. Assume the network is a 
Bend network [18". Benes networks are rear­
rangeable: Any permutation may be routed with­
out conflict. Hence. an elementary stPp is one net­
work crosRing in this particular case. However. the 
results may be extended, up to a constant factor. 
to any network emulating the well-known buttedly 
network in a finite number of steps._ becauRe a 
Bend network mav be considered as two back-to­
hack butterllv networks [13]. In particular, 
Omega and Inverse Omega networks are topologi­
cally equivalent to the butterfly network. 

Consider simple broadcasts; any static broad­
east ean be completed in one step and any para­
metric broadcast in log P + 1 steps. If the broad­
east source is a program scalar, the broadcast 
costs nothing, because all processors own the data 
(by parallel execution of the scalar code or any 
other way). Thus, we need only consider the case 
of broadcasting an element of a parallel array. 
Any input of the Benes network is the root of a P­
leaf complete binary tree. Thus, the static broad­
cast costs one step. 

A parametric broadcast cannot use the same 
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technique. Even though the broadcastintr tree 
does exisL the exact setting of the switdws is not 
known at compile-time because the position of the 
root is a program variable. The simplest means to 

perform a parametric broadcast is to shift the 
source to a fixed position (e.g .. processor 0) and to 

use a static broadcast. Shifting data is a paramt't­
ric point-to-point communication, and has the 
same cost as a parametric translation. 

Significant results have been obtained about 
the implementation of the most general multi­
broadcast patterns on butterfly and otlwr hyper­
cubic networks [18]. However. their implemenla­
tion in the static execution model incurs extremelv 
high costs because they invoke irregular ;;eg­
mented prefix operations. Thus. the problern of 
compiling multibroadcast patterns mu"t he eare­
fullv stated. 

Consider the following legal HPF code: 

Forall I 
A(I) = B(L(I)) 

\Vith L non one-to-one. there are only two wayR 
to compile such patterns: serializing the FORALl., 
loop,, as shown previously. or using Leighton's 
general algorithm [ 18'. HoweveL rheo;e gather­
based multibroadeasts are extremelv rare in our 
benchmarks. The reason is perhaps that a clever 
user will avoid that programming ,;tyle: Recogniz­
ing the hidden broadcast may be quite difficult for 
a compiler, whatever the execution model. .\Iany 
architectures do offer special spreading or scan­
ning hardware. and optimal exploitation of these 
features requires the broadcast to be exprt>ssed as 
a SPREAD. if possible. Thus. we consider the im­
plementation of a SPREAD intrinsic. 

l~sing the SPREAD intrinsic.. a ;;tatie 
multispread can be completed in one step .. 
whereas if parametric, it requin's 2 log P + 1 
steps. 

We only outline the proof. To avoid a lot of 
subscripts, we consider the generic example 
B = SPRE4D (A(k, a: b), DIM= L NCOPIES == 
n). The result is a two-dimensional arra\' B, with 
B(i,j) A(k,j) for all i andj, 1 s i nand as 
j s b. 

Consider the following data distribution: Each 
processor set has a virtual bidimensional p X q 
geometry, with p and q integer powers of 2. p.q = 
P and log p = r. Each processor has two coordi­
nates (s 1, s2 ) with 0 s s 1 s p - 1 and 0 s s2 s q -
1 and each reference A (i,j) is located on processor 
number (i- 1,j- 1). When a processor is consid-
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A(l,l) 0 

A(l,2) 1 

A(2,1) 2 

A(2,2) 3 

A(3, 1) 4 

A(3,2) 5 

A(4,1) 6 

FIGUHE 3 SPREAD (A(3. 1: 2), 1, 4l. Ea('h dark 
node forward~ its input to its two outpuh: dml lirw~ 
show tlw path,.;. 

ered as a netw·ork input. its identification mlmher 
is p.s 1 + s2 • \\'hen k is a constarlt. the paradif!­
rnatic :-;pread is static. The principle of tht~ mu!ti­
broadca,.;t is to tbP the IJLmerflv nPtwork when:' 
staf!es 0 to r - 1 are broad('astinp: and staw·s r to 

lop: P realize a direct tnmsmis:-;ion of their valtws. 
Fip:ure :3 gives an example. with p = 4 and q = 2. 
\\'ith Dl\l equal to 2. we would han· to corl:-iider 
the n:'verse butterfly. \lore p:eneral dimensions 
come under the same analysi:-;. a" it depends <Hlly 
on the divi:-;ion of a proees:-;or addn:'ss into lop: p 
hits for the fixed dimensions plus log q bit:-; for tlw 
parallel dimension,.;. 

If the dimension of an array is not a power of 2. 
we embed the array in an ana y of powt~r of 2 size. 
execute the multispread on the temporary array 
and conditionally store the result according to dw 
real size. 

As the Benes network includes two back-to­
hack butterfh networks. it can emulate this action 
in one su·p so that the muhibroadcast using the 
SPREAD intrinsic takf's one ,;tep. 

In the parametric ca:-;e. the log P factor couw:-; 
from a parametric translation. \Vith yector - k 
call that we compile SPREAD (A(k. a: h DI\1= 1. 
:\COPIES+ n J::. Thu:-;. row k of A will he copie(l 
onto the first row of B and a static spread can take 
place in one stt>p. Finally .. \Ye haYe to nwve the 
rt>su!t to the correct position with another para­
metric tran:-;lation requiring log P ;;teps. :\;; a re­
mark. if DI\l is a variable, we can compile the 
static spread for each dimen:sion because the 
number of dimen,.;ion,; is f!enerally low. \loreon'r.. 

if the domain of the rnultispread is nuiahle. af!ain 
a global multispread can lw pt>rformed on a tem­
porary array and conditionally store the data ac­
cording to the real domain. 

These figures may seem quite hif!h: however. 
all the available parallelism is t:xploited. \lore­
over. for static multihroadcasts, the solution is op­
timal in the sense that there is only one stt>p. This 
contrasts for instance with the C.\[-;) broadca:-;tinl! 
capabilities. which are limited to one processor at 
a time. 

5.3 Multireduction 

The (multi- ;reduction differs from tiH" (multi- .!dif­
fusion in the sense that the network ha.s to conl­

bine Yalues. Combining \·alues means that the 
network switches can forward a uniquP n:':-;uh 
cmnputcd frorn it:; inpws by an a:-;sociatiYe opera­
tor (sum, max). w·e can realize the static (multi­
reduction by combining butterfly with our net­
work: Each stage of the butterfly is exeeuted b~· a 
crossinf! of our network and the combininp: opera­
tion is realized on the processors. Thus. the num­
ber of routinf! steps is equal to the number of 
fltaf!es in the butterfly. i.e .. lof! P. 

In the ease of parametric (multi- ·:reduction. 
again we process a parm11etric ,;hift to move ti'w 
data to a fixed position (for instance hep:inninl! at 
procesflor Oj: then we apply the :-ita tic (multi-, rt>­
duetion with a conditional store and proces,.; a 
parametric shift to mm·e the result to the correct 
position. Thus. it take:-; :3 lop: P steps. 

5.4 Special lntrinsics and Functions 

We have already shown that tlw FFT with a ,.;tatie 
arp:ument may he transformed into a fully "tatic 
routine. Systolic alwJrithms provide fully :-;tatic im­
plementations of the linear alf.:ebra intrinsics. For 
instance .. the followillf! alf!orithm rt>alize"' MAT­
MUL (MATRIX-A, MATRIX-B) : 

C matrix conditioning 
For all (i 1: n) 

CSHIFT(MATRIX-A, DIM=2, i-1) 
For all (i = 1: m) 

CSHIFT(AMTRIX-B, DIM=1, i-1) 
R=O 

C iterative computation 
do k 1, n 

R R + MATRIX-A * MATRIX-B 
CSHIFT(MATRIX-A, DIM=2, 1) 
CSHIFT(MATRIX-B, DIM=1, 1) 

end do 
C the *product is a pointwise product 



This alf!orithm was first designed for rt-'Wions 
that are similar to our objective. i.e .. to f!et the best 
performance from a f!rid network and to avoid 
general communications. The grid network may. 
in turn. be emulated under the general assump­
tions stated at the lwginning of this section. with 
one step for each of the grid ::\E\\-S (~orth East 
\\·est South: directions. 

5.5 Comparison 

Comparisons between theoretical studies and ac­
tual machines are both presumptuous and unre­
alistic. Thus. the following results are not in­
tended to compare what would be the execution of 
any program on the C\1-.) and on a possible static 
machine. \\-e consider the figures from the G\1-.") 
network only as a testbed. i.e .. giving the orders of 
magnitude for the performance of a recent dy­
narnic routing network. 

Two pararneter,.; charactcrizP the rwrformance 
of a network: Let r111 be the maximal rwtwork 
bandwidth per node and s the time to transmit a 
zero-sized rnesSaf!e. To an approximation. r111 de­
pends on the network bandwidth and on the 
source and destination memory bandwidth. \\ ith 
pipelincd cornn1unications. the latency of a data 
transfer is 

T = s + Llr111 • .1 .• 

where Lis the data transfer size.\\ ith careful op­
timization. in the infinite data-size limit. tlw per­
formance will be limited only by the proce,;sor· s 
perfornwnce if the conununication -to-computa­
tion ratio i:-; lower than 1. and by the asymptotic 
network perforrnance (r11,) if this ratio is larger than 
1. In fact. assuming equal bandwidth perfor­
mance .. being better on .. little .. problems is the 
only advantaf!e that one model has over the other. 

\\c consider two characteristic figures for this 
comparison: T and L 1u. the size for which the 
network reaches half of it:-; maximal bandwidth. 
L 1; 2 is the communication analog of the so-called 
rz 112 for vector cornputations [12:. T n1easure,; the 
performance for program:-; where significant data 
transfer pipelininer is not possible. The reason rna~ 
be a very low virtualization ratio or the peculiar 
characteristics of the algorithm. For instance" a 
blocked algorithm with block data distribution will 
provide few comrnunications: if the communica­
tions are not overlapped with the computations. 
r-t will give the actual performance in most prac­
tical cases. On the other hand. L 1u gives one esti­
mate of what would be an effective size for a prob-
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lem if the communications dominatP the 
computations. but can be arranged to exploit fully 
the network bandwidth in the asymptotic limit. 

.\1any different values of the C\1-3 · s perfor­
mance have been reported. \\·e consider the ex­
perimental values in [:2:31 with the vendor mes­
sage-passing library C.\1.\ID 1.:3.1. and the values 
associated with the Active ::\Iessage model 18]. It 
should be noted that C.\1::\lD 1.:3.1 i,.; the lowest 
level f!eneral-purpose communication library and 
may be considered as assembly-le\el program­
filing. The results are based on permutation com­
munications. 

For the static network. we wanted to asse,.;,.; two 
speedups separately. The first comes from the 
static execution model. a,.;stuning off-the-shelf 
technolOf..'Y for the network design. The second 
comes from the fact that a network intended for 
this model can be desif!ned with a more aggressiw 
technology than a message-passing network. be­
cause its functionalities are simpler. Hence. \\T 
consider two cases: equal bandwidth perforrnance 
and the network we are currently designing l-1: 
(fast network in the following). For the equal 
bandwidth network. we han~ to assess raw hard­
ware latency for a ;) 12-processor machine. for 
which the figures of the C::\1-.") cannot he used be­
cause they involve the routing delay. \\ e consider 
a 600 ns latency: this llf!Ure '.\·as reached by the 
GF11 using 1983 technology [1":'1. Table 6 shows 
the estimates for the translations patterns using 
formula 1. For the C::\1-3. the results do not de­
pend on the distinction static or parametric. For 
the static network. we use the results of Section 
3.1: thus. the parametric value forTi,; nirw times 
its value for the static case (u:oing log 312 = 9): 

thi:-; con1es frorn the fact that the consecuti\T 
translations must proceed in a lockstep fashion. 
Both implementations of the static model outper­
form the C::\1-3 network with the vendor rnessage­
passiner library by one to two order,; of magni­
tude:-;. \\-ith active messages. both static networks 
are better for the static translations. but onh· the 
fast network remains better for the parametric 
ones. 

As no data conr:erning broadcasts and rPduc­
tions were available to the authors. we had to limit 
our numerical comparisons to the tran:-;lation 
case. l\'evertheless. we must ,;tress the following: 
for the CM-3. hroadca~ts and reduction,.; use the 
control network: as it i:-; a usual binary tree [20 j. 
no muhioperations are allowed. Thu,;. ewn if 
multioperations incur high penalization in our 
modeL this may be lower than pure sequentializa­
tion. 
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Table 6. Performance for Static and Dynamic Routing 

C\1-3 Static 

c:mm Actin' \Ies,;af!C>' Equal Bandwidth Fast Network 

I\ctwork rm (MByte/s) 10 
parameters s (p,s) 97 

Static T 93 
translation L 1/2 (Byte) 970 

Parametric T 93 
translation L 1/2 970 

6 CONCLUSION 

The key idea of the static model is to adapt the 
IUSC principle to communications. i.e ... to be op­
timal on the most frequent cases and correct on 
the others. Both the experimental results and the 
gross performance evaluations developed in this 
article show that the static model provides a sig­
nificant speedup over dynamic routing. However. 
these figures isolate the network behavior. 
whereas the static model has consequences in 
other parts of a parallel architecture. With syn­
chronous communications. all the processors 
have to be synchronized at eaeh network cycle, 
'fhis synchronization may he realized either by 
synchronization barriers or by a dedicated proces­
sor architecture. Synchronization barriers are the 
simplest solution, but may create overhead, be­
cause they preclude efficient network pipelining. 
For the second solution, the supersealar design 
and complex memory hiPrarchy of n~cent micro­
processor architectures create many pipeline haz­
ards. As adjusting the instruction threads by the 
compiler may be impossible, a VLIW -style archi­
tecture is recommended, 

More generally, the current situation in parallel 
architectures is unbalanced. :Vlany detailed stud­
ies arc available about the performance of the 
processor's different parts (functional units. 
caches. . , . ). However, experimental data about 
communications are sparse. and, except in a very 
few cases, ntainly cnncPrn simple and synthetic 
situations. Our future research in this area will 
gather other experimental data about applica­
tions: in particular, the development of HPF to 

provide richer semantics than previous paralld 
Fortran and better communication statistics. In 
addition. we want to investigate the possible soft­
ening of the static modeL e.g., using synchronous 
on-line routing in multistage networks would allow 
the direct execution of a set of dvnan1ie communi­
cations. 
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