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ABSTRACT 

The nascent and rapidly evolving state of parallel systems often leaves parallel applica­
tion developers at the mercy of inefficient, inflexible operating system software. Given 
the relatively primitive state of parallel systems software, maximizing the performance 
of parallel applications not only requires judicious tuning of the application software, 
but occasionally, the replacement of specific system software modules with others that 
can more readily respond to the imposed pattern of resource demands. To assess the 
feasibility of application and performance tuning via malleable system software and to 
understand the performance penalties for detailed operating system performance data 
capture, we describe a set of performance instrumentation techniques for parallel, 
object-oriented operating systems and a set of performance experiments with Choices, 
an experimental, object-oriented operating system designed for use with parallel sys­
tems. These performance experiments show that (a) the performance overhead for 
operating system data capture is modest, (b) the penalty for malleable, object-oriented 
operating systems is negligible, but (c) techniques are needed to strictly enforce ad­
herence of implementation to design if operating system modules are to be replaced. 
© 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Striking advances in device technology have made 
high-speed processors and large primary memo­
ries both ubiquitous and inexpensive. With these 
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advances have come parallel systems whose peak 
performance can be scaled across a wide range 
simply by adding processor/memory building 
blocks. However, high hardware performance 
peaks are not synonymous with high achievable 
performance across a wide range of scientific or 
commercial applications; many parallel systems 
exhibit performance instability, with a high vari­
ance in observed performance on different appli­
cations. The root cause for performance instabil­
ity is rarely simple, but is most often due to the 
interactions of the hardware, the operating system 
software resource management policies, and the 
application resource demands. Minimizing per­
formance instability on parallel systems is crucial 
to achieving substantial fractions of peak perfor­
mance for scientific application codes. 

Application software developers normally view 
the hardware and operating system software as an 
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integrated "black box" that cannot be modified. 
Instead, they must adapt the application code to 
the existing configuration and maximize applica­
tion performance subject to these constraints. Al­
though this approach is well suited to mature sys­
tems with well-understood features, the nascent 
and rapidly evolving state of parallel systems often 
leaves parallel application developers at the mercy 
of inefficient, inflexible operating system software. 
Simply put, the evolution of system software and 
resource management algorithms has not kept 
pace with dramatic changes in parallel architec­
tures. 

Given the relatively primitive state of parallel 
systems software, maximizing the performance of 
parallel applications not only requires judicious 
tuning of the application software, but occasion­
ally, the replacement of specific system software 
modules with others that can more readilv re­
spond to the imposed pattern of resource de­
mands. Lowering the barrier between the applica­
tion and the operating system increases the 
opportunity for optimization-one can adjust the 
system software to more efficiently support the ap­
plication. Two requirements are implicit in this 
approach: detailed performance data and mallea­
ble operating system infrastructure. Detailed per­
formance data are a prerequisite for informed per­
formance optimization. The second, flexible 
operating system infrastructure, provides the 
mechanism for experimentation. Unless it is easy 
to replace existing operating system components 
with new components, the intellectual burden will 
preclude experimentation. Instead, a building 
block approach is needed that allows one to as­
semble operating system modules in a variety of 
ways to accommodate specific application needs. 

In this article, we describe a set of performance 
experiments with Choices [1], an experimental, 
object-oriented operating system designed for use 
with parallel systems. Succinctly, our research 
goals were to: 

1. Explore performance instrumentation tech­
niques for parallel operating systems. 

2. Measure the performance penalty, if any, 
imposed by an object-oriented operating 
system implementation. 

3. Study the interaction of parallel operating 
system components by capturing a trace of 
operating system service demands. 

4. Assess the feasibility of performance opti­
mization by operating system customiza­
tion. 

The remainder of the article is organized as fol­
lows. In Section 2, we begin with a brief overview 
of the Choices operating system design philosophy 
and the implications of an object-oriented design 
for parallel operating systems. This is followed in 
Section 3 by a description of an object-oriented 
approach to capturing operating system perfor­
mance data and the lessons learned from building 
operating system performance instrumentation. In 
Sections 4-6 we describe the experimental envi­
ronment, a set.of independent performance mea­
surements used to validate our instrumentation 
software, and a detailed analysis of the behavior 
of Choices when supporting members of the Stan­
ford SPLASH (Stanford Parallel Applications for 
Shared Memory) benchmark set. In Section 7, we 
examine the issue of system software malleability 
and the feasibility of operating system reconfig­
uration to improve application performance. Fi­
nally, we conclude in Section 8 with observations 
on the feasibility of reconfigurable operating sys­
tems and the value of dynamic performance data. 

2 THE CHOICES OPERATING SYSTEM 

Historically, operating systems research has ad­
dressed two basic issues, although rarely in con­
cert: policy (i.e., algorithms for effective resource 
management) and mechanism (i.e., the logical or­
ganization of operating system components). Dur­
ing the early years, resource management policies 
(e.g., virtual memory and backing store, disk arm 
scheduling, and process scheduling) were the pri­
mary research focus. Later, the focus shifted to 
the logical organization of single processor operat­
ing systems (e.g., kernels, modularization, and 
process hierarchies) and then to distributed sys­
tem models (e.g., remote procedure calls and cli­
ent/ server models). 

Choices [1] is a research operating system de­
signed to promote experimentation with new oper­
ating system design mechanisms and with new re­
source management policies. By separating 
mechanism and policy, Choices was designed to 
encourage experimentation with both. Mecha­
nisms permit reconfiguration of operating system 
components to support new parallel architectures 
and applications. For policy experiments, Choices 
supports a set of components that can be com­
bined to support different models of parallel pro­
gramming. Generic components are customized 
through object-oriented inheritance and speciali­
zation to match the specific concurrency require­
ments of applications. 



2.1 Design Philosophy 

Choices has, as its kernel, a dvnamic collection of 
C++ objects. System reso~rces, mechanisms, 
and policies are represented as objects that belon(J" 

b 

to a class hierarchy [2]. The object-oriented ap-
plication interface has a name server that imple­
ments inheritance and polymorphism and pro­
vides access to system services, local and remote 
servers, and persistent objects. 

In the Choices design, a conceptual framework 
subsumes the conventional organization of an op­
erating system as a group of layers [13]. The 
framework for the system provides generalized 
components and constraints to which the special­
ized subframeworks must conform. The sub­
frameworks introduce additional components and 
constraints and subclass components of the 
framework. 

2.2 Current Implementations 

Choices is most properly viewed as an operating 
system schema whose instantiations contain varv­
ing fractions of the code base. At present, paraliel 
versions of Choices are operational on the Intel 
iPSC/2 hypercube, the shared memory Sun 
Sparc/660 multiprocessor, and the bus~based 
Encore Multimax shared memory system. All ver­
sions share most of the abstract classes, but an 
instantiation for a particular parallel system nec­
essarily contains only that subset of the concrete 
classes appropriate for that hardware platform. 

Choices is an evolving system, both because it 
can be configured in many ways and because de­
velopment of new software modules continues. As 
a basis for our experiments, we selected the most 
stable and widely used variant, an instantiation on 
the Encore Multimax. Although the Multimax 
hardware is no longer near the state of the art, it 
did provide a well-understood hardware platform 
for study. We believe the majority of our results 
will translate directly to other hardware configura­
tions. 

At the time of our experiments, this version 
supported: 

1. Two native programming models, shared 
memory and message passing, with an ob­
ject-oriented interface that supports appli­
cation access to operating system kernel ob­
jects. 

2. Unix System V and Berkeley file systems. 
3. A compatibility mode that allows Unix ap­

plication programs to be compiled ~nd exe­
cuted without change. 
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4. A message-passing system, with shared 
memory and copy-based variants. 

5. Networking, with telnet, ftp, and other basic 
applications. 

6. A multithreaded kernel with a varietv of task 
schedulers (FIFO, LIFO, round. robin, 
multilevel feedback queue, "standard" 
Unix, highest-response-ratio-next, and 
shortest-remaining-time). 

7. A general s.et of performance instrumenta­
tion and data capture objects. 

The particular software configuration used for our 
experiments is described in Section 4. 

3 OPERATING SYSTEM 
INSTRUMENTATION 

The volume and diversity of performance data ob­
tainable from an operating system are potentially 
enormous, and one must judiciously balance the 
volume of data against both its accuracv and the 
potential utility; the penalty for insuffici~nt data is 
exceeded only by that for inaccurate or misleading 
data. Unfortunatelv, data volume and accuracy 
are antithetic; mo.st instrumentation and dat~ 
capture techniques induce some perturbation 
(e.g., by modifying code or by interrupting a pro­
cessor to record data) [3, 4]. 

Operating system performance instrumentation 
imposes particularly thorny problems because op­
erating systems are, by their nature, reactive, re­
sponding to external stimuli. Changing the oper­
ating system response time for requests often will 
also change the pattern of requests. Moreover, re­
cording operating system performance data often 
require operating system services-one must en­
sure that use of these services is isolated and not 
part of the subsystems being measured (e.g., if 
measuring file system activity is the goal, one 
should not use the file system to incrementally ar­
chive file system performance data). In addition to 
these constraints, common to all operating system 
instrumentation, the object-oriented Choices op­
erating system design has additional implications 
for performance data capture mechanisms. 

3.1 Implications of Obiect Orientation 

Choices was originally designed to be portable and 
to operate efficiently on both shared and distrib­
uted memory systems. Indeed, one of the major 
motivations for the Choices design was to encour­
age and permit cross-architecture performance 
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comparisons (e.g., by measuring the performance. 
of the same code on disparate parallel systems). 
To maximize portability, the abstract classes of 
the Choices design hierarchy include few assump­
tions about the underlying architecture, and only 
a subset of the concrete classes embodv machine­
specific details. Performance instrumentation 
should not inhibit this portability by unduly rely­
ing on particular architectural features. For exam­
ple, on a shared memory parallel system, it is 
tempting to allocate buffers for recording perfor­
mance data that can be shared by all processors. 
However, an implementation based on this ap­
proach cannot be ported to a distributed memory, 
message-passing system without a major redesign. 
Hence, the Choices performance instrumentation 
provides a separate performance data buffer for 
each processor, making it efficient on systems with 
both shared and distributed memorie,.;. This has 
the ancillary benefit of eliminating synchroniza­
tion for data buffer access, allowing simultaneous 
performance data recording by multiple proces­
sors. 

Reflecting the object-oriented nature of 
Choices, the instrumentation system was designed 
as a hierarchical set of objects. However, the in­
strumentation implications of objects are more 
profound than simply a design style for data cap­
ture software. The heavv reliance of Choices on 
inheritance, where classes inherit other C++ 
classes and member functions from higher-level. 
base classes, means that instrumentation in any 
class that is not a leaf of the hierarchv will be 
inherited bv all derived classes. In some cases, this 
is beneficial because the same performance data 
are needed from all variants. In other cases, the 
desired data are either different or a superset of 
that available to the base class, mandating cus­
tomized instrumentation of the derived class. To 
maximize flexibility, the Choices instrumentation 
supports combinations of inherited and custom­
ized instrumentation. 

Based on these issues, and our instrumentation 
experiences, both with Choices and with other 
systems [3, 4] we believe that parallel operating 
system instrumentation must be general purpose. 
supporting instrumentation and data capture 
from a variety of operating system modules using a 
common interface, isolated, with minimal depen­
dence on operating system services, dynamic, 
with triggers to dynamically enable and disable 
performance data capture based on data volume 
and system activity, and integrated with applica­
tion program performance data capture, permit-

ting correlation of operating system performance 
data with application behavior and resource de­
mands. Drawing on these principles, below we de­
scribe the design and object-oriented instrumen­
tation system implementation for the Choices 
system software. 

3.2 Choices Instrumentation Overview 

A variety of t~chniques have been proposed for 
capturing operating system performance data. but 
all are members of three broad categories: timing. 
tracing. or counting. Because each strikes a differ­
ent balance between data volume and potential 
measurement intrusion, the Choices instrumenta­
tion system supports all three, via Counter, 
Timer, and Event objects. Each type of instru­
mentation object can be used to capture either 
application or operating system performance 
data. 

Figure 1 shows the major application and sys­
tem instrumentation classes and their inheritance 
relationships. Although each is discussed briefly 
below, space limitations preclude a complete de­
scription: see Rahman [5] for details. The classes 
for event tracing, counting. and timing are all de­
rived from the abstract Instrument base class. 
This base class proYides methods to temporarily 
suspend (and later resume) data recording. as well 
as to reset the instrumentation object. In turn. in­
stances of the derived Counter class can be used 

Event Instrument 

Timer Instrument 

-{ 

User Instrument Manager 

Instrument Manager 

System Instrument Manager 

Instrument Buffer 

Instrument Buffer Exception 

FIGURE 1 Choices instrumentation class hierarchy. 



to count the number of times an event of interest 
has occurred, and periodically record the current 
count in a performance data buffer. Similarly, 
Timer objects can be used to record the time 
elapsed during the execution of a code fragment. 
Finally, Event objects support generic event trac­
ing, with optionaL user-specified data recorded 
with the default timestamp and event identifier. 
All three types of instrumentation objects produce 
performance data that are buffered and periodi­
cally written to secondary storage. The following 
information is common to all three: 

1. A timestamp, indicating when the data were 
generated. 

2. An event identifier that uniquely specifies 
the type of the data. 

3. The name of the execution thread from 
which the data originated. 

4. The processor where the event occurred. 

As Figure 2 shows, an instrument manager is 
associated with every instrumentation object. 
Each of these instrument managers is responsible 
for certain housekeeping chores associated with 
the instruments it manages (e.g., temporarily sus­
pending the recording of performance data). Each 
task of a parallel application program can create 
one or more User Instrument Manager objects 
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to logically group and control related instruments. 
A single System Instrument Manager controls 
all operating system instruments and coordinates 
the set of User Instrument Manager objects. 

A separate instance of an Instrument 
Buffer object for each processor manages a 
buffer of performance data that has not yet been 
written to secondary storage. The Instrument 
Buffer Exception object coordinates the 
dumping of instJ1..!mentation buffers by all proces­
sors to secondary storage. 

Because all application and operating system 
events on a particular processor are written to the 
same buffer, they are correctly ordered by the time 
they occurred, simplifying later correlation of op­
erating system resource requests with system re­
sponses. Also, because performance data ob­
tained from each processor are recorded in a 
buffer specific to that processor, there is no con­
tention for access to a buffer by multiple proces­
sors. This approach also obviates migration of 
performance data buffers between processors 
when tasks are rescheduled on another processor, 
and it is easily implemented on both shared and 
distributed memory parallel systems. 

By locking each processor's buffer in nonpage­
able, kernel memory one avoids page faults during 
performance data recording. Not only does this 
minimize the variability of data recording costs, it 

Kernel 
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I Application 
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I 
I User Instrument 

Manager 

I \ 
Event Timer 

Instrument Instrument 

·~~l 
Counter 

Instrument 

FIGURE 2. Choices instrumentation overview. 
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also makes instrumentation of the virtual memory 
system possible-the instrumentation system 
cannot cause additional page faults during tracing 
of page fault service routines. 

In addition, instrumentation buffer dumping is 
completely synchronous. "Then any processor's 
performance data buffer fills, all processors are 
interrupted, and no processor is allowed to re­
sume normal execution until all data buffers have 
been written to secondary storage. Hence, the per­
turbation induced on each processor is identicaL 
and there is no skewing of the tasks on different 
processors. By recording the total time needed to 
dump all data buffers, we can postprocess the 
performance data and adjust the observed event 
times to eliminate these costs [3]. Finally, because 
all processing is suspended during buffer dump­
ing, the instrumentation system does not contend 
with application processes for access to disks. 

4 PERFORMANCE ANALYSIS 
METHODOLOGY 

Earlier Choices performance measurements [ 6] 
focused on the cost of individual system opera­
tions (e.g., system calls) and the costs of virtual 
function table lookups imposed by a C++ imple­
mentation. These studies showed that the perfor­
mance penalties for an object-oriented design 
need not be prohibitive, but they did not explore 
the interactions of operating system components. 
Hence, two of our major research goals were to 
explore the overheads for detailed operating sys­
tem performance instrumentation and to study 
the dynamic interactions among object-oriented 
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operating system components when supporting a 
parallel scientific workload. 

Our research goals required measurements of 
Choices operating system behavior and its compo­
nent interactions when subjected to a realistic sci­
entific workload, and a comparison of these mea­
surements to equivalent data obtained from a 
traditional operating system. The latter was nec­
essary both to validate our performance measure­
ment system" and to assess the system perfor­
mance of a parallel, object-oriented operating 
system. Figure 3 illustrates our experimental 
methodology. Our experimental environment was 
a two-processor Encore Multimax 320 shared 
memory multiprocessor, executing a shared mem­
ory variant of Choices. We obtained comparative 
performance data from Cmax 4.2, Encore's Cnix 
implementation. (The Ylultimax 320 supports up 
to 16, 15 MHz, 2 MIP, l\"S32332 processors on a 
shared bus. Each processor has a 64K byte write­
through cache.) Although the Multimax 320 is no 
longer state of the art, and most parallel systems 
now contain far more than two processors, our 
experience with this system and experimental 
data from other contexts both suggest that the 
data obtained are typical of what would be ob­
served on larger or more modem shared memory 
parallel systems. 

As a representative scientific computation 
workload, we selected programs from the 
SPLASH benchmark suite [7]. The SPLASH 
benchmarks are typical engineering and scientific 
codes of moderate size, written inC and Fortran, 
and drawn from a variety of application domains. 
Each is an explicitly parallel, shared memory pro­
gram, parallelized using the Argonne 1\"ational 
Laboratory's Parmacs macro package. 

Application 
Trace Data 

FIGURE 3 Performance analysis methodology. 



4.1 Experimental System Configuration 

Several pragmatic issues arose when a~apting. the 
SPLASH codes for execution on Chotces. FirsL 
the Choices application programming interface 
does not support system calls in the traditional 
sense; instead, the system supports requests for 
operating system services via proxies [2, 8], .C++ 
interfaces to the svstem software that allow Inter­
action with object~ that are not in the same pro­
tection domain. More significantly, the model of 
parallelism used in the Argonne Parmacs package 
(i.e., multiple, heavyweight, Cnix-style processes) 
differs from the native, shared memory parallel 
programming model on Choices (i.e., lightweight 
threads that execute in a shared address space). 

To execute the SPLASH codes on Choices. we 
converted the C versions of the codes to C++ 1 and 
relied on the Choices lJnix compatibility mode. 
Although the compatibility mode fails to capitalize 
on either the lower overhead, threads model of 
Choices, or the Choices system services directly 
available via proxies, it did permit performance 
comparison of both Choices and Encore's parallel 
Unix (Umax 4.2). 

Our goal was to measure the behavior of 
Choices and Umax 4.2 under conditions typical of 
real scientific workloads. Hence, during all experi­
ments, the regular operating system services of 
both Choices and Umax were enabled. On 
Choices, networking daemons periodically serv­
iced interrupts resulting from incoming and out­
going packets; ftp and telnet servers were awaiting 
connections from remote machines; and sched­
uler time slice timeout interrupts continued to oc­
cur. During each test, a single login shell was cre­
ated to initiate execution of a SPLASH 
benchmark. Hence, both operating systems expe­
rienced a relatively quiescent but "realistic" 
background workload, in addition to that impose.d 
by the SPLASH code itself. The pres~nc~ of ~his 
background workload was invaluable m Identify­
ing and isolating the causes of performance 
anomalies. 

In all our experiments, Choices was configured 
with a task scheduler that managed all user tasks 
on a single, preemptible (by interrupts and system 
tasks) round-robin (FIFO) queue with one second 
quanta. System tasks were on a separate, no~pre­
emptible FIFO queue whose members had higher 
priority than the members of the user task queue. 

1 To avoid potential effects of compiler differences, we also 
used the C++ versions of the SPLASH codes for our Unix 
performance experiments. 
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All experiments used a Berkeley file system that 
was Umax compatible (i.e., files written by 
Choices were readable bv Umax). 

4.2 Instrumentation and Data Collection 

Given sufficiently detailed information about the 
state of each svstem and application task (i.e., the 
locus of contr~l, values of key program variables, 
and assigned pro.cessor), it is possible to accu­
rately correlate application requests with. system 
processing, and to identify system processmg that 
has no causal relationship with application re­
quests. However, collection of detailed perfor­
mance data using software instrumentation is not 
without price: Instrumentation perturbs the mea­
sured svstem and mav result in observed behavior 
and ev~nt orders that would not be feasible in a 
system without instrumentation [9]. 

Because our performance experiments were the 
first intensive tests of the Choices instrumentation 
system, and because we wished to study primarily 
the effects of the Choices scheduler and disk in­
put/ output system on the performance of the 
SPLASH codes, we elected to instrument only a 
subset of the Choices modules. 2 Given constraints 
on the number of possible operating system in­
strumentation points, context switch instrumenta­
tion provides the most information [10]-it ex­
poses not only the decisions of the task scheduler, 
but also the interactions of application tasks and 
the execution patterns of service daemons. Hence, 
we instrumented Choices to trace the time of each 
context switch, the identity of the currently exe­
cuting task, and the identity of the newly sched­
uled task. 

Using interval timing, we modified the Choices 
disk input/ output class to record the sta~ing a~d 
ending time of each input/ output operatiOn. ~ e 
also instrumented the Choices disk input/ output 
interrupt service routines; this allowed us to c~p­
ture physical disk input/ output rather than logical 
input/ output to file buffers. 

This limited set of instrumentation points 
strikes a balance between sufficient performance 
data to understand system dynamics and exces­
sive instrumentation perturbation, and sufficed to 
determine both which tasks were executing at 
each point in time and when input/ output re-

2 For the SPLASH codes, task scheduling and input/out­
put processing are the primary points of interaction with the 
operating system. To maximize portability, the SPLASH codes 
use few operating system facilities. 



308 KOHR ET AL. 

quests were being serviced. To correlate applica­
tion and operating system behavior, we instru­
mented the SPLASH codes to record the time of 
occurrence and duration of each procedure calL 
outermost loop entry I exit, and interprocessor 
synchronization. 

4.3 Comparative Measurements 

To provide a reference point against which the 
performance of Choices could be compared, one 
also needs performance data from an execution of 
the SPLASH codes on another operating system, 
in this case Encore's Umax. unfortunately, Cmax 
provides no native performance instrumentation 
system, either at the system or application level. 
Because the lack of access to the umax svstem 
source code precluded instrumenting Umax, we 
concentrated on application-level performance 
data as a basis for comparisons. ~~e developed a 
portable, minimalist instrumentation package for 
collecting application-level traces. This package, 
which can be used with either Choices or umax, 
preallocates large trace buffers that reside in the 
address space of each instrumented task, avoiding 
interactions with the file system. 

The existence of a portable, application-level 
instrumentation package allowed us to decouple 
the effects of possible instrumentation overheads 
and operating system differences. By measuring 
application performance on both Umax and 
Choices with the same portable application in­
strumentation and C++ compiler, we could be 
sure that any observed differences in performance 
were directly attributable to operating system dif­
ferences. In addition, by comparing application 
performance data captured on Choices with both 
the portable instrumentation and the native 
Choices instrumentation, we could assess both the 
accuracy of the Choices instrumentation and the 
differences in instrumentation overhead. 

5 INSTRUMENTATION ANALYSIS 

The primary danger when instrumenting any 
stimulus-driven software svstem is that instru­
mentation may change both the time needed to 
process stimuli and the temporal order of the gen­
erated responses. Typically, perturbations are ei­
ther direct, resulting from simple increases in 
stimulus processing times attributable to the in­
sertion of instrumentation code, or indirect, re­
sulting from the reordering of asynchronous stim­
uli or their responses. 

Under constrained conditions, the effects of di­
rect perturbations can be removed by post­
processing the captured performance data to ad­
just the observed event times [3]. (If the events are 
totally ordered and cannot be changed by instru­
mentation, and the cost for each instrumentation 
point is known, adjusting the event times involves 
only a simple linear transformation.) More gener­
ally, inserted software instrumentation has more 
subtle effects .(e.g., displacing data values from 
the cache or causing pipeline stalls), the exact eost 
of each instrumentation point is not known, and 
exact compensation for instrumentation effects is 
not possible. 

Indirect perturbations are more pernicious, and 
in the worst case may require a complete system 
simulation to recover the event order that would 
have occurred had instrumentation not been 
present [9]. For example, if the events have differ­
ing priorities (e.g., system and user task resource 
requests), or are time dependent (e.g., scheduler 
time slice interrupts), software instrumentation 
may change the event order or even alter the num­
ber of events. 

On a parallel system, the observed events are 
partially ordered, and the observed event order 
may not have been feasible on an uninstrumented 
system (i.e., if the instrumentation costs were 
zero, the observed event order would have been 
impossible under any execution circumstances). 
In short, system instrumentation is subject to an 
uncertainty principle: ~Ieasurement perturbs the 
system, and one must balance the volume of de­
sired data against its accuracy. 

An important first step in the analysis of perfor­
mance data captured using software instrumenta­
tion is to bound the potential perturbation of the 
nominal execution time and the event reordering. 
Below, we discuss the costs of capturing applica­
tion and operating system performance data, fol­
lowed by an analysis of possible perturbations in­
duced by the instrumentation of system and 
application code. 

5.1 Application Instrumentation Costs 

To estimate the time needed to record perfor­
mance data using both the Choices instrumenta­
tion and our portable instrumentation package, 
we began with a set of in vitro measurements on a 
synthetic benchmark that contained a single loop. 
~-e compared the execution time when the loop 
body was empty to the execution time of the same 
loop when a single instrumentation point was in­
serted, taking care to ensure that compiler optimi-
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Table 1. Event Recording Costs (microseconds) 

Operating System Instrumentation 

Umax Portable 
Choices Portable 

Choices 

zations did not eliminate the loop iterations. From 
this, we calculated the time to record a single 
event, as follows. 

If N is the number of loop iterations, l, is the 
execution time of the empty loop, and l; is the 
execution time of the instrumented loop, the esti­
mated cost C; of an instrumentation point is 

Co= l; = t, 
I LV 0 

The in vitro data in Table 1 summarizes the result 
of these measurements on both Choices and 
Umax. Figure 4 shows a portion of the corre­
sponding raw instrumentation event times. 

Figure 4 and Table 1 show that the in vitro 
instrumentation costs for the portable instrumen­
tation and the native Choices instrumentation svs­
tems differ greatly. The chief reason for these dif­
ferences is that on both Umax and Choices, the 
portable instrumentation software executes within 
the context of the user process. (Recall that the 
performance data buffer resides in the process' 
address space and no buffer input/ output occurs 
until the process completes execution.) The value 
of a high-resolution, memory-mapped hardware 
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FIGURE 4 In Vitro event recording overhead. 

In Vitro Overhead In Vivo Overhead 

15.1 13.6 
144.8 153.3 
509.6 596.5 

clock is reflected in the instrumentation cost dif­
ferences for the umax and Choices versions of the 
portable instrumentation package. On Cmax. the 
Multimax's microsecond hardware timer is mem­
ory mapped to the application address space, 
whereas access to the same timer on Choices re­
quires a proxy-based system call; this is the sole 
cause for the portable instrumentation overhead 
differences in Figure 4 and Table 1. 

In contrast to the portable instrumentation 
package, the native Choices performance data 
buffers reside in system memory, requiring pro­
tection boundary crossings to record data. ~lore­
over, because the Choices instrumentation pro­
vides greater functionality, and hence is more 
complex, recording data require the interaction of 
several objects via C++ virtual function calls (Fig. 
2). Conversely, the portable instrumentation sys­
tem records data using inline code, avoiding the 
overhead of procedure calls and most protection 
boundary crossings. 

Periodically writing the performance data 
buffers to secondary storage is an additional, un­
avoidable source of overhead in the Choices in­
strumentation; any general purpose instrumenta­
tion system that must capture arbitrary amounts 
of performance data requires access to external 
storage or a data transport medium. As described 
in Section 3, the Choices instrumentation synthe­
sizes performance trace events that specify the 
time required to write the performance data 
buffers to secondary storage; these synthesized 
events are embedded in the performance data. 
Because all other system and application activity 
is suspended during buffer dumping, the effect on 
all user and system tasks is identical and can be 
easily removed from the performance data by sub­
tracting the cost of buffer dumping from subse­
quent event occurrence times . 

Because a Choices proxy call to obtain the time 
involves several procedure calls and a protection 
boundary crossing, there is both greater cost to 
obtain the time and, because the timing code may 
not be present in the cache, there also is greater 
variation in the cost of reading the clock. This var­
iation is clear in Figure 4-both the magnitude 
and the variation in event recording times increase 



310 KOHR ET AL. 

from the Umax portable instrumentation, with a 
memory mapped clock, to the portable instru­
mentation on Choices, with an operating system 
call required to read the clock, to the native 
Choices instrumentation, with more complex data 
recording and multiple proxy calls. 

5.2 Observed Perturbations 

To establish the veracity of the application instru­
mentation cost model, we compared the in vitro 
estimates of Table 1 to in vivo measurements ob­
tained from the measured execution of the 
SPLASH [7] WATER benchmark, a molecular 
dynamics simulation. We measured the sequen­
tial execution time of the WATER code, with and 
without the presence of the portable application 
instrumentation, and divided the difference in ex­
ecution times by the number of captured events to 
obtain the mean instrumentation cost. (The WA­
TER code contains no timing dependent code that 
might generate differing numbers of trace events 
based on the execution schedule and instrumen­
tation overhead.) The result is the in vivo data of 
Table 1. In general, the modest difference in the 
instrumentation costs, less than 20% in the worst 
case, suggests that the in vitro measurements cap­
ture the salient effects of the instrumentation code 
in the in vivo case. 

Comparing the in vitro and in vivo values shows 
that the in vivo values are lower for Umax and 
higher for Choices. We conjecture, but have been 
unable to confirm, that the values are lower for 
Umax because the portable instrumentation on 
that system consists only of inline code. No proce­
dure calls are needed to record the performance 
data, and the compiler can more effectively opti­
mize the larger basic blocks that result when in­
strumentation is inserted. In contrast, on Choices 
both the portable and native instrumentation re­
quire system calls to obtain the current time. This 
fragments the basic blocks and reduces opportu­
nities for compiler optimization. In addition, the 
greater complexity of the Choices system instru­
mentation is more likely to perturb the cache, in­
creasing the warm start miss ratio for application 
codes and increasing the in vivo instrumentation 
costs. 

Using a trace of synchronization events from a 
parallel execution of the WATER code, we also 
compared the partial event order obtained with 
the portable and the native Choices instrumenta­
tion. Because the parallel version of the WATER 
code has a static work distribution (i.e., work is 

not dynamically assigned to tasks), differing in­
strumentation costs cannot cause work to be 
shifted from one task to another, nor can they 
change the number of recorded events in each ap­
plication task. Analysis showed that the portable 
and Choices system instrumentation traces had 
the same partial event order, despite large differ­
ences in the instrumentation costs. However, for 
more dynamic, timing-dependent codes, larger 
perturbations are more likely. 

5.3 Scalability 

Using the native Choices operating system instru­
mentation and the portable application instru­
mentation, we instrumented members of the 
SPLASH benchmark suite to assess the perfor­
mance of both Choices and Cmax, Encore's par­
allel Unix, on a two-processor Encore Multimax 
320. 

Although resource limitations did not allow us 
to conduct experiments with larger numbers of 
processors, we are confident that this approach 
scales to substantial numbers of processors. The 
belief is based on our implementation of similar 
instrumentation on systems with tens to hundreds 
of processors [ 11 J and the use of these techniques 
on other massively parallel systems [12] that have 
hundreds of processors. 

6 EXPERIMENTAL DATA ANALYSIS 

Using the native Choices operating system instru­
mentation and the portable application instru­
mentation, we instrumented members of the 
SPLASH benchmark suite to assess the perfor­
mance of both Choices and Umax, Encore's par­
allel Unix, on a two-processor Encore Multimax 
320. Because our primary goals were to under­
stand the costs of dynamic operating system in­
strumentation, the interactions between operating 
system and application program resource de­
mands, and the overhead for malleable system 
software, we did not explore the effects of multi­
programming; all experiments involved only one 
active application program. 

The high dimensionality of the experimental 
space (i.e., two operating systems, a variety of po­
tential operating system configuration options, 
and multiple programs from the SPLASH bench­
mark set), together with the time required to con­
duct an experiment and the large volume of per­
formance data obtained from each experiment, 



precluded a complete factorial analysis. Instead, 
we selected a single member of the SPLASH 
benchmark suite, the WATER code, as the basis 
for study; this allowed us to study its behavior in 
detail, and using this knowledge, to understand 
the implications for parallel operating system per­
formance and software configuration. 

6.1 WATER Application Benchmark 

WATER is an 1\"-body molecular dynamics code 
that simulates the evolution of water molecules in 
the liquid phase [7]. In its parallel version, the 
molecules are partitioned and statically assigned 
to tasks. Each parallel task is responsible for cal­
culating the time-evolutionary state of its as­
signed molecules. To reduce the number of 
pairwise force calculations, only interactions be­
tween pairs of molecules with distances less than a 
specified cut-off radius are calculated. At each 
time step, the molecules move in response to the 
force calculations. Hence, the spatial distribution 
of molecules is not uniform, and the task load bal­
ance and synchronization costs potentially change 
at each time step. 

C sing the Parmacs computation model, the 
WATER code consists of a serial initialization 
phase (including assignment of work to pro­
cesses), followed by a fork of the requisite number 
of participating computation processes, initializa­
tion of the processes, and the actual computation. 
Table 2 summarizes the major procedures of the 
\VATER code that correspond to these phases. 
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Unless otherwise indicated, all experiments in­
volved 64 water molecules and two time steps; the 
volume of performance data and the 2 MIP pro­
cessing rate of the Multimax l\"S32332 processors 
made the execution times and data analysis costs 
of larger inputs prohibitive. Nevertheless, even 
these small input data sets suffice to capture the 
salient aspects of program and system behavior. 

Although we made every attempt to minimize 
the differences between the \VATER code variants 
on Umax and Choices, the disparity in application 
programming models and libraries on the two sys­
tems necessitated some changes. Of these, the 
most important change was the use of the same 
math library on both systems to permit fair perfor­
mance comparisons. 

6.2 Sequential Application Behavior 

As a basis for comparing operating systems and 
for understanding the parallel execution of the 
WATER code, we captured application procedure 
entry I exit traces from a sequential execution on 
both Choices and Cmax using our portable instru­
mentation software. On Choices we also used the 
system instrumentation to capture operating sys­
tem data. Figures 5-8 show the pattern of proce­
dure calls for the sequential Umax execution. In 
the figures, the \VATER code's two time steps are 
clearly visible in the pattern of procedure calls, 
with a transition from intermolecular to intramo­
lecular force calculations near times 28.5 and 53. 

In contrast to the Cmax execution time of ap-

Table 2. WATER Procedures and Event Identifiers 

Major 
Procedure 

main 
CNSTNT 
SYSCNS 
INITIA 
WorkStart 
MD MAIN 
PREDIC 
CORREC 
BNDRY 
KINETI 
POTENG 
INTRAF 
INTERF 

CSHIFT 
UPDATE-FORCES 

Event 
Identifier Brief Description 

1 Main routine 
2 Other constants initialization 
3 System constants initialization 
4 Data file input and initialization 
5 Initiate computation of the parent process 
6 Initiate computation of a child process 
7 Predict new displacement values 
8 Correction of predicted values 
9 Boundary condition computation 

1 0 Kinetic energy calculation 
11 Potential energy calculation 
12 Intramolecular force calculation 
13 Intermolecular force calculation with 

global communication 
14 Molecular distance calculation 
15 Molecular force update 
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FIGURE 5 Representative sequential procedure activations on Umax. 

proximately 65 seconds, a sequential execution of 
the same code under Choices requires almost 84 
seconds (see Table 3). A detailed analysis of the 
trace data showed several reasons for this discrep­
ancy. First, as Figure 4 and Table 1 show, the cost 
for timestamp acquisition on Choices is substan­
tially greater than under Umax. This difference, 
approximately 150 microseconds in the in vivo 

case, coupled with roughly 92,000 recorded 
events, adds nearly 14 seconds to the sequential 
execution time. The cumulative magnitude of this 
overhead highlights the critical importance of a 
memory-mapped clock. Without such a clock, ob­
taining detailed performance data incurs large 
overheads. 

The second cause for the disparity in the se-

Table 3. WATER Execution Time Distribution (seconds) 

Umax Time Choices Time 

Component Sequential Parent Child Sequential Parent Child 

Computation 61.36 44.65 24.28 65.12 50.79 28.94 

Input/Output 2.19 2.02 0.00 4.49 4.48 0.00 

Application Instrumentation 1.25 0.77 0.48 14.14 8.72 5.43 

Instrumentation Initialization 0.00 4.51 0.00 0.00 34.43 0.00 

Process Fork 0.00 0.33 0.00 0.00 74.70 0.00 

Total 64.80 52.27 24.77 83.74 173.12 34.36 
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FIGURE 6 Sequential procedure activations on Umax (continued). 

quential application execution times across the 
two operating systems is input/ output overhead. 
At the time of these experiments, the Choices disk 
device drivers were not yet fully optimized, and 
the disk transfer rate under Choices was approxi­
mately half that of Umax. At the beginning of its 
execution, the WATER code reads a 193K byte 
molecular description file from disk; this adds ap­
proximately 2.5 seconds to the Choices execution. 
Finally, during execution under Choices, there 
was a modest amount of extra overhead for system 
event recording that is not present under Umax. 
Subtracting these overheads from the sequential 
Choices execution time yields an execution time 
comparable to that for Umax. 

Given an accounting for the disparities in se­
quential execution times, we tum to an analysis of 
the dynamics of operating system behavior. Figure 

9 shows a small portion of these dynamics-the 
procedure call pattern on both Umax and Choices 
during comparable periods of execution. The pat­
terns in Figure 9 are strikingly similar, although 
shifted in time by the greater overhead for event 
recording on Choices. To see this distortion, we 
extracted the time of procedure call and activation 
lifetimes for two of the dominant procedures in the 
WATER code, UPDATE and CSHIFT. Figures 
10-11 show the distribution of these lifetimes. 

The CSHIFT procedure calls no other applica­
tion procedures; it simply computes the distance 
between two molecules using a simple loop that 
contains a conditional. The horizontal banding in 
Figures 10-11 reflect the distribution of times 
when the conditional is true. This banding is 
much less evident in Figure 10, the Choices exe­
cution, than in Figure 11, the Umax execution, 
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Table 4. Choices Task Description and Time Distributions 

Sequential Parallel 

Process Process Description Total Time Total Time 

WATER parent task WATER main task 82.83 105.94 

WATER child task WATER child task 0.00 49.16 

Idle task Executes when no other task is ready 0.95 62.85 

ARB retransmit daemon Checks/retransmits TCP packets 83.57 128.14 

Waste manager Recovers when tasks complete 0.00 0.00 

Kernel setup System startup/ shutdown task 0.00 0.00 

Console interrupt Manages console inputs 0.00 0.00 

Telnet server daemon Processes new telnet connections 0.00 0.00 

Ethernet manager Handles Ethernet receive 0.09 0.08 

Ethernet control Handles Ethernet transmission 0.00 0.17 

Zoot receive daemon Passes TCP packets to TCP clients 0.00 0.00 

Zoot controller Processes incoming Ethernet packets 0.05 0.06 

because the cost of event recording with the porta­
ble instrumentation package has much higher 
variance on Choices (see Fig. 4). The extra over­
head for event recording is also manifest in the 

shifting of the procedure duration time scale; the 
differential shift for the two procedures occurs be­
cause they contain a different number of instru­
mentation points. 
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FIGURE 7 Sequential procedure activations on Umax (continued). 
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FIGURE 8 Sequential procedure activations on Umax 
(continued). 

Finally, Table 4 summarizes the function of 
each active Choices service daemon and its total 
processor time during the sequential execution of 
the WATER code. Figure 8 shows the temporal 
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FIGURE 9 Sequential procedure activations on 
Choices and Umax. 

pattern of task scheduling activity and context 
switches that lead to these times. During program 
initialization, the number of context switches is 
high because there are user interactions with the 

Table 5. WATER Parallel Execution Phase Durations 
(seconds) 

Computation Phase 

Choices serial initialization 
Choices fork 
Choices child initialization 
Choices parallel computation 
Umax serial initialization 
Umax fork 
Umax child initialization 
Umax parallel computation 

Beginning 

0.00 
21.80 
96.50 

130.93 
0.00 

15.58 
15.91 
20.42 

End 

21.80 
96.50 

130.93 
173.12 

15.58 
15.91 
20.42 
52.28 

Duration 

21.80 
74.70 
34.43 
42.19 
15.58 

0.33 
4.51 

31.86 
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FIGURE 10 Choices procedure durations in milliseconds (sequential execution on two 
processors). 

command interpreter to specify program parame­
ters, following this the context switch pattern 
quickly stabilizes. 

Unlike more traditional operating systems, 
Choices does not preemptively timeslice processes 

unless the number of processes demanding a pro­
cessor exceeds the number of available proces­
sors. Instead, processes execute until they must 
relinquish the processor, either due to delays wait­
ing for requested services or competing demands 

Table 6. WATER Synchronization Summary (times in 
milliseconds) 

Activation Mean Duration 
Synchronization Construct Count Duration Variance 

Choices sequential execution 
Lock 7916 0.16 4.9 X 10-3 

Barrier 12 2.58 7.89 
Umax sequential execution 

Lock 7916 0.02 2.13 X 10-3 

Barrier 12 0.06 4.57 X 10-3 

Choices parallel execution 
Lock 7928 0.20 1.04 
Barrier 23 1660 7.00 X 10-3 

Umax parallel execution 
Lock 7928 0.03 1.09 X 10-2 

Barrier 23 223.8 9.15 X 102 
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FIGURE 11 Lmax procedure duration~ in milliseconds (sequential execution on two 
processors). 

for processor services. Durin~ program execution. 
the single application process repeatedly migrates 
between the two processors in response to activa­
tion of network daemons. Figure 17 a shows that 
most of these context switches involve network 
software, and Table 4 shows that most of the sys­
tem software overhead involves a single daemon. 
the TCP packet retransmit daemon. (On seeing 
this behavior, the Choices system developers im­
mediately recognized a software design error:. the 
intended goal of the ARB retransmit daemon was 
to check and retransmit TCP packets only at 1-
second intervals. This error was corrected in a 
later version of the Choices software.) 

In summary, the single processor performance 
of the WATER code on Choices is similar to that 
on Umax, albeit with three major differences in 
the behavior under Choices: 

1. The absence of a memory-mapped clock 
makes performance event recording costly. 
increasing the total execution time. 

2. Cnoptimized input/ output system increases 
program initialization time. 

3. Different software daemons. coupled with a 
different task scheduling algorithm. change 
the pattern of application time slices. 

Csing these observations as a base. we turn to an 
analysis of the \\"A TER code's parallel execution 
behavior. 

6.3 Parallel Application Behavior 

Table 3 shows the distributions of overhead for 
computation, instrumentation, and input/ output 
for a parallel execution of the WATER code on 
both Cmax and Choices. Similarly, Table 5 sum­
marizes the durations of each parallel execution 
phase on Choices and Cmax. As with the sequen­
tial executions, a portion of the differences are 
directly attributable to differing instrumentation 
overheads. In particular, the differences in the 
parallel computation phases are largely due to dif-
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FIGURE 12 Context switch pattern on Chuices (sequential execution on two proces­
sors). 

ferences in performance data recording costs. 
However, the most striking data in the two tables 
are the enormous increase in the execution time of 
the parallel Choices code: the paralld execution 
time is roughly double that of the sequential code. 
The reasons for this increase are rooted in the use 
of the Choices Cnix compatibilitY librar-v. 

Lnlike Lmax. the Choices L~ix con~patibility 
library does not implement a copy-on-write strat­
egy for replicating the address space of a parent 
process for a forked child. Hence. Choices must 
copy all data in all pages of the parent address 
space before the fork system call completes. ~lore­
over, the Choices virtual memory system requires 
all newly copied pages to be mirrored on the back­
ing store; this creates extensive secondary storal-!e 
activity during a process fork. 

In Figure 1-t, the input/ output pattern in the 
interval 20-100 seconds is the process fork: this 
contains two distinct behaviors. The pattern in the 
interval 20-60 seconds (exclusively write re­
quests) reflects the mirroring of the address space 
to secondary storage. and the pattern in the inter-

val 60-100 seconds (a mixture of read and write 
requests) is the replication of the parent process's 
address space from secondary storage onto the 
child process's address space. In addition. as de­
scribed in Section 3. the portable instrumentation 
package used a large. memory resident perfor­
mance data buffer to minimize secondary storage 
activity during performance data capturt>. To fur-
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FIGURE 13 Cumulative context S\\itches on Choices 
(sequential execution on two processors). 
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FIGURE 14 Choices input/output durations (parallel execution on two processors). 

ther minimize interactions with the virtual mem­
ory system, the buffer was preemptively faulted 
into memory during the instrumentation soft­
ware's initialization by accessing each page of the 
buffer. At the time of these experiments, the 
Choices page fault handling routines had not yet 
been tuned, creating substantial overheads for 
page fault service during initialization of theW A­
TER code's child process. This is the child pro­
cess input/ output activity shown in Figure 14 for 
the interval 100-130 seconds. 

Figure 15 shows comparable fragments of the 
WATER code's parallel execution traces for both 
Umax and Choices. Although the behavior of the 
parent processes are similar for the two operating 
systems, the child process on Choices clearly 
spends a much longer time computing intermolec­
ular forces in the procedure INTERF than the 
child process on Umax. An examination of the 
trace of synchronization events reveals that the 
child spends about 0.75 seconds waiting at a bar­
rier at the end of INTERF, despite the highly ef-

fective static load balancing in this application. 
(This barrier is denoted by the arrows in Fig. 15.) 

The reason for this anomaly is clear from an 
examination of the context switch and parallel in­
put/output patterns. Figure 16 shows that during 
this interval both the parent and child processes 
are relinquishing their processors to the TCP 
packet retransmission daemon. Table 4 indicates 
that the total execution time of the packet retrans­
mission daemon is much higher during parallel 
execution, and Figure 17 confirms that the num­
ber of context switches experienced by the appli­
cation processes rises dramatically when the WA­
TER code executes in parallel. This, together with 
the page faults experienced by the parent process, 
shown near time 140 in Figure 14, and the inter­
actions of process scheduling and contention for 
lock access are the underlying causes for the in­
crease in execution time. As an illustration of the 
latter, Table 6 shows that the mean time for exe­
cuting a barrier increases to over 1.6 seconds for 
the parallel execution. 
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FIGURE 15 Process procedure activations on Choices and umax. 

In summary, the parallel execution of the WA­
TER code on Choices differs from the Umax exe­
cution is two important ways: (1) The Choices 
Unix compatibility library is poorly optimized for 
parallel execution, creating large overheads for 
process creation (in fairness, the Choices Unix 
compatibility library was created to ease code 
porting, not to provide a parallel programming 
model), and (2) differing process scheduling poli­
cies change the pattern of process execution, 
which affects access times for locks and barriers. 

6.4 Performance Observations 

As we noted at the outset, two of our major re­
search goals were to explore the overheads for de­
tailed operating system performance instrumenta­
tion and to study the dynamic interactions among 
object-oriented operating system" components 

when supporting a parallel scientific workload. 
Based on the analysis of Sections 6.2 and 6.3, 
several lessons are clear. 

First, comparing two operating systems that 
were designed to support different programming 
models is extraordinarily difficult because one 
must support a nonnative execution model on 
one of the two systems. As Section 6.3 shows, this 
is a recipe for poor performance-Choices was not 
designed to support heavyweight processes, nor 
was Umax designed to support threads. An imple­
mentation of processes atop the Choices light­
weight thread model, together with emulation of 
process fork semantics, is not sufficient to obtain 
good performance. 

Second, seemingly small variations in system 
services can have profound performance implica­
tions. The lack of access to a memory-mapped 
clock on Choices made capturing fine-grained 
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FIGURE 16 Context switch pattern on Choices (parallel execution on two processors). 

performance data expensive and unnecessarily 
increased the instrumented execution time of 
locks and barriers. This deficiency is easily reme­
died, however. Even with this added overhead, 
the penalty for detailed operating system and ap­
plication instrumentation was modest, allowing us 
to understand the interactions of input/ output re­
quests, task scheduling, and application task syn­
chronization. 

Third, and more positively, the performance of 
an object-oriented operating system can be com­
petitive with traditional operating system designs. 
Except for performance penalties attributable to 
process emulation or untuned system services 
(e.g., disk input/ output), the performance of ap­
plications on Choices is competitive with Unix. 
This is a system-level confirmation of the micro­
scale measurements reported earlier [2]. 

7 OPERATING SYSTEM MALLEABILITY 

The last of our research goals was to assess the 
feasibility of application performance tuning by 

adapting the operating system resource manage­
ment policies to better match application resource 
demands. In this we were unsuccessful. Below, we 
summarize our experiences with Choices and sug­
gest some guidelines for future implementations of 
object-oriented operating systems. 

An operating system with a well-chosen, ob­
ject-oriented design potentially provides the req­
uisite infrastructure for efficient, easy replacement 
or specialization of operating system modules. In­
heritance encourages the implementation of mod­
ule families (e.g., schedulers or memory man­
agers) that share standard interfaces and features. 
Similarly, the protection and data encapsulation 
provided by classes in an object-oriented lan­
guage like C++ isolate the implementation details 
of specific services. 

In Choices, a framework for each major soft­
ware subsystem is defined by a set of abstract 
C++ classes that are then specialized and instan­
tiated with concrete classes to form a specific im­
plementation. Choices also supports a dynamic 
loading mechanism that allows applications and 
system programs to add new system services to the 
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FIGURE 17 Context switch transition matrices. 

Choices kernel during execution. As an example, 
Choices supports several file systems, including 
system V and BSD; file system code for each file 
type can be loaded on demand. Finally, Choices 
supports an interface that allows users to query 
the system about its current state; one can deter­
mine the active class hierarchy, the members of a 
particular class, and the instances of a specified 
class. Together, the object-oriented design, dy­
namic object loading, and the query interface po­
tentially provide a backdrop for performance tun­
ing via replacement of classes that implement 
specific services. 

Despite the elegance of the Choices design and 
the protection provided by C++, we encountered 
several difficulties when attempting to conduct 
parametric performance experiments on Choices. 
The first of these plagues all large software proj­
ects, namely the diversion of implementation from 
design. We found it difficult to replace specific 
resource management policies because their im­
plementations often relied on artifa~ts of classes 

outside the inheritance hierarchy. Rather than re­
moving a single plant with an isolated root system, 
we found several plants with intertwined root sys­
tems. 

To circumvent module entanglement, we need 
richer, more robust mechanisms that rigidly en­
force the design philosophy and that provide sys­
tem configuration management. By the latter, we 
mean a software interface that displays not just 
the class hierarchies and their interactions, but 
also the valid instantiations of those classes to cre­
ate specialized operating systems with the desired 
features. Hardware vendors have developed con­
figuration management systems that prevent sales 
staff or customers from ordering incomplete or 
invalid configurations; we need enforced use of 
similar facilities for operating system software if 
performance tuning via operating system speciali­
zation is to be accessible to large audiences. 

The second major problem we encountered was 
the lack of performance guidance. Although we 
knew that replacing some subset of the resource 



management policies would improve perfor­
mance, it was rarely clear which policies should be 
replaced or what the potential effects would be. 
For example, in Section 6.3 we observed that dur­
ing a fork the Choices virtual memory system re­
quires all newly copied pages to be mirrored on 
the backing store: this creates extensive secondary 
storage activity during a process fork. and in turn 
leads to a large number of pwcessor context 
switches. Although replacing the virtual memory 
manager or the file system might improve perfor­
mance, the best solution is implementation of 
copy-on-write process creation semantics. 

To guide software specialization, we need toob 
that identify not just the proximate performance 
bottleneck but also the interactions of system 
components that are the root cause. Detailed per­
formance data are necessaiY but not sufficient. 
Cnderstanding system component interactions i,; 
but a precursor to informed decision making. In a 
full-featured operating system. the number of 
possible configurations is enormous. "·e need 
tools that allow the configurer to ask hypothetical 
questions (e.g., what might happen if one re­
placed this scheduler with another) and that pre­
dict, within bounds. the expected performance. 

Despite the problems we encountered. we be­
lieve that an object-oriented orwrating system de­
sign is the key to effective performance tuning by 
operating system module replacement. However. 
an object-oriented design alone is insufficient. one 
also needs a rigidly enforced. object-oriented im­
plementation that adheres exactly to a hierarchi­
cal design, interactive configuration managt>mt>nt 
tools that allow tht> user to brows!:' and construct 
specialized operating systems with specilic fea­
tures. and performance guidanct> toob that can 
identify softwart> component interaction,; and sug­
gest possible module alternatives. 

8 CONCLUSIONS 

~·e conjectured that detailed operating system 
and application performance data. together with a 
flexible, object-oriented operating system design. 
are the future cornerstones of systematic applica­
tion and operating system performance tuning on 
parallel systems. Detailed performance data re­
veal the dynamic pattern of application and oper­
ating system component interactions. and object­
oriented operating systems provide tlw separation 
of resource management mechanism .and policy 
needed to replace operating systt>m modules with 
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those more suited to observed application re­
source demands. 

Our experiments showed that the performance 
of an object-oriented operating system can be 
competitive with traditional operating system de­
signs, making the configuration of specialized op­
erating systems easy and their potential perfor­
mance high. Except for performance penalties 
attributable to process emulation or untuned sys­
tem services (e.g:. disk input/output). the perfor­
mance of applications on Choices is competitive 
with Cnix. This is a svstem-level conllrmation of 
the micro-scale measurements reported earlier 
[6]. 

\\"e also observed that detailed operating sys­
tem performance data could be obtained at mod­
est cost via a llexible. /!t'neral purpose instrumen­
tation infrastructure based on object -orientt>d 
design principles. Central to eflicient performance 
data capture is a high-resolution. low-access la­
tency, memory-mapped hardware clock. 

Finally. we observed that operating system in­
strumentation and object-oriented dt'sign are not 
suflicient to support rapid operating system soft­
ware reconfiguration. One also needs tools that 
can help the user select feasible module configu­
rations and that can guide operating system per­
formance tuning by module substitution. 
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