
A Static Approach for Compiling
Communications in Parallel Scientific
Programs

DAMIEN GAUTIER DE LAHAUT AND CECILE GERMAIN

LRI CNRS-Universite Paris-Sud, LRI Bat 490, 91405 ORSAY CEDEX, Paris, France; e-mail: {gautier, cecile}@lrifr

ABSTRACT

On most massively parallel architectures, the actual communication performance re­
mains much less than the hardware capabilities. The main reason for this difference lies
in the dynamic routing, because the software mechanisms for managing the routing
represent a large overhead. This article presents experimental studies on benchmark
programs concerning scientific computing; the results show that most communication
patterns in application programs are predictable at compile-time. An execution model
is proposed that utilizes this knowledge such that predictable communications are di­
rectly compiled and dynamic communications are emulated by scheduling an appropri­
ate set of compiled communications. The performance of the model is evaluated, show­
ing that performance is better in static cases and gracefully degrades with the growing
complexity and dynamic aspect of the communication patterns. © 1995 by John Wiley &

Sons, Inc.

1 INTRODUCTION

Parallel architectures suffer from a recurrent
problem. which is the large gap between peak and
actual performance. Despite the progress in hard­
ware and software, most recent experimental
studies [1. 6, 241 show that the actual perfor­
mance usually remains below the peak. One major
cause of this sobering fact is the data transfer and
especially the interconnection network. For in­
stance, recent studies [6, 11] show that the best
performance figures are achieved by programs

Received September 1994
Revised February 1995

© 1995 by John Wiley & Sons. Inc.
Scientific Programming, \'ol. 4. pp. 291-:W.') (199.";)
CCC 1058-9244/95/040291-15

that have the lowest remote data access to float­
ing-point operations ratio.

Although communication seems to be the bot­
tleneck for parallel architectures. not much is
known about the characteristics of the communi­
cations used by parallel programs. The first objec­
tive of this article is to give some experimental
results about the statistical distribution of the
communication patterns. The communications
that are known at compile-time will be called
static and those that can only be determined at
run-time will be called dynamic. To obtain satis­
factory statistics, a significant benchmark set has
been studied: this set amounts to around 25.000
lines of code written in various dialects of parallel
Fortran. The set is composed of two parts: The
first is a set of scientific parallel codes, partially
handwritten and partially generated by automatic
parallelization; the second is a subset of library

292 GACTIER DE LAHACT A'-'D GERvlAI"

routines from LAPACK. The dynamic (run-time)
occurrences of both static and dynamic communi­
cation schemes have been gathered. The main
result is that static communications are nearly ex­
clusive in parallelized code,; and dominant in uo;er
programs, whereas the situation is much more
complex in library routines.

\Ve are interested in this taxonomy (static/ dy­
namic) not for classification purposes but because
a considerable speedup in parallel computations
can be achieved by a careful exploitation of the
compile-time information about static communi­
cations. In fact.. a parallel execution model where
the communications are computed at compile­
time can achieve the hardware's raw performance
for the moo;t frequently used static communication
schemes. This contrasts with the actual communi­
cation perforn1ance of most parallel architecture,;.
which is dominated by the communication proto­
col overhead. However. the m·erall speedup must
take into account the contribution,.; of all com­
munication types .. both static and dynamic (Am­
dahl's law). The task is then to assess the penalty
of compiling the dynamic communications. This
is verT difficult. hecausP manv factor,; arP in-. .
volved .. and it is almost impossible to quantify
thPir respective impact,; and interactions.]\ever­
theless. meaningful results can be derived by eval­
uating. for broad classPs of communication
scheme,;. the speedup achievPd on each elm;,.; by
the static execution model. As a testbed. WP com­
part' the C~l-:J communication figures with tlw
expected performance of the static model. Th(•
speedup is significant. even in the dynamic ca,.;e.

The rest of this article i,c.; organizPd as follows.
The first ,c.;ection discu>i>it'S dynamic routing. the
basic conununication nwchanisn1 of almost all
parallel architectures. and the background of
compiled communications. The second section
presents a classification of cornrnunication
schemes. The third section is devoted to the ex­
periments. methodolo~;y .. and results. Finally. we
assess the cost of emulating dynamic communica­
tions in the static model and present the expected
perforn1ance.

2 BACKGROUND

2.1 Dynamic Routing

Almost all massively parallel architectures use
asynchronous dynamic routing, which mean,; that
the routing circuits in each network node deter­
mine the path of each message at run-time. This
requires extra hardware (the routing circuits) and

network bandwidth (the address header carried bv
each message). The routing is asynchronous in the
sense that the latency of the messages depends on
the network load, thus is unknown: a processor/
network interface is necessary to synchronize the
message and the computing threads. The over­
head of this interface is large: For instance .. it costs
more than 90% of the latency of the Paragon ma­
chine [13], and it is from 3 to 90 J..tS for the CYI-5
[20, 23].

One could expect that, for large data transfers.
this overhead would ultimately vanish. In fact. a
significant part of the effort in practical parallel
programming is careful data organization in order
to pack the data such that the transfers are of the
appropriate size; a lot of research is devoted to
sophisticated compilation techniques. such as
message vectorization. with the same goal [28].
However.. the startup penalty is so high that Pffec­
tive use of the network is extremelY difficult. For
instance .. to use half of the peak bandwidth of the
network. the message size mu,;t be more than 1
kilobvte for thP G\f -5: to reach full usc of the
bandwidth. the messagp size must be more than 8
kilobyte [61.

Yloreover. parallel sciPntific program,.; arP
highly synchronous. becau:oe communications
come from parallel array statPments: in general.
consecutive cornmunications must proceed only
in lockstep fashion. Thus, the major opportunity
to enlarge the message size comes from virlualiza­
tion. ln a data-parallellanguage. the parallelism is
not limited: For instance. the FORALL instruc­
tion has the semantics of evaluating first the
righthand side of an assignment. then performing
the assignment. However. the available parallel­
ism on a particular computer is clearly limited by
the number of proceo;sors. To take into account
the limitation of the actual parallel computer.. the
unlimited parallelism of the source code is folded
on the limited parallel computer by automa­
tic or user-defined distributions such as cvclic.
block, or block-cyclic. This is virtualization.
For instance, consider the parallel assignment
Forall (i = 0: 14) a(i) = b(i + 1) on a four-proces­
sor machine. Each processor has to iterate se­
quentially over its own piece of arrays a and b to
exchange data and compute. In particular.. each
processor sends to another one from three to four
array elements; sending one piece of data by mes­
sage is highly inefficient: aggregating data to be
sent to one processor in one message is known as
message vectorization [16]. However. message
vectorization is limited by the virtualization ratio
(roughly speaking, the ratio between the size of a

FORALL index set and the machine size). A high
startup penalty limits the efficiency of massively
parallel architecturt>s on huge problt>ms. This
overhead can be greatly reduced if analyzing the
communications at compile-time provides some
knowledge of the communication behavior at run­
time. The hardware design and software tools that
provide efficient means to use this knowledge have
been developed in the PT AH project. They are
beyond the scope of this article: the architecture is
described in [4] and the principles of the compiler
in [10].

The results presented in this article indicate
that. at least in scientific programs. a large part of
the communications can be determined from
analvsis of source code. :VIoreoyer. almost all other
programs proyide information that can be used to
limit the communications overhead. ln fact. the
idea that a lot of communication patterns in scien­
tific programs can be determined at compile-time
is the cornerstone of vectorizers and automatic
parallelizers. In the following sections .. we con­
sider a number of parallel programs, and quantify
this idea.

2.2 Compiled Communications

In the static execution modeL all the parameters
of the communications are computed at compile­
time. This model has been exemplified in the IB:VI
GF11 [171. in the iWarp ConSet [2.5]. and by the
Communication Compiler of TMC CM-2 [7]. The
model assumes an off-line routed network. Off­
line means that the message paths are computed
in the back-end compiler, by a "communication
generator" that is an equivalent for communica­
tion of the code generator for computation. All the
physical parameters of a communication are then
computed at compile-time. At run-time. the
switch settings are simply scheduled under pro­
gram control. This is opposite to the on-line rout­
ing model, where the message paths are deter­
mined at run-time, the network routing circuits
acting on the addresses as an interpreter. The
compilation problem is to embed the communica­
tion graph into the physical network.

Off-line routing improves the network through­
put, by removing the overhead of address headers
encapsulated within each message. As no more
routing decisions have to be made, the latency can
ultimately be reduced to the hardware propaga­
tion delay. Finally, shifting the routing task from
run-time to compile-time allows more complex
routing algorithms, resulting in better resource
(links and buffers) utilization. Theoretical studies

P \R\LLEL ::-;ciL\TIFIC PROCK.\~!::-; 293

[15 .. 21.. 22] show that. for somP interconnection
networks. off-line routing is feasible in the sen,.;e
that the off-line routing algorithm has acceptable
complexity. and may be asymptotically optimal
[19]. The practical experiment,.; on the C\I-2 [7!
show that a one order of magnitude ;-;peedup can
be achieved by off-line routing on the hypercube.
without anv additional hardware: the simulated
annealing algorithm provides global optimization
of the link allocation.

Off-line routing suppo,.;es that the communica­
tion generator may be fed with the communication
graph. which has been constructed by the com­
piler. This issue is beyond the scope of thi:-; article:
however. recent research in the message-passing
framework [14, 28], and in the static framework
[101 provides techniques to tackle this issue.
:Moreover, these techniques remove the potential
drawback of the first experiments on the C\1-2.
which was the long compilation time: As a formal
description of the graph can he exhibited, the
complexity of the off-line routing process can be
simplified in many cases.

3 COMMUNICATION PATTERNS

As our benchmarks are written in data parallel
Fortran (C:Vl Fortran, Fortran 90. high-rwrfor­
mance Fortran [HPFJ), the following discussion
uses an HPF syntax. However.. this only exempli­
fies the main data-parallel communication fea­
ture: The communications are implicit. derived
from operations on parallel data structures (arrays
in Fortran). ln HPF, parallel data operations
come from, either FORALL loops or array nota­
tions, or Intrinsics that summarize multiple paral­
lel data operations. As each of these structures
involves parallel array references. our taxonomy
begins with a classification of parallel references.

3.1 Parallel References

A typical parallel construct is a nest of FORALL
loops as illustrated next:

Forall (i 1 = a1 b1

For all (iz a2

Forall Un an bn Cn)

A(e1 , e 2 , ... , en] = F(B[f1, f2,
.. · , fnJ, · · ·)

endforall
endforall

endforall

294 GAL TIER DE LAHAL T A"D (;ER.\IAL\

where ak and bk may depend on it for l < k. For
shorL it can be summarized in the following
pseudosyntax:

Forall I in :5'
A[f(I)] = F(B[g(I)], ...)

endforall

where I is the vector of parallel indices (i1 ,

i2, in)· :5' is the convex polyhedron (see ex­
ample below) defining the loop bounds, A and B
are two arrays, and finally. A l/(1)] and B[g(IJJ are
two parallel reference:,;.

A typical parallel reference is a reference to an
m-dimensional arrav A. in a ne:ot of n FORALL
loops: A[e1. e2, . .. , en,L where e, are functions
of the FORALL subscripts (another syntax is the
parallel array reference A[u 1 : b 1 : c 1 •...• an,:
bm : c 111], which can be expressed with a FORALL
syntax). Analytical analysis can be performed at
compile-time only if the e1 are affine in the
FORALL subscripts, with integer coefficients. i.e ..

n

ei = 2.a1JIJ + b1 .
j~l

An affine reference can be written A [JJI + C].
where JJ is a m X n integer matrix and L' a vector
in Z"'. ~·e give an example from Jacobi's method
for the Laplace solver:

Forall (i=2:9,j=2:9)
A (i, j) =(A (i-1, j) +A (i+l, j) +A (i, j-1)

+A(i,j+l)) *0. 25
endforall

Here. there are five parallel reference:,; to A (1 store
and 4 fetches): the first one ~4(i - 1. j)) may be
expressed with:

:'v/=(6 ~).c

:5'=

Affine references where J/ and l · onlv include
numerical constants are called static and non­
static affine references are called parametric. For
example the parallel reference A(i- 1.j) i:o static.
whereas a reference such as A (i + k. j) will be
parametric if k is a variable which is not a

FORALL index, as in the following assignment:

do k ...
Forall i

.. . =A(i + k)

This scheme is dominant in LAPACK routine:,;.
ln fact. a finer classification would be possible:

If the vector C is a scalar variable .. the reference
can occasionally be determined at compile-time:
for instance, if U linearly depends on sequential
loop subscripts, as in the previous example. How­
ever. using this information in the static execution
model would require the unrolling of the sequen­
tial loop to compute the communication patterns.
As the sequential index set is almost always too
large to allow this optimization. there is no point in
using a finer classification.

In our benchmarks. nonlinear references were
represented by gather and scatter operations.
where the array subscripts are themselves arrav
elements: the generic form being A [L l /]].

3.2 FORALL Communications

In the typical parallel instruction

Forall I in :5'
A[f(I)) = B[g(I)] + ...

endforall

the assignment creates corr1n1unication patterns
where. for each/, the source is the processor own­
ing the reference B [g(I)]. and the destination is the
processor owning the reference A [f(l)]. The pat­
terns depend on the computation location rule
and on the mapping. We consider the Owner
Computes Rule, which is used by most existing
parallel compilers and assumed by many re­
searchers in this field: it means that the comput­
ing processor is the destination processor. The
mapping between arrays is created by the ALIGN
directives. If an array is compressed along one di­
mension, the corresponding FORALL subscript
must not be considered for classification because
it is not a parallel dimension. For instance, if A is
of dimension 2 and compressed along its second
dimension. then A (i. j) is located on the same pro­
cessor as A(i, 0). \Vith these assumptions, a com­
munication occurs for each array in the righthand
side of the parallel assignmenL if combining the
mapping and the Owner Computes Rule does not
result in an intraprocessor assignment. The com­
munication is labeled by the worse case of the two

references, e.g .. left and right member affine static
will re,.;ult in a static communication. but a one­
member nonaffine will result in a nonaffine com­
munication and so on.

A typical usE' of thE' FORALL notation is to dt'­
scribt' partial permutations of thE' index ,;et. Al­
though the FORA.LL ,;yntax does not fJrt'cludt'
more complex schenws. dficient programmin;r
would encapsulate such patterns in intrin,.;ic,; to
take advanta;re of dw global communication ft'a­
tures of the target architecturP.

3.3 Intrinsic Communications

In data-parallel Fortran lan;ruages. complex data
transfers can be described by special functions
that are part of intrinsics. The most important
communication intrin,;ics implement multireduc­
tion (multiple many-to-one communication).
multibroadcast (multiple one-to-many). special
permutations. and gather/ scatter operations.

The reduction intrinsics art' SUM. ALL. ANY.
MAXVAL .. MINVAL. MAXLOC. MINLOC. Tlwy com­
pute tlw result of applying an associati\e operator
to all the clements of their array argument. ThP
respectiYe operators are sum. logical and. logical
or. max. min: :\IAXLOC !resp. \11'\LOC': returns
the location of thP maximal lresp. minimal! yaJup.
The reduction intrin,.;ics have three panuneters:
for instance. SUM (ARRAY, DIM, MASK) adds the
elements of ARRAY along the dimen,.;ion DIM. se­
lecting the PlPmPnts dPscrilwd by MASK. \\. e con­
sidt'red that a reduction intrinsic is static as soon
as the ARRAY parameter is a static reference and
the DIM parmneter is a constant: Tlw unit ele­
ment of the operator \e.g .. 0 or 0.0 for a SUM. or
IEEE -x for a floating-point MINVAL; can replace
the masked rPferences. and this local te,.;t can be
done at run-tirne.

The intrinsic SPREAD allow,; hroadca,.;ts and
segmented broadcasts: An n-dinwnsional array is
replicated to create an 11 + 1 dimen,;ional one.
The syntax is SPREAD (SOURCE, DIM, NCOP­

IES) : to cornpute tht> conHnunication schenw at
compile-time. the SOURCE parameter mu,;t be a
static reference and DIM n1ust lw a constant :in
this case. the pattern is considered as static). In
the following. we call broadcast a one-to-many
pattern, multibroadcast a segmented broadcast.
reduction a reduction that result,; in a :-;calar. and
multirt'duction a segmented reduction.

Examples of special permutations intrinsics are
the cvclic and nonc,clic SHIFTS and TRANSPOSE. . .
All these intrinsic;; :-;ummarize a FORALL per-

P \KALLEL SUE'\TIFIC PHOCKA\IS 295

mutation and require the same analy,;is. \lore
complex intrinsics. such as MATMUL and DOT­
PRODUCT. are intended to allow an optimal imple­
mentation of basic lirwar algebra opPrators. These
intrinsics will be considered as static if their pa­
rarneters are static or scalar constants.

4 EXPERIMENTAL RESULTS

4.1 The Benchmark Set

Three benchmark sets haYe !wen analyzPd (TahiP
1). The first. called :\PAC in the following. is the
applications benchmark SE't for Fortran D and
HPF of the :\orthea,;t Parallel Architecture Center
at Syracu,;e L;nin~rsity [:2.) j. It includp,; <'omplPte
applications and matlwmatical packagps for
dense linear al;rebra. Some applications hm P t\n>
different versions: the Cluster Spin and Hn i,.;ed
Simplt'x haYe been rede,;igned for paralkli,-m.
whereas the ConYPntional Spin and Simplex are
the straightforward parallt>l n~rsion,; of tilt' wPII­
known sequential benchmarks. The ,.,econd set.
called PRE .. is composed of outputs of ti1P auto­
matic parallelizt'r YAST 90 of Pacific Sierra He­
search \Yith some handcoded parts. PRE ha,.; I wen
assemblt'd by J. K. Prentice from ()uctzal C:ompu­
tational Associates [:26,. The third is a lwncll!lwrk
from lniititut Fran<;ais du Perrole :lFP:. \\ e have
rewritten it as an llPF Yt'rsion and YalidatPd b\
IFP. The clas,.;ification of tlw lwnchmarks in three
categories (kernel. application. and algorithm,;;
follows the approach used in [2:.

Apart from dw limitations of any lwnchrnark
set compared with real applications. this bench­
mark set rnay be considered a,.; representati\t_' of
dense computations. 1\o sparse code is included
for tlw following reason: Although the prcscnt
state of the art in al;rorithms for sparst' computa­
tions indeed favors <h-namic data :'itructures and
communications. the situation is quickly C\ olving.
Recent work r:J" focuses on the dynamic to ,.,tatic
transformation: hence statistics in thi,; fiPid mm
not be significant at tl1E' pre,;ent time.

4.2 Methodology

The tool used for analysis is a parser built from the
Tiny tool ,.;et [29:: it consists of an intraproccdural
constant propagation package and a program for
autornatic reference analn;i,; ba,.;ed on tilt' ab­
stract syntactic repre,.;entation that WP deYeloped.
The output of these tools is a characterization of

296 GALTIER DE LAHALT A:'\D GER\L\I:'\

Table 1. The Analyzed Benchmarks

Rt>ndnnark
Set

:\'PAC

PRE

IFP

:'\arne

PI IYSICS Conventional Spin
PHYSICS Cluster Spin
\'\' eather climate
LAPACK Block-QR
LAPACK Block-Cholesh
LAPACK Block-LL
2D-FFT
Laplace Solver
Gaussian Elimination
:\'bodv
Simplex
Revised Simplex
Livermore Fortran Kcrnt>l
Gas Dnwmics
Kepler
IFP

Size
in lines

lJT~

-~::>6

1 "S:3
1:380
:)16

2329
201
2h"?

90
H9
62:3
:):)6

612-J:
2:30-:'

:2":'6
3-t-:'

each reference and intrinsic in the source COflf'.

following the classification of Section 2. :\1~xt we
evaluated the dynamic (run-time) frequencies of
each communication type by manual examination
of the code.

4.3 Results

Tables 2 to 5 present the statistics. Tables 2 and 4

give the formal expression as a function of the
parameters, respectively. for static and dynamir
communication patterns:. Tables ;:3 and 5 give the
numerical percentage of the total communication
patterns. The first column is the benchmark

Table 2. Formal Expression of Statie Communications

:\utornatic
Parallelization Languatre Catt•uorv r .

:'\r) C\1 Fortran .\pplication
:'\n C\l Fortran Application
:'\o C\1 Fortran Application
:\o C\1 Fortran Algorithm
:'\o C\1 Fortran Algorithm
:\o CM Fortran Algorithm
:\o C.\[Fortran Alw>rithm
:\o C\[Fortran Application
:\o C\1 Fortran Al;:oritlnn
'\o C.\1 Fonran Appli,·ation
:\o C\1 Fortran Appliration
:\o C.\1 Fortran .\pplieation
Yes Fortran 90 Kenwl
Yt>s Fortran 90 Application
:\o Fortran <)() Application
:\o IIPF .\ppli('ation

name. The column labeled '·Loop Parameters"' in
Tables 2 and 4 is the name of the program param­
eters that are used as sequential loops subscripts.
For instance .. Cluster Spin shows three nested se­
quential loops: the indices are Jf .. the number of
measures. and I and J. which are internal to the
algorithm. The numbers in parentheses are the
parameter values used for Tables 3 and 5. if nec­
essary: most of them were indicated by the ben­
chmark. The following columns give the total
number of occurrences of each communication
scheme, for a complete execution of the ben­
chmark: the column labeled .. Affine and Cyclic''
describes affine communications (all these com-

Benehwark Loop ParamPter~ .\flint• and Cw·li<· Broadc<ht Heduction ::C:Jwcial

ClustPr Spin
Conventional Spin
\\'eather Climatt'
L\PACK hlock-(lH
LA.PACK block-<:holesky
L:\P\CK block-Ll.
2D-FFT
Laplace Soher
(;nussjan ElituinatJon
:\bodv
Simplex
Revised Sirnplex
Liverwore Fortran Kemel
Gas Dyruunies
Keplt>r
IFP

'\! 10(), I' 10. J ~:WO
'\I .1 00 . I 101
I ;?>•
:\ ' 1000/. :\'B :(H ·

:\ 10001. :\B 16-t
:\ 1 000 •. '<B :6-1:

" :S12i
I (1000i

" <25.))
I 1000)
I 10001

I i1 0001
I 21:
I (10000'
T :::Jb:SOOOI
:\ ·.-t0001

\1<:2 + :)] + :nJ. \!1 + 21 + 1.1•
2\1 -tl + 1' 2\1
6:261 + ;)()() 8001 + 200 -tO::ll + 100 <JI

.. t:\/\B + " :2:\ 2:\/'\B + "\

-tl
2:\
1 ;){ +]()

J + 2
21 2I .)! + 1
2-tl ()I 21
161 :SI

6T
.39:\ 2

PARALLEL SCIE'\TlFIC PROGRA:\IS 297

Table :3. Static Communications as a Percentage of the Total Communications

Benchmark Affine and Cn:lic Broadca~t Reduction Special Total ,.;tatic

Cluster Spin 33.4
Conventional Spin 97.6
Weather Climate :24.2
LAPACK block-QR 0.0
LAPACK bloek-Choleskv 0.0
LAPACK block-LC 0.0
2D-FFT 0.0
Laplace Solver 80.0
Gaussian Elimination SO.O
l'body 100.0
Simplex 0.0
Revised Simplex 12 .. '1
LiYennore Fortran Kernel 52.2
Gas Dynamics 64.0
Kepler 0.0
IFP 100.0

munications are translations .. apart of LAPACK
block-QR where the scheme is a matrix trans­
pose): the "Broadcast" and "Reduction"
colurnns are, in generaL multibroadcast;; and
multireductions: the column "Special" gathers all
the instances of the intrinsics MATMUL and DOT­
PRODUCT and, for the \\~eather Climate ben­
chmark, calls to the fast Fourier transfom (FFT)
library routine. The column "Total" in Tables 3
and 5 is the partial total of each broad class, static
and dynamic.

Most of the application benchmarks have a
high percentage of static communications. the ex­
ceptions being Cluster Spin and Simplex. How-

Table 4. Formal Expression of U~·namic Communications

Benchmark

Cluster Spin
Comentional Spin
W'eather Climaw
LAPACK block-()R
LAPACK bloek-Cholcsh
LAPACK hlock-LU
2D-FFT
Laplace Soh-er
Gau;;sian Elimination
l\bodv
Simplex
Revised Simplex
Livermore F onran Kernel
Gas Dynamics
Kepler
IFP

Loop Parameter;;

:\1 (Hl01 I (10i. .J 12001
\1 tHJO, l (10·
I (5

.\l(lOOOJ.\B 6"+!
id
id
.\1 (.S12)
I :1000;
.\ :z:;.;,
I 1 0001
I (1000)
I (1000>
I :21,
I (100001
T (36.)000!
:\ (4000)

2200
8.\/.\B + -t\
\/'<B
4.\1 + 2.\/.\B
log2.\ + 1

.\

0.0 16.8 0.0 :J0.2
0.0 :2.4 0.0 100.0

29.() 14.9 ().;3 69.0
17.8 0.0 18.""' :36.S
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 20.0 0.0 100.0
0.0 0.0 0.0 50.0
0.0 0.0 0.0 100.0

11 . 1 11.2 0.0 2:2.:3
12.:J ;~ 1 .:.~ 0.0 56.:3
0.0 19.6 "! .:3 76.1

20.0 0.0 0.0 8"!. ()
0.0 0.0 100.0 100.0
0.0 0.0 0.0 100.0

ever, these benchmarks are particular implPmen­
tations of an application and have another version
(Conventional Spin and Revised Simplex). which
is much better for the static model. The IFP
benchmark is especially interesting: From the se­
quential version, it was possible and even easy to
write a fully static HPF version of the benchmark,
without any change in the initial algorithm.

The category Algorithms presents much more
diverse results: 50% static communications for
the l\'o-Bloek Gaussian Elimination. but oo;;, for
LAPACK block-LC. The reason is that in the LA­
PACK subset, the applications are matrix decom­
position. but the implementations are block algo-

2200

21
21

Paramt·tric

Hcductiou

.\

21
I
21

~pecial

;)"\

2.\/.\B
2'< + .\/l\B

."1\11.1

I + 1
I+ 1
21
il

298 CAtTIER DE LAHACT A:\'D GER\1Al:\'

Table 5. Dynamic Communications as a Percentage of the Total Communi£~atinns

ParametriC'

Benchmark Affiuc and Cvclic Broadcast Heduction Gather Scatlt'r Total

Clu~ter Spin 0.0 0.0
Conventional Spin 0.0 0.0
\Veather Climate 15.5 15.:)
LAPACK block-QH 36.8 0.0
LAPACK block-Cholcsky 0.4 98.8
LAPACK block-Lt 10.8 <i1.9
2D-FFT 100.0 0.0
Laplace Solver 0.0 0.0
Gaussian Elimination 2:J.O 0.0
:\'body 0.0 0.0
Simplex :3:3.:3 11.1
Revised Simplex 1S.8 12.5
Liv('rmore Fortran Kernel 10.9
Gas Dvnamics 0.0
Kepler 0.0
IFP 0.0

rithms. As stated in [25], the target architectures
were multiple instruction multiple data (~lL\JD)

shared memory, and blockiag increases perfor­
mance in this ease by reducing memory traffic.
The 0.-o-Biock version of the IT decomposition
(the routine SGETF2) is fully parametric but with
a much lower conununication count: 2:\" paramet­
ric MATMUL and N parametric translations. Ho'w­
ever, the applications are inherently dynamic, be­
cause they are sequential in either the rows or the
columns of the basic matrix. A typical communi­
cation is

MATMUL (A(J:N, 1:J-1), A(1:J-1, J)),

where J is a sequential index. As .I ranges on·r the
matrix linear size .. no loop unrolling may be con­
sidered. On the other hand, although the 2D FFT
seems fully parametric. this is mostly an imple­
mentation artefact: The communication patterns
of a FFT are the folding onto the processor set of
the well-known butterf1ies. and are known at eom­
pile-timt>. at least if the array argument of the FFT
is static.

S PERFORMANCE EVALUATIONS

The previous results indicate that the static com­
munications are frequent enough to dec;erve spe­
cific optimizations. such as the static execution
model. However, Amdahl's law requires a com-

4.3
0.0
0.0
0.0

0.0 0.0 <i9.R 49.8
0.0 0.0 0.0 0.0
0.0 0.0 0.0 31.0
0.0 26.? 0.0 6:3.5
0.0 O.R 0.0 100.0

<il.9 .5.'-l: 0.0 100.0
0.0 0.0 0.0 100.0
0.0 0.0 0.0 0.0

2;) 0 0.0 0.1 ;)0.1
0.0 0.0 0.0 0.0

22.2 0.0 11.1 _,,..., (

6.2 0.0 6.2 4:3.:
4.:3 0.0 4.:3 2:l.S
0.0 0.0 16.0 16.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

parison with the speedup expected from these op­
timizations, and the penalty when executing dy­
namic cOininunications. This evaluation needs to
take into account details of the hardware and soft­
ware underlying the static execution model. The
basic assumptions are the following:

1. The overall architecture is distributed mem­
ory .\11.\ID, with P processors.

2. The network is strictly synchronous and
controlled in a lockstep fashion. ln some
sense. this is the single-program multiple
data (SP.YlD) execution m<H.leL but us an as­
sumption at the hardware level.

3. For each communication. the data incom­
ing from each processor has fixed size.

4. The routing is ofT-line, which means that
the routing switches do not proeess at all.
They only orientate the messages according
to a configuration giyen hy the processors
before sending the whole data set. The con­
figuration of the switches for one data set is
called a communication pattern. All the
useful pattern,; (that the net\\'ork can use in
a run) are compiled,

5. The network can realize any permutation in
constant time. This time is the basic unit of
the network operations. and is called an ele­
menta~· step in the following.

Among general-purpose commercial parallel ma­
chines, none has an interconnection network with
these properties. However.. such a network has

been successfully built for the GF1 L a research
prototype of IB:\1. The iWarp network may be
used in this mannec although the fact that it is
primarily intended for message passing raises the
cost in time of its static use: many research stu(i­
ies, especially in the field of optical interconnec­
tion networks, consider off-line routed networks
[27]. For an in-depth pre::;entation of such net­
works. see [5, 9, 17].

w· e must stress that. as the network cannot do
any on-line routing .. dynamic patterns have to be
emulated by a sequence of static (i.e., compile­
time computed) patterns. The size of such a se­
quence is the emulation cost of dynamic com­
munications.

In the following. we assume that the shape of
the processor set matches exactly the shape of the
arrays. and that each processor owns only one da­
tum, which has the prescribed size. The issues of
generating code for cyclically or block-cyclically
distributed arrays have been successfully treated
in the PTAH compiler and are not described here.
The impact of virtualization on performance will
be outlined in a later section.

5.1 Permutations

\V e first consider the simplest parameter penn uta­
tions (shifts, cyclic shifts, transpositions) and
study the ease of gather/ scatter operations later.

Parametric Shihs

A one-dimensional parametric shift nun' be de­
fined by three parameters: the domain hounds
and the value of the shift. The following example
shows a parametric Fhift where the domain i;-; lim­
ited by s and f and the shift value is k.

For all (i = s: f) A. (i) = B (i+k)

To cope with the domain parameters. the corn­
mllnication pattern is extended to all proces:'lors
(using a temporary array) and the final store is
conditioned by the membership to the domain.
'Vithout virtualization.. the prt>vious code be­
conles:

Forall (i 0: P-1) Temp(i) =B(i+k)

Forall (i 0: P-1)
Where (s <= i and i <= f)

A (i) =Temp (i)
endwhere

endforall

PARALLEL SCIE.\TIFIC PHOGRA\IS 299

l'\ow, parametric shifts depend only on one pa­
rameter, the value of the shift. It is possible to
define all the communication patterns corn:­
sponding to all the shifts inside the processor set.
and to use k (or k mod Pin the case of virtualiza­
tion) to select at run-time the appropriate com­
munication pattern. However. each pattern bas a
significant storage cost; for instance O(P log P)
bits for a Benes network, leading to O(P2 log P) for
the P possible shifts (log means log2). A reason­
able solution is to use only power of two shifts, and
to emulate the k-shift by the following procedure:

PARAMETRIC_SHIFT(V,a,s,f)
do i=l: P

if ((a. AND. i) = 1)

SHIFT(V, i, s, f)
i = i*2

en do

where Vis the array to be shiftecL P the number of
processors, s and f the limits of the domain of r·. u
is the value of the shift. and !LVD is bitwi,;e. In this
ease,. the actual value of u will he k. or k mod P if
virtualization occurs. Thus. the emulation eosL
which is the number of patterns to be scheduled,
is log P.

For multidimensional shifts like A (i. j) = B(i +
k1 , j + k2) where A and B are matrices. the same
method holds, except that we have to define the
input paran1eter a as a vector. A;.,sui:ning that the
n-dimensional processor geometry (two-dimen­
sional in this example) is linearly mapped to a
numbering of the processor set, in row (or column)
major order, the (a 1 , a:2) vector ::;hift ultimately
produces a shift with value pa 1 + a 2 , where p is
the extent of the processor geometry in the first
dimension.

Parametric cydie shifts are split into two shifts.
the modulo part and the nonmodulo part. A
priori. 2 log P steps are needed but as we can
interleave the two patterns. the number is only log
P steps.

Parametric Transpositions

The general form is

Forall (i=sl:fl, j=s2:f2)
A (i, j) =B (j, i)

endforall

The only parameter required is the domain of
the transpo:-;ition. One solution is first to do a
parametric shift of B so that B(sL s2) goes to

300 GACTIER DE LAHACT A.'\D GER\1AL'\

(0, 0). This can be done in log P steps. The result
of this first shift is stored in a temporary array.
Then the transposition of the temporary array
takes only one step. Finally. the result is stored in
A with a parametric shift. The whole operation
takes 2/ogP + 1 steps.

Gather and Scatter Operations

These are the most difficult communications for
the static paradigm. The data referenced are in an
array dynamically computed. The scatter opera­
tion sorts an array B according to indice;; L:

Forall i ...
A(L(i))=B(i)

And the gather operation is:

Forall i ...
A(i)=B(L(i))

A parallel gather operation makes sense only if
the mapping of the index set onto itself is a one­
to-one operation. Let array K be defined by
K(L(i)) = i: the gather operation may be written as
the scatter operation: A(K(i;) B(i). Building Kat
run-time requires one gather operation. From
this, a gather operation is amenable to two scatter
operations.

Lsually the gather operation i,.; used to pack an
array into a smaller one, whereas the scatter oper­
ation expands an array. W"e assume first that the
arravs have the same size and that there i,.; no
conflict while reading or storing elements. \Ve
study later array size differences and conflict,;.

To emulate dynamic routing, the key idea [18]
is to sort the destination addresses of the data to
be routed. The sorting algorithm uses the princi­
ple of the odd-even merge sorting network. Figure
1 shows this principle where the list L is to be
sorted: if the message follows the number of the
receiver, the network realizes the scatter operation
communication A (L(i)) = B(i). At each stage of the
sorting network, crossing links symbolize compar­
ison of two values and perhaps their exchange.

As the switches do not have any logic, the net­
work cannot perform the cornparisons. ,,~e simu­
late each stage of the odd-even network hy a
crossing of our network and a comparison inside
the processors. As the links between the stages are
static, it is possible to compile each corresponding
permutation. The number of patterns to schedule
is log P(log P + 1)/2, i.e., O(log2 P).

0®···-1> 3

([)G) 5 1- <D<D

<&>CD_., I 2-00

Qi)@->-o 3 -IV®

0®->-2 4 -()@

<D<D 7 5- ([)G)

(0@->- 6-~®

<D~-4 7 -<D<V
B L Sorting Network A

FIGURE 1 Lsing an odd-even merge sortinl' network
to realize a scatter operation communication.

Consider the case where A is larger than B. In
the example. let L be equal to 3, 5. 1, 0. 4. ? . 6
and assume that the nenvork sorts the values into
the sorted list 0. L 3, 4, 5. 6, ? . but the values are
not all located at their destinations. However,
sending them to their destination is a monotone
routing problem. :Vlonotone means that the
source-to-destination map is a monotone func­
tion. We can realize monotone routing using the
greedy routing algorithm on the butterfly network.
Monotone routing of a sorted list on hypercubie
networks is conflict free [181. Figure 2 presents
the example of monotone routing in the butterfly
network. On stage k of the butterfly. the network
transmits the data according to bit k of the desti­
nation address.

msb__... lsb

000

001 <D--1

011

100

101

110

111 ®-7

o-
FIGURE 2 :\1onotone routing on a Butterflv network.

Each stage of the butterfly is emulated by one
permutation in our network and by the test of bit k
(for stage k) by the processors. The number of
permutations scheduled is O(log P). As monotone
routing is conflict free. the routing process re­
mains very simple for the processing elements (no
buffering or priority managing).

Storing conflicts are prohibited for a scatter op­
eration. but reading conflicts are possible for a
gather operation. In this case. the communica­
tions must be partially sequentialized. First, the
odd-even sorting network sorts the destinations
that can be realized without conflict. The sorted
list shows repetitions at contiguous stages. These
repetitions lead to conflicts while executing the
monotone routing. If two idemical references are
located on the Rame proceRRor. it stores one of
them in a temporary buffer and carriPs on with the
routing. then a second Rtage is started for the buf­
fered messages. After that. a second scatter oper­
ation takes place. This proeed.ure is expensh·e:
however, the rnost complex case is where a multi­
east is hidden in the gather operation. and thus
will also be expensive with any routing medm­
nism.

5.2 Broadcasts

Broadcasts and multibroadcasts have two possi­
ble origins: one-to-many gather operations and
the SPREAD intrinsic. Assume the network is a
Bend network [18". Benes networks are rear­
rangeable: Any permutation may be routed with­
out conflict. Hence. an elementary stPp is one net­
work crosRing in this particular case. However. the
results may be extended, up to a constant factor.
to any network emulating the well-known buttedly
network in a finite number of steps._ becauRe a
Bend network mav be considered as two back-to­
hack butterllv networks [13]. In particular,
Omega and Inverse Omega networks are topologi­
cally equivalent to the butterfly network.

Consider simple broadcasts; any static broad­
east ean be completed in one step and any para­
metric broadcast in log P + 1 steps. If the broad­
east source is a program scalar, the broadcast
costs nothing, because all processors own the data
(by parallel execution of the scalar code or any
other way). Thus, we need only consider the case
of broadcasting an element of a parallel array.
Any input of the Benes network is the root of a P­
leaf complete binary tree. Thus, the static broad­
cast costs one step.

A parametric broadcast cannot use the same

PARALLEL SCIE:'\TIFIC PROGH:\MS 301

technique. Even though the broadcastintr tree
does exisL the exact setting of the switdws is not
known at compile-time because the position of the
root is a program variable. The simplest means to

perform a parametric broadcast is to shift the
source to a fixed position (e.g .. processor 0) and to

use a static broadcast. Shifting data is a paramt't­
ric point-to-point communication, and has the
same cost as a parametric translation.

Significant results have been obtained about
the implementation of the most general multi­
broadcast patterns on butterfly and otlwr hyper­
cubic networks [18]. However. their implemenla­
tion in the static execution model incurs extremelv
high costs because they invoke irregular ;;eg­
mented prefix operations. Thus. the problern of
compiling multibroadcast patterns mu"t he eare­
fullv stated.

Consider the following legal HPF code:

Forall I
A(I) = B(L(I))

\Vith L non one-to-one. there are only two wayR
to compile such patterns: serializing the FORALl.,
loop,, as shown previously. or using Leighton's
general algorithm [18'. HoweveL rheo;e gather­
based multibroadeasts are extremelv rare in our
benchmarks. The reason is perhaps that a clever
user will avoid that programming ,;tyle: Recogniz­
ing the hidden broadcast may be quite difficult for
a compiler, whatever the execution model. .\Iany
architectures do offer special spreading or scan­
ning hardware. and optimal exploitation of these
features requires the broadcast to be exprt>ssed as
a SPREAD. if possible. Thus. we consider the im­
plementation of a SPREAD intrinsic.

l~sing the SPREAD intrinsic.. a ;;tatie
multispread can be completed in one step ..
whereas if parametric, it requin's 2 log P + 1
steps.

We only outline the proof. To avoid a lot of
subscripts, we consider the generic example
B = SPRE4D (A(k, a: b), DIM= L NCOPIES ==
n). The result is a two-dimensional arra\' B, with
B(i,j) A(k,j) for all i andj, 1 s i nand as
j s b.

Consider the following data distribution: Each
processor set has a virtual bidimensional p X q
geometry, with p and q integer powers of 2. p.q =
P and log p = r. Each processor has two coordi­
nates (s 1, s2) with 0 s s 1 s p - 1 and 0 s s2 s q -
1 and each reference A (i,j) is located on processor
number (i- 1,j- 1). When a processor is consid-

302 G\CTIEH DE L\IIALT /\:\D GER\L\L\

A(l,l) 0

A(l,2) 1

A(2,1) 2

A(2,2) 3

A(3, 1) 4

A(3,2) 5

A(4,1) 6

FIGUHE 3 SPREAD (A(3. 1: 2), 1, 4l. Ea('h dark
node forward~ its input to its two outpuh: dml lirw~
show tlw path,.;.

ered as a netw·ork input. its identification mlmher
is p.s 1 + s2 • \\'hen k is a constarlt. the paradif!­
rnatic :-;pread is static. The principle of tht~ mu!ti­
broadca,.;t is to tbP the IJLmerflv nPtwork when:'
staf!es 0 to r - 1 are broad('astinp: and staw·s r to

lop: P realize a direct tnmsmis:-;ion of their valtws.
Fip:ure :3 gives an example. with p = 4 and q = 2.
\\'ith Dl\l equal to 2. we would han· to corl:-iider
the n:'verse butterfly. \lore p:eneral dimensions
come under the same analysi:-;. a" it depends <Hlly
on the divi:-;ion of a proees:-;or addn:'ss into lop: p
hits for the fixed dimensions plus log q bit:-; for tlw
parallel dimension,.;.

If the dimension of an array is not a power of 2.
we embed the array in an ana y of powt~r of 2 size.
execute the multispread on the temporary array
and conditionally store the result according to dw
real size.

As the Benes network includes two back-to­
hack butterfh networks. it can emulate this action
in one su·p so that the muhibroadcast using the
SPREAD intrinsic takf's one ,;tep.

In the parametric ca:-;e. the log P factor couw:-;
from a parametric translation. \Vith yector - k
call that we compile SPREAD (A(k. a: h DI\1= 1.
:\COPIES+ n J::. Thu:-;. row k of A will he copie(l
onto the first row of B and a static spread can take
place in one stt>p. Finally .. \Ye haYe to nwve the
rt>su!t to the correct position with another para­
metric tran:-;lation requiring log P ;;teps. :\;; a re­
mark. if DI\l is a variable, we can compile the
static spread for each dimen:sion because the
number of dimen,.;ion,; is f!enerally low. \loreon'r..

if the domain of the rnultispread is nuiahle. af!ain
a global multispread can lw pt>rformed on a tem­
porary array and conditionally store the data ac­
cording to the real domain.

These figures may seem quite hif!h: however.
all the available parallelism is t:xploited. \lore­
over. for static multihroadcasts, the solution is op­
timal in the sense that there is only one stt>p. This
contrasts for instance with the C.\[-;) broadca:-;tinl!
capabilities. which are limited to one processor at
a time.

5.3 Multireduction

The (multi- ;reduction differs from tiH" (multi- .!dif­
fusion in the sense that the network ha.s to conl­

bine Yalues. Combining \·alues means that the
network switches can forward a uniquP n:':-;uh
cmnputcd frorn it:; inpws by an a:-;sociatiYe opera­
tor (sum, max). w·e can realize the static (multi­
reduction by combining butterfly with our net­
work: Each stage of the butterfly is exeeuted b~· a
crossinf! of our network and the combininp: opera­
tion is realized on the processors. Thus. the num­
ber of routinf! steps is equal to the number of
fltaf!es in the butterfly. i.e .. lof! P.

In the ease of parametric (multi- ·:reduction.
again we process a parm11etric ,;hift to move ti'w
data to a fixed position (for instance hep:inninl! at
procesflor Oj: then we apply the :-ita tic (multi-, rt>­
duetion with a conditional store and proces,.; a
parametric shift to mm·e the result to the correct
position. Thus. it take:-; :3 lop: P steps.

5.4 Special lntrinsics and Functions

We have already shown that tlw FFT with a ,.;tatie
arp:ument may he transformed into a fully "tatic
routine. Systolic alwJrithms provide fully :-;tatic im­
plementations of the linear alf.:ebra intrinsics. For
instance .. the followillf! alf!orithm rt>alize"' MAT­
MUL (MATRIX-A, MATRIX-B) :

C matrix conditioning
For all (i 1: n)

CSHIFT(MATRIX-A, DIM=2, i-1)
For all (i = 1: m)

CSHIFT(AMTRIX-B, DIM=1, i-1)
R=O

C iterative computation
do k 1, n

R R + MATRIX-A * MATRIX-B
CSHIFT(MATRIX-A, DIM=2, 1)
CSHIFT(MATRIX-B, DIM=1, 1)

end do
C the *product is a pointwise product

This alf!orithm was first designed for rt-'Wions
that are similar to our objective. i.e .. to f!et the best
performance from a f!rid network and to avoid
general communications. The grid network may.
in turn. be emulated under the general assump­
tions stated at the lwginning of this section. with
one step for each of the grid ::\E\\-S (~orth East
\\·est South: directions.

5.5 Comparison

Comparisons between theoretical studies and ac­
tual machines are both presumptuous and unre­
alistic. Thus. the following results are not in­
tended to compare what would be the execution of
any program on the C\1-.) and on a possible static
machine. \\-e consider the figures from the G\1-.")
network only as a testbed. i.e .. giving the orders of
magnitude for the performance of a recent dy­
narnic routing network.

Two pararneter,.; charactcrizP the rwrformance
of a network: Let r111 be the maximal rwtwork
bandwidth per node and s the time to transmit a
zero-sized rnesSaf!e. To an approximation. r111 de­
pends on the network bandwidth and on the
source and destination memory bandwidth. \\ ith
pipelincd cornn1unications. the latency of a data
transfer is

T = s + Llr111 • .1 .•

where Lis the data transfer size.\\ ith careful op­
timization. in the infinite data-size limit. tlw per­
formance will be limited only by the proce,;sor· s
perfornwnce if the conununication -to-computa­
tion ratio i:-; lower than 1. and by the asymptotic
network perforrnance (r11,) if this ratio is larger than
1. In fact. assuming equal bandwidth perfor­
mance .. being better on .. little .. problems is the
only advantaf!e that one model has over the other.

\\c consider two characteristic figures for this
comparison: T and L 1u. the size for which the
network reaches half of it:-; maximal bandwidth.
L 1; 2 is the communication analog of the so-called
rz 112 for vector cornputations [12:. T n1easure,; the
performance for program:-; where significant data
transfer pipelininer is not possible. The reason rna~
be a very low virtualization ratio or the peculiar
characteristics of the algorithm. For instance" a
blocked algorithm with block data distribution will
provide few comrnunications: if the communica­
tions are not overlapped with the computations.
r-t will give the actual performance in most prac­
tical cases. On the other hand. L 1u gives one esti­
mate of what would be an effective size for a prob-

P.\RALLEL ::-ICIE'..:TIFIC PROGR.\:\1::-1 303

lem if the communications dominatP the
computations. but can be arranged to exploit fully
the network bandwidth in the asymptotic limit.

.\1any different values of the C\1-3 · s perfor­
mance have been reported. \\·e consider the ex­
perimental values in [:2:31 with the vendor mes­
sage-passing library C.\1.\ID 1.:3.1. and the values
associated with the Active ::\Iessage model 18]. It
should be noted that C.\1::\lD 1.:3.1 i,.; the lowest
level f!eneral-purpose communication library and
may be considered as assembly-le\el program­
filing. The results are based on permutation com­
munications.

For the static network. we wanted to asse,.;,.; two
speedups separately. The first comes from the
static execution model. a,.;stuning off-the-shelf
technolOf..'Y for the network design. The second
comes from the fact that a network intended for
this model can be desif!ned with a more aggressiw
technology than a message-passing network. be­
cause its functionalities are simpler. Hence. \\T
consider two cases: equal bandwidth perforrnance
and the network we are currently designing l-1:
(fast network in the following). For the equal
bandwidth network. we han~ to assess raw hard­
ware latency for a ;) 12-processor machine. for
which the figures of the C::\1-.") cannot he used be­
cause they involve the routing delay. \\ e consider
a 600 ns latency: this llf!Ure '.\·as reached by the
GF11 using 1983 technology [1":'1. Table 6 shows
the estimates for the translations patterns using
formula 1. For the C::\1-3. the results do not de­
pend on the distinction static or parametric. For
the static network. we use the results of Section
3.1: thus. the parametric value forTi,; nirw times
its value for the static case (u:oing log 312 = 9):

thi:-; con1es frorn the fact that the consecuti\T
translations must proceed in a lockstep fashion.
Both implementations of the static model outper­
form the C::\1-3 network with the vendor rnessage­
passiner library by one to two order,; of magni­
tude:-;. \\-ith active messages. both static networks
are better for the static translations. but onh· the
fast network remains better for the parametric
ones.

As no data conr:erning broadcasts and rPduc­
tions were available to the authors. we had to limit
our numerical comparisons to the tran:-;lation
case. l\'evertheless. we must ,;tress the following:
for the CM-3. hroadca~ts and reduction,.; use the
control network: as it i:-; a usual binary tree [20 j.
no muhioperations are allowed. Thu,;. ewn if
multioperations incur high penalization in our
modeL this may be lower than pure sequentializa­
tion.

304 GAuTIER DE LAIIACT A:'\D GER:VlA[\

Table 6. Performance for Static and Dynamic Routing

C\1-3 Static

c:mm Actin' \Ies,;af!C>' Equal Bandwidth Fast Network

I\ctwork rm (MByte/s) 10
parameters s (p,s) 97

Static T 93
translation L 1/2 (Byte) 970

Parametric T 93
translation L 1/2 970

6 CONCLUSION

The key idea of the static model is to adapt the
IUSC principle to communications. i.e ... to be op­
timal on the most frequent cases and correct on
the others. Both the experimental results and the
gross performance evaluations developed in this
article show that the static model provides a sig­
nificant speedup over dynamic routing. However.
these figures isolate the network behavior.
whereas the static model has consequences in
other parts of a parallel architecture. With syn­
chronous communications. all the processors
have to be synchronized at eaeh network cycle,
'fhis synchronization may he realized either by
synchronization barriers or by a dedicated proces­
sor architecture. Synchronization barriers are the
simplest solution, but may create overhead, be­
cause they preclude efficient network pipelining.
For the second solution, the supersealar design
and complex memory hiPrarchy of n~cent micro­
processor architectures create many pipeline haz­
ards. As adjusting the instruction threads by the
compiler may be impossible, a VLIW -style archi­
tecture is recommended,

More generally, the current situation in parallel
architectures is unbalanced. :Vlany detailed stud­
ies arc available about the performance of the
processor's different parts (functional units.
caches. . , .). However, experimental data about
communications are sparse. and, except in a very
few cases, ntainly cnncPrn simple and synthetic
situations. Our future research in this area will
gather other experimental data about applica­
tions: in particular, the development of HPF to

provide richer semantics than previous paralld
Fortran and better communication statistics. In
addition. we want to investigate the possible soft­
ening of the static modeL e.g., using synchronous
on-line routing in multistage networks would allow
the direct execution of a set of dvnan1ie communi­
cations.

10
:3.:3

10
0.6
1.4
6

128
0.3
0.-t

.39
:3.()

39

't. 1
:3:3

4.1 12.6
6 :3:3

ACKNOWLEDGMENTS

The authors thank F. Cappello. F. Delaplace. and
D. Etiemble for many fruitful discussions. The de­
tailed comments of the anonnnous referees were
of great help in making this article more readable.

REFERENCES

[1) D. Bailev. et aL, ·'_'\AS parallel benchmark,.;
results." in Supercomputing 92. :'\ew York: IEEE
Computer Soeiety Press. 1992. pp. :386-:3~l:3.

[2] .\1. Berry. G. Cybenko, and .1. Larson. '·Scientiiic
benchmark characterizations.·· Parallel Com­
pvt.. Vol. 17. pp. 117:3-1194. 1991.
A. Bik and H. WijksofL "Compilation technique;;
for sparse matrix computations.·· in Pnw. of lu­
lemational C'onference on Supercomputing.
199:3. p. 4HJ.

:4] F. Cappello. et aL ·'Balanced diMributed mem­
ory parallel computers:· in :!2nd /ntcrrwtiorwl
Conference on Parallel Proce8sing. 199:.~.

F. Cappello and C. Germain. "Towards hif!h
communication pr'rformanct.' throuf!h compiled
communications on a circuit-switclwd intercon­
nection network.' • in 1st IEJ~'E -~1 mposium on
lfigh Performance Computer Architef·ture. 1993.
p. 44.

[6] H. Cyphccr. A. 1 Io. S. Konstantinidou. and P.
.\1essina. ·• Architectural requirements of parallel
scientific applications with explicit communica­
tion." in 20th International Symposium on Com­
puler Architecture. 199:3. p. 2.
E. DahL "':\lappinp: and compiled communication
on the Connection \lachine system.·· in :'ith Dis­
tributed .\Icmory Computing Cor~ference. 1990,

~31 V. Eicken. et aL '·Active rnessa,ges: A mechanism
for integrated communication and computation.··
in 19th lntemalional !::J:rmpo:;ium on Computer
Architecture, 1992. p. 236.

[9] A. Feldmann. T. M. Stricker. and T. E. Warfel.
·'Supporting sets of arbitrarY connections on

iW arp through communication context
switches .. , in 5th ACM Symposium on Algorithms
and Architectures. 1993, p. 203.

[10] C. Germain. F. Delaplace, and R. Carlier. "·A
static execution model for data parallelism." Par­
allel Processing Lett .. vol. 4. pp. 367-3?8. Dec.
1994.

[11] R. W. Hockncy and C. R. Jesshope. Parallel
Computers 2. lOP, 1988.

[12] R. Ilockney. "·Performance parameters and
benchmarking of supercomputers. Parallel
Comput., vol. 1?. pp. 1111-11:30. 1991.

[13] !."TEL Scientific Computers. Paragon XP/S
Product Overview. Intel. 1991.

[14] F. lrigoin. eta!.. "·A linear algebra framework for
static HPF code distribution."' in -fth Interna­
tional Workshop on Compilers for Parallel Com­
pulers. 1993. p. 11 ?.

[15] K. Iwama. E. .\liyano, and Y. Kambayashi.
·"Routing problems on the mesh of buses.·· in 8rd
ISAAC. 1992, p. 155.

[16] C. Koelbel, ·"Compile time generation of regular
communication patterns.·· in Supercomuting '91.
1991.p.101.

[17] M. Kumar. "·Unique design concept,; in GF11
and their impact on performance ... IBJ;f]. Res.
Deu .. vol. 36. pp. 990-999. 1992.

[18j F. Leighton. Parallel Algorithms and Architec­
tures . .\Iorgan Kaufmann. 1992.

[19] C. Leiserson. "'Fat-trees: Uniw·rsal networks for
hardware-efficient supercomputing. IEEf..'
Trans. Comput .. vol. 34. pp. 892-901. Oct.
1985.

[20] C. E. Leiserson. eta!.. .. The network architecture

PARALLEL SCIE."TIFIC PROGRA.\IS 305

of the Connection :VIa chine C.\1-5 ... in SPAA '92.
1992. p. 2?2.

[21] J. Lenfant. ·"A versatile mechanism to move data
in an array processor. .. IA'L'L' Trans. Comput ..
vol. 34. pp. 506-522. June 1985.

[22] G. Lev, :\. Pippenger. and L. \'aliant. ··A fast
parallel algorithm for routing in permutation net­
works." IEEE Trans. Comput .. mi. 30. pp. 93-
100. Feb. 1981.

[231 M. Lin. et a!.. "·Performance evaluations of the
C:Vf-.5 interconnection network ... in CO.HPCO.Y
98. 1\ew York: IEEE Computer SociPty Press.
1993. pp. 189-198.

[24] 0. Lubeck and .\f. Simmons. "The performance
realities of massively parallel processors: A case
study," in Supercomputing 92. :\ew York: IEEE
Computer Society Press. 1992. pp. 551-560.

[251 A. G. Mohamed. eta!.. .. Applications hf'llchmark
set for Fortran-D and high performance fortran ...
1\ortheast Parallel Architecture Center. Svracuse
University. Tech. Rep. TR-SCCS 32?.

[26] J. K. Prentice. "'A performance benchmark studv
of Fortran 90 compilers ... Fortran] .. vol. ::>.
1993.

[2?1 C. Qiao and R. Melhem ... Reconfiguration with
time-division multiplexed .\H."s for multiproces­
sor communications." IEEE Trans. Parallel Dis­
trib. Systems. vol. 5, pp .. 3:3?-3."i2. 199-t.

[28] C. W. Tseng, .. An optimizing Fortran D compiler
for :VliMD distributed memory machines ... PhD
Thesis. Rice Cniversitv. 1993.

[29] M. Wolfe. "Tiny: A loop restructuring resParch
tool. .. Oregon GraduatP Institute of Science and
Technology. Tech. Rt>p. 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

