
The Performance of an Object-Oriented,
Parallel Operating System*

DAVID R. KOHR, JR. 1·t, XINGBIN ZHANGI.t, MUSTAFIZUR RAHMAN2·f, AND DANIEL A. REED 1·t

1Department of Computer Science, University of Illinois, Urbana, IL 61801
2Department of Computer Science, Univer.~ity of Massachusetts al Amherst, Amherst, MA 01003

ABSTRACT

The nascent and rapidly evolving state of parallel systems often leaves parallel applica­
tion developers at the mercy of inefficient, inflexible operating system software. Given
the relatively primitive state of parallel systems software, maximizing the performance
of parallel applications not only requires judicious tuning of the application software,
but occasionally, the replacement of specific system software modules with others that
can more readily respond to the imposed pattern of resource demands. To assess the
feasibility of application and performance tuning via malleable system software and to
understand the performance penalties for detailed operating system performance data
capture, we describe a set of performance instrumentation techniques for parallel,
object-oriented operating systems and a set of performance experiments with Choices,
an experimental, object-oriented operating system designed for use with parallel sys­
tems. These performance experiments show that (a) the performance overhead for
operating system data capture is modest, (b) the penalty for malleable, object-oriented
operating systems is negligible, but (c) techniques are needed to strictly enforce ad­
herence of implementation to design if operating system modules are to be replaced.
© 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Striking advances in device technology have made
high-speed processors and large primary memo­
ries both ubiquitous and inexpensive. With these

Received April 1994
Revised May 1994

*Based on "A Performance Study of An Object-Oriented,
Parallel Operating System" by D. R. Kohr, X. Zhang, D. A.
Reed, and M. Rahman, which appeared in the 27th Hawaii
International Conference on System Sciences, Wailea, Hawaii,
January 4-7, 1994, pp. 76-85, © 1994 IEEE.

t Supported in part by the National Science Foundation
under grants NSF CCR87-06653 and NSF CDA87-22836,
and by an equipment grant from the Digital Equipment Corpo­
ration External Research Program.

Cl 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 3, pp. 301-324 (1994)
CCC 1058-9244/94/040301-24

advances have come parallel systems whose peak
performance can be scaled across a wide range
simply by adding processor/memory building
blocks. However, high hardware performance
peaks are not synonymous with high achievable
performance across a wide range of scientific or
commercial applications; many parallel systems
exhibit performance instability, with a high vari­
ance in observed performance on different appli­
cations. The root cause for performance instabil­
ity is rarely simple, but is most often due to the
interactions of the hardware, the operating system
software resource management policies, and the
application resource demands. Minimizing per­
formance instability on parallel systems is crucial
to achieving substantial fractions of peak perfor­
mance for scientific application codes.

Application software developers normally view
the hardware and operating system software as an

302 KOHR ET AL.

integrated "black box" that cannot be modified.
Instead, they must adapt the application code to
the existing configuration and maximize applica­
tion performance subject to these constraints. Al­
though this approach is well suited to mature sys­
tems with well-understood features, the nascent
and rapidly evolving state of parallel systems often
leaves parallel application developers at the mercy
of inefficient, inflexible operating system software.
Simply put, the evolution of system software and
resource management algorithms has not kept
pace with dramatic changes in parallel architec­
tures.

Given the relatively primitive state of parallel
systems software, maximizing the performance of
parallel applications not only requires judicious
tuning of the application software, but occasion­
ally, the replacement of specific system software
modules with others that can more readilv re­
spond to the imposed pattern of resource de­
mands. Lowering the barrier between the applica­
tion and the operating system increases the
opportunity for optimization-one can adjust the
system software to more efficiently support the ap­
plication. Two requirements are implicit in this
approach: detailed performance data and mallea­
ble operating system infrastructure. Detailed per­
formance data are a prerequisite for informed per­
formance optimization. The second, flexible
operating system infrastructure, provides the
mechanism for experimentation. Unless it is easy
to replace existing operating system components
with new components, the intellectual burden will
preclude experimentation. Instead, a building
block approach is needed that allows one to as­
semble operating system modules in a variety of
ways to accommodate specific application needs.

In this article, we describe a set of performance
experiments with Choices [1], an experimental,
object-oriented operating system designed for use
with parallel systems. Succinctly, our research
goals were to:

1. Explore performance instrumentation tech­
niques for parallel operating systems.

2. Measure the performance penalty, if any,
imposed by an object-oriented operating
system implementation.

3. Study the interaction of parallel operating
system components by capturing a trace of
operating system service demands.

4. Assess the feasibility of performance opti­
mization by operating system customiza­
tion.

The remainder of the article is organized as fol­
lows. In Section 2, we begin with a brief overview
of the Choices operating system design philosophy
and the implications of an object-oriented design
for parallel operating systems. This is followed in
Section 3 by a description of an object-oriented
approach to capturing operating system perfor­
mance data and the lessons learned from building
operating system performance instrumentation. In
Sections 4-6 we describe the experimental envi­
ronment, a set.of independent performance mea­
surements used to validate our instrumentation
software, and a detailed analysis of the behavior
of Choices when supporting members of the Stan­
ford SPLASH (Stanford Parallel Applications for
Shared Memory) benchmark set. In Section 7, we
examine the issue of system software malleability
and the feasibility of operating system reconfig­
uration to improve application performance. Fi­
nally, we conclude in Section 8 with observations
on the feasibility of reconfigurable operating sys­
tems and the value of dynamic performance data.

2 THE CHOICES OPERATING SYSTEM

Historically, operating systems research has ad­
dressed two basic issues, although rarely in con­
cert: policy (i.e., algorithms for effective resource
management) and mechanism (i.e., the logical or­
ganization of operating system components). Dur­
ing the early years, resource management policies
(e.g., virtual memory and backing store, disk arm
scheduling, and process scheduling) were the pri­
mary research focus. Later, the focus shifted to
the logical organization of single processor operat­
ing systems (e.g., kernels, modularization, and
process hierarchies) and then to distributed sys­
tem models (e.g., remote procedure calls and cli­
ent/ server models).

Choices [1] is a research operating system de­
signed to promote experimentation with new oper­
ating system design mechanisms and with new re­
source management policies. By separating
mechanism and policy, Choices was designed to
encourage experimentation with both. Mecha­
nisms permit reconfiguration of operating system
components to support new parallel architectures
and applications. For policy experiments, Choices
supports a set of components that can be com­
bined to support different models of parallel pro­
gramming. Generic components are customized
through object-oriented inheritance and speciali­
zation to match the specific concurrency require­
ments of applications.

2.1 Design Philosophy

Choices has, as its kernel, a dvnamic collection of
C++ objects. System reso~rces, mechanisms,
and policies are represented as objects that belon(J"

b

to a class hierarchy [2]. The object-oriented ap-
plication interface has a name server that imple­
ments inheritance and polymorphism and pro­
vides access to system services, local and remote
servers, and persistent objects.

In the Choices design, a conceptual framework
subsumes the conventional organization of an op­
erating system as a group of layers [13]. The
framework for the system provides generalized
components and constraints to which the special­
ized subframeworks must conform. The sub­
frameworks introduce additional components and
constraints and subclass components of the
framework.

2.2 Current Implementations

Choices is most properly viewed as an operating
system schema whose instantiations contain varv­
ing fractions of the code base. At present, paraliel
versions of Choices are operational on the Intel
iPSC/2 hypercube, the shared memory Sun
Sparc/660 multiprocessor, and the bus~based
Encore Multimax shared memory system. All ver­
sions share most of the abstract classes, but an
instantiation for a particular parallel system nec­
essarily contains only that subset of the concrete
classes appropriate for that hardware platform.

Choices is an evolving system, both because it
can be configured in many ways and because de­
velopment of new software modules continues. As
a basis for our experiments, we selected the most
stable and widely used variant, an instantiation on
the Encore Multimax. Although the Multimax
hardware is no longer near the state of the art, it
did provide a well-understood hardware platform
for study. We believe the majority of our results
will translate directly to other hardware configura­
tions.

At the time of our experiments, this version
supported:

1. Two native programming models, shared
memory and message passing, with an ob­
ject-oriented interface that supports appli­
cation access to operating system kernel ob­
jects.

2. Unix System V and Berkeley file systems.
3. A compatibility mode that allows Unix ap­

plication programs to be compiled ~nd exe­
cuted without change.

OBJECT -ORIE:\TED OPERATING SYSTEM 303

4. A message-passing system, with shared
memory and copy-based variants.

5. Networking, with telnet, ftp, and other basic
applications.

6. A multithreaded kernel with a varietv of task
schedulers (FIFO, LIFO, round. robin,
multilevel feedback queue, "standard"
Unix, highest-response-ratio-next, and
shortest-remaining-time).

7. A general s.et of performance instrumenta­
tion and data capture objects.

The particular software configuration used for our
experiments is described in Section 4.

3 OPERATING SYSTEM
INSTRUMENTATION

The volume and diversity of performance data ob­
tainable from an operating system are potentially
enormous, and one must judiciously balance the
volume of data against both its accuracv and the
potential utility; the penalty for insuffici~nt data is
exceeded only by that for inaccurate or misleading
data. Unfortunatelv, data volume and accuracy
are antithetic; mo.st instrumentation and dat~
capture techniques induce some perturbation
(e.g., by modifying code or by interrupting a pro­
cessor to record data) [3, 4].

Operating system performance instrumentation
imposes particularly thorny problems because op­
erating systems are, by their nature, reactive, re­
sponding to external stimuli. Changing the oper­
ating system response time for requests often will
also change the pattern of requests. Moreover, re­
cording operating system performance data often
require operating system services-one must en­
sure that use of these services is isolated and not
part of the subsystems being measured (e.g., if
measuring file system activity is the goal, one
should not use the file system to incrementally ar­
chive file system performance data). In addition to
these constraints, common to all operating system
instrumentation, the object-oriented Choices op­
erating system design has additional implications
for performance data capture mechanisms.

3.1 Implications of Obiect Orientation

Choices was originally designed to be portable and
to operate efficiently on both shared and distrib­
uted memory systems. Indeed, one of the major
motivations for the Choices design was to encour­
age and permit cross-architecture performance

304 KOHR ET AL.

comparisons (e.g., by measuring the performance.
of the same code on disparate parallel systems).
To maximize portability, the abstract classes of
the Choices design hierarchy include few assump­
tions about the underlying architecture, and only
a subset of the concrete classes embodv machine­
specific details. Performance instrumentation
should not inhibit this portability by unduly rely­
ing on particular architectural features. For exam­
ple, on a shared memory parallel system, it is
tempting to allocate buffers for recording perfor­
mance data that can be shared by all processors.
However, an implementation based on this ap­
proach cannot be ported to a distributed memory,
message-passing system without a major redesign.
Hence, the Choices performance instrumentation
provides a separate performance data buffer for
each processor, making it efficient on systems with
both shared and distributed memorie,.;. This has
the ancillary benefit of eliminating synchroniza­
tion for data buffer access, allowing simultaneous
performance data recording by multiple proces­
sors.

Reflecting the object-oriented nature of
Choices, the instrumentation system was designed
as a hierarchical set of objects. However, the in­
strumentation implications of objects are more
profound than simply a design style for data cap­
ture software. The heavv reliance of Choices on
inheritance, where classes inherit other C++
classes and member functions from higher-level.
base classes, means that instrumentation in any
class that is not a leaf of the hierarchv will be
inherited bv all derived classes. In some cases, this
is beneficial because the same performance data
are needed from all variants. In other cases, the
desired data are either different or a superset of
that available to the base class, mandating cus­
tomized instrumentation of the derived class. To
maximize flexibility, the Choices instrumentation
supports combinations of inherited and custom­
ized instrumentation.

Based on these issues, and our instrumentation
experiences, both with Choices and with other
systems [3, 4] we believe that parallel operating
system instrumentation must be general purpose.
supporting instrumentation and data capture
from a variety of operating system modules using a
common interface, isolated, with minimal depen­
dence on operating system services, dynamic,
with triggers to dynamically enable and disable
performance data capture based on data volume
and system activity, and integrated with applica­
tion program performance data capture, permit-

ting correlation of operating system performance
data with application behavior and resource de­
mands. Drawing on these principles, below we de­
scribe the design and object-oriented instrumen­
tation system implementation for the Choices
system software.

3.2 Choices Instrumentation Overview

A variety of t~chniques have been proposed for
capturing operating system performance data. but
all are members of three broad categories: timing.
tracing. or counting. Because each strikes a differ­
ent balance between data volume and potential
measurement intrusion, the Choices instrumenta­
tion system supports all three, via Counter,
Timer, and Event objects. Each type of instru­
mentation object can be used to capture either
application or operating system performance
data.

Figure 1 shows the major application and sys­
tem instrumentation classes and their inheritance
relationships. Although each is discussed briefly
below, space limitations preclude a complete de­
scription: see Rahman [5] for details. The classes
for event tracing, counting. and timing are all de­
rived from the abstract Instrument base class.
This base class proYides methods to temporarily
suspend (and later resume) data recording. as well
as to reset the instrumentation object. In turn. in­
stances of the derived Counter class can be used

Event Instrument

Timer Instrument

-{

User Instrument Manager

Instrument Manager

System Instrument Manager

Instrument Buffer

Instrument Buffer Exception

FIGURE 1 Choices instrumentation class hierarchy.

to count the number of times an event of interest
has occurred, and periodically record the current
count in a performance data buffer. Similarly,
Timer objects can be used to record the time
elapsed during the execution of a code fragment.
Finally, Event objects support generic event trac­
ing, with optionaL user-specified data recorded
with the default timestamp and event identifier.
All three types of instrumentation objects produce
performance data that are buffered and periodi­
cally written to secondary storage. The following
information is common to all three:

1. A timestamp, indicating when the data were
generated.

2. An event identifier that uniquely specifies
the type of the data.

3. The name of the execution thread from
which the data originated.

4. The processor where the event occurred.

As Figure 2 shows, an instrument manager is
associated with every instrumentation object.
Each of these instrument managers is responsible
for certain housekeeping chores associated with
the instruments it manages (e.g., temporarily sus­
pending the recording of performance data). Each
task of a parallel application program can create
one or more User Instrument Manager objects

CPU \

nstrument
Buffer

xception

Instrument
Buff/

System

Instrument

Manager

I
Event

Instrument

Log

File

/

\
Timer

Instrument

~
Counter

Instrument

Kernel Instruments

OBJECT -ORIENTED OPERATING SYSTEM 305

to logically group and control related instruments.
A single System Instrument Manager controls
all operating system instruments and coordinates
the set of User Instrument Manager objects.

A separate instance of an Instrument
Buffer object for each processor manages a
buffer of performance data that has not yet been
written to secondary storage. The Instrument
Buffer Exception object coordinates the
dumping of instJ1..!mentation buffers by all proces­
sors to secondary storage.

Because all application and operating system
events on a particular processor are written to the
same buffer, they are correctly ordered by the time
they occurred, simplifying later correlation of op­
erating system resource requests with system re­
sponses. Also, because performance data ob­
tained from each processor are recorded in a
buffer specific to that processor, there is no con­
tention for access to a buffer by multiple proces­
sors. This approach also obviates migration of
performance data buffers between processors
when tasks are rescheduled on another processor,
and it is easily implemented on both shared and
distributed memory parallel systems.

By locking each processor's buffer in nonpage­
able, kernel memory one avoids page faults during
performance data recording. Not only does this
minimize the variability of data recording costs, it

Kernel

~-------------,

I Application

I
I
I User Instrument

Manager

I \
Event Timer

Instrument Instrument

·~~l
Counter

Instrument

FIGURE 2. Choices instrumentation overview.

306 KOHR ET AL.

also makes instrumentation of the virtual memory
system possible-the instrumentation system
cannot cause additional page faults during tracing
of page fault service routines.

In addition, instrumentation buffer dumping is
completely synchronous. "Then any processor's
performance data buffer fills, all processors are
interrupted, and no processor is allowed to re­
sume normal execution until all data buffers have
been written to secondary storage. Hence, the per­
turbation induced on each processor is identicaL
and there is no skewing of the tasks on different
processors. By recording the total time needed to
dump all data buffers, we can postprocess the
performance data and adjust the observed event
times to eliminate these costs [3]. Finally, because
all processing is suspended during buffer dump­
ing, the instrumentation system does not contend
with application processes for access to disks.

4 PERFORMANCE ANALYSIS
METHODOLOGY

Earlier Choices performance measurements [6]
focused on the cost of individual system opera­
tions (e.g., system calls) and the costs of virtual
function table lookups imposed by a C++ imple­
mentation. These studies showed that the perfor­
mance penalties for an object-oriented design
need not be prohibitive, but they did not explore
the interactions of operating system components.
Hence, two of our major research goals were to
explore the overheads for detailed operating sys­
tem performance instrumentation and to study
the dynamic interactions among object-oriented

SPLASH
Source
Code

PARMACS
Parallel
Programming
Macros

Instrumented
Choices C++
Parallel
Program

'Instrumented
Umax C++
Parallel
Program

operating system components when supporting a
parallel scientific workload.

Our research goals required measurements of
Choices operating system behavior and its compo­
nent interactions when subjected to a realistic sci­
entific workload, and a comparison of these mea­
surements to equivalent data obtained from a
traditional operating system. The latter was nec­
essary both to validate our performance measure­
ment system" and to assess the system perfor­
mance of a parallel, object-oriented operating
system. Figure 3 illustrates our experimental
methodology. Our experimental environment was
a two-processor Encore Multimax 320 shared
memory multiprocessor, executing a shared mem­
ory variant of Choices. We obtained comparative
performance data from Cmax 4.2, Encore's Cnix
implementation. (The Ylultimax 320 supports up
to 16, 15 MHz, 2 MIP, l\"S32332 processors on a
shared bus. Each processor has a 64K byte write­
through cache.) Although the Multimax 320 is no
longer state of the art, and most parallel systems
now contain far more than two processors, our
experience with this system and experimental
data from other contexts both suggest that the
data obtained are typical of what would be ob­
served on larger or more modem shared memory
parallel systems.

As a representative scientific computation
workload, we selected programs from the
SPLASH benchmark suite [7]. The SPLASH
benchmarks are typical engineering and scientific
codes of moderate size, written inC and Fortran,
and drawn from a variety of application domains.
Each is an explicitly parallel, shared memory pro­
gram, parallelized using the Argonne 1\"ational
Laboratory's Parmacs macro package.

Application
Trace Data

FIGURE 3 Performance analysis methodology.

4.1 Experimental System Configuration

Several pragmatic issues arose when a~apting. the
SPLASH codes for execution on Chotces. FirsL
the Choices application programming interface
does not support system calls in the traditional
sense; instead, the system supports requests for
operating system services via proxies [2, 8], .C++
interfaces to the svstem software that allow Inter­
action with object~ that are not in the same pro­
tection domain. More significantly, the model of
parallelism used in the Argonne Parmacs package
(i.e., multiple, heavyweight, Cnix-style processes)
differs from the native, shared memory parallel
programming model on Choices (i.e., lightweight
threads that execute in a shared address space).

To execute the SPLASH codes on Choices. we
converted the C versions of the codes to C++ 1 and
relied on the Choices lJnix compatibility mode.
Although the compatibility mode fails to capitalize
on either the lower overhead, threads model of
Choices, or the Choices system services directly
available via proxies, it did permit performance
comparison of both Choices and Encore's parallel
Unix (Umax 4.2).

Our goal was to measure the behavior of
Choices and Umax 4.2 under conditions typical of
real scientific workloads. Hence, during all experi­
ments, the regular operating system services of
both Choices and Umax were enabled. On
Choices, networking daemons periodically serv­
iced interrupts resulting from incoming and out­
going packets; ftp and telnet servers were awaiting
connections from remote machines; and sched­
uler time slice timeout interrupts continued to oc­
cur. During each test, a single login shell was cre­
ated to initiate execution of a SPLASH
benchmark. Hence, both operating systems expe­
rienced a relatively quiescent but "realistic"
background workload, in addition to that impose.d
by the SPLASH code itself. The pres~nc~ of ~his
background workload was invaluable m Identify­
ing and isolating the causes of performance
anomalies.

In all our experiments, Choices was configured
with a task scheduler that managed all user tasks
on a single, preemptible (by interrupts and system
tasks) round-robin (FIFO) queue with one second
quanta. System tasks were on a separate, no~pre­
emptible FIFO queue whose members had higher
priority than the members of the user task queue.

1 To avoid potential effects of compiler differences, we also
used the C++ versions of the SPLASH codes for our Unix
performance experiments.

OBJECT-ORIENTED OPERATI[';G SYSTEM 307

All experiments used a Berkeley file system that
was Umax compatible (i.e., files written by
Choices were readable bv Umax).

4.2 Instrumentation and Data Collection

Given sufficiently detailed information about the
state of each svstem and application task (i.e., the
locus of contr~l, values of key program variables,
and assigned pro.cessor), it is possible to accu­
rately correlate application requests with. system
processing, and to identify system processmg that
has no causal relationship with application re­
quests. However, collection of detailed perfor­
mance data using software instrumentation is not
without price: Instrumentation perturbs the mea­
sured svstem and mav result in observed behavior
and ev~nt orders that would not be feasible in a
system without instrumentation [9].

Because our performance experiments were the
first intensive tests of the Choices instrumentation
system, and because we wished to study primarily
the effects of the Choices scheduler and disk in­
put/ output system on the performance of the
SPLASH codes, we elected to instrument only a
subset of the Choices modules. 2 Given constraints
on the number of possible operating system in­
strumentation points, context switch instrumenta­
tion provides the most information [10]-it ex­
poses not only the decisions of the task scheduler,
but also the interactions of application tasks and
the execution patterns of service daemons. Hence,
we instrumented Choices to trace the time of each
context switch, the identity of the currently exe­
cuting task, and the identity of the newly sched­
uled task.

Using interval timing, we modified the Choices
disk input/ output class to record the sta~ing a~d
ending time of each input/ output operatiOn. ~ e
also instrumented the Choices disk input/ output
interrupt service routines; this allowed us to c~p­
ture physical disk input/ output rather than logical
input/ output to file buffers.

This limited set of instrumentation points
strikes a balance between sufficient performance
data to understand system dynamics and exces­
sive instrumentation perturbation, and sufficed to
determine both which tasks were executing at
each point in time and when input/ output re-

2 For the SPLASH codes, task scheduling and input/out­
put processing are the primary points of interaction with the
operating system. To maximize portability, the SPLASH codes
use few operating system facilities.

308 KOHR ET AL.

quests were being serviced. To correlate applica­
tion and operating system behavior, we instru­
mented the SPLASH codes to record the time of
occurrence and duration of each procedure calL
outermost loop entry I exit, and interprocessor
synchronization.

4.3 Comparative Measurements

To provide a reference point against which the
performance of Choices could be compared, one
also needs performance data from an execution of
the SPLASH codes on another operating system,
in this case Encore's Umax. unfortunately, Cmax
provides no native performance instrumentation
system, either at the system or application level.
Because the lack of access to the umax svstem
source code precluded instrumenting Umax, we
concentrated on application-level performance
data as a basis for comparisons. ~~e developed a
portable, minimalist instrumentation package for
collecting application-level traces. This package,
which can be used with either Choices or umax,
preallocates large trace buffers that reside in the
address space of each instrumented task, avoiding
interactions with the file system.

The existence of a portable, application-level
instrumentation package allowed us to decouple
the effects of possible instrumentation overheads
and operating system differences. By measuring
application performance on both Umax and
Choices with the same portable application in­
strumentation and C++ compiler, we could be
sure that any observed differences in performance
were directly attributable to operating system dif­
ferences. In addition, by comparing application
performance data captured on Choices with both
the portable instrumentation and the native
Choices instrumentation, we could assess both the
accuracy of the Choices instrumentation and the
differences in instrumentation overhead.

5 INSTRUMENTATION ANALYSIS

The primary danger when instrumenting any
stimulus-driven software svstem is that instru­
mentation may change both the time needed to
process stimuli and the temporal order of the gen­
erated responses. Typically, perturbations are ei­
ther direct, resulting from simple increases in
stimulus processing times attributable to the in­
sertion of instrumentation code, or indirect, re­
sulting from the reordering of asynchronous stim­
uli or their responses.

Under constrained conditions, the effects of di­
rect perturbations can be removed by post­
processing the captured performance data to ad­
just the observed event times [3]. (If the events are
totally ordered and cannot be changed by instru­
mentation, and the cost for each instrumentation
point is known, adjusting the event times involves
only a simple linear transformation.) More gener­
ally, inserted software instrumentation has more
subtle effects .(e.g., displacing data values from
the cache or causing pipeline stalls), the exact eost
of each instrumentation point is not known, and
exact compensation for instrumentation effects is
not possible.

Indirect perturbations are more pernicious, and
in the worst case may require a complete system
simulation to recover the event order that would
have occurred had instrumentation not been
present [9]. For example, if the events have differ­
ing priorities (e.g., system and user task resource
requests), or are time dependent (e.g., scheduler
time slice interrupts), software instrumentation
may change the event order or even alter the num­
ber of events.

On a parallel system, the observed events are
partially ordered, and the observed event order
may not have been feasible on an uninstrumented
system (i.e., if the instrumentation costs were
zero, the observed event order would have been
impossible under any execution circumstances).
In short, system instrumentation is subject to an
uncertainty principle: ~Ieasurement perturbs the
system, and one must balance the volume of de­
sired data against its accuracy.

An important first step in the analysis of perfor­
mance data captured using software instrumenta­
tion is to bound the potential perturbation of the
nominal execution time and the event reordering.
Below, we discuss the costs of capturing applica­
tion and operating system performance data, fol­
lowed by an analysis of possible perturbations in­
duced by the instrumentation of system and
application code.

5.1 Application Instrumentation Costs

To estimate the time needed to record perfor­
mance data using both the Choices instrumenta­
tion and our portable instrumentation package,
we began with a set of in vitro measurements on a
synthetic benchmark that contained a single loop.
~-e compared the execution time when the loop
body was empty to the execution time of the same
loop when a single instrumentation point was in­
serted, taking care to ensure that compiler optimi-

OBJECT -ORIE:\"TED OPERA TI:\"G SYSTDl 309

Table 1. Event Recording Costs (microseconds)

Operating System Instrumentation

Umax Portable
Choices Portable

Choices

zations did not eliminate the loop iterations. From
this, we calculated the time to record a single
event, as follows.

If N is the number of loop iterations, l, is the
execution time of the empty loop, and l; is the
execution time of the instrumented loop, the esti­
mated cost C; of an instrumentation point is

Co= l; = t,
I LV 0

The in vitro data in Table 1 summarizes the result
of these measurements on both Choices and
Umax. Figure 4 shows a portion of the corre­
sponding raw instrumentation event times.

Figure 4 and Table 1 show that the in vitro
instrumentation costs for the portable instrumen­
tation and the native Choices instrumentation svs­
tems differ greatly. The chief reason for these dif­
ferences is that on both Umax and Choices, the
portable instrumentation software executes within
the context of the user process. (Recall that the
performance data buffer resides in the process'
address space and no buffer input/ output occurs
until the process completes execution.) The value
of a high-resolution, memory-mapped hardware

500.-----r-----.----.-----.-----,

~ .,
"tl
g 400

~ ...
! 300 ...

:g
u

.~ 200
-.;;
~ .,
a
e 1oo
]

Choices Native

Choices Portable
I

Umax Portable

Measurement Number

FIGURE 4 In Vitro event recording overhead.

In Vitro Overhead In Vivo Overhead

15.1 13.6
144.8 153.3
509.6 596.5

clock is reflected in the instrumentation cost dif­
ferences for the umax and Choices versions of the
portable instrumentation package. On Cmax. the
Multimax's microsecond hardware timer is mem­
ory mapped to the application address space,
whereas access to the same timer on Choices re­
quires a proxy-based system call; this is the sole
cause for the portable instrumentation overhead
differences in Figure 4 and Table 1.

In contrast to the portable instrumentation
package, the native Choices performance data
buffers reside in system memory, requiring pro­
tection boundary crossings to record data. ~lore­
over, because the Choices instrumentation pro­
vides greater functionality, and hence is more
complex, recording data require the interaction of
several objects via C++ virtual function calls (Fig.
2). Conversely, the portable instrumentation sys­
tem records data using inline code, avoiding the
overhead of procedure calls and most protection
boundary crossings.

Periodically writing the performance data
buffers to secondary storage is an additional, un­
avoidable source of overhead in the Choices in­
strumentation; any general purpose instrumenta­
tion system that must capture arbitrary amounts
of performance data requires access to external
storage or a data transport medium. As described
in Section 3, the Choices instrumentation synthe­
sizes performance trace events that specify the
time required to write the performance data
buffers to secondary storage; these synthesized
events are embedded in the performance data.
Because all other system and application activity
is suspended during buffer dumping, the effect on
all user and system tasks is identical and can be
easily removed from the performance data by sub­
tracting the cost of buffer dumping from subse­
quent event occurrence times .

Because a Choices proxy call to obtain the time
involves several procedure calls and a protection
boundary crossing, there is both greater cost to
obtain the time and, because the timing code may
not be present in the cache, there also is greater
variation in the cost of reading the clock. This var­
iation is clear in Figure 4-both the magnitude
and the variation in event recording times increase

310 KOHR ET AL.

from the Umax portable instrumentation, with a
memory mapped clock, to the portable instru­
mentation on Choices, with an operating system
call required to read the clock, to the native
Choices instrumentation, with more complex data
recording and multiple proxy calls.

5.2 Observed Perturbations

To establish the veracity of the application instru­
mentation cost model, we compared the in vitro
estimates of Table 1 to in vivo measurements ob­
tained from the measured execution of the
SPLASH [7] WATER benchmark, a molecular
dynamics simulation. We measured the sequen­
tial execution time of the WATER code, with and
without the presence of the portable application
instrumentation, and divided the difference in ex­
ecution times by the number of captured events to
obtain the mean instrumentation cost. (The WA­
TER code contains no timing dependent code that
might generate differing numbers of trace events
based on the execution schedule and instrumen­
tation overhead.) The result is the in vivo data of
Table 1. In general, the modest difference in the
instrumentation costs, less than 20% in the worst
case, suggests that the in vitro measurements cap­
ture the salient effects of the instrumentation code
in the in vivo case.

Comparing the in vitro and in vivo values shows
that the in vivo values are lower for Umax and
higher for Choices. We conjecture, but have been
unable to confirm, that the values are lower for
Umax because the portable instrumentation on
that system consists only of inline code. No proce­
dure calls are needed to record the performance
data, and the compiler can more effectively opti­
mize the larger basic blocks that result when in­
strumentation is inserted. In contrast, on Choices
both the portable and native instrumentation re­
quire system calls to obtain the current time. This
fragments the basic blocks and reduces opportu­
nities for compiler optimization. In addition, the
greater complexity of the Choices system instru­
mentation is more likely to perturb the cache, in­
creasing the warm start miss ratio for application
codes and increasing the in vivo instrumentation
costs.

Using a trace of synchronization events from a
parallel execution of the WATER code, we also
compared the partial event order obtained with
the portable and the native Choices instrumenta­
tion. Because the parallel version of the WATER
code has a static work distribution (i.e., work is

not dynamically assigned to tasks), differing in­
strumentation costs cannot cause work to be
shifted from one task to another, nor can they
change the number of recorded events in each ap­
plication task. Analysis showed that the portable
and Choices system instrumentation traces had
the same partial event order, despite large differ­
ences in the instrumentation costs. However, for
more dynamic, timing-dependent codes, larger
perturbations are more likely.

5.3 Scalability

Using the native Choices operating system instru­
mentation and the portable application instru­
mentation, we instrumented members of the
SPLASH benchmark suite to assess the perfor­
mance of both Choices and Cmax, Encore's par­
allel Unix, on a two-processor Encore Multimax
320.

Although resource limitations did not allow us
to conduct experiments with larger numbers of
processors, we are confident that this approach
scales to substantial numbers of processors. The
belief is based on our implementation of similar
instrumentation on systems with tens to hundreds
of processors [11 J and the use of these techniques
on other massively parallel systems [12] that have
hundreds of processors.

6 EXPERIMENTAL DATA ANALYSIS

Using the native Choices operating system instru­
mentation and the portable application instru­
mentation, we instrumented members of the
SPLASH benchmark suite to assess the perfor­
mance of both Choices and Umax, Encore's par­
allel Unix, on a two-processor Encore Multimax
320. Because our primary goals were to under­
stand the costs of dynamic operating system in­
strumentation, the interactions between operating
system and application program resource de­
mands, and the overhead for malleable system
software, we did not explore the effects of multi­
programming; all experiments involved only one
active application program.

The high dimensionality of the experimental
space (i.e., two operating systems, a variety of po­
tential operating system configuration options,
and multiple programs from the SPLASH bench­
mark set), together with the time required to con­
duct an experiment and the large volume of per­
formance data obtained from each experiment,

precluded a complete factorial analysis. Instead,
we selected a single member of the SPLASH
benchmark suite, the WATER code, as the basis
for study; this allowed us to study its behavior in
detail, and using this knowledge, to understand
the implications for parallel operating system per­
formance and software configuration.

6.1 WATER Application Benchmark

WATER is an 1\"-body molecular dynamics code
that simulates the evolution of water molecules in
the liquid phase [7]. In its parallel version, the
molecules are partitioned and statically assigned
to tasks. Each parallel task is responsible for cal­
culating the time-evolutionary state of its as­
signed molecules. To reduce the number of
pairwise force calculations, only interactions be­
tween pairs of molecules with distances less than a
specified cut-off radius are calculated. At each
time step, the molecules move in response to the
force calculations. Hence, the spatial distribution
of molecules is not uniform, and the task load bal­
ance and synchronization costs potentially change
at each time step.

C sing the Parmacs computation model, the
WATER code consists of a serial initialization
phase (including assignment of work to pro­
cesses), followed by a fork of the requisite number
of participating computation processes, initializa­
tion of the processes, and the actual computation.
Table 2 summarizes the major procedures of the
\VATER code that correspond to these phases.

OBJECT-ORIEl\TED OPERATI:'I;G SYSTEM 311

Unless otherwise indicated, all experiments in­
volved 64 water molecules and two time steps; the
volume of performance data and the 2 MIP pro­
cessing rate of the Multimax l\"S32332 processors
made the execution times and data analysis costs
of larger inputs prohibitive. Nevertheless, even
these small input data sets suffice to capture the
salient aspects of program and system behavior.

Although we made every attempt to minimize
the differences between the \VATER code variants
on Umax and Choices, the disparity in application
programming models and libraries on the two sys­
tems necessitated some changes. Of these, the
most important change was the use of the same
math library on both systems to permit fair perfor­
mance comparisons.

6.2 Sequential Application Behavior

As a basis for comparing operating systems and
for understanding the parallel execution of the
WATER code, we captured application procedure
entry I exit traces from a sequential execution on
both Choices and Cmax using our portable instru­
mentation software. On Choices we also used the
system instrumentation to capture operating sys­
tem data. Figures 5-8 show the pattern of proce­
dure calls for the sequential Umax execution. In
the figures, the \VATER code's two time steps are
clearly visible in the pattern of procedure calls,
with a transition from intermolecular to intramo­
lecular force calculations near times 28.5 and 53.

In contrast to the Cmax execution time of ap-

Table 2. WATER Procedures and Event Identifiers

Major
Procedure

main
CNSTNT
SYSCNS
INITIA
WorkStart
MD MAIN
PREDIC
CORREC
BNDRY
KINETI
POTENG
INTRAF
INTERF

CSHIFT
UPDATE-FORCES

Event
Identifier Brief Description

1 Main routine
2 Other constants initialization
3 System constants initialization
4 Data file input and initialization
5 Initiate computation of the parent process
6 Initiate computation of a child process
7 Predict new displacement values
8 Correction of predicted values
9 Boundary condition computation

1 0 Kinetic energy calculation
11 Potential energy calculation
12 Intramolecular force calculation
13 Intermolecular force calculation with

global communication
14 Molecular distance calculation
15 Molecular force update

312 KOHR ET AL.

Umax Sequential Umax Sequential U max Sequential Umax Sequential
0.

0 L 5.0 10.0 15.0

0. 5 5.5 10.5 15.5

1. o- 6.0 11.0 16.0 L

1. 5 6.5 11.5 16.5 -

2. 0 7.0 12.0 17.0

Time
2. 5 7.5 12.5 17.5

(seconds)

3. 0 8.0 13.0 18.0

3.5 8.5 13.5 18.5

4.0 9.0 14.0 19.0

4.5 9.5 14.5 19.5

5.o 10. 1s.o 2o.o..J,.,TTTTTTTr~
15 15 15 15

~ID ~ID ~ID ~ID

FIGURE 5 Representative sequential procedure activations on Umax.

proximately 65 seconds, a sequential execution of
the same code under Choices requires almost 84
seconds (see Table 3). A detailed analysis of the
trace data showed several reasons for this discrep­
ancy. First, as Figure 4 and Table 1 show, the cost
for timestamp acquisition on Choices is substan­
tially greater than under Umax. This difference,
approximately 150 microseconds in the in vivo

case, coupled with roughly 92,000 recorded
events, adds nearly 14 seconds to the sequential
execution time. The cumulative magnitude of this
overhead highlights the critical importance of a
memory-mapped clock. Without such a clock, ob­
taining detailed performance data incurs large
overheads.

The second cause for the disparity in the se-

Table 3. WATER Execution Time Distribution (seconds)

Umax Time Choices Time

Component Sequential Parent Child Sequential Parent Child

Computation 61.36 44.65 24.28 65.12 50.79 28.94

Input/Output 2.19 2.02 0.00 4.49 4.48 0.00

Application Instrumentation 1.25 0.77 0.48 14.14 8.72 5.43

Instrumentation Initialization 0.00 4.51 0.00 0.00 34.43 0.00

Process Fork 0.00 0.33 0.00 0.00 74.70 0.00

Total 64.80 52.27 24.77 83.74 173.12 34.36

OBJECT-ORIE;"'TED OPERATING SYSTEM 313

Umax Sequential Umax Sequential Umax Sequential Umax Sequential
20.0 25. 30.0 35.0...------.__,

20.5 25.5 30.5 35.5

21.0 26.o- 31.0 36.0

21.5 26.5 31.5 36.5

22.0 27.o- 32.0 37.0

Time
(seconds) 22·5 27.5 32.5 37.5

23.0 28.o- 33.0 38.0

23.5 28.5 33.5 38.5

24.0 29.o- 34.0 39.0 -

24.5 29.5 34.5 39.5

25.0 I 30.u 35. 40.0 I
15 1 15 15 15

Event ID Event ID Event ID Event ID

FIGURE 6 Sequential procedure activations on Umax (continued).

quential application execution times across the
two operating systems is input/ output overhead.
At the time of these experiments, the Choices disk
device drivers were not yet fully optimized, and
the disk transfer rate under Choices was approxi­
mately half that of Umax. At the beginning of its
execution, the WATER code reads a 193K byte
molecular description file from disk; this adds ap­
proximately 2.5 seconds to the Choices execution.
Finally, during execution under Choices, there
was a modest amount of extra overhead for system
event recording that is not present under Umax.
Subtracting these overheads from the sequential
Choices execution time yields an execution time
comparable to that for Umax.

Given an accounting for the disparities in se­
quential execution times, we tum to an analysis of
the dynamics of operating system behavior. Figure

9 shows a small portion of these dynamics-the
procedure call pattern on both Umax and Choices
during comparable periods of execution. The pat­
terns in Figure 9 are strikingly similar, although
shifted in time by the greater overhead for event
recording on Choices. To see this distortion, we
extracted the time of procedure call and activation
lifetimes for two of the dominant procedures in the
WATER code, UPDATE and CSHIFT. Figures
10-11 show the distribution of these lifetimes.

The CSHIFT procedure calls no other applica­
tion procedures; it simply computes the distance
between two molecules using a simple loop that
contains a conditional. The horizontal banding in
Figures 10-11 reflect the distribution of times
when the conditional is true. This banding is
much less evident in Figure 10, the Choices exe­
cution, than in Figure 11, the Umax execution,

314 KOHR ET AL.

Table 4. Choices Task Description and Time Distributions

Sequential Parallel

Process Process Description Total Time Total Time

WATER parent task WATER main task 82.83 105.94

WATER child task WATER child task 0.00 49.16

Idle task Executes when no other task is ready 0.95 62.85

ARB retransmit daemon Checks/retransmits TCP packets 83.57 128.14

Waste manager Recovers when tasks complete 0.00 0.00

Kernel setup System startup/ shutdown task 0.00 0.00

Console interrupt Manages console inputs 0.00 0.00

Telnet server daemon Processes new telnet connections 0.00 0.00

Ethernet manager Handles Ethernet receive 0.09 0.08

Ethernet control Handles Ethernet transmission 0.00 0.17

Zoot receive daemon Passes TCP packets to TCP clients 0.00 0.00

Zoot controller Processes incoming Ethernet packets 0.05 0.06

because the cost of event recording with the porta­
ble instrumentation package has much higher
variance on Choices (see Fig. 4). The extra over­
head for event recording is also manifest in the

shifting of the procedure duration time scale; the
differential shift for the two procedures occurs be­
cause they contain a different number of instru­
mentation points.

Umax Sequential
40.01--.---'---,.---...,

40.5
-

41.0

41.5

42.o-

Time
(seconds) 42·5

43.0

43.5

44.0

44.5

15
Event ID

U max Sequential
45.niJ-r----.~

45.5

46.()-

46.5

41.6-

47.5

48.()-

48.5

49.o-

49.5

15
EveniiD

Umax Sequential
50.0.-----....-.

50.5

51.0

51.5

52.0

52.5

53.o-

53.5

-

54.o-

54.5

55 .. 1l-'-I'TTTTTTTTT

15
Event ID

U max Sequential
55.0--r---

55.5

56.0

56.5

57.0

57.5

58.0

58.5

59.0

59.5

15
EnniiD

FIGURE 7 Sequential procedure activations on Umax (continued).

U max Sequential
60.01.,..-----j-,

60.5

61.0

61.5

62.0

Time
(seconds) 62·5

63.0

63.5

64.0

64.511

65. Ol-'-nTTnrrrrrmrr
15

Event ID

FIGURE 8 Sequential procedure activations on Umax
(continued).

Finally, Table 4 summarizes the function of
each active Choices service daemon and its total
processor time during the sequential execution of
the WATER code. Figure 8 shows the temporal

OBJECT-ORIE:\TED OPERATI:"."G SYSTEM 315

Choices Sequential
38.01-.-----.~..,

~
~

38.5

Time
(seconds) 39.0

39.5

~

-

40 .01-'-n~crrrrfTTT-r'
15

Event ID

U ma.x Sequential
28.01~--~~

28.5

29.0

29.5

15
Event 1D

FIGURE 9 Sequential procedure activations on
Choices and Umax.

pattern of task scheduling activity and context
switches that lead to these times. During program
initialization, the number of context switches is
high because there are user interactions with the

Table 5. WATER Parallel Execution Phase Durations
(seconds)

Computation Phase

Choices serial initialization
Choices fork
Choices child initialization
Choices parallel computation
Umax serial initialization
Umax fork
Umax child initialization
Umax parallel computation

Beginning

0.00
21.80
96.50

130.93
0.00

15.58
15.91
20.42

End

21.80
96.50

130.93
173.12

15.58
15.91
20.42
52.28

Duration

21.80
74.70
34.43
42.19
15.58

0.33
4.51

31.86

316 KOHR ET AL.

UPDATE_FORCES Procedure
3.00

p
r

2.50 0
c
e
d 2.00
u
r
e 1.50
D
u
r 1.00
a
t
i 0.50
0
D

0 10 w ~ ~ w ~ ro
Time of Procedure Call(seconds)

80

p
r
0
c
e
d
u
r
e
D
u
r
a
t
i
0
D

Choices

0.75

0.50

0.25

0 10 w ~ ~ w ~ ro
Time of Procedure Call (seconds)

80

FIGURE 10 Choices procedure durations in milliseconds (sequential execution on two
processors).

command interpreter to specify program parame­
ters, following this the context switch pattern
quickly stabilizes.

Unlike more traditional operating systems,
Choices does not preemptively timeslice processes

unless the number of processes demanding a pro­
cessor exceeds the number of available proces­
sors. Instead, processes execute until they must
relinquish the processor, either due to delays wait­
ing for requested services or competing demands

Table 6. WATER Synchronization Summary (times in
milliseconds)

Activation Mean Duration
Synchronization Construct Count Duration Variance

Choices sequential execution
Lock 7916 0.16 4.9 X 10-3

Barrier 12 2.58 7.89
Umax sequential execution

Lock 7916 0.02 2.13 X 10-3

Barrier 12 0.06 4.57 X 10-3

Choices parallel execution
Lock 7928 0.20 1.04
Barrier 23 1660 7.00 X 10-3

Umax parallel execution
Lock 7928 0.03 1.09 X 10-2

Barrier 23 223.8 9.15 X 102

OBJECT -ORIE~TED OPERA TI~G SYSTE~I 317

UPDATE_FORCES Procedure
3.00

p
r

2.50 0
c
e
d 2.00
u
r
e 1.50
D

..._._
u

:··-~ ... __ --;<r: ~ ···-::~r~~.::~:r- ---~-:::~.· .. ?:.t;:r;·~
r 1.00
a
t
i 0.50
0
n

0 10 20 30 40 50 60 70 80
Time of Procedure Call(seconds)

Umax
1.00.--,

p
r
0
c
e
d

0.75

u
r
e

~~~-!"-:1'~_110~~~~"!'"-
0.50 -. . "''':"- _,, _, -- ,. :. 

D 
u 
r 
a 
t 
i 
0 
n 

~~·::~~~~~:~ 

0.25 

0 10 20 30 40 50 60 70 80 
Time of Procedure Call (seconds) 

FIGURE 11 Lmax procedure duration~ in milliseconds (sequential execution on two 
processors). 

for processor services. Durin~ program execution. 
the single application process repeatedly migrates 
between the two processors in response to activa­
tion of network daemons. Figure 17 a shows that 
most of these context switches involve network 
software, and Table 4 shows that most of the sys­
tem software overhead involves a single daemon. 
the TCP packet retransmit daemon. (On seeing 
this behavior, the Choices system developers im­
mediately recognized a software design error:. the 
intended goal of the ARB retransmit daemon was 
to check and retransmit TCP packets only at 1-
second intervals. This error was corrected in a 
later version of the Choices software.) 

In summary, the single processor performance 
of the WATER code on Choices is similar to that 
on Umax, albeit with three major differences in 
the behavior under Choices: 

1. The absence of a memory-mapped clock 
makes performance event recording costly. 
increasing the total execution time. 

2. Cnoptimized input/ output system increases 
program initialization time. 

3. Different software daemons. coupled with a 
different task scheduling algorithm. change 
the pattern of application time slices. 

Csing these observations as a base. we turn to an 
analysis of the \\"A TER code's parallel execution 
behavior. 

6.3 Parallel Application Behavior 

Table 3 shows the distributions of overhead for 
computation, instrumentation, and input/ output 
for a parallel execution of the WATER code on 
both Cmax and Choices. Similarly, Table 5 sum­
marizes the durations of each parallel execution 
phase on Choices and Cmax. As with the sequen­
tial executions, a portion of the differences are 
directly attributable to differing instrumentation 
overheads. In particular, the differences in the 
parallel computation phases are largely due to dif-



318 KOHR ET AL. 

Processor One 

Water Parent 
Water Child 
Idle Process 

0 ARB Retransmit Daemon s Waste Process 
E Kernel Setup 
v Console Interrupt e 
n Telnet Server Daemon 
t Ethernet Manager s 

Ethernet Control 
Zoot Receive Daemon 

Zoot Controller 

0 10 20 30 40 50 60 70 80 
Time (seconds) 

Processor Two 

Water Parent 
Water Child 
Idle Process 

0 ARB Retransmit Daemon s Waste Process 
E Kernel Setup 
v Console Interrupt e 
n Telnet Server Daemon 
t Ethernet Manager s 

Ethernet Control 
Zoot Receive Daemon 

Zoot Controller 

0 10 20 30 40 50 60 70 80 
Time (seconds) 

FIGURE 12 Context switch pattern on Chuices (sequential execution on two proces­
sors). 

ferences in performance data recording costs. 
However, the most striking data in the two tables 
are the enormous increase in the execution time of 
the parallel Choices code: the paralld execution 
time is roughly double that of the sequential code. 
The reasons for this increase are rooted in the use 
of the Choices Cnix compatibilitY librar-v. 

Lnlike Lmax. the Choices L~ix con~patibility 
library does not implement a copy-on-write strat­
egy for replicating the address space of a parent 
process for a forked child. Hence. Choices must 
copy all data in all pages of the parent address 
space before the fork system call completes. ~lore­
over, the Choices virtual memory system requires 
all newly copied pages to be mirrored on the back­
ing store; this creates extensive secondary storal-!e 
activity during a process fork. 

In Figure 1-t, the input/ output pattern in the 
interval 20-100 seconds is the process fork: this 
contains two distinct behaviors. The pattern in the 
interval 20-60 seconds (exclusively write re­
quests) reflects the mirroring of the address space 
to secondary storage. and the pattern in the inter-

val 60-100 seconds (a mixture of read and write 
requests) is the replication of the parent process's 
address space from secondary storage onto the 
child process's address space. In addition. as de­
scribed in Section 3. the portable instrumentation 
package used a large. memory resident perfor­
mance data buffer to minimize secondary storage 
activity during performance data capturt>. To fur-

100 

c 
0 

80 D 
I 
• X 60 I 

s .. 
40 i 

I 
c 
h 20 Processor One -

Processor Two -

0 
0 10 20 30 40 50 60 70 80 

Time (seconds) 

FIGURE 13 Cumulative context S\\itches on Choices 
(sequential execution on two processors). 



OBJECT-ORIEl\TED OPERATING SYSTEM 319 

Parent Process 
1001,-----------------------------------------~ 

80 

D 
60 

40 

u 
l 
a 
t 
i 
0 
n 

.. : .• :~_.:::: ; f ~ 
'---'-'----':.:__-., ··..:..·.: 

20 

0 20 40 60 80 100 120 140 160 
Time of Read/Write Initiation (seconds) 

Child Process 
100 

80 

D 
u 60 r 
a 
t 
i 40 
0 
n 

20 

0 20 40 60 80 100 120 140 160 
Time of Read/Write Initiation (seconds) 

FIGURE 14 Choices input/output durations (parallel execution on two processors). 

ther minimize interactions with the virtual mem­
ory system, the buffer was preemptively faulted 
into memory during the instrumentation soft­
ware's initialization by accessing each page of the 
buffer. At the time of these experiments, the 
Choices page fault handling routines had not yet 
been tuned, creating substantial overheads for 
page fault service during initialization of theW A­
TER code's child process. This is the child pro­
cess input/ output activity shown in Figure 14 for 
the interval 100-130 seconds. 

Figure 15 shows comparable fragments of the 
WATER code's parallel execution traces for both 
Umax and Choices. Although the behavior of the 
parent processes are similar for the two operating 
systems, the child process on Choices clearly 
spends a much longer time computing intermolec­
ular forces in the procedure INTERF than the 
child process on Umax. An examination of the 
trace of synchronization events reveals that the 
child spends about 0.75 seconds waiting at a bar­
rier at the end of INTERF, despite the highly ef-

fective static load balancing in this application. 
(This barrier is denoted by the arrows in Fig. 15.) 

The reason for this anomaly is clear from an 
examination of the context switch and parallel in­
put/output patterns. Figure 16 shows that during 
this interval both the parent and child processes 
are relinquishing their processors to the TCP 
packet retransmission daemon. Table 4 indicates 
that the total execution time of the packet retrans­
mission daemon is much higher during parallel 
execution, and Figure 17 confirms that the num­
ber of context switches experienced by the appli­
cation processes rises dramatically when the WA­
TER code executes in parallel. This, together with 
the page faults experienced by the parent process, 
shown near time 140 in Figure 14, and the inter­
actions of process scheduling and contention for 
lock access are the underlying causes for the in­
crease in execution time. As an illustration of the 
latter, Table 6 shows that the mean time for exe­
cuting a barrier increases to over 1.6 seconds for 
the parallel execution. 



320 KOHR ET AL. 

Choice• Parent 
139.0h------. 

139.5 

Time 
(scconds) 140·0 

140.5 

15 
Eveni!D 

Umu: Parent 
139.0 

139.5 

140.0 

140.5 

15 
Event 1D 

Choice• Child Umax Child 
26.0 

26.5 

Barrier ·· 

Bar~~ 

27.0 

-

-
27.5 

15 15 
Event ID Event 1D 

FIGURE 15 Process procedure activations on Choices and umax. 

In summary, the parallel execution of the WA­
TER code on Choices differs from the Umax exe­
cution is two important ways: (1) The Choices 
Unix compatibility library is poorly optimized for 
parallel execution, creating large overheads for 
process creation (in fairness, the Choices Unix 
compatibility library was created to ease code 
porting, not to provide a parallel programming 
model), and (2) differing process scheduling poli­
cies change the pattern of process execution, 
which affects access times for locks and barriers. 

6.4 Performance Observations 

As we noted at the outset, two of our major re­
search goals were to explore the overheads for de­
tailed operating system performance instrumenta­
tion and to study the dynamic interactions among 
object-oriented operating system" components 

when supporting a parallel scientific workload. 
Based on the analysis of Sections 6.2 and 6.3, 
several lessons are clear. 

First, comparing two operating systems that 
were designed to support different programming 
models is extraordinarily difficult because one 
must support a nonnative execution model on 
one of the two systems. As Section 6.3 shows, this 
is a recipe for poor performance-Choices was not 
designed to support heavyweight processes, nor 
was Umax designed to support threads. An imple­
mentation of processes atop the Choices light­
weight thread model, together with emulation of 
process fork semantics, is not sufficient to obtain 
good performance. 

Second, seemingly small variations in system 
services can have profound performance implica­
tions. The lack of access to a memory-mapped 
clock on Choices made capturing fine-grained 



E 
v 
e 
D 
t 
s 

Zoot Receive ua•mllm-, 

Zoot Controller 

0 

0 

20 40 

20 40 

OBJECT -ORIE:\"TED OPERA TI.'JG SYSTEM 321 

Processor One 

60 80 100 120 140 160 
Time (seconds) 

Processor Two 

60 80 100 120 140 160 
Time (seconds) 

FIGURE 16 Context switch pattern on Choices (parallel execution on two processors). 

performance data expensive and unnecessarily 
increased the instrumented execution time of 
locks and barriers. This deficiency is easily reme­
died, however. Even with this added overhead, 
the penalty for detailed operating system and ap­
plication instrumentation was modest, allowing us 
to understand the interactions of input/ output re­
quests, task scheduling, and application task syn­
chronization. 

Third, and more positively, the performance of 
an object-oriented operating system can be com­
petitive with traditional operating system designs. 
Except for performance penalties attributable to 
process emulation or untuned system services 
(e.g., disk input/ output), the performance of ap­
plications on Choices is competitive with Unix. 
This is a system-level confirmation of the micro­
scale measurements reported earlier [2]. 

7 OPERATING SYSTEM MALLEABILITY 

The last of our research goals was to assess the 
feasibility of application performance tuning by 

adapting the operating system resource manage­
ment policies to better match application resource 
demands. In this we were unsuccessful. Below, we 
summarize our experiences with Choices and sug­
gest some guidelines for future implementations of 
object-oriented operating systems. 

An operating system with a well-chosen, ob­
ject-oriented design potentially provides the req­
uisite infrastructure for efficient, easy replacement 
or specialization of operating system modules. In­
heritance encourages the implementation of mod­
ule families (e.g., schedulers or memory man­
agers) that share standard interfaces and features. 
Similarly, the protection and data encapsulation 
provided by classes in an object-oriented lan­
guage like C++ isolate the implementation details 
of specific services. 

In Choices, a framework for each major soft­
ware subsystem is defined by a set of abstract 
C++ classes that are then specialized and instan­
tiated with concrete classes to form a specific im­
plementation. Choices also supports a dynamic 
loading mechanism that allows applications and 
system programs to add new system services to the 



322 KOHR ET AL. 

!From Proeeaa To Proee .. !From Proeeaa To Proce•• 

WATER Parent Task 18 8 1 WATER Parent Task 18 9 
WATER Child Task WATER Child Task 
Idle Task 18 Idle Task 18 
ARB Retransmit Daemon 27 ARB Retransmit Daemon 27 
Waate Manager Waste Manager 
Kernel Setup Kernel Setup 
Console Interrupt Console Interrupt 
Telnet Server Daemon Telnet Server Daemon 
Ethernet Manager 8 Ethernet Manager 9 
Ethernet Control 1 Ethernet Control 
Zoot Receive Daemon Zoot Receive Daemon 
Zoot Controller 9 Zoot Controller 9 

(a) Processor Zero (b) Processor One 
Sequential Execution 

jl'rom Proee .. To Proeeaa I From Proee .. To Proeesa 

WATER Parent Task 1086 59 4 WATER Parent Task 1 1103 93 3 
WATER Child Task 42 791 1 WATER Child Task 43 262 2 
Idle Task 6 1123 2 1 Idle Task 25 1 1122 5 
ARB Retransmit Daemon 1143 833 1 2 5 ARB Retransmit Daemon 1175 305 3 
Waste Manager 1 Waste Manager 
Kernel Setup Kernel Setup 
Console Interrupt Console Interrupt 
Telnet Server Daemon Telnet Server Daemon 
Ethernet Manager 2 7 Ethernet Manager 5 5 
Ethernet Control 1 Ethernet Control 
Zoot Receive Daemon Zoot Receive Daemon 
Zoot Controller 1 1 10 Zoot Controller 2 6 

(c) Processor Zero (d) Processor One 
Parallel Execution 

FIGURE 17 Context switch transition matrices. 

Choices kernel during execution. As an example, 
Choices supports several file systems, including 
system V and BSD; file system code for each file 
type can be loaded on demand. Finally, Choices 
supports an interface that allows users to query 
the system about its current state; one can deter­
mine the active class hierarchy, the members of a 
particular class, and the instances of a specified 
class. Together, the object-oriented design, dy­
namic object loading, and the query interface po­
tentially provide a backdrop for performance tun­
ing via replacement of classes that implement 
specific services. 

Despite the elegance of the Choices design and 
the protection provided by C++, we encountered 
several difficulties when attempting to conduct 
parametric performance experiments on Choices. 
The first of these plagues all large software proj­
ects, namely the diversion of implementation from 
design. We found it difficult to replace specific 
resource management policies because their im­
plementations often relied on artifa~ts of classes 

outside the inheritance hierarchy. Rather than re­
moving a single plant with an isolated root system, 
we found several plants with intertwined root sys­
tems. 

To circumvent module entanglement, we need 
richer, more robust mechanisms that rigidly en­
force the design philosophy and that provide sys­
tem configuration management. By the latter, we 
mean a software interface that displays not just 
the class hierarchies and their interactions, but 
also the valid instantiations of those classes to cre­
ate specialized operating systems with the desired 
features. Hardware vendors have developed con­
figuration management systems that prevent sales 
staff or customers from ordering incomplete or 
invalid configurations; we need enforced use of 
similar facilities for operating system software if 
performance tuning via operating system speciali­
zation is to be accessible to large audiences. 

The second major problem we encountered was 
the lack of performance guidance. Although we 
knew that replacing some subset of the resource 



management policies would improve perfor­
mance, it was rarely clear which policies should be 
replaced or what the potential effects would be. 
For example, in Section 6.3 we observed that dur­
ing a fork the Choices virtual memory system re­
quires all newly copied pages to be mirrored on 
the backing store: this creates extensive secondary 
storage activity during a process fork. and in turn 
leads to a large number of pwcessor context 
switches. Although replacing the virtual memory 
manager or the file system might improve perfor­
mance, the best solution is implementation of 
copy-on-write process creation semantics. 

To guide software specialization, we need toob 
that identify not just the proximate performance 
bottleneck but also the interactions of system 
components that are the root cause. Detailed per­
formance data are necessaiY but not sufficient. 
Cnderstanding system component interactions i,; 
but a precursor to informed decision making. In a 
full-featured operating system. the number of 
possible configurations is enormous. "·e need 
tools that allow the configurer to ask hypothetical 
questions (e.g., what might happen if one re­
placed this scheduler with another) and that pre­
dict, within bounds. the expected performance. 

Despite the problems we encountered. we be­
lieve that an object-oriented orwrating system de­
sign is the key to effective performance tuning by 
operating system module replacement. However. 
an object-oriented design alone is insufficient. one 
also needs a rigidly enforced. object-oriented im­
plementation that adheres exactly to a hierarchi­
cal design, interactive configuration managt>mt>nt 
tools that allow tht> user to brows!:' and construct 
specialized operating systems with specilic fea­
tures. and performance guidanct> toob that can 
identify softwart> component interaction,; and sug­
gest possible module alternatives. 

8 CONCLUSIONS 

~·e conjectured that detailed operating system 
and application performance data. together with a 
flexible, object-oriented operating system design. 
are the future cornerstones of systematic applica­
tion and operating system performance tuning on 
parallel systems. Detailed performance data re­
veal the dynamic pattern of application and oper­
ating system component interactions. and object­
oriented operating systems provide tlw separation 
of resource management mechanism .and policy 
needed to replace operating systt>m modules with 

OB.IECT-OHIE:\TED OPER\TL\"G SYSTDI 323 

those more suited to observed application re­
source demands. 

Our experiments showed that the performance 
of an object-oriented operating system can be 
competitive with traditional operating system de­
signs, making the configuration of specialized op­
erating systems easy and their potential perfor­
mance high. Except for performance penalties 
attributable to process emulation or untuned sys­
tem services (e.g:. disk input/output). the perfor­
mance of applications on Choices is competitive 
with Cnix. This is a svstem-level conllrmation of 
the micro-scale measurements reported earlier 
[6]. 

\\"e also observed that detailed operating sys­
tem performance data could be obtained at mod­
est cost via a llexible. /!t'neral purpose instrumen­
tation infrastructure based on object -orientt>d 
design principles. Central to eflicient performance 
data capture is a high-resolution. low-access la­
tency, memory-mapped hardware clock. 

Finally. we observed that operating system in­
strumentation and object-oriented dt'sign are not 
suflicient to support rapid operating system soft­
ware reconfiguration. One also needs tools that 
can help the user select feasible module configu­
rations and that can guide operating system per­
formance tuning by module substitution. 

ACKNOWLEDGMENTS 

Our thanks to Roy Campbell and the members of the 
university of Illinois Systems Research Group. espe­
cially Lee Lup Yut"n and :\ayeem Islam. for their ht•lp 
with Choices. both with code modifications and with 
explanations of tlw ('hoires desi!!n stylt'. \'\.ithout their 
help. this work would not have been possible. Finally. 
our thanks to TC'd :\dson. who developed an early Vt'r­
sion of the Choices in:;trunwntation system. All authors 
were supported in part by the :\ational Science Foun­
dation under !!rants :\SF CCRS":' -0663:3 and :\SF 
CDA8"? -:228:36. and by an equipment f!rHilt from the 
Di!!ital Equipment Corporation Extl'rnal Research Pro­
gram. 

REFERENCES 

[1] R. Campbell and l\. Islam. "A Parallel Object­
Oriented Operating System," in Research Direc­
tions in Concurrent Object-Oriented Program­
ming. G. Agha, P. Wegner, and A. Yonezawa, 
Eels. :\lA: MIT Press, 1992. 

[2] \". F. Russo. '·An object-oriPnted operatin!! sys­
tf'm. ··PhD thesis. l"niversitv of Illinois at l"rbana-



324 KOHR ET AL. 

Champaign, Department of Computer Science, 
October 1990. 

[3] A. D. Malony, D. A. Reed, and H. WijshofL "Per­
formance measurement intrusion and perturba­
tion analysis, IEEE Trans. Parallel Distrib. Sys­
tems, vol. 3, pp. 433-450, 1992. 

[4] D. A. Reed and D. C. Rudolph, "Experiences 
with hypercube operating system instrumenta­
tion," Int. J. High-Speed Comput., pp. 517-
542, 1989. 

[5] M. Rahman, "Choices instrumentation support," 
Technical Report, University of Illinois at Ur­
bana-Champaign, Department of Computer Sci­
ence, May 1992. 

[6] V. F. Russo, P. W. Madany, and R. H. CampbelL 
"C++ and Operating Systems Performance: A 
Case Study,'' in Proceedings of the 1990 USENIX 
C++ Conference. San Francisco, 1990, pp. 
103-114. 

[7] J. P. Singh, W.-D. Weber, and A. Gupta, 
"SPLASH: Stanford parallel applications for 
shared memory," Technical Report, Stanford 
University, Department of Computer Science. 
1991. 

[8] M. Shapiro, "Structure and Encapsulation in 
Distributed Systems: The Proxy Principle," in 
Proceedings of the Sixth International Confer­
ence on Distributed Systems. 1986. 

[9] A. D. Malony, "Performance observability, ''PhD 
thesis, University of Illinois at Urbana-Cham­
paign, Department of Computer Science, August 
1990. 

[10] T. Lehr, D. Black, Z. Segall, and D. Vrsalovic, 
Proceedings of the 1990 International Confer­
ence on Parallel Processing. 1990, pp. 298-299. 

[11] D. A. Reed, R. A. Aydt, R. J. l"oe. P. C. Roth, 
K. A. Shields, B. W. Schwartz, and L. F. Tavera, 
Proceedings of the Scalable Parallel Libraries 
Conference. IEEE Computer Society, 1993. 

[12] Intel, Application Tool user's Guide. Beaverton, 
OR: Intel Supercomputer Systems Division, 
1993. 

[13] R. H. Campbell, !\'. Islam. R. Johnson. P. 
Kougiouris, and P. Madany, "Choices, Frame­
works and Refinement," in Object-Orientation in 
Operating Systems, Luis-Felipe Cabrera, Vincent 
Russo, and Marc Shapiro, Eds. Palo Alto: IEEE 
Computer Society Press, 1991, pp. 9-15. 



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


