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ABSTRACT 

Many programming models for massively parallel machines exist, and each has its 
advantages and disadvantages. In this article we present a programming model that 
combines features from other programming models that (1) can be efficiently imple­
mented on present and future (ray Research massively parallel processor (MPP) sys­
tems and (2) are useful in constructing highly parallel programs. The model supports 
several styles of programming: message-passing, data parallel, global address (shared 
data), and work-sharing. These styles may be combined within the same program. The 
model includes features that allow a user to define a program in terms of the behavior of 
the system as a whole, where the behavior of individual tasks is implicit from this 
systemic definition. (In general, features marked as shared are designed to support this 
perspective.) It also supports an opposite perspective, where a program may be defined 
in terms of the behaviors of individual tasks, and a program is implicitly the sum of the 
behaviors of all tasks. (Features marked as private are designed to support this per­
spective.) Users can exploit any combination of either set of features without ambiguity 
and thus are free to define a program from whatever perspective is most appropriate to 
the problem at hand. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

The CRAFT programming model is an attempt to 
allow the user a range of control over the CRA Y 
T3D hardware. This range extends from a low 
level of control in which the programmer makes al­
most all of the decisions about how data and work 
are partitioned and distributed to a high level of 
control where the programmer identifies where 
parallelism is located and lets the system deter­
mine best how to exploit it. The programming 
model also allows users to write programs that ex­
ecute in a data-parallel fashion. It also allows the 
user to control processor element (PE) execution 
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more explicitly, as occurs in a single-program 
multiple data (SPYID) model. Thus, one can write 
a program that specifies what the system as a 
whole will compute, what each individual task will 
compute (and the whole program is the sum of the 
behaviors of all of the tasks), or one that combines 
elements of both. 

The major elements of this programming model 
include the access to and placement of data, par­
allel and local execution, work-sharing, synchro­
nization primitives, private and global 1/0, sub­
routine interfaces, and special intrinsic functions 
that support parallel reductions, parallel prefix 
operations, and segmented scan operations. The 
parallel virtual machine (PVYI) [ 1 J library is pro­
vided to support message-passing programs, but 
there are no restrictions against using PVYI in 
combination with distributed memorv or work­
sharing features. Additional directives and intrin­
sic functions allow the user to access low level 
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detail about array distributions. The data distri­
bution declarations were adapted in part from 
Rice University's Fortran D project [2] and Vi­
enna Fortran [3]. The work distribution directives 
are adapted from a variety of sources, including 
Cray Auto tasking® [ 4, 5], and workshops on par­
allel programming held at the University of Illinois 
at Urbana-Champaign. Concepts embraced in 
this model can be found in many other sources as 
well [3, 6-8]. 

CRAFT was originally conceived before the 
High-Performance Fortran (HPF) Forum began in 
1992 but the two languages are similar, primarily 
because of the strong influence Fortran D had on 
both definitions. CRAFT and HPF [9] are based 
on the belief that current massively parallel archi­
tectures attain their highest speeds when the data 
accessed exhibit high locality of reference. Both 
languages use data distribution directives to 
achieve this locality. HPF, however, is a data par­
allel language. CRAFT supports data parallel pro­
gramming styles as well but also supports SPMD 
and message-passing paradigms. 

HPF has a much richer set of data distribution 
capabilities than does CRAFT, but CRAFT allows 
explicit control of work-sharing and limits the 
data distribution to those distributions that are 
deemed to be high performance. On high-band­
width, low-latency architectures (which is, in our 
opinion, the future of massively parallel architec­
tures) the cost of determining the location of data 
based on the possible data distributions with HPF 
can overwhelm the cost of referencing even nonlo­
cal data. Because CRAFT is SPMD, it also pro­
vides the user with data explicitly private to a pro­
cessing element. 

Programs initially execute in parallel. Sequen­
tial regions are explicitly inserted by the user. Be­
cause of the number of PEs involved, users should 
try to arrange for minimal sequential regions (e.g., 
for data initialization). Long sequential segments 
anywhere within a program could result in highly 
inefficient machine utilization. A task is not cre­
ated dynamically in the sense that UNIX® pro­
cesses are, but rather one task is created per PE at 
program startup time and parked during sequen­
tial execution. No additional tasks can be created 
dynamically. Each task also has an identity that it 
can use to distinguish itself from other tasks. The 
number of executing tasks is available through a 
special symbolic constant. 

This programming model distinguishes be­
tween data objects that are private to a task 
(PE_PRIVATE) and those that are shared among 

all tasks (SHARED). Private data objects in this 
model, whether scalars or arrays, are not accessi­
ble to any other task. They are not distributed 
across PEs, but instead each private object is rep­
licated and a copy resides on each PE. Thus, each 
task that references a private object references its 
own private version of that object; the storage for 
the object is replicated across the PEs. It is possi­
ble for private data objects associated with differ­
ent PEs to have different values. These different 
values can never conflict because there is never an 
effort to merge different values into a single result. 
Shared data objects, in contrast, are accessible to 
all tasks, are not replicated, and (if the object is an 
array) may be distributed across multiple PEs. 

Loops do not create parallelism in a program. 
Rather they may execute serially, each loop by 
each task, or they may "share" the work, distrib­
uting iterations across all available tasks. Distrib­
uted loops (called shared loops in this model) are 
work-sharing constructs rather than task-creating 
constructs. Each task is assigned a set of iterations 
of a shared loop to execute. 

Local loops, or loops that are not distributed 
(called private loops in this model), are included 
as well. They allow a user to write programs by 
defining what each individual task will accomplish 
within each loop. Their behavior individually is 
most like loops as defined in Fortran 77, i.e., in­
duction and loop control variables behave as they 
do in Fortran 77, and iteration execution is guar­
anteed to retain the same ordering as in Fortran 
77. These properties of local loops are not shared 
by distributed loops. 

The standard shared memory synchronization 
primitives are supported in this model. A user can 
place barriers, locks, critical sections, and events 
within a program. The implementation of barriers, 
locks, and critical sections is very efficient, pri­
marily due to extensive hardware support. For ex­
ample, the current implementation of the barrier 
operation allows the user to synchronize all PEs 
(up to the full machine) in approximately 1.5 mi­
croseconds. 

Subroutine interfaces are extended to accom­
modate distributed data. Although it is tempting 
to require that the distribution attributes of actual 
arguments in function calls exactly match the cor­
responding dummy arguments in function defini­
tions, it is perceived that such a restriction causes 
undue hardship on the programmer in many cir­
cumstances. On the other hand, supporting such 
a restriction holds the potential of producing func­
tions that execute significantly faster than their 



more general counterparts. This model offers a 
compromise by allowing a user to specify or not 
specify the distribution attributes of dummy argu­
ments. When the attributes are given the compiler 
generates the more efficient code for those refer­
ences. When they are not, the more general (and 
less efficient) code is generated. When calls are 
made to subroutines that have different distribu­
tions specified for dummy arguments than the ac­
tual arguments they were given, redistribution is 
done automatically by the compiler. 

Although tlie exact difference in efficiency will 
depend on the particular code being executed, the 
cost of array redistribution and shared array ad­
dressing deserve attention. Both costs are new to 
many programmers, and experience in program­
ming uniform memory access parallel machines 
does not give an accurate intuition about their im­
pact. Significantly more work, in the form of inte­
ger computations, must take place to compute the 
address of a shared array reference. When the ar­
ray size and distribution are specified, the com­
piler can "fold" much of that computation so it 
does not need to be done at run-time. The com­
piler may also use the folded constants directly in 
the load instructions, thereby avoiding several 
trips to memory that would otherwise have to be 
done if the information were not supplied. Array 
redistribution, even when done efficiently, can in­
cur a noticeable cost because of the massive 
amount of data motion involved. The CRA Y T3D 
global network is very fast, but a program's per­
formance can easily be overwhelmed if one is in­
cautious about redistributing arrays. 

Two categories of intrinsic functions are sup­
ported in this model: high level array syntax func­
tions and low level functions that give information 
about array distributions, task identity, and 
whether execution is currently parallel, sequen­
tial, or work-sharing. The high level intrinsics op­
erate on entire arrays. The low level intrinsics pro­
vide usable information about how an array is 
distributed across the machine, or what execution 
region the program is in (parallel, sequential, or 
work-sharing). 

The model supports message-passing primi­
tives based on the PVM model. PVM is a public 
domain set of portable message-passing primi­
tives originally from the Oak Ridge National Lab. 
These primitives allow an explicit message-pass­
ing style of programming. 

Directives were chosen to increase the likeli­
hood that codes written using this programming 
model will run correctly on machines that do not 

CRAFT FORTRAN PROGRAMMING MODEL 229 

support the directives. Code written using this 
model produces mathematically identical results 
(module hardware limitation considerations) on a 
sequential machine if the directives are ignored so 
long as there is no nondeterministic behavior in 
the user's program and the program does not use 
any of the machine-specific intrinsic functions. 

2 DATA OBJECTS 

A data object is any program data storage area, 
whether it is dynamically allocated, a common 
block, an array, or a scalar variable. This pro­
gramming model supports two basic sets of data 
object attributes above and beyond those allowed 
by Fortran (specifically cf77 Version 6.0 [4], 
Cray Research's Fortran compiler). The first set of 
attributes is called private because data objects 
with this set of attributes are private to every pro­
cessing element; they are accessible only to the 
task that owns them. The second is called shared 
because such objects are accessible to all tasks. 

2.1 Private Obiects 

Private data objects are replicated. Each declara­
tion of a private object causes one such object with 
the specified name to be created for each task that 
executes. Dynamic private objects are allocated 
on the private heap. Private data is not distrib­
uted. A private object is always allocated entirely 
within the task and PE that is able to reference it. 
Private data objects are intended to support, 
among other things, a user's ability to control the 
execution of individual tasks at an arbitrarily fine 
level of detail. 

The default distribution attribute IS 

PE_FRIVATE, meaning all data objects are as­
sumed to be private unless explicitly stated other­
wise. Variables and arrays may also be explicitly 
declared as PE_PRIVATE with the directive 

CDIR$ PE_FRIVATE var 1 , var 2 , ... , varn 

Initial values for private data objects are unde­
fined, but private objects may be explicitly initial­
ized by DATA statements when it is permitted in 
cf77 to do so. If it is permitted in cf77 to initial­
ize a variable with a DATA statement in a sequen­
tial program, it is permitted to initialize the same 
variable declared with the PE_FRIVATE attribute 
in this model. This means all private data objects 
may be DATA initialized except those that occur in 
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blank or unnamed common dummy arguments, 
automatic arrays, and those whose size is a func­
tion of N$PES, the number of PEs executing the 
program. (N$PES is described in Section 3.2.) 

All data objects whose size is a function of 
N$PES have storage association and sequence as­
sociation restrictions. An EQUIVALENCE state­
ment cannot specify one of these objects. This in­
eludes common blocks. If any entity within the 
common block is shared or has a size that is a 
function of N$PES, the entire common block is 
affected. Essentially, each entity in the original 
common block behaves as if it were its own sepa­
rate and unique common block. Thus, storage as­
sociation and sequence association for the original 
common block are lost. No entity in the original 
common block can appear in an EQUIVALENCE 
statement. 

2.2 Shared Objects 

Shared data objects are accessible to all tasks. 
Only one data object exists for each declaration of 
a shared data object. Blank common blocks may 
not be shared, nor may objects in blank common 
be shared, but objects local to a subroutine, in­
cluding automatic arrays (which may be allocated 
on the stack), can be shared. Character data may 
not be shared. A shared object is considered to be 
distributed across the program's PEs. 

The distributions of shared data objects fall 
generally into two categories: shared scalars and 
dimensional distributions. Scalar variables areal­
ways allocated on a single PE, although not all 
shared scalars are necessarilv allocated on the 
same PE. Dimensional distributions may be ap­
plied to any shared array. They may not be ap­
plied to common blocks, although shared arrays 
in named common blocks can be dimensionally 
distributed. 

With dimensional distributions, each array di­
mension is distributed as if it were independent of 
all other dimensions. For this to occur the number 
of available processors is factored and each array 
dimension is assigned some factor appropriate to 
the dimension size and distribution. Thus a three­
dimension array mapped to a 64-processor ma­
chine might have four processors mapped to each 
dimension. (This works because 4:3 = 64.) Alter­
natively it might have eight processors mapped to 
the first dimension, four mapped to the second, 
and two to the third. (Again, 8 X 4 X 2 = 64.) The 
user may specify a preference for one factorization 
over another by assigning weights (defined later in 

this section) to each of the dimensions. The first 
factorization would be chosen if all dimensions 
were given the same weight. The second factoriza­
tion is chosen if the first dimension weight is 4 
(because it is 4 times larger than the last dimen­
sion), the second dimension weight is 2, and the 
last dimension weight is 1. 

Dimension indexes are mapped to the proces­
sors according to the distribution designation 
specified by the user. Allowable designations are 
: BLOCK, : BLOCK (M) and ":". (The ":" is re­
quired for the directive but will be omitted in the 
following discussion of the directive.) The first 
designation, BLOCK, specifies that the dimension 
is to be divided in such a way that each PE re­
ceives one contiguous block of elements. The sec­
ond designation, BLOCK (M) , indicates that each 
PE is to receive M contiguous elements starting on 
PE 0. Excess elements are allocated in the same 
way, again beginning with PE 0. Thus, if a dimen­
sion is allocated on 4 PEs using the BLOCK ( 1) 
designation, the first element would go to PE 0, 
the second to PE 1, the third to PE 2, the fourth to 
PE 3, the fifth toPE 0, and so forth; this distribu­
tion is often called cyclic. M may be a constant 
integer expression or a dummy argument. The last 
designation, '': '', indicates that all elements in the 
dimension are to be allocated on the same proces­
sor. This is often called the degenerate distribu­
tion and it implies that the number of processors 
assigned to that dimension is identically one. 

The home processor of a given element can be 
determined by considering the virtual processor 
array implied by the array dimension weights and 
the dimension distributions. These values are lin­
earized in the same wav that Fortran linearize~ a 
tuple of array indices to obtain the address of an 
array element. For example, consider the array 
declaration REAL X (64). Suppose that this array 
is to be distributed over four processors. If the 
array is distributed BLOCK, then 6414 = 16 array 
elements in a contiguous block of indices are allo­
cated to each PE. Thus X (1 : 16) is assigned to 
PE 0, X ( 1 7 : 3 2) is assigned to PE 1 , etc. As a 
second example, suppose that an array Y is de­
clared REAL Y(16, 16) andthatitismappedto 
an eight PE machine. Furthermore, suppose that 
the first dimension is assigned four PEs, the sec­
ond dimension is assigned two, and both dimen­
sions are declared with a BLOCK distribution. The 
block size for dimension 1 is 16 I 4 = 4, for dim en­
sion 2 it is 16 I 2 = 8. An arbitrarv reference 
Y(3, 15) maps to a processor tuple of ((3-1)14, 
(15-1 )18) which is (0, 1 ). This tuple and the num-



hers of PEs assigned to each dimension are used 
to determine the exact PE number. The PE num­
ber is given by 0 + 1 X 4, where 0 and 1 are from 
the tuple, and 4 is the number of PEs in the first 
dimension. A picture of the allocation is given in 
Figure 1. 

Individually distributed arrays always have 
their first element on PE 0, regardless of the num­
ber of elements or the particular distribution used. 
This allows a user to align distributed arrays in a 
primitive but efficient fashion to guarantee that 
when array references are local to one PE that 
similar references to an aligned array are also lo­
cal. Note that this onlv works when the arrays are 
conformable (they h~ve the same rank an:d di­
mension extents) and when they are given the 
same distribution. For example, consider four ar­
rays A (M, N) , B (M, N) , C (M, N) , and D (K, 
L) , where K, L, M, and N are all distinct values, 
that are distributed A (:BLOCK, :BLOCK) , 
B (:BLOCK, :BLOCK), C (:BLOCK, :) , and 
D (:BLOCK, :BLOCK). All arrays have the same 
rank, i.e., they all have two dimensions. Arrays A 
and B are aligned because they have the same 
number of elements in each dimension, and each 
dimension has the same distribution. Array C is 
not aligned with either A or B because although it 
has the same number of elements in each dimen­
sion, one dimension does not have the same dis­
tribution as the corresponding dimension in A or 
B. Array D has the same distribution for each di­
mension as A and B, but it has a different number 
of elements, and thus the elements of D are not all 
aligned with the elements of A or B. If arrays differ 
as to the number of dimensions, or if the weight on 
a distribution designation is not the same, their 
elements may also not be aligned. 

PEO (0,0) PE4 (0, 1) 

Y(1 :4,1 :8) Y(1 :4,9:16) 

PE 1 (1 ,0) PES (1 '1) 

Y(5:8,1 :8) Y(5:8, 9:16) 

PE2 (2,0) PE6 (2, 1) 

Y(9:12, 1 :8) Y(9:12,9:16) 

PE3 (3,0) PE 7 (3, 1) 

Y(13:16, 1 :8) Y(13:16,9:16) 

FIGURE 1 Memory allocation pattem for Y, distrib­
uted ( 4: BLOCK, 2: BLOCK) . 
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The array alignment requirements impose 
some fairly strong constraints on shared array 
memory allocation. In effect, memory is allocated 
in stripes across the available processors. If a 
shared array requires 32 words to be allocated on 
PE 0, then it requires 32 words on every processor 
even though the number of elements in the array 
may be fewer than 32 times the number of avail­
able processors. Because the dimension sizes have 
a multiplicative effect on the total memory alloca­
tion, the amount of memory that would be wasted 
is the memorv wasted in the first dimension times 
the memory wasted in the second, and so forth. If 
one is not careful, this can represent a lot of 
memory. 

So far the definitions and descriptions provided 
in this model could apply to block sizes, dimen­
sion lengths, and PE allocations with arbitrary 
integer values. Cnfortunately, there is a cost to 
providing such generality. Briefly described, gen­
erating addresses of such arrays with arbitrary di­
mension sizes from index tuples is expensive. It 
requires numerous integer operations, including 
several integer divides, multiplications, and addi­
tions. To reduce the cost of generating an address 
from an index tuple the model currently requires 
each dimension to be a power of 2; it also requires 
block sizes and the number of processors assigned 
to each dimension to be a power of 2. 

There is an exception to the rule that each di­
mension of a shared array be a power of 2. When 
the last (right-most) dimension has a degenerate 
distribution, its size need not be a power of 2. 
Even so, requiring powers-of-2 dimension and 
distribution sizes is a severe restriction in some 
cases, and as efficient means are found to support 
arbitrary array distributions, these restrictions will 
be lifted. We recognize that these are significant 
restrictions and efforts are in progress to reduce 
them. In future these restrictions might be relaxed 
through allowing all right-most degenerate dimen­
sions to be arbitrary integers, or implicitly round­
ing the dimension and distribution sizes up to a 
power of 2, or by finding the means to reduce the 
cost to a reasonable level where the access is regu­
lar, e.g., within loops. 

To distribute an array by dimension (only ar­
rays can be distributed by dimension) one need 
only append a description of each dimension's 
distribution, with any desired weights, to the array 
name. This generally has the appearance 
var i (a 1 , a 2 , ••• , ar) where r is the rank of 
the array. The notation aj represents a keyword 
from the selection :BLOCK or: BLOCK (M), option-
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ally with weights, or":". Weighted dimensions are 
represented bv w: BLOCK or w: BLOCK (M), where 
w and M are· integer expressions. The weights 
specify a ratio for how many PEs are assigned to 
each dimension. 

When distributing an array that is statically al­
located as defined by cf77 (e.g., an entity in a 
common block or specified on a SAVE statement), 
w and M must be constant integer expressions, 
otherwise w and M may be arbitrary integer expres­
sions involving dummy arguments. A distribution 
of ":" cannot be weighted and means that all ele­
ments within the dimension reside on the same 
processor. Effectively, it is a dimension to which 
one PE is assigned. 

Dimensionally distributed array declarations 
look like the following example. Note that in this 
example, the last defined dimension of the array is 
not a power of 2. This is permitted in this case 
because the last declared dimension has a degen­
erate distribution. 

REAL A(1024, 1024, 5) 
CDIR$ SHARED A(: BLOCK, 4:BLOCK(16), : ) 

Initial values for shared data objects are unde­
fined, but, with the exception of arrays whose size 
is a function of the N$PES constant, shared ob­
jects may be explicitly initialized by DATA state­
ments where it is permitted in cf 7 7 to do so. If it is 
permitted in cf 7 7 to initialize a variable with a 
DATA statement in a sequential program, it is per­
mitted to initialize the same variable declared with 
the shared attributes in this model. Primarily this 
means shared objects may be DATA initialized ex­
cept those that occur in blank or unnamed COM­
MON, dummy arguments, automatic arrays, and 
those whose size is a function of N$PES. 

It is sometimes valuable to assert to the com­
piler that all accesses to any array within a pro­
gram unit will be resident on the accessing PE. 
This may speed up access time and allow the data 
to be cached. A directive has been provided to 
make this assertion. Its syntax is 

REAL X(1024) !X is a dummy argument 
CDIR$ PE_RESIDENT X 

The directive PE-HESIDENT assetts that all ac­
cesses to dummy argument X will be to those ele­
ments of X, which are on the accessing PE. Unde­
fined behavior will result if the assertion is not 
adhered to by the user. The assertion is only al­
lowed on shared dummy arguments. 

2.3 Geometry 

The concept of geometry in this model is an ~b­
straction of the dimensional distribution. It sim­
plifies the maintenance and declaration of arrays 
with similar dimensional distributions. One can 
think of it as providing a shorthand for declaring 
dimensionally distributed arrays. This is similar to 
the typedef declaration in C. 

The syntax for declaring a geometry name is 
similar to the syntax used to declare dimensionally 
distributed arrays. The syntax for declaring a dis­
tributed array from a geometry is similar to the 
Fortran 90 syntax for declaring variables with de­
rived types. 

CDIR$ GEOMETRY geom(al, a2, ... , ar), 

CDIR$ SHARED (geom) [:: J var1, varn 

Here, a; has the same meaning as it has in Section 
2.2 and [: : ] indicates that the two colons are 
optional. A user would not actually type the 
square brackets. The following example demon­
strates how to declare a geometry. 

CDIR$ GEOMETRY G(l:BLOCK, 2:BLOCK) 
REAL A(4, 8), B(16, 8) 

CDIR$ SHARED (G) : : A, B 

The declaration of G describes a distribution that 
is then applied to arrays A and B. Figure 2 shows 
the distribution of A across eight PEs. 

2.4 Array Redistribution 

Some applications can efficiently execute with all 
data being only statically distributed, but not all 
applications are like that. It is sometimes the case 
that a given data layout may yield efficient execu­
tion for some phase of the computation, but yield 
poor efficiency for some other part of the compu­
tation. If the two sections of code have sufficient 
work in them it might be desirable to redistribute 
the arrays dynamically to maximize reference lo-

2 

3 

4 

2 3 4 5 6 7 8 

PEO PE2 PE4 PE6 

PEl PE3 PES PE7 

FIGURE 2 Memory distribution of A. 



cality. This can be done by declaring additional 
arrays with the desired distributions, then copying 
data into the appropriate array just before execut­
ing the section of code in question. This does have 
the disadvantage of increasing memory usage. 

Arrays may also be implicitly redistributed 
across subroutine boundaries (implicit redistribu­
tion). A dummy argument that is distributed dif­
ferently than its actual argument in the calling 
routine is automatically redistributed upon entry 
to the subroutine by run-time libraries and auto­
matically redistributed to its original distribution 
at the subroutine exit. If the distributions are 
identical or the UNKNOWN or UNKNOWN_ SHARED di­
rective is used (Section 7 .1.1 ), no redistribution 
occurs. All tasks must participate in implicit array 
redistributions. 

2.5 Storage Association and 
Sequence Association 

There are certain guarantees made by cf 7 7 about 
the layout of data objects in memory. This layout 
is defined in terms of storage association and se­
quence association in the Fortran 77 standard. 
For example, sequence association semantics de­
fine the behavior of using a one-dimensional array 
to reference elements of a two-dimensional array, 
and referencing two adjacent arrays in the same 
common block. Rules of storage association gov­
ern program behavior when two arrays are associ­
ated in an EQUIVALENCE statement. Distributed 
data objects and data objects whose size is a func­
tion of N$PES do not have the same guarantees 
made by the Fortran 77 storage association and 
sequence association semantics. Because these 
are new kinds of data objects, additional restric­
tions are placed on the use of EQUIVALENCE 

statements, argument passing, and common 
blocks. 

Issues with sequence association appear in two 
places in particular: association between succes­
sive dimensions within arrays and association be­
tween objects within COMMON blocks. In CRAFT 
PE-private arrays, as in Fortran, for the fastest 
running (left-most) dimension, element i is stored 
immediately following element i- 1 and immedi­
ately before element i + 1. This is true whether or 
not elements i - 1, i, and i + 1 are within the 
declared extents of that dimension, as long as they 
are not outside the storage allocated for the array. 
This fact is exploited when a program allocates an 
array with one set of extents, then passes it to a 
subroutine and declares it to have a different set of 
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extents. For example, a code may manipulate a 
work array as a two-dimensional array, then hand 
the whole array to another routine where it is ma­
nipulated as a one-dimensional array. This type 
of reshaping does not work with shared arrays be­
cause elements i - 1, i, and i + 1 are not neces­
sarily contiguous. They may not even be on the 
same processor. By the same token, the element 
that follows i in a given PE's storage may not be 
i + 1. Figure 3 illustrates this issue. 

Objects whose size is a function of N$PES have 
similar problems with sequence association and 
are similarly restricted. A similar but less compli­
cated problem occurs with objects in COMMON stor­
age. If two objects, say arrays A and B, are lexically 
adjacent in their declaration within a Fortran pro­
gram, they are allocated as adjacent storage 
within the executable. Thus, one element past the 
last element of A is the first element of B. This is 
sometimes exploited to give efficient memory 
management of scratch arrays. This type of stor­
age association cannot be guaranteed when 
shared arrays are allocated in COMMON blocks. 
Padding between shared objects may be needed to 
maintain other properties and the last element of 
one array may be allocated on a different PE than 
the first element of the next array. 

Shared arrays may not be associated in an 
EQUIVALENCE statement because elements of the 
arrays would not have a mapping between them 
that is remotely similar to that which is provided in 
Fortran 77. For example, if two arrays A (64, 

128) and B (128, 64) are associated, Fortran 
requires that array cells A (I, 2 *J-1) and B (I, 
J) map to the same memory location and refer­
ences A(I,2*J)) and B(I+64,J) would also 
map. If they were distributed A (: BLOCK (M 1 ) , 

: BLOCK (M 2 ) ) and B (: BLOCK (M 1 ) , 

: BLOCK (M 2 ) ) , the same association would hold 
as for Fortran. However, if the block sizes or num-

X(*,I) X(*,I+l) Y(:BLOCK(2)) 
PEk PEk+l 

Fortran arrays in flat memory Arrays in distributed memory 

FIGURE 3 Private and shared array sequence associ­
ation. 
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her of PEs allocated to a dimension are different. 
or the number of dimensions are different, the 
storage association would not be the same as de­
fined by Fortran. Although it is conceivable that 
EQUIVALENCE could be permitted for arrays that 
are appropriately distributed, its usage would be 
highly error prone, occasionally expensive to ver­
ify, and generally not worth the effort required to 
reasonably support. For this reason shared arrays 
may not be associated in EQUIVALENCE state­
ments. 

2.6 Shared to Private Coercion 

When a shared array is passed into a routine that 
declares the argument as PE_FRIVATE, in effect 
only those values that reside on the current PE are 
being passed. This means that the callee must de­
clare each dimension of the array to be as large as 
the number of elements resident on that PE. For 
example: 

REAL A (256, 64) 
CDIR$ SHARED A (:BLOCK,:) 

If this array were passed to a routine that declared 
the dummy argument as PE_FRIVATE, each PE 
would see an array of the shape: 

REAL A(256/N$PES,64) 

(N$PES and MY_FE are described in Section 3.2.) 
In general, the caller is responsible for calculat­

ing the local extent of each dimension and passing 
it to the callee. Sample code for this is as follows 
(HI IDX, LOWIDX, and BLKCT intrinsic functions 
are described in detail in Section 8. 2): 

C Calculate the local allocation of each 
C dimension. 
C This should be done for each dimension. 

CDIR$ SHARED B(:BLOCK(2)) 

c Degenerate dimensions are not reduced 
C in size. 

IBLKSIZE = HIIDX(A,1,0,1) -
* LOWIDX(A,1,0,1)+1 

N1 = BLKCT(A, 1,MY_PE()) * IBLKSIZE 

There will be cases when aPE has no allocation. If 
this occurs, the caller or callee must ensure that 
no work is done on that array for PEs that have no 
allocation. This will occur in the above example if 
N$PES is greater than 256. In this case, N1 would 
be zero for some executing tasks. 

If an element of an array is passed instead of 
passing the entire array, the caller should ensure 
that the element is local. If the element is local, 
then the first element passed to each PE will be 
the element that is specified in the caller. For ex­
ample: 

REAL A (256, 64) 
CDIR$ SHARED A(:BLOCK(2),:) 

IBLKSIZE = HIIDX(A,1,0 1) -
*. LOWIDX (A, 1, 0, 1) + 1 

N1 + BLKCT(A,1,MY_PE()) * IBLKSIZE 
N2 = 64 

CDIR$ DOSHARED (I) ON A(I,1) 
DO 1=1,256 

CALL COERCE1(A(I) ,N1,N2) 
END DO 

In this case each task gets elements that are local, 
because the "ON A (I, 1) " clause of the loop (see 
Section 4.1) ensures that the owner of A (I , 1) is 
the PE that executes iteration I. What actually 
occurs when the call is executed is that the 
SHARED address in the argument list is changed 
into a PE_PRIVATE address. This is done by cal­
culating the offset of A (I , 1) on its own home PE 
and using that as a local address. In the above 
example that is exactly what is expected. If a non­
local element is passed, the callee on each PE will 
get an element that corresponds to that offset. For 
example: 

C Pass the first element. Each PE gets offset 0 in their local 
C allocation of the array. This is the same as CALL COERCE2(A,N1) 

CALL COERCE2(B(1) ,N1) 
C Pass the third element. This resides at offset 0 
C on PE 1. Each PE gets offset 0 in their local 
C allocation, so it will be exactly the same as above. 

CALL COERCE2(B(3) ,N1) 
C Pass the second element. This resides at offset 1 on PE 0. 
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C Each PE gets offset 1 in their local allocation. 
C PE 0 gets B(2), PE 1 gets B(4), PE 2 gets B(6) 

CALL COERCE2(B(2) ,N1) 
c 

SUBROUTINE COERCE2(X,N) 
CDIR$ PE_FRIVATE X 

DIMENSION X (N) 

3 TASK EXECUTION 

The CRAFT programming model supports the no­
tion of work-sharing on shared data. Constructs 
within this model provide access to mechanisms 
that distribute work among the available execut­
ing tasks. Shared data are distributed across PEs 
independently of executing tasks. The model sup­
ports both sequential regions (code segments exe­
cuted by a single task) and parallel regions (code 
segments executed concurrently by one or more 
tasks). To simplify programming for some situa­
tions, each task is given a unique name. The name 
is an integer value between 0 and N$PES-1, in­
clusive. 

A program begins execution with all tasks run­
ning. Each task is able to execute independently 
until it reaches a synchronization point, at which 
time it waits until the synchronization conflict is 
cleared. Tasks can agree to cooperate by sending 
messages back and forth through explicit mes­
sage-passing, by synchronized access to distrib­
uted shared memory, or by entering a work-shar­
ing construct. The program retains control over 
each task until the program terminates. Task cre­
ation and scheduling are quite different from a 
"traditional" fork-join model where tasks are 
created and destroyed dynamically, and the num­
ber of processors available or in use can vary from 
instant to instant. They are similar in some re­
gards to gang scheduled machines and traditional 
message-passing machines. 

This approach to task execution was chosen for 
several reasons. This programming model is de­
signed to exploit the power of a distributed mem­
ory machine with many processors. The fact that 
remote references are relatively expensive com­
pared with local references causes processor coor­
dination and synchronization efforts to be rela­
tively expensive when compared with what is 
required to accomplish the same thing on a uni­
form memory access machine. Also, the number 
of processors is large enough that the cost of even 
small synchronization delays 1s fairly expensive 

because of the compute capacity that is lost across 
the many PEs that become idle waiting for task 
coordination to complete. A third reason is that 
this approach is simple for users to understand 
and use to their advantage. In all it appeared that 
a mechanism that provided tasks on demand, 
along with supporting mechanisms for swapping 
in other jobs to utilize any unused processors, 
would have strongly interfered with the program­
mer's abilitv to control data distribution. It also 
would have been hard to understand, complex to 
implement, slow, and would use up a lot of mem­
ory in system functions that would otherwise be 
available to the user. A design that offered speed, 
simplicity, and low memory use seemed more de­
sirable. 

From within code executing in parallel the user 
may execute the STOP or ABORT statements. The 
STOP statement stops only the PE executing the 
statement; all other PEs remain executing and 
deadlock may occur if the stopped PE is required 
at a synchronization point. The ABORT statement 
forces all PEs within the job to cease executing, 
although all may not cease execution at the same 
moment. 

3.1 Sequential Regions 

Programs initially begin executing in parallel. The 
program remains in that execution mode until it 
encounters a special directive to execute sequen­
tially. The syntax for this directive is: 

CDIR$ MASTER 

The program then continues to execute as a single 
sequential task until the directive: 

CDIR$ END MASTER 

is encountered. Every function or subroutine that 
contains a MASTER directive must also contain a 
properly nested matching END MASTER directive. 
MASTER directives carry an implicit barrier syn-
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chronization. The END MASTER directive may also 
optionally contain a COPY (var 1 , ... ) clause. 
This directs the contents of the private data for 
var1 , etc., that is owned by the master task to be 
broadcast to all of the other PEs, basically ensur­
ing that they all start with identical values for each 
copied data item. An assumed size array cannot 
appear in the COPY list of an END MASTER. The 
syntax for an END MASTER with a COPY is: 

CDIR$ END MASTER, COPY(var 1 , var 2 , ... ) 

All tasks are created on program startup and each 
is attached to a specific PE. Only one task is cre­
ated per PE. The task on PE 0 is special in the 
sense that when the program executes in a se­
quential region (unless it is within a shared loop), 
it is the master task that executes. While executing 
in a sequential region all other tasks are parked at 
the matching END MASTER directive. This mecha­
nism allows tasks to be parked and unparked rap­
idly. However, because of the number of proces­
sors involved, programs containing sequential 
sections with lots of work will inherently execute 
well below machine peak performance rates re­
gardless of how rapidly tasks can be parked and 
unparked. 

Sequential regions may be nested but the effect 
is that the inner directive is ignored. If a subrou­
tine call takes place within a sequential region, the 
subroutine will execute sequentially; there is no 
way to "get back" into a parallel region within the 
subroutine. If the subroutine call takes place 
within a parallel region a sequential region may be 
entered from anywhere within the subroutine. 
Note that encountering an END MASTER directive 
does not guarantee that the program will resume 
executing in parallel unless it is the outermost END 
MASTER directive. 

An intrinsic is provided that allows the user to 
query whether the code is currently executing in a 
parallel section. This intrinsic is called 
IN_FARALLEL (). It value is . FALSE. if the code 
is executing within a sequential region, . TRUE. 
otherwise. The IN_PARALLEL function must ap­
pear on an INTRINSIC statement before use. 
When the STOP statement executes within a se­
quential region, tasks parked at the END MASTER 
directive are also stopped. 

3.2 Task Identity 

At times it is- useful to make decisions within a 
program based on the number of processors avail­
able, both at compile time and at run-time. To 

allow this the model supports a special symbolic 
constant called N$PES, which gives the total num­
ber of central processing units (CPCs; as well as 
the number of tasks) available to the program. It 
may be used in some places a named constant 
must appear. It cannot be used in DATA, CHARAC­
TER, or FORMAT statements. It has the same value 
in either a sequential or parallel region. Further­
more, N$PES can only be an operand of the fol­
lowing operators: + - *I. Any constant expres­
sion that contains N$PES as an operand is called a 
symbolic constant expression. 

Each task that executes within a program has a 
unique identification. The name given to each 
task is retrieved by using the intrinsic function 
MY_FE (). This function must appear on the IN­
TRINSIC statement before use. It is an integer 
value between 0 and N$PES-1, inclusive. It may 
be used anywhere an intrinsic function may be 
used. It is available whether the program is exe­
cuting inside a sequential region or a parallel re­
gion. When executing in a sequential region it al­
ways returns the value 0 unless executing from 
within a shared loop. 

The logical task topology defined by the intrin­
sic function MY_PE () defines a one-dimensional 
torus (or mesh). Wraparound is achieved by treat­
ing the operations as operations in a linear con­
gruence, i.e., by doing a "mod N$PES" operation 
to any manipulation within the space. For exam­
ple, a task may find one of its logical neighbors in 
the torus by evaluating the expression 
(MY_PE () +1) mod N$PES. It should be noted 
that a nearest logical neighbor is not necessarily a 
nearest physical neighbor. 

4 LOOPS 

As with data objects, loops have a notion of 
shared -ness and private-ness. Private loops are 
executed in their entirety by the task that invokes 
them. No work is shared between tasks. Private 
loops define program behavior by defining the be­
havior of individual tasks. Private loops are de­
fined, at the task level, as having exactly the same 
semantics as loops in standard Fortran. Iterations 
are executed in the Fortran-specified order, which 
implies that (replicated) induction variables retain 
the behavior they have in sequential Fortran pro­
grams. (Induction variables that are shared, of 
course, suffer from extensive race conditions be­
cause many tasks could be concurrently executing 
the same loop.) No special syntax is required to 

specify a loop as private-it is the default. Private 



loops may, of course, reference both shared and 
private data. Shared loops specify the behavior of 
all tasks collectively and define the behavior of 
individual tasks only implicitly. They permit work 
specified in the loop to be shared across all tasks. 
Shared loops do not guarantee the order in which 
iterations will be executed. The lack of a defined 
ordering allows the system to execute iterations 
concurrently. A loop is shared only if it is executed 
in a parallel region (otherwise it is private). All 
tasks must participate in the execution of a shared 
loop. Shared loops may be written explicitly or by 
using array assignment syntax. 

A shared loop is executed as if there are no 
cross-processor dependencies. Each iteration is 
executed atomically on a PE. An iteration of a 
shared loop executes as if it were a single MASTER 
region (although it does not necessarily execute on 
PE 0). No function that allocates new shared data 
storage may be called from within the iteration. 
This restriction also applies, to some extent, to 
any function that requires the cooperation of all 
PEs because of the uncertainty that all PEs will 
execute the same number of iterations, or even 
that all PEs will receive some iterations of a given 
loop invocation. (Functions may test internally 
whether they are being called from within a shared 
loop by using the IN_DOSHARED intrinsic de­
scribed later.) 

4.1 Explicit Shared Loops 

Explicit shared loops, also called DOSHARED loops 
from the keyword in the directive, most closely re­
semble Fortran DO loops in their structure. Their 
similarities are obvious. They deviate from DO 
loops in that the sequencing of iterations is lost 
and that execution of iterations is permitted to, 
but not required to, occur concurrently. Thus 
statements such as X (I) =S *X (I -1) can produce 
significantly different results when executed in a 
DOSHARED loop than in a Fortran DO loop. The 
general syntax for shared loops is as follows: 

CDIR$ DOSHARED (! 1, !2, ... ,In) 
DO !1 = L1, U1, S1 

DO !2 = L2, U2, S2 

END DO 
END DO 

END DO 
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where n is the number of shared loops in the nest 
and r is the rank of the array _2(. All index expres­
sions must be of the form f i (I) =a! +b, where the 
loop control variable I is used in at most one array 
index expression and a and b must be integer val­
ues and may be expressions, constants, or vari­
ables. Therefore n must be less than or equal tor. 
An array that has been declared UNKNOWN cannot 
be used as the target of an alignment. The order of 
the variables I 1 , I 2 , . . . , In in the DOSHARED 
directive is significant. 

Private loops may occur inside or outside of the 
shared loop but the shared loops themselves must 
be tightly nested. In the event that a shared loop is 
nested (but not tightly nested) inside a containing 
shared loop, the inner shared loop is executed as a 
private loop.* An imperfectly nested shared loop 
is executed as a private loop whether it is within 
the same program unit or it is a shared loop con­
tained within a subroutine that is called from 
within a shared loop. An intrinsic is provided that 
allows the user to query whether the code is cur­
rently executing in a DOSHARED section. This in­
trinsic is called IN_DOSHARED () . Its value is 
. TRUE. if the code is executing within a 
DOSHARED section, . FALSE. otherwise. The IN­
_DOSHARED function must appear in an INTRIN­
SIC statement before use. 

An example of nested DOSHARED loops is as 
follows: 

CDIR$ DOSHARED (I) ON A(I) 
DO I = 1, N 

(continues on next page) 

* We recognize that there are differences in behavior be­
tween private and shared loops and that treating as private a 
loop intended to be shared could cause surprises. Although 
shared loops carry no guarantee of concurrent execution that 
private execution would violate, the loop alignment cannot be 
honored, which could result in subtle problems. especially in 
performance. 

ONX (fdl),f2(I), .. ,fr(I)) 

Must be tightly nested 
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CDIR$ 

c 

DOSHARED (J) ON B(J) 
DO J = l,M ! private loop 
nested DOSHARED ignored 

END DO 

END DO 

Program correctness depends in part on whether a 
loop is declared as private or shared (and if 
shared, whether it executes as a shared or private 
loop). In most cases private and shared loops have 
different behaviors. In addition, they function 
identically in sequential sections. 

Proper choice of iteration alignment can often 
provide a high degree of locality when references 
in the iteration are close together. The aligned dis­
tribution mechanism is designed to place itera­
tions within tasks on PEs where the references re­
side. For example, suppose that arrays X and Y 
have the same dimensionality, the same size, and 
the same distribution. The loop: 

CDIR$ DOSHARED (I) ON X(I) 
DO I = 1, N 

Y(I) = A*X(I) + Y(I) 
END DO 

is distributed such that each iteration I is exe­
cuted on the processor where X (I) resides. Be­
causeY (I) resides on the same PE, all references 
are completely local. 

4.2 Array Assignment 

Array syntax is supported in this programming 
model. Array assignment statements involving 
shared arrays are treated as if they were shared 
loops. Unlike shared loops, their iteration distri­
bution is controlled completely by the compiler. 
The compiler chooses the iteration distribution 
that exercises the greatest locality in its execution. 
This may entail distributing operations within a 
single iteration across multiple tasks, something 
that a user is not able to do with DOSHARED loops. 
For example, given the declaration: 

DIMENSION A(128), B(l28), C(128) 
CDIR$ SHARED A(:BLOCK), B(:BLOCK(2)) 
CDIR$ C(:BLOCK(2)) 

When A is SHARED, the array syntax assignment: 

A=B+C 

is semantically equivalent to: 

CDIR$ DOSHARED (I) mechanism 
DO I=1,128 

A(I) = B(I) + C(I) 
END DO 

where mechanism is chosen by the compiler. 
When A is PE_pRIVATE it is equivalent to a pri­
vate loop (even if Band Care shared arrays). 

4.3 Barrier Removal 

Barriers are implicitly included at the end of every 
distributed loop including array assignments in­
volving shared arrays, but the compiler is at liberty 
to remove them when program analysis deter­
mines that it is safe to do so. Implicit barriers also 
exist when data are redistributed and when 
SHARED automatic arrays are allocated. Barriers 
can only be explicitly removed from shared loops 
by placing a directive at the end of the loop. The 
syntax of that directive is 

CDIR$ NO BARRIER 

Barriers associated with MASTER directives, im­
plicit redistribution, and SHARED automatic array 
allocations cannot be removed. 

Barrier removal must be done with great care. 
The compiler exploits the locality of reference 
available within a shared loop. Removing the bar­
rier does not necessarily invalidate the caching 
scheme used for local references. If a barrier re­
moval allows shared data that were referenced lo­
cally in a shared loop to be referenced remotely 
prior to the next synchronization point, then the 
NO BARRIER directive must be used in conjunc­
tion with a 

CDIR$ SUPPRESS 

directive to ensure that all data are returned to 
memory. The SUPPRESS directive has the effect of 
forcing aPE's local cache to be flushed. 



5 SYNCHRONIZATION PRIMITIVES 

This model supports a standard array of shared 
memory synchronization mechanisms, including 
barriers, locks, critical regions, and events. Each 
type of synchronization mechanisms is supported 
by special hardware to make the operation as effi­
cient as possible. Each type of mechanism is de­
scribed in the following sections. 

5.1 Barriers 

Barriers are a mechanism for synchronizing all 
tasks at once. Entering a barrier causes a task to 
stall until all tasks have entered the barrier. Bar­
riers are expected to be extremely fast-the cur­
rent implementation takes about 1.5 microsec­
onds. They are implicitly included at the end of 
every distributed loop, but the compiler is at lib­
erty to remove implicit barriers when it is safe to 
do so. Barriers are also included at the beginning 
and end of routines that allocate distributed mem­
ory dynamically (discussed in Section 7). They 
may be explicitly included anywhere in a program 
with the syntax 

CDIR$ BARRIER 

Barrier directives may occur in sequential regions 
of a program with no effect whatsoever. Concep­
tually it is one task synchronizing with itself. Per­
mitting barriers in sequential sections allows users 
to write subroutines that may be executed sequen­
tially or in parallel, and if executed in parallel re­
quire synchronization. 

The BARRIER routine is equivalent to the BAR­
RIER directive except that it is not ignored inside 
sequential regions. Its purpose is to provide direct 
access to the hardware barrier mechanism and as 
such it requires more caution in its use. For exam­
ple, if used within a master region it can cause 
undesirable program behavior. It is also somewhat 
faster than the BARRIER directive. Its syntax is 

CALL BARRIER () 

The barrier mechanism actuallv consists of two 
parts, setting the barrier and waiting for the bar­
rier to clear. The point at which a processor sets 
the barrier and the point at which the processor 
waits for the barrier need not coincide. They do 
coincide with the BARRIER directive. However, 
there are some applications that lose a large 
amount of time waiting at barriers when the com-
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putation preceding the barrier is not homoge­
neous. The following three routines allow early ar­
riving processors to move forward into an 
independent phase of the computation while the 
slower processors catch up: 

CALL SET_BARRIER() 
CALL WAIT_BARRIER() 
IB = TEST_BARRIER() 

SET_BARRIER sets the barrier. It indicates that 
the calling task has arrived at a barrier synchro­
nization point. WAIT_BARRIER suspends task 
execution until all tasks arrive at the barrier. 
TEST_BARRIER retums the state of the barrier: 
zero if barrier is not satisfied, nonzero otherwise. 

The following is an example of barrier func­
tions: 

c block 1: must be completed before 
c block 2 is started 

CALL SET-BARRIER(); 
c unconstrained calculations 

CALL WAIT_BARRIER(); 

c block 2: cannot be started until 
c block 1 is completed 

It is important to note that the BARRIER () , 
SET_BARRIER(), and WAIT_BARRIER() rou­
tines are not ignored, and therefore must not oc­
cur, inside sequential regions (unlike the BARRIER 
directive). 

5.2 Locks 

Locks are a basic and primitive synchronization 
mechanism that are generally used to serialize ac­
cess to some piece of data. They are basic in the 
sense that they may be used to efficiently imple­
ment a variety of parallel constructs, including 
other synchronization constructs. They are primi­
tive in the sense that serialization is enforced by 
convention only. Access to the lock is serialized by 
a combination of hardware and software, but if a 
lock is to be used to serialize access to some da­
tum X it is the responsibility of the programmer to 
ensure that no section of code accesses X without 
first gaining access to the lock. Locks themselves 
are only partially protected from unauthorized ac­
cess in that the operation of locking a lock is seri­
alized, but unlocking a lock is not protected. Only 
one task may set the lock on, but any task may 
clear the lock. 

Locks do not require initialization or release 
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functions. Locks that are set to zero are initialized 
as unlocked. Lock operations are supported by 
three library subroutines, which use the syntax 

CALL SET_LOCK(lock) 
CALL CLEAR_LOCK(lock) 
L = TEST_LOCK(lock) 

The subroutine SET_LOCK sets the lock. If the 
lock is set in spin-waits until the lock is cleared, 
otherwise the lock is set immediatelv. 
CLEAR-LOCK clears a lock whether it is set or dot. 
TEST_LOCK atomically sets a lock and returns the 
state that the lock had (whether set or cleared) 
prior to the test. With this function a task can 
avoid blocking on a set lock by testing the lock. If 
the lock is clear, the testing task will have set the 
lock. Otherwise, the task will be informed and it 
will be free to perform some other operation. 

For example, 

IF (.NOT.TEST_LOCK(lock)) THEN 
... (the lock is ours) ... 
CALL CLEAR-LOCK(lock) 

ELSE 
... (do something else) ... 

END IF 

For all three functions the operand 1 ock is a 
shared 64-bit integer. 

These queuing-locks are designed to efficiently 
support many locks that infrequently have access 
collisions. Contention-free access is inexpen­
sive-clearing a lock with one PE blocked costs 4 
microseconds. Access with contention is some­
what more expensive, e.g., clearing a lock with 15 
PEs blocked costs approximately 15 micro­
seconds. 

5.3 Critical Sections 

Critical sections are a specialized form of lock that 
do not require the use of some convention to en­
sure proper synchronization. They serialize access 
to a particular section of code rather than access 
to some data object. A critical section prevents 
more than one task from executing concurrently 
within the critical section. The syntax for a critical 
section is 

CDIR$ CRITICAL 
CDIR$ END CRITICAL 

Every CRITICAL directive must have a properly 
nested and matching END CRITICAL directive 

within the same routine. The only way to enter a 
critical section is through the CRITICAL directive 
(i.e. no branching in) and the only way to exit the 
critical section is through the END CRITICAL di­
rective. 

5.4 Events 

Events provide a style of program synchronization 
that is different from locks. Whereas locks cause 
task suspension on setting the lock, events have 
an explicit blocking routine. Events are typically 
used to record the state of a program's execution 
and communicate that state to other tasks. Be­
cause events have no atomic operation to set a 
lock and block on conflict, events cannot be as 
easily used to completely serialize access to data. 

This mechanism is supported by four library 
routines, namely SET_EVENT, WAIT_EVENT, 
TEST_EVENT, and CLEAR-EVENT. SET_EVENT 
set, or post, an event. It declares the event to have 
occurred. No prior conditions are imposed on this 
routine. Any event can be posted at any time, 
whether the state of the event is already posted or 
cleared. WAIT_EVENT suspends task execution 
until a specified event occurs. TEST_EVENT re­
turns the state of an event, i.e., whether it is 
posted or cleared. CLEAR-EVENT, of course, 
clears the event. The syntax for each routine is: 

CALL SET_EVENT ([event]) 
CALL WAIT_EVENT([event]) 
CALL CLEAR_EVENT ([event]) 
S = TEST_EVENT ([event]) 

The argument to the event routines is optional. If 
an argument is supplied, it must be a shared inte­
ger variable or array element. If these routines are 
called without an argument, then a fast hardware 
mechanism is used in place of the somewhat 
slower, but more versatile, software mechanism. 
(The hardware mechanism is called the eureka 
mechanism because posting an event is like 
shouting "Eureka~ I found it!") By comparison, 
eureka events cost 1.5 microseconds whereas 
software events cost a few tens of microseconds. 
On the CRA Y T3D the eureka mechanism shares 
the same hardware used by barriers. Barriers are 
implemented using an AND tree. Each PE writes a 
0 to a special register to arm the mechanism; each 
PE then writes a 1 as it enters the barrier. When 
all PEs have written a 1, the AND tree inverts its 
value from a 0 to a 1. For a eureka each PE writes 
a 1 to arm the mechanism, which sets the AND tree 



to 1. When any PE writes a 0 to the register, the 
AND tree reverts to 0. 

5.5 Atomic Update Statements 

Vector updates are assignment statements that 
modify or update an array reference that has an 
element of indirection. An example of this is 

X (IX (I) ) = X (IX (I) ) + V (I) 

The concern is that IX may contain values that 
occ.ur more than once. When this is the case, exe­
cuting the update in parallel can cause race con­
ditions that may result in incorrect values for X. 

Vector updates pose a difficult problem. The 
option of computing vector updates sequentially 
to avoid potential race conditions is generally not 
acceptable for performance reasons, and forcing 
the programmer to do all of the necessary syn­
chronization by hand is error-prone and unneces­
sary. This programming model supports a set of 
vector update primitives for floating-point and in­
teger addition, multiplication, maximum, mini­
mum, and for binary AND, OR, and exclusive OR 
operations. The directive ATOMIC UPDATE directs 
the compiler to ensure that multiple updates to a 
single shared element occur atomically. The vec­
tor update executes as parallel as possible other­
wise. As for all floating-point operations executed 
in parallel, care must be used to be sure that the 
order in which floating point ATOMIC UPDATE op­
erations are performed does not contribute to ex­
cessive numerical instability in the program. An 
example of ATOMIC UPDATE usage follows: 

CDIR$ DOSHARED (I) ON IX(!) 
DO I=l, N 

CDIR$ ATOMIC UPDATE 
X(IX(I)) = X(IX(I)) + V(I) 

END DO 

The ATOMIC UPDATE directive only applies to the 
assignment statement immediately following the 
directive and may be placed before nonvector up­
dates as long as one of the supported operations is 
being executed and the assignment is to a shared 
data object. The statement following the ATOMIC 
UPDATE directive must be an assignment state­
ment". 

Another example of how the ATOMIC UPDATE 
directive can be used is the following, which com­
putes a sum reduction. 
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CDIR$ SHARED SSUM, A(:BLOCK) 
CDIR$ MASTER 

SSUM = 0 
CDIR$ ENDMASTER 

PSUM = 0 
CDIR$ DOSHARED (I) ON A (I) 

DO I=l, 100 

c 
PSUM = PSUM + A(I) 

LOCAL SUMS 
END DO 

CDIR$ ATOMIC UPDATE 

c 
SSUM = SSUM + PSUM 

ACCUMULATE LOCAL SUMS 

5.6 Shared Data Coherence 

It is important to understand when shared data 
objects are coherent. The CRA Y T3D supports 
cache coherency for private data objects, but not 
for shared objects. Thus, only shared data objects 
can become incoherent. When coherent data ob­
jects are accessed from memory, the most recently 
updated value is always obtained. Accessing inco­
herent data objects may result in stale values be­
ing obtained. A value becomes stale, e.g., when 
the most recently computed value is still in a regis­
ter or in aPE's local cache and not in memorv. To 
further clarify this point, suppose two PEs ~se a 
shared value without proper synchronization; one 
PE reads the value into a register and uses it, an­
other writes it, then the first PE reuses its local 
(but stale) copy as if it were the most up-to-date 
value. using the local (in register) copy is faster 
than rereading the value from memory, but it is 
not what the user expected and is likely to give 
incorrect results. 

Shared data objects are forced to become co­
herent immediately before an external call to a 
subprogram and after a synchronization point. 
Shared data objects become incoherent after be­
ing modified with a new value. Shared data coher­
ence is only a consideration when one task is mod­
ifying a shared data object and a different task is 
referencing the same object. If the same task is 
both accessing and modifying the same shared 
data object, shared data coherence is irrelevant. 

The following is a list of points after which data 
are guaranteed to be coherent: 

1. Implicit barrier synchronization points 
2. Barrier synchronization points specified by 

the BARRIER directive 
3. The BARRIER function 
4. The WAIT_BARRIER function 
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5. The TEST_BARRIER function 
6. The SET_LOCK function 
7. The TEST_LOCK function 
8. Critical region synchronization points 

specified by the CRITICAL directive 
9. The WAIT_EVENT function 

10. The TEST_EVENT function 
11. The ATOMIC UPDATE directive 

Even though data become coherent, it is still 
necessary to control communication involving 
those data with appropriate synchronization. The 
following example shows that coherent shared 
data may still cause problems if communication is 
not controlled with some synchronization mecha­
nism. The shared scalar X is only updated by a 
single task (PE 13), but no synchronization oc­
curs. Therefore, some of the ~ther tasks may ac­
cess the old value of X. 

COMMON /SCALAR/ X 
DATA X /3.0/ 

CDIR$ SHARED X 
INTRINSIC MY_PE 
IF (MY_PE() .EQ. 13) X= 5.0 
CALL RTN() 
Y = X ! nondeterministic X 
PRINT * I MY_PE = I ' MY_PE () ' 

* ly =I' y 

END 
SUBROUTINE RTN() 
COMMON /SCALAR/ X 

CD IR$ SHARED X 
INTRINSIC MY_PE 

* 

z = X ! nondeterministic X 
PRINT *' 1 MY_PE = I' MY_PE ()' 

I z = I I z 
END 

The following example shows one way to ensure 
that X is safe to access: 

PROGRAM NORACE 
COMMON /SCALAR/ X 
DATA X /3.0/ 

CDIR$ SHARED X 
INTRINSIC MY_PE 

CDIR$ MASTER ! implicit synchronization 
X= 5.0 

CDIR$ END MASTER 
CALL RTN() 

* 

Y = X ! deterministic X 
PRINT *' I MY_PE =I' MY _FE()' 

I Y = I 
1 

Y 

END 
SUBROUTINE RTN () 
COMMON /SCALAR/ X 

CDIR$ SHARED X 
INTRINSIC MY_PE 
Z = X ! deterministic X 
PRINT *' I MY_PE = I' MY_PE ()' 

* I z = I' z 
END 

In the above example, the MASTER directive con­
tains an implicit synchronization point. This 
causes X to become coherent and communication 
involving X is appropriately controlled. Thus syn­
chronization and coherence are both necessary 
for correctness. 

61NPUT AND OUTPUT 

Input and output may be accomplished by using 
either private or global 1/0. Private 110 is the de­
fault. 

6.1 Private 1/0 

A private READ or WRITE statement is one that, 
when encountered. is executed in its entiretv bv 
the processor that encounters it. It require~ n~ 
synchronization across, nor communication with, 
other processors. It is executed without regard for 
the activity of other processors. Thus, one proces­
sor, or a thousand, may execute a READ or WRITE 
statement concurrently. 

Shared and private variables alike may be used 
in private 1/0 statements. Each processor has ac­
cess to all shared data and to its own PE-private 
data. Of course, all access to shared data must be 
carefully coordinated across all processors, per­
haps using explicit synchronization to avoid read/ 
write and write/write conflicts (race conditions) on 
the shared memory. 

Private OPEN operations, like READ and WRITE 
operations, are executed by a single processor 
rather than cooperatively by many processors. A 
single task that encounters an OPEN statement will 
execute the OPEN without coordination or com­
munication with other tasks. The file unit opened 
is private and accessible only to the task that exe­
cuted the OPEN statement. Any operations per­
formed using the unit will not affect the state of 
any other task. If the same file is opened by an­
other task, then reads will cause both tasks to read 
all the data and writes will cause undefined be­
havior. 

Because private II 0 is the default, all READ, 
WRITE, OPEN, CLOSE, and INQUIRE operations 



will be private operations unless explicitly de­
clared otherwise. Private IIO is useful when a pro­
grammer wishes to specify the IIO behavior from 
the perspective of what each task does, or when a 
task must write private data. No other task is re­
quired to participate in private IIO so it may be 
used to achieve unsvnchronized II 0 as well. 

Aside from the aspect of read/write and write/ 
write ordering conflicts across tasks, private IIO is 
identical to Fortran 77 IIO on a serial machine. It 
supports all of the various flavors, including di­
rect, sequential, formatted, unformatted, and list­
directed operations. 

Private IIO statements cannot have shared 
data allocations, work-sharing, or barriers in 
functions called from within the IIO statements. 
Properties of private II 0: 

1. If multiple PEs try to read the same file se­
quentially, then all PEs will read all of the 
data on the file. 

2. If multiple PEs try to write the same file se­
quentially, the results are undefined (except 
for shared, specially buffered files such as 
stderr, which is line-buffered). 

6.2 Global 1/0 

Global IIO is similar to private IIO except that the 
unit/file connection is a global, shared resource. 
The global II 0 paradigm offers two significant 
benefits over private 110: clarity and perfor­
mance. Consider, for example, an embarrassingly 
parallel application. In such an application the 
parallelism exists at the record level in that each 
record can be read, processed, and written inde­
pendently of all other records. The more PEs, the 
more records that can be simultaneously pro­
cessed. Such an application is linearly scalable if 
the II 0 is not a bottleneck. 

Without global IIO, such an application must 
usually be implemented with a master/slave ap­
proach. The speed (or more typically. the number) 
of the master PE(s) must be adjusted to ensure 
that the slave PEs are not starved for data, and 
then readjusted whenever the number of slave 
PEs is changed. This style of programming is diffi­
cult to write, tune, and understand. In global IIO, 
because the "load balancing" is done automati­
cally in the library, better performance and much 
greater code clarity are provided. Properties of 
global IIO: 
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1. All of the PEs must participate in establish­
ing and terminating a unit/file connection 
for global IIO (i.e., the Fortran OPEN and 
CLOSE statements). Thereafter, PEs may 
independently participate, or not, in access­
ing the file. 

2. Fortran READ/WRITE statements are syn­
chronized and atomic. If multiple PEs are 
reading from the same file sequentially then 
each record will be read exactly once, al­
though the order that the records are pro­
cessed is nondeterministic. If multiple PEs 
write to the same file sequentially then all of 
the records will be written to the file, al­
though again, there order is nondetermin­
istic. 

Input/ output to/ from shared variables is permit­
ted on global IIO statements, as on private IIO 
statements, but no implicit synchronization (bar­
rier) is performed to protect individual shared en­
tities. 

7 FUNCTIONS AND SUBROUTINES 

Two opposing goals arise in designing the behav­
ior of subroutines. High performance is crucial to 
the success of the CRA Y T3D system but general­
ity of operation, and specifically flexibility in pass­
ing parameters, is key to reducing the effort re­
quired by a programmer to use the machine 
effectively. This model adopts the principle that 
the system will generate the most efficient code 
possible from the available information. This al­
lows the users to choose a course that best fits 
their needs when there is a conflict. 

Subroutines may themselves in a sense be con­
sidered shared or private. A private subroutine is 
one that permits a task to function independently 
of all other tasks. It does not allocate shared data 
objects dynamically, including implicit redistribu­
tion. It may define or reference statically allocated 
shared objects, and it may accept shared dummy 
arguments. It may use locks, events, and critical 
sections. A shared subroutine is one that allocates 
shared data. This occurs when a routine allocates 
shared dynamic arrays. shared automatic arrays, 
or when an array is redistributed (see Section 
7.1.1). 

If private routines contain barriers. they are 
sometimes called team routines. Team routines 
must either ignore barriers (e.g., execute in a se­
quential region) or all tasks must execute the rou-
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tine (to satisfy the barrier). This categorization of 
subroutines as shared or private is conceptual in 
nature and does not require the user to specify 
additional syntax to obtain one or the other. How­
ever, although calls to a shared subroutine are not 
required to arrive at the subroutine through the 
same call chain, the results are only defined if 
each task has the same sequence of shared sub­
routines in its call chain. Thus, one task may call 
subroutine A, which calls B, which calls a shared 
routine C, and another task may call A, which calls 
C directly. As long as B is not a shared subroutine 
the results are defined. But if one task calls a 
shared subroutine S, and another task calls a dif­
ferent shared subroutine T before it calls S, the 
results are undefined, and in fact the situation 
may cause deadlock or other unsavory behavior to 
occur because of problems with the use of shared 
resources. An ENTRY statement is not permitted in 
any routine that declares shared or UNKNOWN 
data. 

7.1 Data Obiects 

Fortran 90 and Cray Fortran (cf77) both support 
several types of data objects within subroutines 
and functions. The list includes named and un­
named common blocks, dummy arguments, local 
scalars and arrays, and automatic arrays. For 
CRAFT Fortran, objects in each of these catego­
ries can be either shared or private with the excep­
tion of unnamed common blocks, which can only 
be private. The behavior of objects in common 
blocks is described in Section 2.5. Other object 
types are described in the following sections. An 
object that is referenced as private data in a rou­
tine must not be modified remotely until after the 
routine retums control to the caller. 

Dummy Arguments 

Dummy arguments may be declared as SHARED, 
PE_pRIVATE, UNKNOWN-SHARED, or UNKNOWN. 
When the declaration is shared or private, that 
declaration is honored and the code generated for 
references to that data is the most efficient possi­
ble with a redistribution upon entry and exit to the 
subroutine if necessary. The rules that apply to 
dummy and actual arguments are described in full 
later in this section, but a summary of the rules is: 

1. If the dummy argument is declared SHARED 
then the dummy argument must not be an 
assumed size array. 

2. If the dummy argument is private or It IS 
shared and the actual argument matches 
the distribution exactly, no redistribution is 
done and the addressing scheme used is tai­
lored for the declared distribution. 

3. If the dummy argument is declared UN­
KNOWN_SHARED then a general addressing 
scheme is used and no redistribution is 
done. 

4. If the dummy argument is declared UN­
KNOWN then access to the dummy argument 
is severely restricted and no redistribution is 
done. 

5. If the dummy argument is declared private 
and the actual argument is shared, the ad­
dressing will assume that the dummy argu­
ment only references local data. In this case 
it is the user's responsibility to make sure 
the addressing schemes match. This allows 
the user to process local portions of shared 
arrays as if they were private. (See Section 
2.6, "Shared to Private Coercion," for more 
information.) 

6. If the dummy argument is declared SHARED 
and the actual argument is also SHARED but 
the two declarations do not match, the com­
piler will redistribute the actual argument to 
the distribution declared in the subroutine 
at its entry points and redistribute it to its 
original form at the subroutine exits. An as­
sumed size array cannot be redistributed 
upon entry to a program unit. All tasks must 
participate in the redistribution. A routine 
that requires the redistribution of one or 
more objects cannot be called from within a 
master region. 

7. If the dummy argument is declared SHARED 
or UNKNOWN_SHARED and the actual argu­
ment is declared private then the behavior is 
undefined. 

It is worth noting that more information about ar­
ray distributions causes subroutines to be more 
restrictive about how they are used, but it allows 
the compiler to take advantage of optimization 
opportunities that would otherwise not be avail­
able. 

A dummy argument may have its distribution 
declared as being unknown. There are two vari­
eties of unknown. The first, UNKNOWN, indicates 
that nothing is known about the argument, not 
even whether it is shared or private; it is not per­
mitted to align a loop to an UNKNOWN argument. In 
addition, there are severe restrictions placed on 



access to dummy arguments declared ·UNKNOWN. 

The arguments may only be accessed by special 
intrinsic routines that allow single element access. 
These intrinsics are: 

CALL READ_ UNKNOWN (V, A (I) ) 

CALL WRITE_UNKNOWN (A(I), V) 

where A is an array element or scalar and V is a 
value. The type of distribution may be discovered 
with the intrinsic 

RESULT = IS_SHARED (A) 

This intrinsic returns . TRUE. if shared, . FALSE. 
otherwise. The READ_UNKNOWN and WRITE_ 

UNKNOWN routines and the I S_SHARED function 
must appear on an INTRINSIC statement before 
use. This intrinsic is useful because a single entry 
point may query the distribution of a dummy ar­
gument and call an appropriate routine based on 
the result. An UNKNOWN dummy argument may be 
passed to another subprogram, but only if the en­
tire object is passed. The syntax for this declara­
tion is 

CDIR$ UNKNOWN arg 1 arg2 , ... , argn 

The second, UNKNOWN_SHARED implies that the 
distribution is not known and no redistribution 
should be done, but that it is dimensionally dis­
tributed data. There are no restrictions on the use 
of data declared UNKNOWN_SHARED. The syntax 
for this declaration is 

CDIR$ UNKNOWN_SHARED arg 1 , ... , argn 

When the distribution is unknown at compile time 
it is determined at run-time. The subroutine as­
sumes the most general dimensional distribution 
possible, which often causes access to the dummy 
argument to have lower performance. 

Local Objects 

Subroutines may declare local variables, i.e., ob­
jects local to a subroutine that are shared or pri­
vate. Both arrays and scalars may be declared as 
shared or private. Data initialization rules for local 
objects follow the rules for cf 7 7, i.e., statically 
allocated arrays and scalars may be initialized 
with DATA statements. Shared and private local 
objects follow the rules for shared and private ob­
jects outlined in Section 2. Subroutines that allo-
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cate shared local objects (explicitly or implicitly) 
contain implicit barriers on entry to and exit from 
each subroutine and are called shared subrou­
tines. 

Automatic Arrays 

Both shared and private automatic arrays are sup­
ported in this model. Subroutines that allocate 
shared automatic arrays implicitly contain bar­
riers on entry to and exit from the routine and are 
called shared subroutines. This is required to 
maintain consistent memory allocations across all 
processors. When a subroutine is called that allo­
cates a shared automatic array, all processors 
must request the same sized allocation for each 
shared automatic array. Private automatic arrays 
may vary in size from task to task without diffi­
culty. 

7.2 Pointers 

The terms shared pointer and private pointer are 
ambiguous. The ambiguity arises because there 
are two data objects, the pointer itself and the ob­
ject being pointed to. The term shared pointer 
means that the pointer is pointing to shared data, 
and private pointer means the pointer is pointing 
to private data. The pointer itself cannot be 
shared. That is, the following is an error: 

POINTER ( PT, B 
REAL B (1024) 

CDIR$ SHARED PT Error the pointer 
must be pe_private 

The points themselves are always private. The 
pointee array (B) can be either shared or private. 

Declaring Fortran Pointers 

The declaration of a private pointer is no different 
than the current implementation in cf 7 7. The fol­
lowing declaration: 

POINTER (Pl, Al) 
REAL Al(lOOO, 1000) 

declares a private pointer Pl whose pointee array 
is Al. The current heap allocation routines (e.g., 
HPALLOC and HPDEALLC) provide access to the 
private heap. 

A shared pointer is declared by adding the 
SHARED directive to the pointee array. For in­
stance: 
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POINTER (P2, A2) 
REAL A2(1024, 1024) 

CDIR$ SHARED A2(:BLOCK, :BLOCK) 

declares a shared pointer P2 whose pointee array 
A2 has a known distribution. 

Shared Pointers 

The usage of shared pointers is more restricted 
than private pointers. 1\"o pointer arithmetic is al­
lowed, only one pointee can be specified for each 
shared pointer (i.e., multiple pointees are not al­
lowed), and the only allowable operations are: 

CALL SHLOC(ptr, ary) 
CALL SHMALLOC(pointer, istatus) 
CALL SHMALLOC(pointer, istatus, length) 
CALL SHFREE(pointer) 

The shared pointer routines must appear on an 
INTRINSIC statement before use. 

SHLOC assigns the shared address of ary to 
ptr. The pointer argument must be a shared 
pointer and the arrav must also be shared. If the 
first argument to SHLOC has a pointee array with a 
known distribution (P2), then the distribution of 
the second argument must match. For example: 

CDIR$ 
CDIR$ 
CDIR$ 
c 

c 

c 

POINTER (Q, X) 
REAL X(128,128), 
REAL Z(128,128) 
SHARED X ( : BLOCK, 
SHARED Y ( : BLOCK, 
SHARED Z ( : BLOCK, 
OK 
CALL SHLOC(Q, Y) 

Y(128,128) 

:BLOCK) 
:BLOCK) 
:) 

Error - not array base 
CALL SHLOC(Q, Y(2)) 
Error - distribution mismatch 
CALL SHLOC(Q, Z) 

SHMALLOC and SHFREE provide access to the 
shared heap. Only pointers whose pointee array 
has a known distribution (Q) may be used in calls 
to SHMALLOC or SHFREE. SHMALLOC can get the 
size of the space it needs to allocate from inform a­
tion contained in the pointer. In this case it is suffi­
cient to pass a single argument (the pointer) to 

SHMALLOC. If the allocated size is different than 
the size of pointee array, two arguments are 

passed to SHMALLOC. The following example 
shows a possible use of having a different size: 

POINTER (R, W) 
REAL W(128, 10000000) 

CDIR$ SHARED W (:BLOCK, : ) 
CALL SHMALLOC(R, ISTAT, 128*100) 
... W(I, 100) ... 

Because the last dimension of pointee array W is 
degenerately distributed, it need not be a power of 
2. Because there is no actual storage allocated for 
pointee arrays, their size can be the largest that 
will ever be allocated. However, if the pointer R 
were passed as the only argument, too much 
space would be allocated because SHMALLOC 
would extract the total array size (128*10000000) 
from information in pointer R. SHFREE returns 
shared heap space to the shared heap. 

It is important to understand that a redistrib­
uted dummy argument cannot be referenced by a 
pointer that points to the original actual argu­
ment. The pointer has the address and distri­
bution of the array prior to redistribution. For 
example: 

SUBROUTINE STEVE(X,N) 
REAL X(N) 
COMMON /XXX/ P 
POINTER (P, PA) 
REAL PA (1024) 

CDIR$ SHARED PA(:BLOCK(2)) 
CDIR$ SHARED X(:BLOCK(4)) 
C implicit redistribution occurs 

PA(I) = 2.0 
C Error, referencing redistributed actual 

END 
SUBROUTINE BUD () 
COMMON /XXX/ P 
POINTER (P, PA) 
REAL PA (1024) 

CDIR$ SHARED PA(:BLOCK(2)) 
CALL SHMALLOC(P, ISTAT) 

C allocate shared heap space 
CALL STEVE(PA, 1024) 
END 

This kind of aliasing through pointer P results in 
undefined behavior. 



7.3 Assumed Size Arrays 

The following restrictions are placed on assumed 
size arrays. 

1. Pointee arrays associated with shared 
pointers cannot be declared as assumed 
size arrays. 

2. If a dummy argument is declared to be 
an assumed size arrav then it must not be 
explicitly shared with a SHARED directive (it 
can be implicitly shared with an 
UNKNOWN_ SHARED directive). 

3. Assumed size arrays cannot be used in 
BLKCT, LOWIDX, HIIDX, and PES functions 
(defined in Section 8.2) if the second argu­
ment represents the assumed size dimen­
sion (i.e., last dimension). 

4. An assumed size array cannot appear in a 
COPY clause of an END MASTER directive. 

8 INTRINSIC FUNCTIONS 

This programming model offers a variety of intrin­
sic functions intended to support both high level 
and low level programming. The high level func­
tions support basic data parallel operations. Data 
parallel operations are used when a programmer 
defines a program from the perspective of what 
the svstem as a whole will do. 

Low level intrinsic functions give detailed infor­
mation about how shared data are distributed 
across the available processors. Other functions 
give information about the relationship between 
tasks based on the distribution of data. Two addi­
tional functions provide broadcast and multicast 
capabilities. All intrinsic functions must appear in 
an INTRINSIC statement (as is required by For­
tran.) 

8.1 Data Parallel Functions 

The data parallel functions supported consist of 
three basic function families., namely reduction 
functions, parallel prefix functions, and seg­
mented scan functions. Thomas Leighton [10] 
provides a thorough treatment of their uses in a 
massively parallel processor (MPP) environment. 
Reduction functions are the most widely recog­
nized of the three. They include array summation, 
produce maximum or minimum value. and the 
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location (array index) of the maximum or mim­
mum value. Parallel prefix functions are a gener­
alization of reductions that retain an ordered list 
of partial reductions. Segmented scan functions 
are a generalization of parallel prefix functions; 
they offer the ability to perform many prefix oper­
ations over subranges of an array. This makes 
them useful for solving linear algebra problems 
with some representations of sparse matrices. 
Some representations where scan functions are 
useful are banded, sky line, and block tridiagonal 
sparse matrices. 

Reduction Functions 

Six reduction functions are supported: SUM, 

PRODUCT, MINVAL, MAXVAL, MINLOC, and MAX­

LOC. SUM adds the elements in the specified array. 
PRODUCT multiplies the elements. MINVAL finds 
the minimum value. MAXVAL finds the maximum 
value in an arrav. MINLOC finds the location (arrav 
index) of the ~inimum value. MAXLOC finds th~ 
location of the maximum value. 

Each of these functions has the same syntax, 
which is modeled after the syntax used in Fortran 
90. This document will describe the syntax for one 
reduction function, SUM. and note only that it is 
the same for the other five. (MINLOC and MAXLOC 

do not have a DIM argument.) 

RESULT= SUM(ARRAY,DIM,MASK) 

DIM and MASK are optional arguments. SUM adds 
all the elements along the dimension DIM corre­
sponding to the . TRUE. elements of MASK. When 
MASK is not specified, all elements are summed. 
When DIM is not specified, all elements are re­
duced to a single scalar value. When DIM is speci­
fied. the result is an array whose rank is 1 smaller 
than the rank of ARRAY. 

Parallel Prefix Functions 

Parallel prefix functions behave similarly to re­
duction functions, but they retain all partial re­
ductions. Let EB be some associative binary opera­
tion (e.g., addition, multiplication, minimum 
value. maximum value. minimum value location, 
or maximum value location). .\1athematicallv. 
parallel prefix may be expressed as 

RESULT(l:N) =prefix (E9, A(l:N)) 
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which means that 

RESULT (1) = A (1) 
RESULT(2) = A(1)ffiA(2) 
RESULT(3) = A(1)~(2)~(3) 
RESULT(4) = A(1)ffiA(2)ffiA(3)ffiA(4) 

RESULT (N) = A (1)ffiA (2)ffiA (3)~ (4)ffi ... ~ (N) 

Notice that unlike reductions, this meta-function 
(or higher-order function) always requires that 
RESULT and A are conformable-RESULT will 
never be a scalar. 

This model supports a family of parallel prefix 
functions that is similar to the family of reduction 
functions. Supported functions include the prefix 
equivalents of SUM, PRODUCT, MAXVAL, and MIN­
VAL. There are no plans to support an equivalent 
to MAXLOC or MINLOC. The functions are called 
PRESUM,PREPROD,PREMAX,andPREMIN.Asbe­
fore, only the prefix sum function is defined in 
detail and other prefix functions are defined by 
extrapolation. 

RESULT= PRESUM(ARRAY,DIM,MASK) 

DIM and MASK are optional arguments. The result 
is always an array of the same shape and size as 
ARRAY. PRESUM computes partial sums for all the 
elements along dimension DIM corresponding to 
the . TRUE. elements of MASK. When MASK is not 
specified, all elements are used in the partial sum. 
When DIM is not specified, all elements are used, 
innermost dimensions first. When DIM is speci­
fied, the prefix operation occurs only along the 
specified dimension. 

Segmented Scan Functions 

Scan functions behave similarly to parallel prefix 
functions, but they carry an additional mask of 
stop bits that define where each prefix begins and 
ends. Supported is a family of scan functions, 
called SCANSUM, SCANPROD, SCANMAX, and 
SCANMIN. This may be illustrated by 

RESULT(1:N) = scan(~,A(1:N) ,STOP(1:N)) 

Assume that STOP (1: N) contains 

0, 0, 0, 0, 1, 0, 0, 0, 0 

The scan means that 

RESULT(1) 
RESULT (2) 

A(1) 
A (1)ffiA (2) 

RESULT(3) 
RESULT(4) 
RESULT(5) 
RESULT(6) 
RESULT (7) 
RESULT (8) 

RESULT(N) 

= A (1)~ (2)ffiA (3) 
A (1)~ (2)~ (3)~(4) 
A (1)~ (2)ffiA (3)ffiA (4)~ (5) 
A(6) 
A(6)~(7) 

A (6)~ (7)~ (8) 

A (I+ 1) ~ ( I+2) ~ ( !+3) ffi ... ffiA (N) 

Notice that unlike reductions, but similarly to pre­
fix operations, this meta-function (or higher-order 
function) always requires that RESULT and A are 
conformable-RESULT will never be a scalar. 

This model supports a family of segmented 
scan functions that is similar to the family of par­
allel prefix functions. Supported functions include 
the scan equivalents of PRESUM, PREPROD, PRE­
MAX, and PREMIN. There are no plans to support 
an equivalent to MAXLOC or MINLOC. The func­
tions are called SCANSUM, SCANPROD, SCANMAX, 
and SCANMIN. As before, only the scan sum func­
tion is defined in detail and other scan functions 
are defined by extrapolation. 

RESULT= SCANSUM(ARRAY,STOP,DIM,MASK) 

DIM and MASK are optional arguments. The result 
is always an array of the same shape and size as 
ARRAY. SCANSUM computes partial sums for all 
the elements along dimension DIM corresponding 
to the . TRUE. elements of MASK. When MASK is 
not specified, all elements are used in the partial 
sum. When DIM is not specified, all elements are 
used, fastest running dimensions first. When DIM 
is specified, the scan operation occurs only along 
the specified dimension. 

Semantics of Data Parallel Functions 

Data parallel functions have semantics as follows: 

1. When executing in a master region or a 
shared loop, one task does all the work. 

2. When executing in a parallel region, the be­
havior varies slightly depending on the at­
tributes of RESULT and ARRAY. 

3. When RESULT and ARRAY are both shared, 
ARRAY is processed by work-sharing and 
the value is stored in RESULT. 

4. When RESULT is private and ARRAY is 
shared, ARRAY is processed by work-shar­
ing and the value is broadcast to all copies 
of RESULT that participated in the function. 

5. When RESULT is a shared scalar object and 
ARRAY is private, a race condition exists and 
the value of RESULT is undefined unless 



ARRAY has the same value on all PEs. For 
the reduction functions, when only one task 
participates, or each task references a dif­
ferent shared value, as in: 

RESULT (MY _FE () ) = SUM (ARRAY) 

the result is defined and each refer­
enced RESULT (I) contains the result 
of the local summation. 

6. When RESULT and ARRAY are both 
private, the function takes on its se­
quential semantics and the function is 
performed locally by each task partici­
pating in the function. 

Note that when RESULT is shared and it executes 
in a parallel region, all tasks must participate and 
a barrier synchronization is implied. 

8.2 Data Mapping Functions 

The data distribution mechanism described in 
Section 2 provides an important level of abstrac­
tion. Because the implementation of this mecha­
nism is sometimes subtle, this model supports 
several data mapping functions to make low level 
programming more accessible to the user. The 
data mapping functions provide the user with low 
level access to the data distribution mechanism 
used by this model. 

Five functions are supported. Three of them 
provide direct access to the blocks of data distrib­
uted by the mechanism. Two of the functions pro­
vide information about how data are mapped to 
the processors. A detailed description of each 
function follows. 
BLKCT (A, D, P) returns an integer that represents 
the number of blocks of elements in the Dth di­
mension of array A that are resident on processor 
P. A must not be an assumed size array ifD repre­
sents the last dimension. 

CT = BLKCT(A,D,P) 

LOWIDX (A, D, P, K) returns an integer that repre­
sents the lowest index of block Kin the Dth dimen­
sion of array A that is resident on processor P. A 
must not be an assumed size array if D represents 
the last dimension. 

LOW= LOWIDX(A,D,P,K) 

HI IDX (A, D, P, K) returns an integer that repre­
sents the highest index of block K in the Dth di-
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mension of array A that is resident on processor P. 
A must not be an assumed size array if D repre­
sents the last dimension. 

HI = HIIDX(A,D,P,K) 

As an example of how this might be used, the 
following code references exactly the elements of 
an array that are resident on the PE that executes 
the code. 

DIMENSION X(l024) 
CDIR$ SHARED X(:BLOCK(32)) 
CDIR$ PE-RESIDENT X 

INTRINSIC BLKCT, LOWIDX, HIIDX 

DO K = 1, BLKCT(X,l,MY_FE()) 
LO LOWIDX(X,l,MY_FE() ,K) 
HI= HIIDX (X,l,MY_FE() ,K) 
DO I = LO, HI 

END DO 
END DO 

X(I) 

HOME (X) returns an integer that represents the 
processor on which X resides. X is a scalar object 
or array element rather than an entire array. 

HOME(X) 

PES (A, D) returns an integer that represents the 
number of processors used in the Dth dimension 
of array A. A must not be an assumed size array if 
D represents the last dimension. 

PRCT = PES(A,D) 

The data mapping functions must appear on an 
INTRINSIC statement before use. 

9EXAMPLE 

It is difficult to gauge the ease of use of a program­
ming model without some specific examples of its 
use in actual codes. This programming model was 
written with the goal of easily modifying existing 
Fortran codes to get a very good speedup. A com­
panion goal was to make it possible for the user to 
gain incremental improvement with small addi­
tional effort. 

Because real programs cannot be shown here, a 
smaller example is shown to demonstrate the di­
rectives in the model. A standard matrix multiply 
subroutine is first decorated with directives in a 
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straightforward manner. The resultant code will 
run well in parallel. These changes are entirely 
mechanical and require very little analysis. A fur­
ther set of changes that requires some knowledge 
of the code is added. These will further improve 
the code by increasing data locality. 

SUBROUTINE MATMUL(A, B, C, L, M, N) 
DIMENSION A(L,M), B(M,N), C(L,N) 
DO K=l,N 

DO I=l,L 
DO J=l,M 

C(I,K) 
END DO 

END DO 
END DO 
END 

C(I,K) + A(I,J) * B(J,K) 

The most useful thing to do to achieve high per­
formance is to spread the data and work across 
the machine. This helps both with data locality 
and gives a large address space for big problems. 
The SHARED directive spreads the data around the 
machine, the DOSHARED directive spreads the 
work. As mentioned earlier, data locality is key to 
high performance. Therefore, the work will be 
aligned to the location of the data. Finally to in­
crease data locality, The (:BLOCK, :BLOCK) dis­
tribution has been chosen here for C, 
(: BLOCK, : ) for A because whole rows of A are 
used at a time, and ( : , : BLOCK) for B for analo­
gous reasons. 

SUBROUTINE MATMUL(A, B, C, L, M, N) 
DIMENSION A(L,M), B(M,N), C(L,N) 

CDIR$ SHARED A(: BLOCK,:) ,B(:, :BLOCK) 
CDIR$ SHARED C(:BLOCK, :BLOCK) 
CDIR$ DOSHARED (K,I) ON C(I,K) 

DO K=l,N 
DO I=l,L 

DO J=l,M 
C(I,K) C(I,K) + A(I,J) 

* * B(J,K) 
END DO 

END DO 
END DO 
END 

This example, with minimal changes, now has 
data spread across the processors and work 
shared among the processors. These data are 
computed in as local a context as possible. 

10 CONCLUSIONS 

In this report we have described a highly flexible 
programming model. This model unifies several 
divergent programming styles, including message­
passing, work-sharing, and data parallel. Data 
may be stored in distributed shared memory or 
memory that is private to a task. The work may be 
controlled on a task-by-task basis, or work can be 
shared among multiple tasks through work-shar­
ing constructs. Input and output can be per­
formed by a single task or by many tasks. This 
model also includes a rich set of svnchronization 
primitives. When desired, all of these features can 
be used together in the same program. 

It has been clear throughout the design of this 
programming model that users have an enormous 
variety of often conflicting needs. For some, the 
ability to exploit the available data locality and 
data cacheability is of utmost importance. For 
others the ability to use all available memory and 
access it rapidly provides the greatest benefit. And 
although it is often overlooked, J/0 is a major bot­
tleneck for a number of important commercial 
codes. This list of design problems is necessarily 
short and very incomplete. Indeed, every new ma­
jor code seems to bring a new set of problems that, 
if addressed, would provide some important im­
provement for that code. Yet for this model to be 
accepted by the scientific computing community, 
it had to be similar to what they were already using 
or they would not have the time to learn how to use 
it effectively! Balancing the desires of fast, flexi­
ble, safe, small, and familiar is difficult, especially 
when it must be done within a commercially feasi­
ble time frame with limited resources. To achieve 
this trade off, our emphasis has been on speed 
and simplicity first. We have incorporated addi­
tional features only when doing so has provided a 
real, identifiable benefit without degrading the 
quality of existing features. 

A compiler for this programming model is cur­
rently under development and scheduled for re­
lease in 1994. As such, reliable performance 
numbers are not available at the time of this writ­
ing, but preliminary performance numbers are 
highly encouraging. The CRAFT compiler is built 
using Cray's mature cf77 compiler as a base, and 
as such will have the benefit of a reliable, highly 
optimizing Fortran compiler to provide syntactic, 
semantic, and dependence analysis. CRAFT re­
quires some additional analysis above and beyond 
what cf77 already provides, and a code generator 



to support the new instruction set. But much of 
what is needed. including many optimizations, is 
common to the parallel-vector compiler. 

The core definition of CRAFT is now complete, 
although a lot of work remains to be done. Some 
of the features proposed for future releases are: 
relaxing the restrictions on power-of-2 arrav sizes 
and distributions, canonical distributions,. addi­
tional loop distribution mechanisms, and task 
teams. Allowing the user to distribute arravs with 
arbitrary sizes will permit significantly mo~e effi­
cient and flexible memory utilization. The cost will 
be less efficient memory ~eferences when such ar­
rays are used. Canonical distributions strike a bal­
ance between the storage and sequence associa­
tion properties of traditional Fortran data objects 
and the control over data locality provided by (di­
mensional) distributions. Canonical distributions 
scatter array cells in a fixed manner (e.g., cycle 
blocks of four words across PEs) after arrav index 
linearization has taken place. New loop distribu­
tion mechanisms may include adaptive mecha­
nisms, perhaps some adaptation of guided self­
scheduling [ 11] appropriate to MPPs. Last of all, 
task teams would support explicit functional de­
composition, which would assist the user in divid­
ing up tasks to handle functionally separate com­
putations while allowing each task team to pursue 
work-sharing computations among tasks within 
the team. 
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APPENDIX 1 PROGRAMMING MODEL 
DIRECTIVES AND FUNCTIONS 

This section summarizes the syntax of CRAFT di­
rectives and intrinsic functions. 

Note: The notation var; represents the name of 
a data object, which may be the name of a scalar 
variable or an array. The notation a; represents a 
keyword that can be : BLOCK or : BLOCK (N) , op­
tionally with weights, or a colon by itself (: ) . The 
expression (a1 , a 2 , ... ,a,) may only be used with 
array names or geometry labels. The notation 
[: : ] indicates that ": : " is optional. The nota­
tionj;(I) indicates an index expression of the form 
a;l; + b; where a; and b; are integers. 
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1. Data objects 

CDIR$ PE_PRIVATE var 1 , var2, ... , varn 
CDIR$ SHARED var 1 (a 1 , a 2 , ••• , ar) , ... 

CDIR$ GEOMETRY geom 1 (a 1 , a 2 , • •• , ar), .. . 

CDIR$ SHARED (geom) [::] var 1 , var 2, ... , varn 
CD IR$ UNKNOWN var 1 , var 2 , ... , var n 
CDIR$ UNKNOWN_SHARED var 1 , var 2, ... , varn 

2. Sequential execution 

CDIR$ MASTER 
CDIR$ END MASTER[, COPY(var 1 , var 2, ... , varn)] 

3. Loops 

CDIR$ DOSHARED (I 1 , I 2, ... , In) ON A (f 1 (I) , f 2 (I) , ... , f r (I) ) 
CDIR$ NO BARRIER 

4. Synchronization primitiv~s 

CDIR$ BARRIER 
CALL BARRIER () 
CALL SET_BARRIER () 
CALL WAIT_BARRIER () 
IB = TEST_BARRIER () 
CALL SET_LOCK ( 1 ock) 
CALL CLEAR....LOCK (lock) 
L = TEST_LOCK (lock) 
CALL SET_EVENT ([event]) 
CALL WAIT_EVENT ([event]) 
CALL CLEAR....EVENT ([event]) 
S = TEST_EVENT ([event]) 

CDIR$ CRITICAL 
CDIR$ END CRITICAL 
CDIR$ ATOMIC UPDATE 

5. Subroutine arguments 

CDIR$ UNKNOWN var 1 , var 2, ... , varn 
CDIR$ UNKNOWN_SHARED var 1 , var 2, ... , varn 
CDIR$ FE-RESIDENT var 1 , var2, ... , varn 

6. Intrinsic functions. The following functions 
must appear on an INTRINSIC statement 
before use. 
A. Reduction functions 

RESULT= SUM (ARRAY, DIM, MASK) 
RESULT= PRODUCT (ARRAY, DIM, MASK) 
RESULT= MINVAL (ARRAY, DIM, MASK) 
RESULT= MAXVAL (ARRAY, DIM, MASK) 
RESULT= MINLOC (ARRAY, MASK) 
RESULT= MAXLOC (ARRAY, MASK) 



B. Parallel prefix functions 

RESULT= PRESUM (ARRAY, DIM, MASK) 
RESULT = PREPROD (ARRAY, DIM, MASK) 
RESULT= PREMIN (ARRAY, DIM, MASK) 
RESULT= PREMAX (ARRAY, DIM, MASK) 

C. Segmented scan functions 

RESULT= SCANSUM (ARRAY, STOP, DIM, MASK) 
RESULT= SCANPROD (ARRAY, STOP, DIM, MASK) 
RESULT= SCANMIN (ARRAY, STOP, DIM, MASK) 
RESULT = SCANMAX (ARRAY, STOP, DIM, MASK) 

D. Data mapping functions 

CT = BLKCT (A, D, P) 
LOW = LOWIDX (A, D, P, K) 
HIGH= HIIDX (A, D, P, K) 
HOME = HOME (X) 
PES =PES (A, D) 

E. Query functions 

RESULT= IN_FARALLEL () 
RESULT= IN_DOSHARED () 
RESULT= IS_SHARED (A) 

F. Data access routines 

CALL READ_UNKNOWN (V, A (I)) 
CALL WRITE_ UNKNOWN (A (I) , V) 

Tablet. Fortran 90 Functions 
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G. Task identity function 

RESULT= MY _FE () 

H. Shared pointer routines 

CALL SHLOC (ptr, is ta tus, ary) 
CALL SHMALLOC(ptr, istatus) 
CALL SHMALLOC (ptr, length) 
CALL SHFREE (ptr) 

APPENDIX 2 FORTRAN 90 FEATURES 

Fortran 90, as an emerging standard that has ap­
plicability to both scientific computing and mas­
sively parallel computing, has many features that 
are of interest. Although it was not an option to 
implement a full Fortran 90 compiler for the 
CRA Y T3D system in the time allowed, two basic 
elements of the Fortran 90 language will be avail­
able to CRAFT users. The first is array assignment 
statements, e.g., A (1: N) = F (B (1: N)). The sec­
ond is the WHERE statement. 

It is anticipated that many of the most impor­
tant Fortran 90 intrinsic functions will also be im­
plemented for CRAFT. The Fortran 90 intrinsic 
functions that will receive earliest consideration 
for implementation are shown in Table 1. 
Complete definitions of these intrinsic functions, 
array assignment, and WHERE statements can be 
found in the Fortran 90 language standard [12]. 

ALL DOT_PRODUCT MAXVAL PACK SUM 
ANY EOSHIFT MERGE PRODUCT TRANSPOSE 
COUNT MATMUL MINLOC RESHAPE UNPACK 
CSHIFT MAXLOC MINVAL SPREAD 



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


