PUMA: An Operating System for Massively

Parallel Systems

STEPHEN R. WHEAT'!, ARTHUR B. MACCABE?, ROLF RIESEN', DAVID W. VAN DRESSER?, AND

T. MACK STALLCUP*

! Massively Parallel Computing Research Laboratory, Sandia National Laboratory, Albuquerque, NM 87185-5800
2 Department of Computer Science, The University of New Mexico, Albuquerque, NM 87131-1386

3 Department of Computer Science, The University of New Mexico, Albuquerque, NM 87131-1386

* Intel Supercomputer Systems Division; on-site at Sandia National Laboratories

ABSTRACT

This article presents an overview of PUMA (Performance-oriented, User-managed Mes-
saging Architecture), a message-passing kernel for massively parallel systems. Mes-
sage passing in PUMA is based on portals—an opening in the address space of an
application process. Once an application process has established a portal, other pro-
cesses can write values into the portal using a simple send operation. Because mes-
sages are written directly into the address space of the receiving process, there is no
need to buffer messages in the PUMA kernel and later copy them into the applications
address space. PUMA consists of two components: the quintessential kernel (Q-Kernel)
and the process control thread {PCT}. Although the PCT provides management deci-
sions, the Q-Kernel controls access and implements the policies specified by the PCT.

© 1994 by lohn Wiley & Sons, Inc.

1 INTRODUCTION

Application programmers developing programs
for massively parallel (MP) machines must man-
age three types of resources: processor cycles,
memory, and communication. In addition, they
may need access to other types of services (e.g.,
file system and network connections). The relative
demands for these resources may vary from appli-
cation to application. Some applications (e.g.,

Received April 1994
Revised May 1994 .

This work was performed at Sandia National Laboratories,
operated for the U.S. Department of Energy under contract
DE-AC04-76DP00789.
© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 3, pp. 275-288 (1994)
CCC 1058-9244/94/040275-14

factoring) may require large numbers of processor
cycles, but have relatively low memory and com-
munication requirements. Other applications
have significant requirements for all three types of
resources.

This article describes PUMA (Performance-ori-
ented, User-managed Messaging Architecture), an
operating system for MP distributed memory sys-
tems. PUMA is a joint project between the Parallel
Computing Sciences Department at Sandia Na-
tional Laboratories and the Computer Science
Department at the University of New Mexico. The
PUMA project was initiated in January 1991 with
the goal of developing an operating system that
would be compatible with Vertex (the vendor sup-
plied operating system for the nCUBE-2) and
could be used to explore alternate message-pass-
ing schemes. In August 1991, we completed an
initial implementation of this operating system.

276 WHEAT ET AL.

In January 1992, the team undertook the de-
sign and implementation of a new operating sys-
tem, PUMA. Early in the design process we identi-
fied six goals for the PUMA effort:

1. PUMA would be developed for MP environ-
ments, i.e., environments with thousands of
processor nodes in a tightly coupled, reli-
able communication network.

2. PUMA would be portable across MP distrib-
uted memory machines.

3. PUMA would be developed to support scal-
able, performance-oriented applications,
i.e., applications that could be scaled to
consume all of the resources provided by an
MP environment.

4. PUMA would provide a reliable and robust
environment for the development of appli-
cations.

5. PUMA would provide an open architecture
for the development of application-level li-
braries, i.e., it must be possible to develop
efficient, user-level library routines to im-
plement any message-passing paradigm.

6. The initial development of PUMA would
emphasize efficiency over functionality.

Like many of the operating systems developed
for distributed processing environments {e.g.,
Amoeba (1}, Chorus [2], Mach [3, 4], and V [5,
6]), the PUMA architecture is based on a mes-
sage-passing kernel. However, unlike many of
these systems, PUMA has been developed for an
environment in which the communication network
is trusted and controlled by the kernel. Whenever
a kernel receives a message, it knows that the mes-
sage was accepted and transmitted by a kernel
running on another node in the system. This
avoids the need to authenticate messages and
simplifies many of the tasks that need to be per-
formed by the kernel and application processes.

In the next section, we describe the program-
ming environment and model that provide that
basis for the PUMA design. The third section in-
troduces the basic architecture of PUMA, consis-
ting of the quintessential kernel (Q-Kernel) and
the process control thread (PCT). The fourth sec-
tion describes portals, the communication struc-
ture. The fifth section describes the communica-
tion control polices and mechanisms embedded in
the PCT and Q-Kernel. The sixth section de-
scribes the structure of the Q-Kernel and the sev-
enth section describes the structure of the PCT. In
the eighth section we compare the structures of

PUMA to other systems with similar goals. In the
final section we summarize the results of running

PUMA on a nCUBE2 and an Intel Paragon.

2 BACKGROUND—THE PROGRAMMING
ENVIRONMENT AND MODEL

The PUMA programming environment is based on
the host node model. In this model, application
programmers do not interact directly with the
nodes of the MP processor. Instead, they interact
with a host node. A host node program is provided
to launch application programs and provide inter-
active I/0 services. Figure 1 illustrates the host
node model.

We based PUMA on the host node model so we
could concentrate on the features needed for the
efficient execution of MP applications. In particu-
lar, we were able to ignore many of the issues re-
lated to general purpose, multiuser systems (e.g.,
user authentication, process scheduling biased to
meet the needs of interactive users, the need to
support graphical user interfaces, etc.).

Although PUMA is currently based on the host
node model, we recognize the benefits to be
gained by providing application programmers
with a unified programming environment. We be-
lieve that the best way to achieve this unification is
to start with an environment developed for the effi-
cient execution of MP applications, extending this
environment as needed to support the features
needed for interactive use and application devel-
opment. In this respect, the approach taken in the
development of PUMA is in contrast to the ap-
proach taken in the development of OSF/1 AD for
the Intel Paragon.

In PUMA, an application consists of multiple
processes that run on a collection of processor
nodes. The activities performed by the processes
can be described by a single program (the
SPMD—single program. multiple data—model)
or they may be described by several programs
(i.e., the heterogeneous process model). PUMA
supports multiprocessing on the processor nodes,
so it is possible to have multiple processes execut-
ing on a single processor node.

Application
programmer

FIGURE 1 The host node model.

Host node -t -

MP system

When an application programmer launces a
PUMA application, the host node program starts
by identifying the collection of processor nodes to
be used by the application. The host node pro-
gram then loads the program(s) that describe pro-
cess behaviors onto the appropriate processor
nodes. The application launch is completed when
the PUMA nodes have initiated the execution of
the processes.

In PUMA, the term process group is used to
refer to the collection of processes created during
the launch of an application program. PUMA pro-
vides direct support for explicit message passing
among processes. It includes support for intra-
group and intergroup communication, as well as
communication with server processes.

We distinguish among intragroup communica-
tion, intergroup communication, and communi-
cation with server processes to reflect differences
in expected communication patterns. Intragroup
communication is provided as a default. When an
application is launched, every process in the ap-
plication can send messages to every other process
in the application.

Intergroup communication is provided to sup-
port composibility of applications, i.e., the ability
to take the results of one application and feed
them directly into the inputs of another applica-
tion. Intergroup communication rights are not
granted as a default, nor are they necessarily
granted to all of the processes of an application.
To communicate with the processes in a different
process group, an application process must first
establish a connection to the other process group.
Once the connection is established. the applica-
tion process can send messages to any process in
the other process group. Notice that the permitted
communication is still fairly restricted: Only the
process that initiates the connection can send
messages to processes in the other process group.
Other processes in the same group as the process
that initated the connection do not automatically
gain the right to send messages to processes in the
second group. Moreover, processes in the second
group do not automatically gain the right to send
messages to the process that initiated the connec-
tion.

Server processes provide access to shared and/
or persistent resources. Communications with
server processes are even more restrictive than in-
tergroup communication. The restrictions are in-
tended to provide a higher degree of security for
the resources provided by servers. In this case, the
application process that establishes the connec-

PUMA 277

tion only gains the right to send (request) mes-
sages to a specific server process, and cannot send
messages to all of the processes in a server process

group.

3 THE STRUCTURE OF PUMA

The internal PUMA architecture is based on three
levels: the kernel, the PCT, and the application/
server processes. Figure 2 illustrates the logical
structure of a PUMA node.

The Q-Kermnel is the lowest level in the PUMA
architecture. This level provides basic computa-
tion facilities, communication facilities, and ad-
dress space protection. The PCT is the next level
in the PUMA architecture. It provides process
management (e.g., process creation and schedul-
ing), naming services (for finding server processes
and initating intergroup communication), and
communication capabilities. The server/applica-
tion process level is the third level in the PUMA
architecture. All application and server processes
execute in this level.

Each processor node has a Q-Kernel, a PCT,
and a collection of server and application pro-
cesses. Many of the processor nodes may only
have application processes. In most configura-
tions, server processes are only present on proces-
sor nodes that provide special resources (e.g., disk
drives or networking facilities).

The Q-Kernel is responsible for controlling ac-
cess to the physical resources provided by a pro-
cessor node. The PCT is responsible for managing
access to these resources. For example, the PCT
determines the size of the quanta (along with all
other scheduling decisions); however, the Q-Ker-
nel enforces execution quanta on all server and
application processes. The separation between
the Q-Kernel and the PCT reflects a separation
between policy and mechanism. The PCT estab-
lishes the protection policy and the Q-Kernel

Server Process

The PCT

Application Process

The Q-Kernel

Communication Hardware

FIGURE 2 The logical structure of a PUMA node.

278 WHEAT ET AL.

provides the mechanisms to enforce this policy.
Beyond the separation between policy and mech-
anism, this organization reflects four important
aspects of the PUMA design goals: reliability, por-
tability, efficiency, and openness.

3.1 Reliability—Levels of Trust

In developing PUMA, we started with the premise
that an MP system is in one of two states: operat-
ing or nonoperating. When the machine is the op-
erational state, all of the resources (processors
nodes, communication hardware, storage facili-
ties, etc.) are fully functional and available. If a
hardware failure makes some of the resources un-
available, the original hardware can be parti-
tioned into one or more independent MP systems
with reduced capabilities. However, this partition-
ing is static and outside of the current scope of the
PUMA design.

Given this perspective on hardware reliability,
reliability and robustness of the PUMA system are
based on our ability to contain the ill effects of
erroneous or malicious code. In PUMA contain-
ment is based on levels of trust. Each level in the
PUMA architecture represents a level of trust. The
Q-Kernels running on the different processor
nodes trust the communication hardware to pro-
vide correct and secure communication between
processor nodes. In addition, each Q-Kernel
trusts the Q-kernels running on other processor
nodes to correctly implement their specified be-
havior. However, the Q-Kernels do not trust the
PCTs, server processes, or application processes.
Each PCT trusts the hardware, the Q-Kemels,
and the other PCTs; however, the PCTs do not
trust the server or application processes. Server
and application processes trust the hardware, the
Q-Kernels, and the PCTs but do not, in general.
trust other application processes.

The trust relation is a partial order. The com-
munication hardware represents the most trusted
level—all of the other levels trust the communica-
tion hardware. The Q-Kernel is the most trusted
level of software whereas the PCT is the next most
trusted level. Trust does not represent a total or-
der because application processes do not neces-
sarily trust one another and, as a consequence,
are incomparable with respect to trust.

The PUMA architecture ensures that the data
structures maintained by one level can only be
corrupted by a malfunction in the level itself or a
more trusted level. For example, the data struc-
tures maintained by the Q-kernel cannot be cor-

The Q-Kemnel domain

Application Application

Application
domain domain domain

FIGURE 3 Protection/privilege domains in PUMA.

rupted by a malfunctioning PCT, server, or appli-
cation process. To ensure this degree of security,
implementations of the PUMA architecture need
to provide distinct privilege/protection domains
for each level of trust.

Figure 3 illustrates the relations between the
privilege/protection domains in PUMA. The Q-
Kernel domain includes all of the physical re-
sources for a processor node. When it begins its
execution, the Q-Kernel identifies the memory
that it needs for its data structures and maps the
remaining memory into the address space for the
PCT. Whenever the PCT loads a server or appli-
cation process, it allocates a portion of its address
space for the application process and constructs a
new protection/privilege domain.

3.2 Portability

Because the Q-Kernel interacts directly with the
hardware, the separation between the Q-Kernel
and the PCT reflects different concerns regarding
portability of code. Although we expect that a
good deal of the Q-Kernel code will need to be
modified when we port PUMA to different archi-
tectures, we expect that a significantly smaller
amount of the PCT code will need to be modified.
The PCT is not totally portable. A small amount of
the PCT code reflects the address mapping per-
formed by the underlying hardware and this part
of the code will need to be rewritten when PUMA is
ported to a new MP system.

3.3 Efficiency

In developing PUMA, we noted that control deci-
sions occur far more frequently than management
decisions during the execution of an application
process. As an example, consider the use of the
communication network. Management policies
determine the set of processes that a process can
communicate with. Although itis unlikely that this

set will change frequently, it is likely that a process
will frequently communicate with processes in this
set. Given this difference in frequency of deci-
sions, the separation between the PCT and the Q-
Kernel] reflects different levels of concern regard-
ing the efficiency of implementation. In this case,
the separation allowed us to concentrate on the
efficiency of control activities without needing to
consider the impact on management activities.

3.4 Openness

When considering the structure from a more
global perspective, we noted that management
policies are changed more frequently than control
mechanisms. (Alternately, consider the fact that a
single set of control mechanisms can be used to
implement a variety of management policies.) In
this case, the separation between the PCT and Q-
Kernel reflects different levels of concern regard-
ing the openness of the system. In the future, we
expect to be able to run several different PCTs on
the Q-Kernel. For example, one PCT might only
provide single tasking whereas another might pro-
vide prioritized multitasking.

4 PORTALS

PUMA provides direct support for interprocess
communication using explicit message passing. In
designing the interprocess communication facili-
ties of PUMA, we sought to minimize the need to
use memory copies during communication. As in-
ternode communication rates approach (and even
exceed) memory copy rates, the need to minimize
memory copies has become a critical factor in the
efficient use of the resources provided by an MP
machine. As an example, we have been able to
achieve internode communication rate in excess
of 160 Mbytes per second on an Intel Paragon.
However, we have only been able to attain mem-
ory copy rates of 70 Mbytes per second on the
same machine. When communications require a
memory copy, the effective throughput drops sig-
nificantly.

To avoid memory copies and simplify the de-
sign, PUMA does not provide any system-level
buffering for messages. That is, neither the Q-
Kernel nor the PCT provide buffers for holding
messages destined for application or server pro-
cesses. Message passing in PUMA is based on the
concept of a portal—an opening in the address
space of a process. Most portals are used to store
messages sent by other processes. Because incom-

PUMA 279

ing messages are written directly into the address
space of the receiving process, any need to copy
the message body is determined by the application
and is not a result of the underlying message-
passing primitives.

In addition to portals that buffer incoming mes-
sages, PUMA also provides ‘‘read memory’’ por-
tals. When a message is sent to a read memory
portal, the Q-Kernel sends a response message to
the process that-sent the original message. The
body of the response message consists of a portion
of the memory associated with the read memory
portal. Read memory portals can be used to make
data available to a collection of processes on an
““as needed’’ basis.

All message transmissions are asynchronous
with respect to the execution of application pro-
cesses. To send a message, the sending process
registers a message buffer with the Q-Kernel,
specifying a destination process and portal. After
the message buffer has been registered, the con-
tents of the message buffer are transmitted to the
specified portal of the destination process. The Q-
Kernels on the respective processor nodes notify
sending and receiving processes when the trans-
mission is complete.

It is possible that a message will arrive when the
memory available in a portal is not sufficient to
hold the contents of the incoming message. When
this happens, the Q-Kernel discards the message
and notifies the receiving process that a message
was dropped. In particular, PUMA does not pro-
vide guaranteed delivery of messages. It is the ap-
plication’s responsibility to provide flow control in
portal usage.

Because PUMA does not provide flow control,
only applications that need external flow control
will be burdened with the additional costs associ-
ated with flow control (e.g., the implementation of
an RTS/CTS protocol). This approach simplifies
the structure of the Q-Kernel and reduces the
overhead required for self-synchronizing applica-
tions.

PUMA provides four tvpes of portals: kernel
managed portals, receiver managed portals,
sender managed portals, and read memory por-
tals. The different types of portals are distin-
guished by the management policy associated
with the portal memory.

4.1 Kernel Managed Portals

From the application programmer’s perspective,
the simplest type of portal is a kernel managed

280 WHEAT ET AL,

portal. The memory associated with a kernel man-
aged portal is managed as a dvnamic heap that is
shared between the Q-Kernel and the process.

To use a kernel managed portal. the process
needs to initialize and register a block of its mem-
ory as a kernel managed portal. After the memory
has been initialized and registered. the Q-Kernel
will dvnamically allocate buffer space in the portal
heap when a new message arrives. After the mes-
sage has been transmitted into the allocated
buffer, the Q-Kernel constructs a message header
and appends it to a list of received messages. The
message header includes important information
related to the message bodyv. e.g.. identification of
the sending process and length of the message
body.

Because the message list is maintained in the
application’s address space. the application is
free to process the message list in any fashion that
is appropriate within. In most cases. an applica-
tion process will start by searching the message
list, looking for an appropriate message. Because
the application performs the searching. applica-
tion programmers can establish the selection cri-
teria that are most appropriate. When a matching
message is found. the application can process the
information in the message body without needing
to copy this information. When it is done process-
ing a message, the application can remove the
message from the message list and release the as-
sociated memory, allowing the kernel to reuse this
memory for another message.

Figure 4 illustrates the structure of a kernel
managed portal. As shown. the message list main-
tained inside the portal memory starts with list
header cell. This header cell is created when the
portal memory is initialized. Each element of the
list has a header followed by the body of the mes-
sage.

Kernel managed portals provide the user with
flexibility in managing the memory used for com-

Portal memory

Message
list header

- header _ | » header _| header . header

body body body body

FIGURE 4 A kernel managed .portal.

munication. The application programmer only
needs to predict the maximum amount of space
needed for incoming messages. Moreover. be-
cause the memory associated with the portal is
part of the applxcdtmn address space. the appli-
cation can use this memory for other activities
when it is not being used to hold incoming mes-
sages.

Although kernel managed portals provide the
application programmer with flexibilitv. they have
two drawbacks. First. the fact that the kernel has
to perform dvnamic allocation on every message
receipt increases the time required for communi-
cation. in particular by increasing latency. Sec-
ond, and perhaps more important. applications
may still need o copy message bodies from the
portal memory into the data structures used by the
application. (This will happen when the applica-
tion uses contiguous representations. e.g.. arrays.
instead of linked structures that rely on pointers to
determine the actual location of the data.) Be-
cause the kernel manages the space used for in-
coming messages (using dynamic allocation in the
portal heap). the application cannot control the
placement of the arriving message and may need
to copy messages from rhe portal memory into
other appllgatlon data structures. These difficul-
ties are addressed bv the other types of portals
provided by PUMA.

Before we turn our attention to the other tvpes
of portals, there are two implementation difficul-
ties introduced by kernel managed portals that
need to be discussed. First, because the Q-Kernel
shares a dynamic data structure. it is possible that
the Q-kernel alters the portal structure while the
application is manipulating the structure. leaving
the application with an inconsistent view of the
data structure. Second. because the application
process can alter any location in the kernel man-
aged portal, it can leave the message list and/or
data structures used to manage the dynamic heap
in an inconsistent state. In particular, the applica-
tion might create a cycle in the message list or the
heap free block list, causing the Q-Kernel to enter
an infinite loop as it searches one of these lists.

On the Paragon, we handle the first of these
problems using the LOCK instruction provided by
the i860 processor. When a LOCK instruction is
issued, all external events can be disabled for up
to 30 instruction cycles. An explicit UNLOCK in-
struction must be issued within 30 instruction cy-
cles to re-enable external events; otherwise, an
internal exception is generated. Because the

LOCK and UNLOCK instructions do not require

special privilege, we can write user-level libraries
that bracket critical codes sections with LOCK
and UNLOCK instructions.

Clearly, this solution will not work on machines
that do not provide an equivalent of the LOCK
and UNLOCK instructions. On these machines,
we will implement a “‘complete/restart’ seman-
tics in the Q-Kernel. The idea is to have the appli-
cation process record its progress through an up-
date activity. The application can be in one three
states with respect to an update: noncritical,
searching, or updating. Before the Q-Kernel up-
dates a shared data structure, it first checks to see
if the application is updating the data structure. If
it is, the Q-Kernel completes the update for the
application before it begins to access the data
structure. After the Q-Kernel has completed its
update, it again examines the state of the applica-
tion. If the application was in the searching or up-
dating state, the Q-Kernel adjusts the restart ad-
dress for the application. If the application was
searching, the Q-Kernel sets the restart address so
that the application will restart its search. If the
application was updating. the Q-Kernel sets the
restart address to the point where the application
would have completed its update. This approach
is fairly complicated, but is far less complicated
and more efficient than providing a general pur-
pose locking capability.

To handle the second problem, we considered
the data structures that the Q-Kernel used. There
are two data structures that the kernel relies on
when it places a message in a kernel managed
portal: the message list and the free block list. In
the case of the message list, the list header main-
tains a pointer to the last element of this list. The
Q-Kernel uses this pointer when it adds a new
message to the end of the message list and, hence,
it cannot enter into an infinite loop searching for
the end of the message list. Unfortunately, the Q-
Kernel must actually search the free block list to
find a free block that is large enough to accommo-
date the incoming message. To avoid any circular-
ity problems in searching this list, the free block
list is always ordered by increasing block address.
Hence, if the Q-Kernel ever detects a smaller
block address while it is searching the free block
list, it aborts the search.

4.2 Receiver Managed Portals

The memory associated with a receiver managed
emory g

portal is managed by the process that owns the

portal. To use this type of portal, the receiving

PUMA 281

Buffer

descriptors Message buffers

//4'

FIGURE 5 ‘A receiver managed portal.

process preallocates buffers for the messages it
expects to receive from other processes. When
messages are sent to a receiver managed portal,
they are mapped directly into one of the prealloca-
ted buffers.

When an application uses a receiver managed
portal, it first allocates space for a collection of
message buffers and an array of message buffer
descriptors—one descriptor for each message
buffer. The application then initializes the array of
message descriptors so that each descriptor points
to one of the message buffers.

Figure 5 illustrates the structure of a receiver
managed portal. In this case, the message header
information is recorded in the message buffer de-
scriptor and the message bodies are separate from
the message headers.

The array of buffer descriptors is managed as a
circular queue. The Q-Kernel maintains a pointer
to the next message buffer descriptor in the portal.
When a message arrives, the kernel places the
message in the message buffer identified by the
next buffer descriptor and advances the buffer de-
scriptor pointer to point to the next buffer descrip-
tor.

In contrast to kernel managed portals, receiver
managed portals require more explicit initializa-
tion on the part of the application programmer
and offer very little flexibility. For example, all of
the message buffers associated with a receiver
managed portal must be the same length. To use
this type of portal, the programmer must have a
thorough understanding of the communication
patterns exhibited by the application program.

Although they are more difficult to use, receiver
managed portals can be more efficient in many
applications. First, because the receiver can pre-
allocate the message buffers, this strategy reduces
the latency associated with message reception.
Second, because the receiving application can
control where messages are delivered, this strategy

282 WHEAT ET AL.

minimizes the need for the memory-memory cop-
ies that might be required when using a kernel
managed portal. In many cases, the application
programmer can arrange to have the buffer de-
scriptors point directly to the locations where the
data in the incoming messages need to be stored.

4.3 Sender Managed Portals

The memory associated with a sender managed
portal is effectively managed by the processes that
send messages to the portal. To create a sender
managed portal, a process simply registers a block
of its memory as the portal. Sending processes
specify offsets into this block when they send mes-
sages. When a message arrives for a sender man-
aged portal, the Q-Kernel transmits the body of
the message to the portal memory at the specified
offset.

The Q-Kernel does not record any structural
information for a sender managed portal. It does
not notify the process when messages are deliv-
ered to the portal. Moreover, it is possible for pro-
cesses to overwrite messages sent by other pro-
cesses. Sending processes must coordinate their
use of sender managed portals. This includes no-
tifying the process when a complete message has
been delivered to the portal and avoiding over-
writes in the portal memory.

Sender managed portals were designed to sup-
port parallel servers—collections of processes that
provide shared resources for applications. For ex-
ample, a parallel file server may be partitioned
into several processes (perhaps one per disk). To
read a block from a file, the application would
start by allocating a block of its memory to hold
the data. After registering this block of memory as
a sender managed portal, the application would
send a read request to one of the server processes.
Different server processes could then fill in the ap-
propriate portions of the portal memory block.
Note that the application process does not need to
know how the server is organized to make use of
the resource provided by the server.

When server managed portals are used, the Q-
Kernel does not record message header informa-
tion for the incoming messages. Only the bodies of
these messages are save in the portal space. Typi-
cally, the receiving application will set up another
portal where it can be notified when all of the data
values have been transmitted into the sender
managed port.

4.4 Read Memory Portals

Read memory portals represent the converse of
sender managed portals. As we have seen, appli-
cation processes can use sender managed portals
to provide a memory write operation for remote
processes. Using read memory portals, applica-
tion processes can provide a memory read opera-
tion for remote processes.

To establish a read memory portal, the applica-
tion process registers a block of its memory as the
portal. Request messages sent to a read memory
portal specify an offset, a length, and a reply por-
tal (on the requesting process). When the Q-Ker-
nel receives a message for a read memory portal, it
generates a response and sends it to the reply por-
tal of the requesting process. The response mes-
sage consists of the memory values starting from
the specified offset in the portal and has the length
specified in the request message.

Like sender managed portals, read memory
portals were designed to support parallel servers.
For example, to write a block of memory to a par-
allel file, the application starts by registering the
data block as a read memory portal and sends a
write request to a process in a Server process
group. The processes in the server process group
can then send request messages to the read mem-
ory portal as they are able to consume blocks of
the file.

This approach lets the server processes exercise
a greater degree of control over their memory
buffers. The parallel file server only needs to allo-
cate a small amount of space for incoming re-
quests. (The actual write request will be very
short, specifying only the portal where the data are
stored.) The server can then “pull”’ data from the
application as it has buffer space available and at
a rate that is compatible with the physical storage
device.

4.5 The Portal Table

An application process may have several portals.
Each portal has an associated portal descriptor
that specifies the portal type and other important
portal information. In the case of a receiver man-
aged portal, the portal descriptor includes the ad-
dress of the buffer descriptor array, an integer
specifying the size of each message buffer, an in-
teger specifying the number of buffers, and an in-
dex for the current message descriptor. For a
sender managed portal, the portal descriptor only

includes the starting address and length of the
memory block associated with the portal.

All of the portal descriptors for an application
are stored in an array called the portal table.
Sending processes provide an index into the portal
table of the receiving process when they send a
message. When a message arrives, the Q-Kernel
on the destination processor node first determines
the destination process for the incoming message.
The portal index provided by the sender is then
used to determine which portal is to be used for
receiving the message. Once the Q-Kernel has de-
termined the target portal, it uses the portal de-
scriptor to determine how the message should be
mapped into the associated portal memory.

5 COMMUNICATION CONTROL

Because PUMA does not provide flow control in
message transmission, it is possible that a mal-
functioning or malicious process could flood the
portals of an application process with invalid mes-
sages. In this way, an erroneous process can make
it difficult (if not impossible) for other processes to
send messages to the flooded process. The poli-
cies and mechanisms of PUMA do not overcome
this difficulty, but do limit the scope of such at-
tacks.

In PUMA, communication control is based on
capabilities. All capabilities, including those used
for communication, are managed and controlled
by the PCT. Whenever an application process is-
sues a communication request (i.e., when the ap-
plication attempts to send a message), the Q-Ker-
nel confirms that the process has the needed
capability. The Q-Kernel uses the capability data
structures constructed by the PTC to confirm that
the process has the needed capabilities.

PUMA provides two types of capabilities that
are used to control communication: group and
portal capabilities. Group capabilities are associ-
ated with process group. A process holding a
group capability can send a message to any portal
on any process in the group. Portal capabilities
identify a specific portal on a specific process. A
process holding a portal capability can only send
messages to the portal and process specified by
the capability.

Roughly speaking, group capabilities are used
for application-level communication whereas por-
tal capabilities are used for communication with
server processes. In application-level communica-

PUMA 283

Table 1. Types of Communication Capabilities
in PUMA

Any Portal Specific Portal

Any process Group capability
(in group)

Specific process Portal capability

tion, portals are naturally used to distinguish dif-
ferent communication contexts. As such, group
capabilities, which allow a process to send mes-
sages to any portal on any process in a restricted
set of process groups, reflect common program-
ming practice. In contrast, portal capabilities are
analogous to file descriptors. After “‘opening’ a
resource, the application process can use the por-
tal capability to send manipulation requests to the
server process that provides the resource. Server
processes can use the restrictive nature of portal
capabilities to ensure that different applications
(i.e., process groups) do not interfere with one an-
other. In particular, the server process can associ-
ate different portals with different process groups
to avoid difficulties associated with portal flood-
ing.

Table 1 summarizes the communication capa-
bilities provided by PUMA. In examining this ta-
ble, notice that PUMA does not provide capabili-
ties that allow a process to send to a specific portal
on any process in a process group or any portal on
a specific process. Although these types of capa-
bilities might be useful in some contexts, we did
not feel that they were nearly as important as the
group and portal capabilities currently provided.

5.1 Using Group Communication
Capabilities

When an application process sends an application
message, it identified the process group and rank
id for the destination process along with the com-
munication context and message buffer. Figure 6
illustrates the mappings performed by the Q-Ker-
nel prior to transmitting an application-level mes-
sage.

The group identifier supplied by the applica-
tion process corresponds to a group communica-
tion capability that is stored in the address space
of the PCT. Every group communication capabil-
ity holds an array of pairs. The ith pair in this
array identifies the processor node and the pro-
cess control block (PCB) of the process with rank
id i. (In this respect, every group communication

284 WHEAT ET AL.

. group cap.
PCT -

A

-

<node. pcb>

Application

send(group. rank. context, buffer };

Q-Kernel

<node, pcb, portal, body>

FIGURE 6 Using a group communication capability.

capability acts as logical to physical map for the
processes in the process group associated with the
group communication capability.) As shown in
Figure 6, the Q-Kernel uses the process rank id
supplied by the application process as an index
into the group communication capability.

5.2 Using Portal Communication
Capabilities

When an application process sends a server mes-
sage, it only needs to identify the object to be ma-
nipulated and the message buffer. Figure 7 illus-
trates the mappings performed by the Q-Kernel
prior to transmitting a server message. In this
case, object identifier supplied by the application
process is mapped to a portal capability. Portal
capabilities identify the processor node, PCB, and
portal used in the actual transmission.

portal cap. Application

<node, pcb, portal> 4_5— send(object. bufter);

Q-Kernel

—

<node, pcb, portal, body>

FIGURE 7 Using a portal communication capability.

5.3 Obtaining Communication
Capabilities

When a process is created, it is given a group com-
munication capability for its own process group.
To obtain other group or portal communication
capabilities, the process must make a request
through the local PCT. Initially, the PCT acts as a
name server to locate a server or process group
with the desired attributes. This may involve com-
munication with PCTs running on remote proces-
sor nodes.

If the goal of the search is to find a process
group, the PCT obtains a copy of the group com-
munication capability for the target process group
and makes this capability available to the applica-
tion process. If the goal of the search is to find a
server process, the local PCT sends a connection
request to the (possibly remote) server process.
This request includes the information (e.g., user
name) that the server needs to determine if the
request is valid. If the server process accepts the
request, it responds to the requesting PCT with
identifier of the portal to be used by the applica-
tion process. Using the response from the server
process, the PCT on the application’s processor
node then constructs a portal capability and
makes this capability available to the application
process.

6 THE Q-KERNEL

The Q-Kernel is the most trusted level in the
PUMA architecture. This is the only level in
PUMA that has direct access to the address map-

ping and communication hardware. The Q-Ker-
nel treats the communication network as a trusted
and reliable resource. When a message arrives,
the Q-Kernel assumes the communication reflects
a message sent by a Q-Kernel running on another
processor node. Because of this assumption. the
Q-Kernel does not need to authenticate the source
of the message or validate the contents of the mes-
sage.

6.1 Data Structures

The Q-Kernel maintains two internal data strue-
tures: the process context table and the outgoing
message queue. The Q-Kernel uses the process
context table to switch between protection/privi-
lege domains. In addition. entries in the context
table have references to the per process data
structures maintained by the PCT, e.g., the pro-
cess control blocks.

The first entry in the context table is associated
with the PCT. This entry is initialized when the Q-
Kernel is loaded. The remaining entries are estab-
lished by the PCT whenever it loads an applica-
tion or server process. The number of entries in
the context table, and hence. the number of pro-
cesses per processor node, is fixed when the Q-
Kernel is loaded.

The outgoing message queue has an entry for
every message that has been registered in the Q-
Kernel but not transmitted. This may include
messages from the PCT, messages from applica-
tion and server processes, and messages gener-
ated in response to messages sent to read memory
portals.

To maintain a fixed number of entries in the
outgoing message queue, the Q-Kernel establishes
an upper bound on the number of entries that any
process can have in the queue at any time. If a
process exceeds this upper bound, the Q-Kernel
rejects transmission requests from the application
(including responses to its read memory portals)
until the application has more queue entries avail-
able.

Note that the Q-Kernel does not block applica-
tion processes. However, an application process
can arrange to have the PCT block its execution
and have the Q-Kernel generate a signal when
there are queue entries available.

6.2 Entry Points

The Q-Kernel can be activated by a user-level call
(a Q-Kernel entry point), an exception'(e.g., di-

PUMA 285

vide by zero), an interrupt associated with the
communication hardware, or a timer interrupt.
We begin by considering the user-level entry pro-
vided by the Q-Kernel.

The Q-Kernel provides seven entry points. Two
are associated with message transmission
(send_app_msg and send_server_msg). The
third is used to restore an execution context
(run_context). The fourth is used to suspend
the execution of an application process (quit_.
quantum). The fifth and sixth are used to estab-
lish protection/privilege domains for application
processes (create_context and extend_con-
text). The seventh is used to establish the execu-
tion context for the PCT (set_PCT).

Three of the Q-Kernel entry points (create_
context, extend_context, and set_PCT) are
restricted to the PCT, and cannot be successfully
invoked by an application or server process. Two
other entry points (send_server_msg and
quit_quantum) are only useful for application
and server processes. The two remaining entry
points (send_user_msg and run_context) can
be used by application processes as well as the
PCT.

Figure 8 summarizes the Q-Kernel entry
points. We have already discussed the activities
that the kernel performs in response to a call to the
send_app_msg and send_server_msg entries.
In the remainder of this section, we consider the
activities that the Q-Kernel performs in response
to the remaining entries.

The run_context entry restores an execution
context. This entry is used by the PCT to resume
the execution of an application process, i.e., to
dispatch the process. Application processes can
also use the run_context entry to resume exe-
cution of a saved context after handling a signal.
(In many machines, the application process will
be able to restore a saved context without invoking

send_app_msg(capability group, int process, portal_id portal, int offset,
void *buf, size_t len, int *flag);

send_server_msg(capability descriptor, void *buf, size_t len, int *flag);
run_context(int context_num, saved_state *proc_state, int time_guantum);
quit_quantum(void *mail_box);

create_context(cntx_index context);

extend_context(cntxt_index context, address_map map);

set_PCT(address thread_start);

FIGURE 8 Prototypes for the Q-Kemel entry points.

286 WHEAT ET AL.

the kernel; however, in some machines an appli-
cation process cannot easily restore the entire pro-
cessor status word.)

For the most part, the Q-Kernel does not dis-
tinguish between the PCT and an application pro-
cess when it is handling a run_context invoca-
tion. However, it does allow the PCT to establish a
time quantum for the execution of an application
process. If this time quantum expires, the applica-
tion process will be interrupted and the Q-Kernel
will transfer control back to the PCT.

An application process can use the quit_
quantum entry to suspend its activities. This ca-
pability can be used to wait until a message arrives
and, as we will discuss, to request a service from
the PCT. When an application process invokes
the quit_quantum entry point, the Q-Kernel
saves the context of the process and runs the PCT.

The last three entry points are restricted to the
PCT and cannot be called by application or server
processes. Two of these entries, create_con-
text and extend_context, are used to estab-
lish the address space for an application or server
process. The PCT calls the create_context en-
try to create an initial (empty) address map for an
application process. After creating the initial map,
the PCT can extend the application’s map by
adding portions of its memory to the application’s
map. Whenever the PCT extends the address map
for an application context, the Q-Kernel validates
that the memory used in extending the map is
owned by the PCT (and not the Q-Kernel).

The final entry point, set_PCT, is used to es-
tablish the restart address for the PCT. When
PUMA is first loaded, the Q-Kernel builds a com-
plete execution context for the PCT and transfers
control to the initial start address for the PCT.
After initializing its data structures, the PCT regis-
ters its continuation address with the Q-Kernel
using the set_PCT entry. Subsequent entries into
the PCT use the continuation address instead of
the initial start address.

6.3 Exceptions

When an application process encounters an ex-
ception during its execution (e.g., divide by zero,
address fault, etc.), the Q-Kernel records the per-
tinent information, sets a signal bit in the PCB
(maintained by the PCT), and invokes the PCT.
The PCT can then handle the exception by termi-
nating the process or transferring control to the
application’s signal handler.

6.4 Communication Interrupts

The Q-Kernel handles two types of communica-
tion interrupts: transmit complete and message
arrival. When the Q-Kernel determines that an
outgoing transmission was completed, it notifies
the sending process that the transmission has
been completed (by incrementing the flag and set-
ting a signal bit in the sender’s PCB). The Q-Ker-
nel also notes that the sending process has a free
queue entry and initiates the transmission of the
next outgoing message, if there is one.

When the Q-Kernel receives an interrupt for an
arriving message, it uses the process index in the
incoming message as an index into its context ta-
ble. This entry identifies the PCB for the destina-
tion process. The PCB identifies the portal table
that, in turn, identifies the destination portal. Be-
fore it initiates the message receipt, the Q-Kernel
verifies that the group identifier in the message
matches the group identifier of the receiving pro-
cess and that the message will not violate the do-
main constraints for the destination process por-
tal. When the message body has been received,
the Q-Kernel updates the destination portal’s de-
scriptor and sets a bit in the array of pending sig-
nals for the process.

6.5 Timer Interrupts

Whenever the Q-Kernel receives a timer interrupt,
it means that the current application has ex-
ceeded its time quantum. In this case, the Q-Ker-
nel simply runs the PCT.

7 THE PCT

As we have discussed, the PCT provides many of
the services typically associated with an operating
system, e.g., process creation, process scheduling,
and connection to other services. The PCT is run
whenever an application process completes its al-
located quantum, either because of a timer inter-
rupt or because the application invoked the
quit_quantum entry. It is worth noting that the
PCT is not run after every entry into the Q-Kernel.

7.1 An Overview of the PCT

The PCT begins its execution by checking for re-
quests from the application process whose execu-
tion was suspended. When an application process
needs a PCT service, it prepares a PCT request

and places the request in a mailbox structure. In
most cases, an application process will prepare a
single request, place the request in its mailbox,
and voluntarily relinquish the CPU using the
quit_quantum entry into the Q-Kernel. An ap-
plication can prepare several requests and link
them into its mailbox. The PCT only examines the
application’s mailbox after the application sus-
pended its activities using a quit_quantum re-
quest. In particular, the PCT will not examine an
application’s mailbox if the application’s execu-
tion was suspended due to a timer interrupt. This
strategy avoids race conditions associated with the
mailbox structure.

After checking the mailbox of the suspended
process, the PCT examines its portals for mes-
sages from other PCTs. PCTs send messages to
other PCTs when they need information about the
resources and services provided by another node.
This type of information is needed when an appli-
cation initiates a server connection or spawns a
process.

After handling requests from other PCTs, the
PCT tries to find a runable application or server
process. If the PCT does not find a runable pro-
cess, it enters a loop in which it responds to new
requests from other PCTs and checks for a run-
able process. When it finds a runable process, the
PCT selects one of the runable processes as the
next process to be executed. The PCT always
completes its activities by invoking the Q-Kernel
run_context entry, thus dispatching the se-
lected process.

7.2 Signals

Each process has a vector of pending signals. In
addition, each process maintains a vector of
blocked signals, a vector of ignored signals, and a
signal handler function. When a process has a
pending signal that is neither blocked nor ignored,
the PCT notes that the process has an outstanding
signal. Any process with an outstanding signal is
runable.

Before the PCT runs a process, it checks to see
if the process has an outstanding signal. If it has
an outstanding signal, the PCT copies the saved
context into the stack for the process and estab-
lishes the signal handler as the current execution
context. This makes it relatively easy to stack sig-
nal handlers and passes the burden for storing
stacked contexts back to the application or server
process. '

PUMA 287

7.3 Blocking

To block its execution, an application or server
process sets its execution state to blocked and in-
vokes the quit_quantum entry provided by the
Q-Kernel. When the PCT looks for runable pro-
cesses, it notes that the process is not runable and
the process will remain blocked until it receives a
signal.

8 RELATED WORK

Many researchers have recognized the need to
minimize memory copies during communication
[7]. Mach, for example, uses page mapping to
avoid memory copies [8]. Incoming messages are
held in kernel pages until requested by an appli-
cation. When an application requests a message,
the kernel maps the pages holding the requested
message into the application’s address space.
This approach can avoid the costs associated with
memory copies and presents the application pro-
grammer with simple IPC semantics. In develop-
ing PUMA, we had two concerns with the memory
mapping approach. First, some MP machines
(e.g., the nCUBEZ2) do not provide adequate ad-
dress mapping hardware to support this ap-
proach. Second, to avoid memory copies, applica-
tions must receive messages in buffers that are
aligned on page boundaries. This requirement
may waste physical memory and impose a signifi-
cant burden on the organization of the data struc-
tures used in an MP application.

The “‘active messages’’ approach avoids mem-
ory copies by invoking a user-level message han-
dler whenever a message arrives from the com-
munication network [9]. Because the user-level
handler controls the placement of incoming mes-
sages, this approach should minimize the need to
copy messages. However, because the user-level
message handler has direct access to the com-
munication hardware, this approach may not be
appropriate when several applications share the
resources provided by an MP machine.

9 RESULTS

In January 1993 we completed a preliminary im-
plementation of PUMA for the nCUBE2. This im-
plementation achieves message throughput rates
as high as 2.17 Mbytes per second per channel, or
98% of the channel capacity. Our current mes-

288 WHEAT ET AL.

sage latencies (application level to application
level) are approximately 110 microseconds. With
turning we expect that we can reduce the latency
by 25% or more.

In May, we began porting PUMA to the Intel
Paragon. We completed an initial implementation
in August 1993. This implementation achieves
message throughput rates as high as 165 Mbytes
per second per channel, or 94% of the channel
capacity. Every processor node on the Paragon
provides two i860 processors. Message latencies
in our Paragon implementation are approximately
50 microseconds when we use a single processor
per node and as low as 30 microseconds when we
use the second processor to handle all message
traffic.

ACKNOWLEDGMENTS

We are grateful to the members of the original
SUNMOS team. Without their efforts, we would
not have been in a position to undertake the de-
velopment of PUMA. We would also like to ac-
knowledge the efforts of the other members of the
PUMA team. including Kenneth Ingham, Clint
Kaul, Michael Levenhagen, and Francisco Rever-

bel.

REFERENCES

[1] R. van Renesse and A. S. Tanenbaum. Proceed-
ings of the USENIX Workshop on Micro-kernels
and Other Kernel Architectures. 1992, pp. 1-10.

(2] M. Rozier. et al., “*“The chorus distributed operat-
ing system.” Comput. Systems, Vol. 1, 1988.

[2] J. Alemany and E. W' Felten. Proceedings of the
Eleventh Annual ACM Symposium on Principles of
Distributed Computing. 1992, pp. 125-23+.

[3] M. J. Accetta, et al.. Proceedings of the Summer
1956 USENIX Conference. 1986. pp. 93—113.

[4] R. Zajcew, et al.. Proceedings of the Winter 1993
USENIX Conference. 1993. pp. 449—468.

[3] D.R. Cheriton, **“The V Kernel: A software base for
distributed svstems.”” IEEE Softiware. Vol. 1. pp.
19—42, 1984.

[61 D.R. Cheriton. ““The V distributed systemn.” Com-
munications ACM, 1988.

[7] C. M. Burns, R. H. Kuhn. and E. J. Werme. Pro-
ceedings of Supercomputing. 1992, pp. 760-769,

[8] 1. S. Barrera IIL. Proceedings of the USENIX Mach
Symposium. 1991.

[8] A. B. Maccabe and S. R. Wheat, **The PUMA ar-
chitecture: AN overview.”” Sandia National Labo-
ratories Technical Report SAND93-1372.

[9] T. von Eicken. D. E. Culler. S. C. Goldstein. and
K. E. Schauser, Proceedings of the 19th Interna-
tional Symposium on Computer Architecture. May

1992.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

