
The CRAFf Fortran Programming Model

DOUGLAS M. PASE, TOM MACDONALD, AND ANDREW MELTZER

Cray Research, Inc., 655F Lone Oak Drive, Eagan, MN 55121

ABSTRACT

Many programming models for massively parallel machines exist, and each has its
advantages and disadvantages. In this article we present a programming model that
combines features from other programming models that (1) can be efficiently imple­
mented on present and future (ray Research massively parallel processor (MPP) sys­
tems and (2) are useful in constructing highly parallel programs. The model supports
several styles of programming: message-passing, data parallel, global address (shared
data), and work-sharing. These styles may be combined within the same program. The
model includes features that allow a user to define a program in terms of the behavior of
the system as a whole, where the behavior of individual tasks is implicit from this
systemic definition. (In general, features marked as shared are designed to support this
perspective.) It also supports an opposite perspective, where a program may be defined
in terms of the behaviors of individual tasks, and a program is implicitly the sum of the
behaviors of all tasks. (Features marked as private are designed to support this per­
spective.) Users can exploit any combination of either set of features without ambiguity
and thus are free to define a program from whatever perspective is most appropriate to
the problem at hand. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

The CRAFT programming model is an attempt to
allow the user a range of control over the CRA Y
T3D hardware. This range extends from a low
level of control in which the programmer makes al­
most all of the decisions about how data and work
are partitioned and distributed to a high level of
control where the programmer identifies where
parallelism is located and lets the system deter­
mine best how to exploit it. The programming
model also allows users to write programs that ex­
ecute in a data-parallel fashion. It also allows the
user to control processor element (PE) execution

Received September 1993
Revised May 1994

© 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 3, pp. 227-253 (1994)
CCC 1058-9244/94/030227-27

more explicitly, as occurs in a single-program
multiple data (SPYID) model. Thus, one can write
a program that specifies what the system as a
whole will compute, what each individual task will
compute (and the whole program is the sum of the
behaviors of all of the tasks), or one that combines
elements of both.

The major elements of this programming model
include the access to and placement of data, par­
allel and local execution, work-sharing, synchro­
nization primitives, private and global 1/0, sub­
routine interfaces, and special intrinsic functions
that support parallel reductions, parallel prefix
operations, and segmented scan operations. The
parallel virtual machine (PVYI) [1 J library is pro­
vided to support message-passing programs, but
there are no restrictions against using PVYI in
combination with distributed memorv or work­
sharing features. Additional directives and intrin­
sic functions allow the user to access low level

228 PASE, MACDONALD, AND MELTZER

detail about array distributions. The data distri­
bution declarations were adapted in part from
Rice University's Fortran D project [2] and Vi­
enna Fortran [3]. The work distribution directives
are adapted from a variety of sources, including
Cray Auto tasking® [4, 5], and workshops on par­
allel programming held at the University of Illinois
at Urbana-Champaign. Concepts embraced in
this model can be found in many other sources as
well [3, 6-8].

CRAFT was originally conceived before the
High-Performance Fortran (HPF) Forum began in
1992 but the two languages are similar, primarily
because of the strong influence Fortran D had on
both definitions. CRAFT and HPF [9] are based
on the belief that current massively parallel archi­
tectures attain their highest speeds when the data
accessed exhibit high locality of reference. Both
languages use data distribution directives to
achieve this locality. HPF, however, is a data par­
allel language. CRAFT supports data parallel pro­
gramming styles as well but also supports SPMD
and message-passing paradigms.

HPF has a much richer set of data distribution
capabilities than does CRAFT, but CRAFT allows
explicit control of work-sharing and limits the
data distribution to those distributions that are
deemed to be high performance. On high-band­
width, low-latency architectures (which is, in our
opinion, the future of massively parallel architec­
tures) the cost of determining the location of data
based on the possible data distributions with HPF
can overwhelm the cost of referencing even nonlo­
cal data. Because CRAFT is SPMD, it also pro­
vides the user with data explicitly private to a pro­
cessing element.

Programs initially execute in parallel. Sequen­
tial regions are explicitly inserted by the user. Be­
cause of the number of PEs involved, users should
try to arrange for minimal sequential regions (e.g.,
for data initialization). Long sequential segments
anywhere within a program could result in highly
inefficient machine utilization. A task is not cre­
ated dynamically in the sense that UNIX® pro­
cesses are, but rather one task is created per PE at
program startup time and parked during sequen­
tial execution. No additional tasks can be created
dynamically. Each task also has an identity that it
can use to distinguish itself from other tasks. The
number of executing tasks is available through a
special symbolic constant.

This programming model distinguishes be­
tween data objects that are private to a task
(PE_PRIVATE) and those that are shared among

all tasks (SHARED). Private data objects in this
model, whether scalars or arrays, are not accessi­
ble to any other task. They are not distributed
across PEs, but instead each private object is rep­
licated and a copy resides on each PE. Thus, each
task that references a private object references its
own private version of that object; the storage for
the object is replicated across the PEs. It is possi­
ble for private data objects associated with differ­
ent PEs to have different values. These different
values can never conflict because there is never an
effort to merge different values into a single result.
Shared data objects, in contrast, are accessible to
all tasks, are not replicated, and (if the object is an
array) may be distributed across multiple PEs.

Loops do not create parallelism in a program.
Rather they may execute serially, each loop by
each task, or they may "share" the work, distrib­
uting iterations across all available tasks. Distrib­
uted loops (called shared loops in this model) are
work-sharing constructs rather than task-creating
constructs. Each task is assigned a set of iterations
of a shared loop to execute.

Local loops, or loops that are not distributed
(called private loops in this model), are included
as well. They allow a user to write programs by
defining what each individual task will accomplish
within each loop. Their behavior individually is
most like loops as defined in Fortran 77, i.e., in­
duction and loop control variables behave as they
do in Fortran 77, and iteration execution is guar­
anteed to retain the same ordering as in Fortran
77. These properties of local loops are not shared
by distributed loops.

The standard shared memory synchronization
primitives are supported in this model. A user can
place barriers, locks, critical sections, and events
within a program. The implementation of barriers,
locks, and critical sections is very efficient, pri­
marily due to extensive hardware support. For ex­
ample, the current implementation of the barrier
operation allows the user to synchronize all PEs
(up to the full machine) in approximately 1.5 mi­
croseconds.

Subroutine interfaces are extended to accom­
modate distributed data. Although it is tempting
to require that the distribution attributes of actual
arguments in function calls exactly match the cor­
responding dummy arguments in function defini­
tions, it is perceived that such a restriction causes
undue hardship on the programmer in many cir­
cumstances. On the other hand, supporting such
a restriction holds the potential of producing func­
tions that execute significantly faster than their

more general counterparts. This model offers a
compromise by allowing a user to specify or not
specify the distribution attributes of dummy argu­
ments. When the attributes are given the compiler
generates the more efficient code for those refer­
ences. When they are not, the more general (and
less efficient) code is generated. When calls are
made to subroutines that have different distribu­
tions specified for dummy arguments than the ac­
tual arguments they were given, redistribution is
done automatically by the compiler.

Although tlie exact difference in efficiency will
depend on the particular code being executed, the
cost of array redistribution and shared array ad­
dressing deserve attention. Both costs are new to
many programmers, and experience in program­
ming uniform memory access parallel machines
does not give an accurate intuition about their im­
pact. Significantly more work, in the form of inte­
ger computations, must take place to compute the
address of a shared array reference. When the ar­
ray size and distribution are specified, the com­
piler can "fold" much of that computation so it
does not need to be done at run-time. The com­
piler may also use the folded constants directly in
the load instructions, thereby avoiding several
trips to memory that would otherwise have to be
done if the information were not supplied. Array
redistribution, even when done efficiently, can in­
cur a noticeable cost because of the massive
amount of data motion involved. The CRA Y T3D
global network is very fast, but a program's per­
formance can easily be overwhelmed if one is in­
cautious about redistributing arrays.

Two categories of intrinsic functions are sup­
ported in this model: high level array syntax func­
tions and low level functions that give information
about array distributions, task identity, and
whether execution is currently parallel, sequen­
tial, or work-sharing. The high level intrinsics op­
erate on entire arrays. The low level intrinsics pro­
vide usable information about how an array is
distributed across the machine, or what execution
region the program is in (parallel, sequential, or
work-sharing).

The model supports message-passing primi­
tives based on the PVM model. PVM is a public
domain set of portable message-passing primi­
tives originally from the Oak Ridge National Lab.
These primitives allow an explicit message-pass­
ing style of programming.

Directives were chosen to increase the likeli­
hood that codes written using this programming
model will run correctly on machines that do not

CRAFT FORTRAN PROGRAMMING MODEL 229

support the directives. Code written using this
model produces mathematically identical results
(module hardware limitation considerations) on a
sequential machine if the directives are ignored so
long as there is no nondeterministic behavior in
the user's program and the program does not use
any of the machine-specific intrinsic functions.

2 DATA OBJECTS

A data object is any program data storage area,
whether it is dynamically allocated, a common
block, an array, or a scalar variable. This pro­
gramming model supports two basic sets of data
object attributes above and beyond those allowed
by Fortran (specifically cf77 Version 6.0 [4],
Cray Research's Fortran compiler). The first set of
attributes is called private because data objects
with this set of attributes are private to every pro­
cessing element; they are accessible only to the
task that owns them. The second is called shared
because such objects are accessible to all tasks.

2.1 Private Obiects

Private data objects are replicated. Each declara­
tion of a private object causes one such object with
the specified name to be created for each task that
executes. Dynamic private objects are allocated
on the private heap. Private data is not distrib­
uted. A private object is always allocated entirely
within the task and PE that is able to reference it.
Private data objects are intended to support,
among other things, a user's ability to control the
execution of individual tasks at an arbitrarily fine
level of detail.

The default distribution attribute IS

PE_FRIVATE, meaning all data objects are as­
sumed to be private unless explicitly stated other­
wise. Variables and arrays may also be explicitly
declared as PE_PRIVATE with the directive

CDIR$ PE_FRIVATE var 1 , var 2 , ... , varn

Initial values for private data objects are unde­
fined, but private objects may be explicitly initial­
ized by DATA statements when it is permitted in
cf77 to do so. If it is permitted in cf77 to initial­
ize a variable with a DATA statement in a sequen­
tial program, it is permitted to initialize the same
variable declared with the PE_FRIVATE attribute
in this model. This means all private data objects
may be DATA initialized except those that occur in

230 PASE,MACDONALD,A~D MELTZER

blank or unnamed common dummy arguments,
automatic arrays, and those whose size is a func­
tion of N$PES, the number of PEs executing the
program. (N$PES is described in Section 3.2.)

All data objects whose size is a function of
N$PES have storage association and sequence as­
sociation restrictions. An EQUIVALENCE state­
ment cannot specify one of these objects. This in­
eludes common blocks. If any entity within the
common block is shared or has a size that is a
function of N$PES, the entire common block is
affected. Essentially, each entity in the original
common block behaves as if it were its own sepa­
rate and unique common block. Thus, storage as­
sociation and sequence association for the original
common block are lost. No entity in the original
common block can appear in an EQUIVALENCE
statement.

2.2 Shared Objects

Shared data objects are accessible to all tasks.
Only one data object exists for each declaration of
a shared data object. Blank common blocks may
not be shared, nor may objects in blank common
be shared, but objects local to a subroutine, in­
cluding automatic arrays (which may be allocated
on the stack), can be shared. Character data may
not be shared. A shared object is considered to be
distributed across the program's PEs.

The distributions of shared data objects fall
generally into two categories: shared scalars and
dimensional distributions. Scalar variables areal­
ways allocated on a single PE, although not all
shared scalars are necessarilv allocated on the
same PE. Dimensional distributions may be ap­
plied to any shared array. They may not be ap­
plied to common blocks, although shared arrays
in named common blocks can be dimensionally
distributed.

With dimensional distributions, each array di­
mension is distributed as if it were independent of
all other dimensions. For this to occur the number
of available processors is factored and each array
dimension is assigned some factor appropriate to
the dimension size and distribution. Thus a three­
dimension array mapped to a 64-processor ma­
chine might have four processors mapped to each
dimension. (This works because 4:3 = 64.) Alter­
natively it might have eight processors mapped to
the first dimension, four mapped to the second,
and two to the third. (Again, 8 X 4 X 2 = 64.) The
user may specify a preference for one factorization
over another by assigning weights (defined later in

this section) to each of the dimensions. The first
factorization would be chosen if all dimensions
were given the same weight. The second factoriza­
tion is chosen if the first dimension weight is 4
(because it is 4 times larger than the last dimen­
sion), the second dimension weight is 2, and the
last dimension weight is 1.

Dimension indexes are mapped to the proces­
sors according to the distribution designation
specified by the user. Allowable designations are
: BLOCK, : BLOCK (M) and ":". (The ":" is re­
quired for the directive but will be omitted in the
following discussion of the directive.) The first
designation, BLOCK, specifies that the dimension
is to be divided in such a way that each PE re­
ceives one contiguous block of elements. The sec­
ond designation, BLOCK (M) , indicates that each
PE is to receive M contiguous elements starting on
PE 0. Excess elements are allocated in the same
way, again beginning with PE 0. Thus, if a dimen­
sion is allocated on 4 PEs using the BLOCK (1)
designation, the first element would go to PE 0,
the second to PE 1, the third to PE 2, the fourth to
PE 3, the fifth toPE 0, and so forth; this distribu­
tion is often called cyclic. M may be a constant
integer expression or a dummy argument. The last
designation, '': '', indicates that all elements in the
dimension are to be allocated on the same proces­
sor. This is often called the degenerate distribu­
tion and it implies that the number of processors
assigned to that dimension is identically one.

The home processor of a given element can be
determined by considering the virtual processor
array implied by the array dimension weights and
the dimension distributions. These values are lin­
earized in the same wav that Fortran linearize~ a
tuple of array indices to obtain the address of an
array element. For example, consider the array
declaration REAL X (64). Suppose that this array
is to be distributed over four processors. If the
array is distributed BLOCK, then 6414 = 16 array
elements in a contiguous block of indices are allo­
cated to each PE. Thus X (1 : 16) is assigned to
PE 0, X (1 7 : 3 2) is assigned to PE 1 , etc. As a
second example, suppose that an array Y is de­
clared REAL Y(16, 16) andthatitismappedto
an eight PE machine. Furthermore, suppose that
the first dimension is assigned four PEs, the sec­
ond dimension is assigned two, and both dimen­
sions are declared with a BLOCK distribution. The
block size for dimension 1 is 16 I 4 = 4, for dim en­
sion 2 it is 16 I 2 = 8. An arbitrarv reference
Y(3, 15) maps to a processor tuple of ((3-1)14,
(15-1)18) which is (0, 1). This tuple and the num-

hers of PEs assigned to each dimension are used
to determine the exact PE number. The PE num­
ber is given by 0 + 1 X 4, where 0 and 1 are from
the tuple, and 4 is the number of PEs in the first
dimension. A picture of the allocation is given in
Figure 1.

Individually distributed arrays always have
their first element on PE 0, regardless of the num­
ber of elements or the particular distribution used.
This allows a user to align distributed arrays in a
primitive but efficient fashion to guarantee that
when array references are local to one PE that
similar references to an aligned array are also lo­
cal. Note that this onlv works when the arrays are
conformable (they h~ve the same rank an:d di­
mension extents) and when they are given the
same distribution. For example, consider four ar­
rays A (M, N) , B (M, N) , C (M, N) , and D (K,
L) , where K, L, M, and N are all distinct values,
that are distributed A (:BLOCK, :BLOCK) ,
B (:BLOCK, :BLOCK), C (:BLOCK, :) , and
D (:BLOCK, :BLOCK). All arrays have the same
rank, i.e., they all have two dimensions. Arrays A
and B are aligned because they have the same
number of elements in each dimension, and each
dimension has the same distribution. Array C is
not aligned with either A or B because although it
has the same number of elements in each dimen­
sion, one dimension does not have the same dis­
tribution as the corresponding dimension in A or
B. Array D has the same distribution for each di­
mension as A and B, but it has a different number
of elements, and thus the elements of D are not all
aligned with the elements of A or B. If arrays differ
as to the number of dimensions, or if the weight on
a distribution designation is not the same, their
elements may also not be aligned.

PEO (0,0) PE4 (0, 1)

Y(1 :4,1 :8) Y(1 :4,9:16)

PE 1 (1 ,0) PES (1 '1)

Y(5:8,1 :8) Y(5:8, 9:16)

PE2 (2,0) PE6 (2, 1)

Y(9:12, 1 :8) Y(9:12,9:16)

PE3 (3,0) PE 7 (3, 1)

Y(13:16, 1 :8) Y(13:16,9:16)

FIGURE 1 Memory allocation pattem for Y, distrib­
uted (4: BLOCK, 2: BLOCK) .

CRAFT FORTRA!\' PROGRAMMING MODEL 231

The array alignment requirements impose
some fairly strong constraints on shared array
memory allocation. In effect, memory is allocated
in stripes across the available processors. If a
shared array requires 32 words to be allocated on
PE 0, then it requires 32 words on every processor
even though the number of elements in the array
may be fewer than 32 times the number of avail­
able processors. Because the dimension sizes have
a multiplicative effect on the total memory alloca­
tion, the amount of memory that would be wasted
is the memorv wasted in the first dimension times
the memory wasted in the second, and so forth. If
one is not careful, this can represent a lot of
memory.

So far the definitions and descriptions provided
in this model could apply to block sizes, dimen­
sion lengths, and PE allocations with arbitrary
integer values. Cnfortunately, there is a cost to
providing such generality. Briefly described, gen­
erating addresses of such arrays with arbitrary di­
mension sizes from index tuples is expensive. It
requires numerous integer operations, including
several integer divides, multiplications, and addi­
tions. To reduce the cost of generating an address
from an index tuple the model currently requires
each dimension to be a power of 2; it also requires
block sizes and the number of processors assigned
to each dimension to be a power of 2.

There is an exception to the rule that each di­
mension of a shared array be a power of 2. When
the last (right-most) dimension has a degenerate
distribution, its size need not be a power of 2.
Even so, requiring powers-of-2 dimension and
distribution sizes is a severe restriction in some
cases, and as efficient means are found to support
arbitrary array distributions, these restrictions will
be lifted. We recognize that these are significant
restrictions and efforts are in progress to reduce
them. In future these restrictions might be relaxed
through allowing all right-most degenerate dimen­
sions to be arbitrary integers, or implicitly round­
ing the dimension and distribution sizes up to a
power of 2, or by finding the means to reduce the
cost to a reasonable level where the access is regu­
lar, e.g., within loops.

To distribute an array by dimension (only ar­
rays can be distributed by dimension) one need
only append a description of each dimension's
distribution, with any desired weights, to the array
name. This generally has the appearance
var i (a 1 , a 2 , ••• , ar) where r is the rank of
the array. The notation aj represents a keyword
from the selection :BLOCK or: BLOCK (M), option-

232 PASE,MACDONALD,AND MELTZER

ally with weights, or":". Weighted dimensions are
represented bv w: BLOCK or w: BLOCK (M), where
w and M are· integer expressions. The weights
specify a ratio for how many PEs are assigned to
each dimension.

When distributing an array that is statically al­
located as defined by cf77 (e.g., an entity in a
common block or specified on a SAVE statement),
w and M must be constant integer expressions,
otherwise w and M may be arbitrary integer expres­
sions involving dummy arguments. A distribution
of ":" cannot be weighted and means that all ele­
ments within the dimension reside on the same
processor. Effectively, it is a dimension to which
one PE is assigned.

Dimensionally distributed array declarations
look like the following example. Note that in this
example, the last defined dimension of the array is
not a power of 2. This is permitted in this case
because the last declared dimension has a degen­
erate distribution.

REAL A(1024, 1024, 5)
CDIR$ SHARED A(: BLOCK, 4:BLOCK(16), :)

Initial values for shared data objects are unde­
fined, but, with the exception of arrays whose size
is a function of the N$PES constant, shared ob­
jects may be explicitly initialized by DATA state­
ments where it is permitted in cf 7 7 to do so. If it is
permitted in cf 7 7 to initialize a variable with a
DATA statement in a sequential program, it is per­
mitted to initialize the same variable declared with
the shared attributes in this model. Primarily this
means shared objects may be DATA initialized ex­
cept those that occur in blank or unnamed COM­
MON, dummy arguments, automatic arrays, and
those whose size is a function of N$PES.

It is sometimes valuable to assert to the com­
piler that all accesses to any array within a pro­
gram unit will be resident on the accessing PE.
This may speed up access time and allow the data
to be cached. A directive has been provided to
make this assertion. Its syntax is

REAL X(1024) !X is a dummy argument
CDIR$ PE_RESIDENT X

The directive PE-HESIDENT assetts that all ac­
cesses to dummy argument X will be to those ele­
ments of X, which are on the accessing PE. Unde­
fined behavior will result if the assertion is not
adhered to by the user. The assertion is only al­
lowed on shared dummy arguments.

2.3 Geometry

The concept of geometry in this model is an ~b­
straction of the dimensional distribution. It sim­
plifies the maintenance and declaration of arrays
with similar dimensional distributions. One can
think of it as providing a shorthand for declaring
dimensionally distributed arrays. This is similar to
the typedef declaration in C.

The syntax for declaring a geometry name is
similar to the syntax used to declare dimensionally
distributed arrays. The syntax for declaring a dis­
tributed array from a geometry is similar to the
Fortran 90 syntax for declaring variables with de­
rived types.

CDIR$ GEOMETRY geom(al, a2, ... , ar),

CDIR$ SHARED (geom) [:: J var1, varn

Here, a; has the same meaning as it has in Section
2.2 and [: :] indicates that the two colons are
optional. A user would not actually type the
square brackets. The following example demon­
strates how to declare a geometry.

CDIR$ GEOMETRY G(l:BLOCK, 2:BLOCK)
REAL A(4, 8), B(16, 8)

CDIR$ SHARED (G) : : A, B

The declaration of G describes a distribution that
is then applied to arrays A and B. Figure 2 shows
the distribution of A across eight PEs.

2.4 Array Redistribution

Some applications can efficiently execute with all
data being only statically distributed, but not all
applications are like that. It is sometimes the case
that a given data layout may yield efficient execu­
tion for some phase of the computation, but yield
poor efficiency for some other part of the compu­
tation. If the two sections of code have sufficient
work in them it might be desirable to redistribute
the arrays dynamically to maximize reference lo-

2

3

4

2 3 4 5 6 7 8

PEO PE2 PE4 PE6

PEl PE3 PES PE7

FIGURE 2 Memory distribution of A.

cality. This can be done by declaring additional
arrays with the desired distributions, then copying
data into the appropriate array just before execut­
ing the section of code in question. This does have
the disadvantage of increasing memory usage.

Arrays may also be implicitly redistributed
across subroutine boundaries (implicit redistribu­
tion). A dummy argument that is distributed dif­
ferently than its actual argument in the calling
routine is automatically redistributed upon entry
to the subroutine by run-time libraries and auto­
matically redistributed to its original distribution
at the subroutine exit. If the distributions are
identical or the UNKNOWN or UNKNOWN_ SHARED di­
rective is used (Section 7 .1.1), no redistribution
occurs. All tasks must participate in implicit array
redistributions.

2.5 Storage Association and
Sequence Association

There are certain guarantees made by cf 7 7 about
the layout of data objects in memory. This layout
is defined in terms of storage association and se­
quence association in the Fortran 77 standard.
For example, sequence association semantics de­
fine the behavior of using a one-dimensional array
to reference elements of a two-dimensional array,
and referencing two adjacent arrays in the same
common block. Rules of storage association gov­
ern program behavior when two arrays are associ­
ated in an EQUIVALENCE statement. Distributed
data objects and data objects whose size is a func­
tion of N$PES do not have the same guarantees
made by the Fortran 77 storage association and
sequence association semantics. Because these
are new kinds of data objects, additional restric­
tions are placed on the use of EQUIVALENCE

statements, argument passing, and common
blocks.

Issues with sequence association appear in two
places in particular: association between succes­
sive dimensions within arrays and association be­
tween objects within COMMON blocks. In CRAFT
PE-private arrays, as in Fortran, for the fastest
running (left-most) dimension, element i is stored
immediately following element i- 1 and immedi­
ately before element i + 1. This is true whether or
not elements i - 1, i, and i + 1 are within the
declared extents of that dimension, as long as they
are not outside the storage allocated for the array.
This fact is exploited when a program allocates an
array with one set of extents, then passes it to a
subroutine and declares it to have a different set of

CRAFT FORTRAN PROGRAMMING MODEL 233

extents. For example, a code may manipulate a
work array as a two-dimensional array, then hand
the whole array to another routine where it is ma­
nipulated as a one-dimensional array. This type
of reshaping does not work with shared arrays be­
cause elements i - 1, i, and i + 1 are not neces­
sarily contiguous. They may not even be on the
same processor. By the same token, the element
that follows i in a given PE's storage may not be
i + 1. Figure 3 illustrates this issue.

Objects whose size is a function of N$PES have
similar problems with sequence association and
are similarly restricted. A similar but less compli­
cated problem occurs with objects in COMMON stor­
age. If two objects, say arrays A and B, are lexically
adjacent in their declaration within a Fortran pro­
gram, they are allocated as adjacent storage
within the executable. Thus, one element past the
last element of A is the first element of B. This is
sometimes exploited to give efficient memory
management of scratch arrays. This type of stor­
age association cannot be guaranteed when
shared arrays are allocated in COMMON blocks.
Padding between shared objects may be needed to
maintain other properties and the last element of
one array may be allocated on a different PE than
the first element of the next array.

Shared arrays may not be associated in an
EQUIVALENCE statement because elements of the
arrays would not have a mapping between them
that is remotely similar to that which is provided in
Fortran 77. For example, if two arrays A (64,

128) and B (128, 64) are associated, Fortran
requires that array cells A (I, 2 *J-1) and B (I,
J) map to the same memory location and refer­
ences A(I,2*J)) and B(I+64,J) would also
map. If they were distributed A (: BLOCK (M 1) ,

: BLOCK (M 2)) and B (: BLOCK (M 1) ,

: BLOCK (M 2)) , the same association would hold
as for Fortran. However, if the block sizes or num-

X(*,I) X(*,I+l) Y(:BLOCK(2))
PEk PEk+l

Fortran arrays in flat memory Arrays in distributed memory

FIGURE 3 Private and shared array sequence associ­
ation.

234 PASE, MACDO~ALD, AND MELTZER

her of PEs allocated to a dimension are different.
or the number of dimensions are different, the
storage association would not be the same as de­
fined by Fortran. Although it is conceivable that
EQUIVALENCE could be permitted for arrays that
are appropriately distributed, its usage would be
highly error prone, occasionally expensive to ver­
ify, and generally not worth the effort required to
reasonably support. For this reason shared arrays
may not be associated in EQUIVALENCE state­
ments.

2.6 Shared to Private Coercion

When a shared array is passed into a routine that
declares the argument as PE_FRIVATE, in effect
only those values that reside on the current PE are
being passed. This means that the callee must de­
clare each dimension of the array to be as large as
the number of elements resident on that PE. For
example:

REAL A (256, 64)
CDIR$ SHARED A (:BLOCK,:)

If this array were passed to a routine that declared
the dummy argument as PE_FRIVATE, each PE
would see an array of the shape:

REAL A(256/N$PES,64)

(N$PES and MY_FE are described in Section 3.2.)
In general, the caller is responsible for calculat­

ing the local extent of each dimension and passing
it to the callee. Sample code for this is as follows
(HI IDX, LOWIDX, and BLKCT intrinsic functions
are described in detail in Section 8. 2):

C Calculate the local allocation of each
C dimension.
C This should be done for each dimension.

CDIR$ SHARED B(:BLOCK(2))

c Degenerate dimensions are not reduced
C in size.

IBLKSIZE = HIIDX(A,1,0,1) -
* LOWIDX(A,1,0,1)+1

N1 = BLKCT(A, 1,MY_PE()) * IBLKSIZE

There will be cases when aPE has no allocation. If
this occurs, the caller or callee must ensure that
no work is done on that array for PEs that have no
allocation. This will occur in the above example if
N$PES is greater than 256. In this case, N1 would
be zero for some executing tasks.

If an element of an array is passed instead of
passing the entire array, the caller should ensure
that the element is local. If the element is local,
then the first element passed to each PE will be
the element that is specified in the caller. For ex­
ample:

REAL A (256, 64)
CDIR$ SHARED A(:BLOCK(2),:)

IBLKSIZE = HIIDX(A,1,0 1) -
*. LOWIDX (A, 1, 0, 1) + 1

N1 + BLKCT(A,1,MY_PE()) * IBLKSIZE
N2 = 64

CDIR$ DOSHARED (I) ON A(I,1)
DO 1=1,256

CALL COERCE1(A(I) ,N1,N2)
END DO

In this case each task gets elements that are local,
because the "ON A (I, 1) " clause of the loop (see
Section 4.1) ensures that the owner of A (I , 1) is
the PE that executes iteration I. What actually
occurs when the call is executed is that the
SHARED address in the argument list is changed
into a PE_PRIVATE address. This is done by cal­
culating the offset of A (I , 1) on its own home PE
and using that as a local address. In the above
example that is exactly what is expected. If a non­
local element is passed, the callee on each PE will
get an element that corresponds to that offset. For
example:

C Pass the first element. Each PE gets offset 0 in their local
C allocation of the array. This is the same as CALL COERCE2(A,N1)

CALL COERCE2(B(1) ,N1)
C Pass the third element. This resides at offset 0
C on PE 1. Each PE gets offset 0 in their local
C allocation, so it will be exactly the same as above.

CALL COERCE2(B(3) ,N1)
C Pass the second element. This resides at offset 1 on PE 0.

CRAFT FORTRA'\J PROGRAYIMI~G YIODEL 235

C Each PE gets offset 1 in their local allocation.
C PE 0 gets B(2), PE 1 gets B(4), PE 2 gets B(6)

CALL COERCE2(B(2) ,N1)
c

SUBROUTINE COERCE2(X,N)
CDIR$ PE_FRIVATE X

DIMENSION X (N)

3 TASK EXECUTION

The CRAFT programming model supports the no­
tion of work-sharing on shared data. Constructs
within this model provide access to mechanisms
that distribute work among the available execut­
ing tasks. Shared data are distributed across PEs
independently of executing tasks. The model sup­
ports both sequential regions (code segments exe­
cuted by a single task) and parallel regions (code
segments executed concurrently by one or more
tasks). To simplify programming for some situa­
tions, each task is given a unique name. The name
is an integer value between 0 and N$PES-1, in­
clusive.

A program begins execution with all tasks run­
ning. Each task is able to execute independently
until it reaches a synchronization point, at which
time it waits until the synchronization conflict is
cleared. Tasks can agree to cooperate by sending
messages back and forth through explicit mes­
sage-passing, by synchronized access to distrib­
uted shared memory, or by entering a work-shar­
ing construct. The program retains control over
each task until the program terminates. Task cre­
ation and scheduling are quite different from a
"traditional" fork-join model where tasks are
created and destroyed dynamically, and the num­
ber of processors available or in use can vary from
instant to instant. They are similar in some re­
gards to gang scheduled machines and traditional
message-passing machines.

This approach to task execution was chosen for
several reasons. This programming model is de­
signed to exploit the power of a distributed mem­
ory machine with many processors. The fact that
remote references are relatively expensive com­
pared with local references causes processor coor­
dination and synchronization efforts to be rela­
tively expensive when compared with what is
required to accomplish the same thing on a uni­
form memory access machine. Also, the number
of processors is large enough that the cost of even
small synchronization delays 1s fairly expensive

because of the compute capacity that is lost across
the many PEs that become idle waiting for task
coordination to complete. A third reason is that
this approach is simple for users to understand
and use to their advantage. In all it appeared that
a mechanism that provided tasks on demand,
along with supporting mechanisms for swapping
in other jobs to utilize any unused processors,
would have strongly interfered with the program­
mer's abilitv to control data distribution. It also
would have been hard to understand, complex to
implement, slow, and would use up a lot of mem­
ory in system functions that would otherwise be
available to the user. A design that offered speed,
simplicity, and low memory use seemed more de­
sirable.

From within code executing in parallel the user
may execute the STOP or ABORT statements. The
STOP statement stops only the PE executing the
statement; all other PEs remain executing and
deadlock may occur if the stopped PE is required
at a synchronization point. The ABORT statement
forces all PEs within the job to cease executing,
although all may not cease execution at the same
moment.

3.1 Sequential Regions

Programs initially begin executing in parallel. The
program remains in that execution mode until it
encounters a special directive to execute sequen­
tially. The syntax for this directive is:

CDIR$ MASTER

The program then continues to execute as a single
sequential task until the directive:

CDIR$ END MASTER

is encountered. Every function or subroutine that
contains a MASTER directive must also contain a
properly nested matching END MASTER directive.
MASTER directives carry an implicit barrier syn-

236 PASE, MACDONALD, AND MELTZER

chronization. The END MASTER directive may also
optionally contain a COPY (var 1 , ...) clause.
This directs the contents of the private data for
var1 , etc., that is owned by the master task to be
broadcast to all of the other PEs, basically ensur­
ing that they all start with identical values for each
copied data item. An assumed size array cannot
appear in the COPY list of an END MASTER. The
syntax for an END MASTER with a COPY is:

CDIR$ END MASTER, COPY(var 1 , var 2 , ...)

All tasks are created on program startup and each
is attached to a specific PE. Only one task is cre­
ated per PE. The task on PE 0 is special in the
sense that when the program executes in a se­
quential region (unless it is within a shared loop),
it is the master task that executes. While executing
in a sequential region all other tasks are parked at
the matching END MASTER directive. This mecha­
nism allows tasks to be parked and unparked rap­
idly. However, because of the number of proces­
sors involved, programs containing sequential
sections with lots of work will inherently execute
well below machine peak performance rates re­
gardless of how rapidly tasks can be parked and
unparked.

Sequential regions may be nested but the effect
is that the inner directive is ignored. If a subrou­
tine call takes place within a sequential region, the
subroutine will execute sequentially; there is no
way to "get back" into a parallel region within the
subroutine. If the subroutine call takes place
within a parallel region a sequential region may be
entered from anywhere within the subroutine.
Note that encountering an END MASTER directive
does not guarantee that the program will resume
executing in parallel unless it is the outermost END
MASTER directive.

An intrinsic is provided that allows the user to
query whether the code is currently executing in a
parallel section. This intrinsic is called
IN_FARALLEL (). It value is . FALSE. if the code
is executing within a sequential region, . TRUE.
otherwise. The IN_PARALLEL function must ap­
pear on an INTRINSIC statement before use.
When the STOP statement executes within a se­
quential region, tasks parked at the END MASTER
directive are also stopped.

3.2 Task Identity

At times it is- useful to make decisions within a
program based on the number of processors avail­
able, both at compile time and at run-time. To

allow this the model supports a special symbolic
constant called N$PES, which gives the total num­
ber of central processing units (CPCs; as well as
the number of tasks) available to the program. It
may be used in some places a named constant
must appear. It cannot be used in DATA, CHARAC­
TER, or FORMAT statements. It has the same value
in either a sequential or parallel region. Further­
more, N$PES can only be an operand of the fol­
lowing operators: + - *I. Any constant expres­
sion that contains N$PES as an operand is called a
symbolic constant expression.

Each task that executes within a program has a
unique identification. The name given to each
task is retrieved by using the intrinsic function
MY_FE (). This function must appear on the IN­
TRINSIC statement before use. It is an integer
value between 0 and N$PES-1, inclusive. It may
be used anywhere an intrinsic function may be
used. It is available whether the program is exe­
cuting inside a sequential region or a parallel re­
gion. When executing in a sequential region it al­
ways returns the value 0 unless executing from
within a shared loop.

The logical task topology defined by the intrin­
sic function MY_PE () defines a one-dimensional
torus (or mesh). Wraparound is achieved by treat­
ing the operations as operations in a linear con­
gruence, i.e., by doing a "mod N$PES" operation
to any manipulation within the space. For exam­
ple, a task may find one of its logical neighbors in
the torus by evaluating the expression
(MY_PE () +1) mod N$PES. It should be noted
that a nearest logical neighbor is not necessarily a
nearest physical neighbor.

4 LOOPS

As with data objects, loops have a notion of
shared -ness and private-ness. Private loops are
executed in their entirety by the task that invokes
them. No work is shared between tasks. Private
loops define program behavior by defining the be­
havior of individual tasks. Private loops are de­
fined, at the task level, as having exactly the same
semantics as loops in standard Fortran. Iterations
are executed in the Fortran-specified order, which
implies that (replicated) induction variables retain
the behavior they have in sequential Fortran pro­
grams. (Induction variables that are shared, of
course, suffer from extensive race conditions be­
cause many tasks could be concurrently executing
the same loop.) No special syntax is required to

specify a loop as private-it is the default. Private

loops may, of course, reference both shared and
private data. Shared loops specify the behavior of
all tasks collectively and define the behavior of
individual tasks only implicitly. They permit work
specified in the loop to be shared across all tasks.
Shared loops do not guarantee the order in which
iterations will be executed. The lack of a defined
ordering allows the system to execute iterations
concurrently. A loop is shared only if it is executed
in a parallel region (otherwise it is private). All
tasks must participate in the execution of a shared
loop. Shared loops may be written explicitly or by
using array assignment syntax.

A shared loop is executed as if there are no
cross-processor dependencies. Each iteration is
executed atomically on a PE. An iteration of a
shared loop executes as if it were a single MASTER
region (although it does not necessarily execute on
PE 0). No function that allocates new shared data
storage may be called from within the iteration.
This restriction also applies, to some extent, to
any function that requires the cooperation of all
PEs because of the uncertainty that all PEs will
execute the same number of iterations, or even
that all PEs will receive some iterations of a given
loop invocation. (Functions may test internally
whether they are being called from within a shared
loop by using the IN_DOSHARED intrinsic de­
scribed later.)

4.1 Explicit Shared Loops

Explicit shared loops, also called DOSHARED loops
from the keyword in the directive, most closely re­
semble Fortran DO loops in their structure. Their
similarities are obvious. They deviate from DO
loops in that the sequencing of iterations is lost
and that execution of iterations is permitted to,
but not required to, occur concurrently. Thus
statements such as X (I) =S *X (I -1) can produce
significantly different results when executed in a
DOSHARED loop than in a Fortran DO loop. The
general syntax for shared loops is as follows:

CDIR$ DOSHARED (! 1, !2, ... ,In)
DO !1 = L1, U1, S1

DO !2 = L2, U2, S2

END DO
END DO

END DO

CRAFT FORTRAN PROGRAMMING MODEL 237

where n is the number of shared loops in the nest
and r is the rank of the array _2(. All index expres­
sions must be of the form f i (I) =a! +b, where the
loop control variable I is used in at most one array
index expression and a and b must be integer val­
ues and may be expressions, constants, or vari­
ables. Therefore n must be less than or equal tor.
An array that has been declared UNKNOWN cannot
be used as the target of an alignment. The order of
the variables I 1 , I 2 , . . . , In in the DOSHARED
directive is significant.

Private loops may occur inside or outside of the
shared loop but the shared loops themselves must
be tightly nested. In the event that a shared loop is
nested (but not tightly nested) inside a containing
shared loop, the inner shared loop is executed as a
private loop.* An imperfectly nested shared loop
is executed as a private loop whether it is within
the same program unit or it is a shared loop con­
tained within a subroutine that is called from
within a shared loop. An intrinsic is provided that
allows the user to query whether the code is cur­
rently executing in a DOSHARED section. This in­
trinsic is called IN_DOSHARED () . Its value is
. TRUE. if the code is executing within a
DOSHARED section, . FALSE. otherwise. The IN­
_DOSHARED function must appear in an INTRIN­
SIC statement before use.

An example of nested DOSHARED loops is as
follows:

CDIR$ DOSHARED (I) ON A(I)
DO I = 1, N

(continues on next page)

* We recognize that there are differences in behavior be­
tween private and shared loops and that treating as private a
loop intended to be shared could cause surprises. Although
shared loops carry no guarantee of concurrent execution that
private execution would violate, the loop alignment cannot be
honored, which could result in subtle problems. especially in
performance.

ONX (fdl),f2(I), .. ,fr(I))

Must be tightly nested

238 PASE,MACDONALD,AKD MELTZER

CDIR$

c

DOSHARED (J) ON B(J)
DO J = l,M ! private loop
nested DOSHARED ignored

END DO

END DO

Program correctness depends in part on whether a
loop is declared as private or shared (and if
shared, whether it executes as a shared or private
loop). In most cases private and shared loops have
different behaviors. In addition, they function
identically in sequential sections.

Proper choice of iteration alignment can often
provide a high degree of locality when references
in the iteration are close together. The aligned dis­
tribution mechanism is designed to place itera­
tions within tasks on PEs where the references re­
side. For example, suppose that arrays X and Y
have the same dimensionality, the same size, and
the same distribution. The loop:

CDIR$ DOSHARED (I) ON X(I)
DO I = 1, N

Y(I) = A*X(I) + Y(I)
END DO

is distributed such that each iteration I is exe­
cuted on the processor where X (I) resides. Be­
causeY (I) resides on the same PE, all references
are completely local.

4.2 Array Assignment

Array syntax is supported in this programming
model. Array assignment statements involving
shared arrays are treated as if they were shared
loops. Unlike shared loops, their iteration distri­
bution is controlled completely by the compiler.
The compiler chooses the iteration distribution
that exercises the greatest locality in its execution.
This may entail distributing operations within a
single iteration across multiple tasks, something
that a user is not able to do with DOSHARED loops.
For example, given the declaration:

DIMENSION A(128), B(l28), C(128)
CDIR$ SHARED A(:BLOCK), B(:BLOCK(2))
CDIR$ C(:BLOCK(2))

When A is SHARED, the array syntax assignment:

A=B+C

is semantically equivalent to:

CDIR$ DOSHARED (I) mechanism
DO I=1,128

A(I) = B(I) + C(I)
END DO

where mechanism is chosen by the compiler.
When A is PE_pRIVATE it is equivalent to a pri­
vate loop (even if Band Care shared arrays).

4.3 Barrier Removal

Barriers are implicitly included at the end of every
distributed loop including array assignments in­
volving shared arrays, but the compiler is at liberty
to remove them when program analysis deter­
mines that it is safe to do so. Implicit barriers also
exist when data are redistributed and when
SHARED automatic arrays are allocated. Barriers
can only be explicitly removed from shared loops
by placing a directive at the end of the loop. The
syntax of that directive is

CDIR$ NO BARRIER

Barriers associated with MASTER directives, im­
plicit redistribution, and SHARED automatic array
allocations cannot be removed.

Barrier removal must be done with great care.
The compiler exploits the locality of reference
available within a shared loop. Removing the bar­
rier does not necessarily invalidate the caching
scheme used for local references. If a barrier re­
moval allows shared data that were referenced lo­
cally in a shared loop to be referenced remotely
prior to the next synchronization point, then the
NO BARRIER directive must be used in conjunc­
tion with a

CDIR$ SUPPRESS

directive to ensure that all data are returned to
memory. The SUPPRESS directive has the effect of
forcing aPE's local cache to be flushed.

5 SYNCHRONIZATION PRIMITIVES

This model supports a standard array of shared
memory synchronization mechanisms, including
barriers, locks, critical regions, and events. Each
type of synchronization mechanisms is supported
by special hardware to make the operation as effi­
cient as possible. Each type of mechanism is de­
scribed in the following sections.

5.1 Barriers

Barriers are a mechanism for synchronizing all
tasks at once. Entering a barrier causes a task to
stall until all tasks have entered the barrier. Bar­
riers are expected to be extremely fast-the cur­
rent implementation takes about 1.5 microsec­
onds. They are implicitly included at the end of
every distributed loop, but the compiler is at lib­
erty to remove implicit barriers when it is safe to
do so. Barriers are also included at the beginning
and end of routines that allocate distributed mem­
ory dynamically (discussed in Section 7). They
may be explicitly included anywhere in a program
with the syntax

CDIR$ BARRIER

Barrier directives may occur in sequential regions
of a program with no effect whatsoever. Concep­
tually it is one task synchronizing with itself. Per­
mitting barriers in sequential sections allows users
to write subroutines that may be executed sequen­
tially or in parallel, and if executed in parallel re­
quire synchronization.

The BARRIER routine is equivalent to the BAR­
RIER directive except that it is not ignored inside
sequential regions. Its purpose is to provide direct
access to the hardware barrier mechanism and as
such it requires more caution in its use. For exam­
ple, if used within a master region it can cause
undesirable program behavior. It is also somewhat
faster than the BARRIER directive. Its syntax is

CALL BARRIER ()

The barrier mechanism actuallv consists of two
parts, setting the barrier and waiting for the bar­
rier to clear. The point at which a processor sets
the barrier and the point at which the processor
waits for the barrier need not coincide. They do
coincide with the BARRIER directive. However,
there are some applications that lose a large
amount of time waiting at barriers when the com-

CRAFT FORTRA~ PROGRAMMI~G MODEL 239

putation preceding the barrier is not homoge­
neous. The following three routines allow early ar­
riving processors to move forward into an
independent phase of the computation while the
slower processors catch up:

CALL SET_BARRIER()
CALL WAIT_BARRIER()
IB = TEST_BARRIER()

SET_BARRIER sets the barrier. It indicates that
the calling task has arrived at a barrier synchro­
nization point. WAIT_BARRIER suspends task
execution until all tasks arrive at the barrier.
TEST_BARRIER retums the state of the barrier:
zero if barrier is not satisfied, nonzero otherwise.

The following is an example of barrier func­
tions:

c block 1: must be completed before
c block 2 is started

CALL SET-BARRIER();
c unconstrained calculations

CALL WAIT_BARRIER();

c block 2: cannot be started until
c block 1 is completed

It is important to note that the BARRIER () ,
SET_BARRIER(), and WAIT_BARRIER() rou­
tines are not ignored, and therefore must not oc­
cur, inside sequential regions (unlike the BARRIER
directive).

5.2 Locks

Locks are a basic and primitive synchronization
mechanism that are generally used to serialize ac­
cess to some piece of data. They are basic in the
sense that they may be used to efficiently imple­
ment a variety of parallel constructs, including
other synchronization constructs. They are primi­
tive in the sense that serialization is enforced by
convention only. Access to the lock is serialized by
a combination of hardware and software, but if a
lock is to be used to serialize access to some da­
tum X it is the responsibility of the programmer to
ensure that no section of code accesses X without
first gaining access to the lock. Locks themselves
are only partially protected from unauthorized ac­
cess in that the operation of locking a lock is seri­
alized, but unlocking a lock is not protected. Only
one task may set the lock on, but any task may
clear the lock.

Locks do not require initialization or release

240 PASE,MACDONALD,ANDMELTZER

functions. Locks that are set to zero are initialized
as unlocked. Lock operations are supported by
three library subroutines, which use the syntax

CALL SET_LOCK(lock)
CALL CLEAR_LOCK(lock)
L = TEST_LOCK(lock)

The subroutine SET_LOCK sets the lock. If the
lock is set in spin-waits until the lock is cleared,
otherwise the lock is set immediatelv.
CLEAR-LOCK clears a lock whether it is set or dot.
TEST_LOCK atomically sets a lock and returns the
state that the lock had (whether set or cleared)
prior to the test. With this function a task can
avoid blocking on a set lock by testing the lock. If
the lock is clear, the testing task will have set the
lock. Otherwise, the task will be informed and it
will be free to perform some other operation.

For example,

IF (.NOT.TEST_LOCK(lock)) THEN
... (the lock is ours) ...
CALL CLEAR-LOCK(lock)

ELSE
... (do something else) ...

END IF

For all three functions the operand 1 ock is a
shared 64-bit integer.

These queuing-locks are designed to efficiently
support many locks that infrequently have access
collisions. Contention-free access is inexpen­
sive-clearing a lock with one PE blocked costs 4
microseconds. Access with contention is some­
what more expensive, e.g., clearing a lock with 15
PEs blocked costs approximately 15 micro­
seconds.

5.3 Critical Sections

Critical sections are a specialized form of lock that
do not require the use of some convention to en­
sure proper synchronization. They serialize access
to a particular section of code rather than access
to some data object. A critical section prevents
more than one task from executing concurrently
within the critical section. The syntax for a critical
section is

CDIR$ CRITICAL
CDIR$ END CRITICAL

Every CRITICAL directive must have a properly
nested and matching END CRITICAL directive

within the same routine. The only way to enter a
critical section is through the CRITICAL directive
(i.e. no branching in) and the only way to exit the
critical section is through the END CRITICAL di­
rective.

5.4 Events

Events provide a style of program synchronization
that is different from locks. Whereas locks cause
task suspension on setting the lock, events have
an explicit blocking routine. Events are typically
used to record the state of a program's execution
and communicate that state to other tasks. Be­
cause events have no atomic operation to set a
lock and block on conflict, events cannot be as
easily used to completely serialize access to data.

This mechanism is supported by four library
routines, namely SET_EVENT, WAIT_EVENT,
TEST_EVENT, and CLEAR-EVENT. SET_EVENT
set, or post, an event. It declares the event to have
occurred. No prior conditions are imposed on this
routine. Any event can be posted at any time,
whether the state of the event is already posted or
cleared. WAIT_EVENT suspends task execution
until a specified event occurs. TEST_EVENT re­
turns the state of an event, i.e., whether it is
posted or cleared. CLEAR-EVENT, of course,
clears the event. The syntax for each routine is:

CALL SET_EVENT ([event])
CALL WAIT_EVENT([event])
CALL CLEAR_EVENT ([event])
S = TEST_EVENT ([event])

The argument to the event routines is optional. If
an argument is supplied, it must be a shared inte­
ger variable or array element. If these routines are
called without an argument, then a fast hardware
mechanism is used in place of the somewhat
slower, but more versatile, software mechanism.
(The hardware mechanism is called the eureka
mechanism because posting an event is like
shouting "Eureka~ I found it!") By comparison,
eureka events cost 1.5 microseconds whereas
software events cost a few tens of microseconds.
On the CRA Y T3D the eureka mechanism shares
the same hardware used by barriers. Barriers are
implemented using an AND tree. Each PE writes a
0 to a special register to arm the mechanism; each
PE then writes a 1 as it enters the barrier. When
all PEs have written a 1, the AND tree inverts its
value from a 0 to a 1. For a eureka each PE writes
a 1 to arm the mechanism, which sets the AND tree

to 1. When any PE writes a 0 to the register, the
AND tree reverts to 0.

5.5 Atomic Update Statements

Vector updates are assignment statements that
modify or update an array reference that has an
element of indirection. An example of this is

X (IX (I)) = X (IX (I)) + V (I)

The concern is that IX may contain values that
occ.ur more than once. When this is the case, exe­
cuting the update in parallel can cause race con­
ditions that may result in incorrect values for X.

Vector updates pose a difficult problem. The
option of computing vector updates sequentially
to avoid potential race conditions is generally not
acceptable for performance reasons, and forcing
the programmer to do all of the necessary syn­
chronization by hand is error-prone and unneces­
sary. This programming model supports a set of
vector update primitives for floating-point and in­
teger addition, multiplication, maximum, mini­
mum, and for binary AND, OR, and exclusive OR
operations. The directive ATOMIC UPDATE directs
the compiler to ensure that multiple updates to a
single shared element occur atomically. The vec­
tor update executes as parallel as possible other­
wise. As for all floating-point operations executed
in parallel, care must be used to be sure that the
order in which floating point ATOMIC UPDATE op­
erations are performed does not contribute to ex­
cessive numerical instability in the program. An
example of ATOMIC UPDATE usage follows:

CDIR$ DOSHARED (I) ON IX(!)
DO I=l, N

CDIR$ ATOMIC UPDATE
X(IX(I)) = X(IX(I)) + V(I)

END DO

The ATOMIC UPDATE directive only applies to the
assignment statement immediately following the
directive and may be placed before nonvector up­
dates as long as one of the supported operations is
being executed and the assignment is to a shared
data object. The statement following the ATOMIC
UPDATE directive must be an assignment state­
ment".

Another example of how the ATOMIC UPDATE
directive can be used is the following, which com­
putes a sum reduction.

CRAFT FORTRA~ PROGRAMMING MODEL 241

CDIR$ SHARED SSUM, A(:BLOCK)
CDIR$ MASTER

SSUM = 0
CDIR$ ENDMASTER

PSUM = 0
CDIR$ DOSHARED (I) ON A (I)

DO I=l, 100

c
PSUM = PSUM + A(I)

LOCAL SUMS
END DO

CDIR$ ATOMIC UPDATE

c
SSUM = SSUM + PSUM

ACCUMULATE LOCAL SUMS

5.6 Shared Data Coherence

It is important to understand when shared data
objects are coherent. The CRA Y T3D supports
cache coherency for private data objects, but not
for shared objects. Thus, only shared data objects
can become incoherent. When coherent data ob­
jects are accessed from memory, the most recently
updated value is always obtained. Accessing inco­
herent data objects may result in stale values be­
ing obtained. A value becomes stale, e.g., when
the most recently computed value is still in a regis­
ter or in aPE's local cache and not in memorv. To
further clarify this point, suppose two PEs ~se a
shared value without proper synchronization; one
PE reads the value into a register and uses it, an­
other writes it, then the first PE reuses its local
(but stale) copy as if it were the most up-to-date
value. using the local (in register) copy is faster
than rereading the value from memory, but it is
not what the user expected and is likely to give
incorrect results.

Shared data objects are forced to become co­
herent immediately before an external call to a
subprogram and after a synchronization point.
Shared data objects become incoherent after be­
ing modified with a new value. Shared data coher­
ence is only a consideration when one task is mod­
ifying a shared data object and a different task is
referencing the same object. If the same task is
both accessing and modifying the same shared
data object, shared data coherence is irrelevant.

The following is a list of points after which data
are guaranteed to be coherent:

1. Implicit barrier synchronization points
2. Barrier synchronization points specified by

the BARRIER directive
3. The BARRIER function
4. The WAIT_BARRIER function

242 PASK YlACDONALD, Al\D YlELTZER

5. The TEST_BARRIER function
6. The SET_LOCK function
7. The TEST_LOCK function
8. Critical region synchronization points

specified by the CRITICAL directive
9. The WAIT_EVENT function

10. The TEST_EVENT function
11. The ATOMIC UPDATE directive

Even though data become coherent, it is still
necessary to control communication involving
those data with appropriate synchronization. The
following example shows that coherent shared
data may still cause problems if communication is
not controlled with some synchronization mecha­
nism. The shared scalar X is only updated by a
single task (PE 13), but no synchronization oc­
curs. Therefore, some of the ~ther tasks may ac­
cess the old value of X.

COMMON /SCALAR/ X
DATA X /3.0/

CDIR$ SHARED X
INTRINSIC MY_PE
IF (MY_PE() .EQ. 13) X= 5.0
CALL RTN()
Y = X ! nondeterministic X
PRINT * I MY_PE = I ' MY_PE () '

* ly =I' y

END
SUBROUTINE RTN()
COMMON /SCALAR/ X

CD IR$ SHARED X
INTRINSIC MY_PE

*

z = X ! nondeterministic X
PRINT *' 1 MY_PE = I' MY_PE ()'

I z = I I z
END

The following example shows one way to ensure
that X is safe to access:

PROGRAM NORACE
COMMON /SCALAR/ X
DATA X /3.0/

CDIR$ SHARED X
INTRINSIC MY_PE

CDIR$ MASTER ! implicit synchronization
X= 5.0

CDIR$ END MASTER
CALL RTN()

*

Y = X ! deterministic X
PRINT *' I MY_PE =I' MY _FE()'

I Y = I
1

Y

END
SUBROUTINE RTN ()
COMMON /SCALAR/ X

CDIR$ SHARED X
INTRINSIC MY_PE
Z = X ! deterministic X
PRINT *' I MY_PE = I' MY_PE ()'

* I z = I' z
END

In the above example, the MASTER directive con­
tains an implicit synchronization point. This
causes X to become coherent and communication
involving X is appropriately controlled. Thus syn­
chronization and coherence are both necessary
for correctness.

61NPUT AND OUTPUT

Input and output may be accomplished by using
either private or global 1/0. Private 110 is the de­
fault.

6.1 Private 1/0

A private READ or WRITE statement is one that,
when encountered. is executed in its entiretv bv
the processor that encounters it. It require~ n~
synchronization across, nor communication with,
other processors. It is executed without regard for
the activity of other processors. Thus, one proces­
sor, or a thousand, may execute a READ or WRITE
statement concurrently.

Shared and private variables alike may be used
in private 1/0 statements. Each processor has ac­
cess to all shared data and to its own PE-private
data. Of course, all access to shared data must be
carefully coordinated across all processors, per­
haps using explicit synchronization to avoid read/
write and write/write conflicts (race conditions) on
the shared memory.

Private OPEN operations, like READ and WRITE
operations, are executed by a single processor
rather than cooperatively by many processors. A
single task that encounters an OPEN statement will
execute the OPEN without coordination or com­
munication with other tasks. The file unit opened
is private and accessible only to the task that exe­
cuted the OPEN statement. Any operations per­
formed using the unit will not affect the state of
any other task. If the same file is opened by an­
other task, then reads will cause both tasks to read
all the data and writes will cause undefined be­
havior.

Because private II 0 is the default, all READ,
WRITE, OPEN, CLOSE, and INQUIRE operations

will be private operations unless explicitly de­
clared otherwise. Private IIO is useful when a pro­
grammer wishes to specify the IIO behavior from
the perspective of what each task does, or when a
task must write private data. No other task is re­
quired to participate in private IIO so it may be
used to achieve unsvnchronized II 0 as well.

Aside from the aspect of read/write and write/
write ordering conflicts across tasks, private IIO is
identical to Fortran 77 IIO on a serial machine. It
supports all of the various flavors, including di­
rect, sequential, formatted, unformatted, and list­
directed operations.

Private IIO statements cannot have shared
data allocations, work-sharing, or barriers in
functions called from within the IIO statements.
Properties of private II 0:

1. If multiple PEs try to read the same file se­
quentially, then all PEs will read all of the
data on the file.

2. If multiple PEs try to write the same file se­
quentially, the results are undefined (except
for shared, specially buffered files such as
stderr, which is line-buffered).

6.2 Global 1/0

Global IIO is similar to private IIO except that the
unit/file connection is a global, shared resource.
The global II 0 paradigm offers two significant
benefits over private 110: clarity and perfor­
mance. Consider, for example, an embarrassingly
parallel application. In such an application the
parallelism exists at the record level in that each
record can be read, processed, and written inde­
pendently of all other records. The more PEs, the
more records that can be simultaneously pro­
cessed. Such an application is linearly scalable if
the II 0 is not a bottleneck.

Without global IIO, such an application must
usually be implemented with a master/slave ap­
proach. The speed (or more typically. the number)
of the master PE(s) must be adjusted to ensure
that the slave PEs are not starved for data, and
then readjusted whenever the number of slave
PEs is changed. This style of programming is diffi­
cult to write, tune, and understand. In global IIO,
because the "load balancing" is done automati­
cally in the library, better performance and much
greater code clarity are provided. Properties of
global IIO:

CRAFT FORTRA!\' PROGRAMMING MODEL 243

1. All of the PEs must participate in establish­
ing and terminating a unit/file connection
for global IIO (i.e., the Fortran OPEN and
CLOSE statements). Thereafter, PEs may
independently participate, or not, in access­
ing the file.

2. Fortran READ/WRITE statements are syn­
chronized and atomic. If multiple PEs are
reading from the same file sequentially then
each record will be read exactly once, al­
though the order that the records are pro­
cessed is nondeterministic. If multiple PEs
write to the same file sequentially then all of
the records will be written to the file, al­
though again, there order is nondetermin­
istic.

Input/ output to/ from shared variables is permit­
ted on global IIO statements, as on private IIO
statements, but no implicit synchronization (bar­
rier) is performed to protect individual shared en­
tities.

7 FUNCTIONS AND SUBROUTINES

Two opposing goals arise in designing the behav­
ior of subroutines. High performance is crucial to
the success of the CRA Y T3D system but general­
ity of operation, and specifically flexibility in pass­
ing parameters, is key to reducing the effort re­
quired by a programmer to use the machine
effectively. This model adopts the principle that
the system will generate the most efficient code
possible from the available information. This al­
lows the users to choose a course that best fits
their needs when there is a conflict.

Subroutines may themselves in a sense be con­
sidered shared or private. A private subroutine is
one that permits a task to function independently
of all other tasks. It does not allocate shared data
objects dynamically, including implicit redistribu­
tion. It may define or reference statically allocated
shared objects, and it may accept shared dummy
arguments. It may use locks, events, and critical
sections. A shared subroutine is one that allocates
shared data. This occurs when a routine allocates
shared dynamic arrays. shared automatic arrays,
or when an array is redistributed (see Section
7.1.1).

If private routines contain barriers. they are
sometimes called team routines. Team routines
must either ignore barriers (e.g., execute in a se­
quential region) or all tasks must execute the rou-

244 PASE, MACDONALD, AND MELTZER

tine (to satisfy the barrier). This categorization of
subroutines as shared or private is conceptual in
nature and does not require the user to specify
additional syntax to obtain one or the other. How­
ever, although calls to a shared subroutine are not
required to arrive at the subroutine through the
same call chain, the results are only defined if
each task has the same sequence of shared sub­
routines in its call chain. Thus, one task may call
subroutine A, which calls B, which calls a shared
routine C, and another task may call A, which calls
C directly. As long as B is not a shared subroutine
the results are defined. But if one task calls a
shared subroutine S, and another task calls a dif­
ferent shared subroutine T before it calls S, the
results are undefined, and in fact the situation
may cause deadlock or other unsavory behavior to
occur because of problems with the use of shared
resources. An ENTRY statement is not permitted in
any routine that declares shared or UNKNOWN
data.

7.1 Data Obiects

Fortran 90 and Cray Fortran (cf77) both support
several types of data objects within subroutines
and functions. The list includes named and un­
named common blocks, dummy arguments, local
scalars and arrays, and automatic arrays. For
CRAFT Fortran, objects in each of these catego­
ries can be either shared or private with the excep­
tion of unnamed common blocks, which can only
be private. The behavior of objects in common
blocks is described in Section 2.5. Other object
types are described in the following sections. An
object that is referenced as private data in a rou­
tine must not be modified remotely until after the
routine retums control to the caller.

Dummy Arguments

Dummy arguments may be declared as SHARED,
PE_pRIVATE, UNKNOWN-SHARED, or UNKNOWN.
When the declaration is shared or private, that
declaration is honored and the code generated for
references to that data is the most efficient possi­
ble with a redistribution upon entry and exit to the
subroutine if necessary. The rules that apply to
dummy and actual arguments are described in full
later in this section, but a summary of the rules is:

1. If the dummy argument is declared SHARED
then the dummy argument must not be an
assumed size array.

2. If the dummy argument is private or It IS
shared and the actual argument matches
the distribution exactly, no redistribution is
done and the addressing scheme used is tai­
lored for the declared distribution.

3. If the dummy argument is declared UN­
KNOWN_SHARED then a general addressing
scheme is used and no redistribution is
done.

4. If the dummy argument is declared UN­
KNOWN then access to the dummy argument
is severely restricted and no redistribution is
done.

5. If the dummy argument is declared private
and the actual argument is shared, the ad­
dressing will assume that the dummy argu­
ment only references local data. In this case
it is the user's responsibility to make sure
the addressing schemes match. This allows
the user to process local portions of shared
arrays as if they were private. (See Section
2.6, "Shared to Private Coercion," for more
information.)

6. If the dummy argument is declared SHARED
and the actual argument is also SHARED but
the two declarations do not match, the com­
piler will redistribute the actual argument to
the distribution declared in the subroutine
at its entry points and redistribute it to its
original form at the subroutine exits. An as­
sumed size array cannot be redistributed
upon entry to a program unit. All tasks must
participate in the redistribution. A routine
that requires the redistribution of one or
more objects cannot be called from within a
master region.

7. If the dummy argument is declared SHARED
or UNKNOWN_SHARED and the actual argu­
ment is declared private then the behavior is
undefined.

It is worth noting that more information about ar­
ray distributions causes subroutines to be more
restrictive about how they are used, but it allows
the compiler to take advantage of optimization
opportunities that would otherwise not be avail­
able.

A dummy argument may have its distribution
declared as being unknown. There are two vari­
eties of unknown. The first, UNKNOWN, indicates
that nothing is known about the argument, not
even whether it is shared or private; it is not per­
mitted to align a loop to an UNKNOWN argument. In
addition, there are severe restrictions placed on

access to dummy arguments declared ·UNKNOWN.

The arguments may only be accessed by special
intrinsic routines that allow single element access.
These intrinsics are:

CALL READ_ UNKNOWN (V, A (I))

CALL WRITE_UNKNOWN (A(I), V)

where A is an array element or scalar and V is a
value. The type of distribution may be discovered
with the intrinsic

RESULT = IS_SHARED (A)

This intrinsic returns . TRUE. if shared, . FALSE.
otherwise. The READ_UNKNOWN and WRITE_

UNKNOWN routines and the I S_SHARED function
must appear on an INTRINSIC statement before
use. This intrinsic is useful because a single entry
point may query the distribution of a dummy ar­
gument and call an appropriate routine based on
the result. An UNKNOWN dummy argument may be
passed to another subprogram, but only if the en­
tire object is passed. The syntax for this declara­
tion is

CDIR$ UNKNOWN arg 1 arg2 , ... , argn

The second, UNKNOWN_SHARED implies that the
distribution is not known and no redistribution
should be done, but that it is dimensionally dis­
tributed data. There are no restrictions on the use
of data declared UNKNOWN_SHARED. The syntax
for this declaration is

CDIR$ UNKNOWN_SHARED arg 1 , ... , argn

When the distribution is unknown at compile time
it is determined at run-time. The subroutine as­
sumes the most general dimensional distribution
possible, which often causes access to the dummy
argument to have lower performance.

Local Objects

Subroutines may declare local variables, i.e., ob­
jects local to a subroutine that are shared or pri­
vate. Both arrays and scalars may be declared as
shared or private. Data initialization rules for local
objects follow the rules for cf 7 7, i.e., statically
allocated arrays and scalars may be initialized
with DATA statements. Shared and private local
objects follow the rules for shared and private ob­
jects outlined in Section 2. Subroutines that allo-

CRAFT FORTRAN PROGRAMMING MODEL 245

cate shared local objects (explicitly or implicitly)
contain implicit barriers on entry to and exit from
each subroutine and are called shared subrou­
tines.

Automatic Arrays

Both shared and private automatic arrays are sup­
ported in this model. Subroutines that allocate
shared automatic arrays implicitly contain bar­
riers on entry to and exit from the routine and are
called shared subroutines. This is required to
maintain consistent memory allocations across all
processors. When a subroutine is called that allo­
cates a shared automatic array, all processors
must request the same sized allocation for each
shared automatic array. Private automatic arrays
may vary in size from task to task without diffi­
culty.

7.2 Pointers

The terms shared pointer and private pointer are
ambiguous. The ambiguity arises because there
are two data objects, the pointer itself and the ob­
ject being pointed to. The term shared pointer
means that the pointer is pointing to shared data,
and private pointer means the pointer is pointing
to private data. The pointer itself cannot be
shared. That is, the following is an error:

POINTER (PT, B
REAL B (1024)

CDIR$ SHARED PT Error the pointer
must be pe_private

The points themselves are always private. The
pointee array (B) can be either shared or private.

Declaring Fortran Pointers

The declaration of a private pointer is no different
than the current implementation in cf 7 7. The fol­
lowing declaration:

POINTER (Pl, Al)
REAL Al(lOOO, 1000)

declares a private pointer Pl whose pointee array
is Al. The current heap allocation routines (e.g.,
HPALLOC and HPDEALLC) provide access to the
private heap.

A shared pointer is declared by adding the
SHARED directive to the pointee array. For in­
stance:

246 PASE,MACDONALD,AND ~ELTZER

POINTER (P2, A2)
REAL A2(1024, 1024)

CDIR$ SHARED A2(:BLOCK, :BLOCK)

declares a shared pointer P2 whose pointee array
A2 has a known distribution.

Shared Pointers

The usage of shared pointers is more restricted
than private pointers. 1\"o pointer arithmetic is al­
lowed, only one pointee can be specified for each
shared pointer (i.e., multiple pointees are not al­
lowed), and the only allowable operations are:

CALL SHLOC(ptr, ary)
CALL SHMALLOC(pointer, istatus)
CALL SHMALLOC(pointer, istatus, length)
CALL SHFREE(pointer)

The shared pointer routines must appear on an
INTRINSIC statement before use.

SHLOC assigns the shared address of ary to
ptr. The pointer argument must be a shared
pointer and the arrav must also be shared. If the
first argument to SHLOC has a pointee array with a
known distribution (P2), then the distribution of
the second argument must match. For example:

CDIR$
CDIR$
CDIR$
c

c

c

POINTER (Q, X)
REAL X(128,128),
REAL Z(128,128)
SHARED X (: BLOCK,
SHARED Y (: BLOCK,
SHARED Z (: BLOCK,
OK
CALL SHLOC(Q, Y)

Y(128,128)

:BLOCK)
:BLOCK)
:)

Error - not array base
CALL SHLOC(Q, Y(2))
Error - distribution mismatch
CALL SHLOC(Q, Z)

SHMALLOC and SHFREE provide access to the
shared heap. Only pointers whose pointee array
has a known distribution (Q) may be used in calls
to SHMALLOC or SHFREE. SHMALLOC can get the
size of the space it needs to allocate from inform a­
tion contained in the pointer. In this case it is suffi­
cient to pass a single argument (the pointer) to

SHMALLOC. If the allocated size is different than
the size of pointee array, two arguments are

passed to SHMALLOC. The following example
shows a possible use of having a different size:

POINTER (R, W)
REAL W(128, 10000000)

CDIR$ SHARED W (:BLOCK, :)
CALL SHMALLOC(R, ISTAT, 128*100)
... W(I, 100) ...

Because the last dimension of pointee array W is
degenerately distributed, it need not be a power of
2. Because there is no actual storage allocated for
pointee arrays, their size can be the largest that
will ever be allocated. However, if the pointer R
were passed as the only argument, too much
space would be allocated because SHMALLOC
would extract the total array size (128*10000000)
from information in pointer R. SHFREE returns
shared heap space to the shared heap.

It is important to understand that a redistrib­
uted dummy argument cannot be referenced by a
pointer that points to the original actual argu­
ment. The pointer has the address and distri­
bution of the array prior to redistribution. For
example:

SUBROUTINE STEVE(X,N)
REAL X(N)
COMMON /XXX/ P
POINTER (P, PA)
REAL PA (1024)

CDIR$ SHARED PA(:BLOCK(2))
CDIR$ SHARED X(:BLOCK(4))
C implicit redistribution occurs

PA(I) = 2.0
C Error, referencing redistributed actual

END
SUBROUTINE BUD ()
COMMON /XXX/ P
POINTER (P, PA)
REAL PA (1024)

CDIR$ SHARED PA(:BLOCK(2))
CALL SHMALLOC(P, ISTAT)

C allocate shared heap space
CALL STEVE(PA, 1024)
END

This kind of aliasing through pointer P results in
undefined behavior.

7.3 Assumed Size Arrays

The following restrictions are placed on assumed
size arrays.

1. Pointee arrays associated with shared
pointers cannot be declared as assumed
size arrays.

2. If a dummy argument is declared to be
an assumed size arrav then it must not be
explicitly shared with a SHARED directive (it
can be implicitly shared with an
UNKNOWN_ SHARED directive).

3. Assumed size arrays cannot be used in
BLKCT, LOWIDX, HIIDX, and PES functions
(defined in Section 8.2) if the second argu­
ment represents the assumed size dimen­
sion (i.e., last dimension).

4. An assumed size array cannot appear in a
COPY clause of an END MASTER directive.

8 INTRINSIC FUNCTIONS

This programming model offers a variety of intrin­
sic functions intended to support both high level
and low level programming. The high level func­
tions support basic data parallel operations. Data
parallel operations are used when a programmer
defines a program from the perspective of what
the svstem as a whole will do.

Low level intrinsic functions give detailed infor­
mation about how shared data are distributed
across the available processors. Other functions
give information about the relationship between
tasks based on the distribution of data. Two addi­
tional functions provide broadcast and multicast
capabilities. All intrinsic functions must appear in
an INTRINSIC statement (as is required by For­
tran.)

8.1 Data Parallel Functions

The data parallel functions supported consist of
three basic function families., namely reduction
functions, parallel prefix functions, and seg­
mented scan functions. Thomas Leighton [10]
provides a thorough treatment of their uses in a
massively parallel processor (MPP) environment.
Reduction functions are the most widely recog­
nized of the three. They include array summation,
produce maximum or minimum value. and the

CRAFT FORTRAN PROGRA~1YIING MODEL 247

location (array index) of the maximum or mim­
mum value. Parallel prefix functions are a gener­
alization of reductions that retain an ordered list
of partial reductions. Segmented scan functions
are a generalization of parallel prefix functions;
they offer the ability to perform many prefix oper­
ations over subranges of an array. This makes
them useful for solving linear algebra problems
with some representations of sparse matrices.
Some representations where scan functions are
useful are banded, sky line, and block tridiagonal
sparse matrices.

Reduction Functions

Six reduction functions are supported: SUM,

PRODUCT, MINVAL, MAXVAL, MINLOC, and MAX­

LOC. SUM adds the elements in the specified array.
PRODUCT multiplies the elements. MINVAL finds
the minimum value. MAXVAL finds the maximum
value in an arrav. MINLOC finds the location (arrav
index) of the ~inimum value. MAXLOC finds th~
location of the maximum value.

Each of these functions has the same syntax,
which is modeled after the syntax used in Fortran
90. This document will describe the syntax for one
reduction function, SUM. and note only that it is
the same for the other five. (MINLOC and MAXLOC

do not have a DIM argument.)

RESULT= SUM(ARRAY,DIM,MASK)

DIM and MASK are optional arguments. SUM adds
all the elements along the dimension DIM corre­
sponding to the . TRUE. elements of MASK. When
MASK is not specified, all elements are summed.
When DIM is not specified, all elements are re­
duced to a single scalar value. When DIM is speci­
fied. the result is an array whose rank is 1 smaller
than the rank of ARRAY.

Parallel Prefix Functions

Parallel prefix functions behave similarly to re­
duction functions, but they retain all partial re­
ductions. Let EB be some associative binary opera­
tion (e.g., addition, multiplication, minimum
value. maximum value. minimum value location,
or maximum value location). .\1athematicallv.
parallel prefix may be expressed as

RESULT(l:N) =prefix (E9, A(l:N))

248 P ASE, MACDONALD, AND MELTZER

which means that

RESULT (1) = A (1)
RESULT(2) = A(1)ffiA(2)
RESULT(3) = A(1)~(2)~(3)
RESULT(4) = A(1)ffiA(2)ffiA(3)ffiA(4)

RESULT (N) = A (1)ffiA (2)ffiA (3)~ (4)ffi ... ~ (N)

Notice that unlike reductions, this meta-function
(or higher-order function) always requires that
RESULT and A are conformable-RESULT will
never be a scalar.

This model supports a family of parallel prefix
functions that is similar to the family of reduction
functions. Supported functions include the prefix
equivalents of SUM, PRODUCT, MAXVAL, and MIN­
VAL. There are no plans to support an equivalent
to MAXLOC or MINLOC. The functions are called
PRESUM,PREPROD,PREMAX,andPREMIN.Asbe­
fore, only the prefix sum function is defined in
detail and other prefix functions are defined by
extrapolation.

RESULT= PRESUM(ARRAY,DIM,MASK)

DIM and MASK are optional arguments. The result
is always an array of the same shape and size as
ARRAY. PRESUM computes partial sums for all the
elements along dimension DIM corresponding to
the . TRUE. elements of MASK. When MASK is not
specified, all elements are used in the partial sum.
When DIM is not specified, all elements are used,
innermost dimensions first. When DIM is speci­
fied, the prefix operation occurs only along the
specified dimension.

Segmented Scan Functions

Scan functions behave similarly to parallel prefix
functions, but they carry an additional mask of
stop bits that define where each prefix begins and
ends. Supported is a family of scan functions,
called SCANSUM, SCANPROD, SCANMAX, and
SCANMIN. This may be illustrated by

RESULT(1:N) = scan(~,A(1:N) ,STOP(1:N))

Assume that STOP (1: N) contains

0, 0, 0, 0, 1, 0, 0, 0, 0

The scan means that

RESULT(1)
RESULT (2)

A(1)
A (1)ffiA (2)

RESULT(3)
RESULT(4)
RESULT(5)
RESULT(6)
RESULT (7)
RESULT (8)

RESULT(N)

= A (1)~ (2)ffiA (3)
A (1)~ (2)~ (3)~(4)
A (1)~ (2)ffiA (3)ffiA (4)~ (5)
A(6)
A(6)~(7)

A (6)~ (7)~ (8)

A (I+ 1) ~ (I+2) ~ (!+3) ffi ... ffiA (N)

Notice that unlike reductions, but similarly to pre­
fix operations, this meta-function (or higher-order
function) always requires that RESULT and A are
conformable-RESULT will never be a scalar.

This model supports a family of segmented
scan functions that is similar to the family of par­
allel prefix functions. Supported functions include
the scan equivalents of PRESUM, PREPROD, PRE­
MAX, and PREMIN. There are no plans to support
an equivalent to MAXLOC or MINLOC. The func­
tions are called SCANSUM, SCANPROD, SCANMAX,
and SCANMIN. As before, only the scan sum func­
tion is defined in detail and other scan functions
are defined by extrapolation.

RESULT= SCANSUM(ARRAY,STOP,DIM,MASK)

DIM and MASK are optional arguments. The result
is always an array of the same shape and size as
ARRAY. SCANSUM computes partial sums for all
the elements along dimension DIM corresponding
to the . TRUE. elements of MASK. When MASK is
not specified, all elements are used in the partial
sum. When DIM is not specified, all elements are
used, fastest running dimensions first. When DIM
is specified, the scan operation occurs only along
the specified dimension.

Semantics of Data Parallel Functions

Data parallel functions have semantics as follows:

1. When executing in a master region or a
shared loop, one task does all the work.

2. When executing in a parallel region, the be­
havior varies slightly depending on the at­
tributes of RESULT and ARRAY.

3. When RESULT and ARRAY are both shared,
ARRAY is processed by work-sharing and
the value is stored in RESULT.

4. When RESULT is private and ARRAY is
shared, ARRAY is processed by work-shar­
ing and the value is broadcast to all copies
of RESULT that participated in the function.

5. When RESULT is a shared scalar object and
ARRAY is private, a race condition exists and
the value of RESULT is undefined unless

ARRAY has the same value on all PEs. For
the reduction functions, when only one task
participates, or each task references a dif­
ferent shared value, as in:

RESULT (MY _FE ()) = SUM (ARRAY)

the result is defined and each refer­
enced RESULT (I) contains the result
of the local summation.

6. When RESULT and ARRAY are both
private, the function takes on its se­
quential semantics and the function is
performed locally by each task partici­
pating in the function.

Note that when RESULT is shared and it executes
in a parallel region, all tasks must participate and
a barrier synchronization is implied.

8.2 Data Mapping Functions

The data distribution mechanism described in
Section 2 provides an important level of abstrac­
tion. Because the implementation of this mecha­
nism is sometimes subtle, this model supports
several data mapping functions to make low level
programming more accessible to the user. The
data mapping functions provide the user with low
level access to the data distribution mechanism
used by this model.

Five functions are supported. Three of them
provide direct access to the blocks of data distrib­
uted by the mechanism. Two of the functions pro­
vide information about how data are mapped to
the processors. A detailed description of each
function follows.
BLKCT (A, D, P) returns an integer that represents
the number of blocks of elements in the Dth di­
mension of array A that are resident on processor
P. A must not be an assumed size array ifD repre­
sents the last dimension.

CT = BLKCT(A,D,P)

LOWIDX (A, D, P, K) returns an integer that repre­
sents the lowest index of block Kin the Dth dimen­
sion of array A that is resident on processor P. A
must not be an assumed size array if D represents
the last dimension.

LOW= LOWIDX(A,D,P,K)

HI IDX (A, D, P, K) returns an integer that repre­
sents the highest index of block K in the Dth di-

CRAFT FORTRAN PROGRAMMING MODEL 249

mension of array A that is resident on processor P.
A must not be an assumed size array if D repre­
sents the last dimension.

HI = HIIDX(A,D,P,K)

As an example of how this might be used, the
following code references exactly the elements of
an array that are resident on the PE that executes
the code.

DIMENSION X(l024)
CDIR$ SHARED X(:BLOCK(32))
CDIR$ PE-RESIDENT X

INTRINSIC BLKCT, LOWIDX, HIIDX

DO K = 1, BLKCT(X,l,MY_FE())
LO LOWIDX(X,l,MY_FE() ,K)
HI= HIIDX (X,l,MY_FE() ,K)
DO I = LO, HI

END DO
END DO

X(I)

HOME (X) returns an integer that represents the
processor on which X resides. X is a scalar object
or array element rather than an entire array.

HOME(X)

PES (A, D) returns an integer that represents the
number of processors used in the Dth dimension
of array A. A must not be an assumed size array if
D represents the last dimension.

PRCT = PES(A,D)

The data mapping functions must appear on an
INTRINSIC statement before use.

9EXAMPLE

It is difficult to gauge the ease of use of a program­
ming model without some specific examples of its
use in actual codes. This programming model was
written with the goal of easily modifying existing
Fortran codes to get a very good speedup. A com­
panion goal was to make it possible for the user to
gain incremental improvement with small addi­
tional effort.

Because real programs cannot be shown here, a
smaller example is shown to demonstrate the di­
rectives in the model. A standard matrix multiply
subroutine is first decorated with directives in a

250 PASE, MACDONALD, AND MELTZER

straightforward manner. The resultant code will
run well in parallel. These changes are entirely
mechanical and require very little analysis. A fur­
ther set of changes that requires some knowledge
of the code is added. These will further improve
the code by increasing data locality.

SUBROUTINE MATMUL(A, B, C, L, M, N)
DIMENSION A(L,M), B(M,N), C(L,N)
DO K=l,N

DO I=l,L
DO J=l,M

C(I,K)
END DO

END DO
END DO
END

C(I,K) + A(I,J) * B(J,K)

The most useful thing to do to achieve high per­
formance is to spread the data and work across
the machine. This helps both with data locality
and gives a large address space for big problems.
The SHARED directive spreads the data around the
machine, the DOSHARED directive spreads the
work. As mentioned earlier, data locality is key to
high performance. Therefore, the work will be
aligned to the location of the data. Finally to in­
crease data locality, The (:BLOCK, :BLOCK) dis­
tribution has been chosen here for C,
(: BLOCK, :) for A because whole rows of A are
used at a time, and (: , : BLOCK) for B for analo­
gous reasons.

SUBROUTINE MATMUL(A, B, C, L, M, N)
DIMENSION A(L,M), B(M,N), C(L,N)

CDIR$ SHARED A(: BLOCK,:) ,B(:, :BLOCK)
CDIR$ SHARED C(:BLOCK, :BLOCK)
CDIR$ DOSHARED (K,I) ON C(I,K)

DO K=l,N
DO I=l,L

DO J=l,M
C(I,K) C(I,K) + A(I,J)

* * B(J,K)
END DO

END DO
END DO
END

This example, with minimal changes, now has
data spread across the processors and work
shared among the processors. These data are
computed in as local a context as possible.

10 CONCLUSIONS

In this report we have described a highly flexible
programming model. This model unifies several
divergent programming styles, including message­
passing, work-sharing, and data parallel. Data
may be stored in distributed shared memory or
memory that is private to a task. The work may be
controlled on a task-by-task basis, or work can be
shared among multiple tasks through work-shar­
ing constructs. Input and output can be per­
formed by a single task or by many tasks. This
model also includes a rich set of svnchronization
primitives. When desired, all of these features can
be used together in the same program.

It has been clear throughout the design of this
programming model that users have an enormous
variety of often conflicting needs. For some, the
ability to exploit the available data locality and
data cacheability is of utmost importance. For
others the ability to use all available memory and
access it rapidly provides the greatest benefit. And
although it is often overlooked, J/0 is a major bot­
tleneck for a number of important commercial
codes. This list of design problems is necessarily
short and very incomplete. Indeed, every new ma­
jor code seems to bring a new set of problems that,
if addressed, would provide some important im­
provement for that code. Yet for this model to be
accepted by the scientific computing community,
it had to be similar to what they were already using
or they would not have the time to learn how to use
it effectively! Balancing the desires of fast, flexi­
ble, safe, small, and familiar is difficult, especially
when it must be done within a commercially feasi­
ble time frame with limited resources. To achieve
this trade off, our emphasis has been on speed
and simplicity first. We have incorporated addi­
tional features only when doing so has provided a
real, identifiable benefit without degrading the
quality of existing features.

A compiler for this programming model is cur­
rently under development and scheduled for re­
lease in 1994. As such, reliable performance
numbers are not available at the time of this writ­
ing, but preliminary performance numbers are
highly encouraging. The CRAFT compiler is built
using Cray's mature cf77 compiler as a base, and
as such will have the benefit of a reliable, highly
optimizing Fortran compiler to provide syntactic,
semantic, and dependence analysis. CRAFT re­
quires some additional analysis above and beyond
what cf77 already provides, and a code generator

to support the new instruction set. But much of
what is needed. including many optimizations, is
common to the parallel-vector compiler.

The core definition of CRAFT is now complete,
although a lot of work remains to be done. Some
of the features proposed for future releases are:
relaxing the restrictions on power-of-2 arrav sizes
and distributions, canonical distributions,. addi­
tional loop distribution mechanisms, and task
teams. Allowing the user to distribute arravs with
arbitrary sizes will permit significantly mo~e effi­
cient and flexible memory utilization. The cost will
be less efficient memory ~eferences when such ar­
rays are used. Canonical distributions strike a bal­
ance between the storage and sequence associa­
tion properties of traditional Fortran data objects
and the control over data locality provided by (di­
mensional) distributions. Canonical distributions
scatter array cells in a fixed manner (e.g., cycle
blocks of four words across PEs) after arrav index
linearization has taken place. New loop distribu­
tion mechanisms may include adaptive mecha­
nisms, perhaps some adaptation of guided self­
scheduling [11] appropriate to MPPs. Last of all,
task teams would support explicit functional de­
composition, which would assist the user in divid­
ing up tasks to handle functionally separate com­
putations while allowing each task team to pursue
work-sharing computations among tasks within
the team.

ACKNOWLEDGMENTS

The work represented by this article was sup­
ported by The Defense Advanced Research Pro­
jects Agency under Agreement ~o. MDA 972-92-
H -0002 dated January 21, 1992.

REFERENCES

[1] A. Beguelin, J. Dongarra, A. GeiseR. Manchek.
V. Sunderam, ·'A Cser's Guide to PV.\1-Parallel
Virtual Machine," Technical Report OR~L/T.\1-
11826, Oak Ridge National Laboratory. July
1991.

[2] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C.-\V. Tseng, .\1.-Y. Wu, Fortran D
Language Specification. Houston. TX: Rice Uni­
versity, 1991.

CRAFT FORTRAI\" PROGRAMMI~G Y!ODEL 251

[3] B. Chapman, P. Ylehrotra, H. Zima, "Proi~Tam­
ming in Vienna Fortran."' Scientific Program­
ming, Vol. 1, pp. 31-50, 1992.

[4] Cray Research, CF77 Compiling System, Volume
4: Parallel Processing Guide, SR-3071 4. 0.
Eagan, Ml'\: Cray Research, Inc., 1991.

[5] CrayResearch, CRAYY-J1P. CRAYX-MPEA. and
CRAY X-MPMultitasking Programmer's Manual,
SR-0222 F-01. Eagan. MN: Cray Research. Inc.,
1991.

[6] Thinking Machines Corporation. CM Fortran Ref­
erence Manual. Cambridge, MA: Thinking Ma­
chines Corporation, 1991.

[7] BB~ Advanced Computers Inc., TC2000 Fortran
Language Reference. Boston, MA: BBI\" Ad­
vanced Computers Inc., 1990.

[8] K. Warren, B. Gorda, E. D. Brooks IlL "Program­
ming in PFP," Technical Report LCRL-Y!A-
107028, Lawrence Livermore 1\"ational Labora­
tory, April 1991.

[9] "High Performance Fortran Language Specifica­
tion", High Performance Fortran Forum, Scien­
tific Programming, Vol. 2, ~os. 1 & 2, 1993.

[10] F. Thomson Leighton, Introduction to Parallel
Algorithms and Architectures: Arrays, Trees, Hy­
percubes. San Mateo, CA: Morgan Kaufman
Publishers 1992.

[11] C. Polychronopolous and D. Kuck. "Guided self­
scheduling: A practical scheduling scheme for
parallel computers," IEEE Trans. Comput., vol.
36, December 1987.

[12] International Standards Organization. ISOIIEC
1539:1991, Information Technology-Program­
ming Languages-Fortran. Geneva: ISO, 1991.

APPENDIX 1 PROGRAMMING MODEL
DIRECTIVES AND FUNCTIONS

This section summarizes the syntax of CRAFT di­
rectives and intrinsic functions.

Note: The notation var; represents the name of
a data object, which may be the name of a scalar
variable or an array. The notation a; represents a
keyword that can be : BLOCK or : BLOCK (N) , op­
tionally with weights, or a colon by itself (:) . The
expression (a1 , a 2 , ... ,a,) may only be used with
array names or geometry labels. The notation
[: :] indicates that ": : " is optional. The nota­
tionj;(I) indicates an index expression of the form
a;l; + b; where a; and b; are integers.

252 PASE,MACDONALD,AND MELTZER

1. Data objects

CDIR$ PE_PRIVATE var 1 , var2, ... , varn
CDIR$ SHARED var 1 (a 1 , a 2 , ••• , ar) , ...

CDIR$ GEOMETRY geom 1 (a 1 , a 2 , • •• , ar), .. .

CDIR$ SHARED (geom) [::] var 1 , var 2, ... , varn
CD IR$ UNKNOWN var 1 , var 2 , ... , var n
CDIR$ UNKNOWN_SHARED var 1 , var 2, ... , varn

2. Sequential execution

CDIR$ MASTER
CDIR$ END MASTER[, COPY(var 1 , var 2, ... , varn)]

3. Loops

CDIR$ DOSHARED (I 1 , I 2, ... , In) ON A (f 1 (I) , f 2 (I) , ... , f r (I))
CDIR$ NO BARRIER

4. Synchronization primitiv~s

CDIR$ BARRIER
CALL BARRIER ()
CALL SET_BARRIER ()
CALL WAIT_BARRIER ()
IB = TEST_BARRIER ()
CALL SET_LOCK (1 ock)
CALL CLEAR....LOCK (lock)
L = TEST_LOCK (lock)
CALL SET_EVENT ([event])
CALL WAIT_EVENT ([event])
CALL CLEAR....EVENT ([event])
S = TEST_EVENT ([event])

CDIR$ CRITICAL
CDIR$ END CRITICAL
CDIR$ ATOMIC UPDATE

5. Subroutine arguments

CDIR$ UNKNOWN var 1 , var 2, ... , varn
CDIR$ UNKNOWN_SHARED var 1 , var 2, ... , varn
CDIR$ FE-RESIDENT var 1 , var2, ... , varn

6. Intrinsic functions. The following functions
must appear on an INTRINSIC statement
before use.
A. Reduction functions

RESULT= SUM (ARRAY, DIM, MASK)
RESULT= PRODUCT (ARRAY, DIM, MASK)
RESULT= MINVAL (ARRAY, DIM, MASK)
RESULT= MAXVAL (ARRAY, DIM, MASK)
RESULT= MINLOC (ARRAY, MASK)
RESULT= MAXLOC (ARRAY, MASK)

B. Parallel prefix functions

RESULT= PRESUM (ARRAY, DIM, MASK)
RESULT = PREPROD (ARRAY, DIM, MASK)
RESULT= PREMIN (ARRAY, DIM, MASK)
RESULT= PREMAX (ARRAY, DIM, MASK)

C. Segmented scan functions

RESULT= SCANSUM (ARRAY, STOP, DIM, MASK)
RESULT= SCANPROD (ARRAY, STOP, DIM, MASK)
RESULT= SCANMIN (ARRAY, STOP, DIM, MASK)
RESULT = SCANMAX (ARRAY, STOP, DIM, MASK)

D. Data mapping functions

CT = BLKCT (A, D, P)
LOW = LOWIDX (A, D, P, K)
HIGH= HIIDX (A, D, P, K)
HOME = HOME (X)
PES =PES (A, D)

E. Query functions

RESULT= IN_FARALLEL ()
RESULT= IN_DOSHARED ()
RESULT= IS_SHARED (A)

F. Data access routines

CALL READ_UNKNOWN (V, A (I))
CALL WRITE_ UNKNOWN (A (I) , V)

Tablet. Fortran 90 Functions

CRAFT FORTRAN PROGRAMMING MODEL 253

G. Task identity function

RESULT= MY _FE ()

H. Shared pointer routines

CALL SHLOC (ptr, is ta tus, ary)
CALL SHMALLOC(ptr, istatus)
CALL SHMALLOC (ptr, length)
CALL SHFREE (ptr)

APPENDIX 2 FORTRAN 90 FEATURES

Fortran 90, as an emerging standard that has ap­
plicability to both scientific computing and mas­
sively parallel computing, has many features that
are of interest. Although it was not an option to
implement a full Fortran 90 compiler for the
CRA Y T3D system in the time allowed, two basic
elements of the Fortran 90 language will be avail­
able to CRAFT users. The first is array assignment
statements, e.g., A (1: N) = F (B (1: N)). The sec­
ond is the WHERE statement.

It is anticipated that many of the most impor­
tant Fortran 90 intrinsic functions will also be im­
plemented for CRAFT. The Fortran 90 intrinsic
functions that will receive earliest consideration
for implementation are shown in Table 1.
Complete definitions of these intrinsic functions,
array assignment, and WHERE statements can be
found in the Fortran 90 language standard [12].

ALL DOT_PRODUCT MAXVAL PACK SUM
ANY EOSHIFT MERGE PRODUCT TRANSPOSE
COUNT MATMUL MINLOC RESHAPE UNPACK
CSHIFT MAXLOC MINVAL SPREAD

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

