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ABSTRACT 

In this article we examine the role played by the interprocedural analysis of array 
accesses in the automatic parallelization of Fortran programs. We use the PTRAN sys­
tem to provide measurements of several benchmarks to compare different methods of 
representing interprocedurally accessed arrays. We examine issues concerning the ef­
fectiveness of automatic parallelization using these methods and the efficiency of a 
precise summarization method. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Effective program parallelization, like any com­
piler optimization, can benefit from increased 
precision during its analysis phase. However, in­
creased precision often implies an increase in 
compilation time and/ or storage, forcing a trade­
off between precision and efficiency. If the bene­
fits of increased precision outweigh the degrada­
tion in efficiency, a precise analysis should be 
utilized. 

In this article we assess the effectiveness and 
efficiency of a precise form of interprocedural ar­
ray analysis for automatic parallelization. Specifi­
cally, we examine a method employed to represent 
the interprocedural accesses of arrays. Csing the 
PTRAN system [ 1-3 J, we introduce a number of 
metrics to help ascertain: 

1. How much additional parallelism can be 
obtained from a precise array access repre­
sentation? 
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2. How much time and space overhead is in­
curred by this technique? 

In Section 2 we provide the background for our 
experiment. Section 3 describes our precise ap­
proach and how it differs from previous ap­
proaches. In Section 4 we present our experiment 
and discuss the results. Section 5 describes re­
lated work and Section 6 contains our conclusions 
and discusses future work. 

2 BACKGROUND 

Traditionally, compilers have processed programs 
at the subroutine level. In the absence of subrou­
tine calls, standard intraprocedural analysis tech­
niques [4, 5] can be applied. However, due to the 
use of modular programming techniques, pro­
grams are often written with multiple subroutines. 
When an intraprocedural analysis encounters a 
subroutine call, information regarding how the 
called routine accesses its parameters and global 
variables is absent. Without this information, con­
servative assumptions must be made. For a paral­
lelizing compiler, this can imply superfluous de­
pendencies that lead to a loss of parallelism. 
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Thus, it seems imperative that as much informa­
tion as possible be captured regarding the side 
effects of subroutine calls. lnterprocedural analy­
sis attempts to provide this information. 

Procedure integration or inlining can be viewed 
as an alternative to interprocedural analysis. 
When inlining is performed, the body of a called 
subroutine is substituted for the call statement 
with appropriate changes made to the naming of 
the formal parameters. Although selectively per­
forming inlining can be beneficial, the cost of an 
enlarged program renders it infeasible as a general 
solution to handling all subroutines calls [ 6, 7]. 
Thus, inlining is used as a complement, rather 
than an alternative, to interprocedural analysis. 
The relationship between inlining and our precise 
summary method is discussed in Section 3. 1 . 

Traditionally, to determine the side effects of a 
call statement, two prior analyses of the called 
routine are performed. For definitions, a flow-in­
sensitive analysis is computed for the routine, re­
cording nonlocal variables that may be defined. In 
contrast, to determine what uses should be cre­
ated by a call, a flow-sensitive analysis is em­
ployed to find upward-exposed uses (a use on a 
definition-free path from the subroutine entry) of 
nonlocal variables in the called routine [8]. A 
flow-sensitive analysis of definitions, which can 
determine which variables must be defined, can 
be used to supplement the flow-insensitive 
analysis. 

The results of these side-effect analyses are 
represented by two sets for each routine. The 
PMOD(P) set contains all global variables and pa­
rameters of routine P that may be defined. The 
PUSE(P) set contains all global variables and pa­
rameters of routine P that have an upward­
exposed use. 

This approach is illustrated in Figure 1. As 
subroutine P contains definitions of the formal pa­
rameter A and the global B, calls to P assume that 
both of these variables are modified (PMOD(P) = 

{A, B}). Although both variables are referenced in 
subroutine P, only A is upward exposed with re­
spect to the subroutine entry; no definition-free 
path exists from the subroutine entry to the use of 
B. Thus, a use is created for A, but not B, at the 
call site of P (PUSE(P) = {A}). 

Consider the example in Figure 2 where A and 
B are arrays. Because an array access only refer­
ences one element of the array, array definitions 
are treated as preserving, i.e., they do not kill any 
definitions that reach them. Thus, the use of B is 
viewed as upward exposed in P. 

Common// B 

Call P(A) 

Subroutine P(A) 
Common// B 

Return 
End 

=A 
B= 

A=B 

P MOD(P) = {A, B} 

PUSE(P) ={A} 

FIGURE 1 Scalar interprocedural Mod and Use. 

In the interest of efficiency, classical in­
terprocedural analysis represents array accesses 
by treating them in the same manner as scalars. 
Thus, it regards an access to an element of the 
array as an access to the whole array. Although 
this method retains efficiency, it suffers a loss of 
precision. 

For example, in Figure 2 only the first element 
of A is used, while a proper subset ( 1, . . . , 100) 
of the elements are defined. Likewise, parts of B 
are neither modified (odd elements) nor refer­
enced (elements> 100) in P. Because A and Bare 
arrays, simply stating that they are modified or 
used disregards subscript information describing 
which part of the array is accessed. 

To address the loss in precision of the classical 
approach, several approaches have been sug­
gested to represent portions of an accessed array. 
These techniques differ in the amount of precision 
they provide, as well as the storage and time re­
quired in processing the suggested representa­
tions. The spectrum of Figure 3 summarizes these 

Common// B(200) 
Dimension A(200) 

Call P(A) 

Subroutine P(A) 
Common// B(200) 
Dimension A(200) 

= A(1) 
Do 10, i = 1, 100 

B(2 * i) = 
A(i) = B(i) 

10 Continue 
Return 
End 

PMOD(P) = {A(•), B(•)} 

PUSE(P) = {A(•), B(•)} 

FIGURE 2 Classical array interprocedural Mod and 
Use. 
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FIGURE 3 The interprocedural array summary spec­
trum (spacing is not significant). 

methods. Movement to the right on the spectrum 
represents improved precision as well as dimin­
ished efficiency. The following is a list of the tech­
niques, with a brief description of each in terms of 
precision: 

1. RS-Regular Sections [ 9-12] : Several vari­
ants have been described, some of which 
include strides and bounds information us­
ing triplet notation. Others allow for diago­
nal references and triangular sections. 

2. DAD-Data Access Descriptors [13, 14]: 
More general than all RS variants because 
trapezoidal shapes can be represented. 

3. Reg-Regions [ 15] : Allows more general 
shapes than DAD by using linear inequali­
ties to describe the shape's boundaries. 

4. AI-Atom Images [9, 16, 17]: Represents 
full subscript information for each dim en­
sion as a linear combination of iteration 
variables and formal parameters. Loop 
bounds are also retained. 

5. Lin-Linearization [18]: Similar to AI ex­
cept all subscripts are linearized into one 
dimension. 

6. IOmega-lnterprocedural Omega Test 
[ 19]: Full subscript information is captured 
in the form of an integer programming pro­
jection so that the Omega exact dependence 
test [20] can be applied. Although multiple 
projections are rp.erged into a single projec­
tion, the size of the integer projection is in­
creased by adding extra variables. 

7. FIDA-Full lnterprocedural Dependence 
Analysis [21]: Combines AI and Lin tech­
niques. 

In addition to these techniques, and the classi­
cal technique just discussed, we include a pessi­
mistic approach in our spectrum, which performs 
no interprocedural analysis. For correctness, it as­
sumes that each routine modifies and uses all pa-
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rameters and global variables. Although this 
scheme is imprecise, it can be highly efficient be­
cause no summary information needs to be re­
corded. In fact, most production compilers per­
form this type of analysis by default. Furthermore, 
this method must be selectively employed when 
some routines of a program are not available for 
analysis. 

To the right of the pessimistic approach is the 
classical mod/ exposed-use approach utilized for 
scalars [8] and described above. In our experi­
ment we compare these two approaches with a 
more precise, but less efficient, approach called 
FIDA [21]. An overview of FIDA is given in Sec­
tion 3. 

A number of advanced techniques (RS, DAD, 
Reg) lie between classical and FIDA on the spec­
trum. These techniques offer more precision (at 
the cost of less efficiency) than the classical ap­
proach, yet they are more efficient (and less pre­
cise) than the more precise techniques (AI, Lin, 
IOmega, FIDA). 

The key difference between these two groups of 
advanced techniques is how they handle multiple 
accesses to the same array in a routine. Informa­
tion about each access is retained in full with the 
precise techniques. For AI, Lin, and FIDA, this 
information is represented by a list of descriptors. 
For IOmega it is represented by modifying the pro­
jection function. By contrast, the more efficient 
advanced techniques represent multiple accesses 
with one descriptor. Thus, no matter how many 
accesses to a variable are made in a routine, only 
one descriptor is retained. However, there are two 
disadvantages to the less efficient techniques. For 
efficiency, they place more restrictive constraints 
on the expressiveness of their descriptors than 
what is employed for intraprocedural array ac­
cesses. This results in a less precise representation 
than is used for intraprocedural accesses. More­
over, the union of two descriptors cannot always 
be performed precisely (i.e., union is not closed 
over the descriptors). Representing the union ap­
proximately introduces further imprecision. 

The FIDA approach combines the functionality 
of Lin proposed by Burke and Cytron [ 18] and AI 
suggested by Li and Yew [16, 17, 22, 23]. It is 
more precise than these two approaches because 
it draws from the benefits of both: simultaneity by 
coupling subscript positions (Lin) and more op­
portunities for proving independence by recording 
subscript expressions separately (AI). The distin­
guishing characteristic between each of these ap­
proaches and the previous ones is that multiple 
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access descriptors are not combined, thereby 
making the union operation closed. Although this 
improves precision, it also implies that a list of 
accesses is associated with a call site. The result is 
that a dependence test of a particular variable be­
tween two calls can require 1 1 * 1 2 dependence 
tests, where /1 and /2 are the descriptor list lengths 
corresponding to the first and second calls, re­
spectively. 

3 FIDA 

FIDA, like Lin [18] and AI [16, 171. is a precise 
interprocedural array summary scheme motivated 
by the information required for standard depen­
dence analysis. Our motivation for developing 
FIDA is to assess an upper bound on precision 
and efficiency of array access repreentations. This 
approach captures the same type of dependence 
information that is available intraprocedurally. 
This allows all array accesses to be analyzed in a 
uniform manner regardless of whether they are in­
traprocedural or interprocedural. In particular, 
standard dependence analysis techniques can be 
employed. The next section describes the infor­
mation retained in each descriptor. In Section 3.2 
we present some of the implementation highlights 
of FIDA in the PTRAN system, leaving the full de­
tails to Hind [21]. 

3.1 Functionality 

As mentioned in Section 2, each nonlocal array 
access is described by an access descriptor. An 
access descriptor contains information about: 
subscripts, loop nests and bounds, and the de­
clared shape of the array. As with intraprocedural 
dependence analysis in PTRAN, we allow a linear 
combination of induction variables in the sub­
scripts and loop bounds. To capture the effects of 
arguments, we also allow a linear combination of 
unmodified formal parameters in the subscripts 
and loops bounds, and in the dimension state­
ment defining the shape of the accessed array. 
When processing a call site, the corresponding ar­
guments will be substituted for these formal pa­
rameters. 

Consider Figure 4a where subroutine P con­
tains a definition of the array parameter A. When 
summarizingP, the context of this definition (sub­
scripts, loop nest and bounds, and dimension in­
formation) is retained. At a call site of P, this 

Do 30, i = 2, 100 
Call P(A, i) 

= A(i-1, 3) 
30 Continue 

Subroutine P(A, K) 
Dimension A(100, 100) 
A(K, 1) = 
Do 20, i = 1, 50 

20 Continue 
Return 
End 

(a) 

Do 30, i 1 = 2, 100 
A(i1 , 1) = 
Do 20, i2 = 1, 50 

A(ilt 2 * i2) = 
20 Continue 

=A(i1 -1,3) 
30 Continue 

(b) 

FIGURE 4 FIDA functionalitv. 

information is propagated. substituting actual pa­
rameters for their corresponding formals. This 
method provides functionally similar information 
to that obtained from data dependence analysis 
after inlining. It differs in that only the information 
of interest is "inlined": superfluous information 
(for the purposes of the dependence test) is not 
collected. 

Figure 4b represents a functional view of the 
information that would be present using FIDA. 
(No code modification is actually performed.) By 
using FIDA, we can detect that the outer loop sur­
rounding the call in Figure 4a can be executed in 
parallel. Less precise interprocedural analysis 
would force serial execution of this loop. 

Where the shapes of references are consistenL 
both Lin and subscript-by-subscript analysis are 
performed. Furthermore, Lin [18] is employed to 
handle cases where array dimensions and sizes 
are not consistent across routines, or where offsets 
into array arguments are used. 

l\"ote that this method allows traditional depen­
dence testing schemes to be employed. In particu­
lar, we utilize the Burke-Cytron hierarchical de­
pendence method [18] as well as the following 
dependence tests: GCD, Banerjee-Wolfe. and trap­
ezoidal Banerjee-Wolfe [24, 25]. 



3.2 Implementation Highlights 

In this section we present a high level description 
ofFIDA (Fig. 5), which is broken into three phases 
for each routine being analyzed.* A FIDA descrip­
tor is one of two types: access or call site. An ac­
cess descriptor represents an actual reference 
(read or write) to the array. A call site descriptor is 
created when a nonlocal arrav access exists due to 
a call site, i.e., an access descriptor exists at a call 
site. 

During the clef/use generation phase, defini­
tions (uses) are created at call sites in the classical 
manner using the PMOD(PUSE) set. However, 
when a definition (use corresponds to a variable 
for which FIDA descriptors exist, this definition 
(use) is marked as a special FIDA clef (use). This 
maintains the number of definitions (uses) as the 
same number as in the classical approach, leaving 
data flow analysis unaffected by FIDA. 

A FIDA clef (use) is used to communicate with 
the dependence analysis phase. During this 
phase, the context of a FIDA descriptor (subscript 
reference, loop information, and dimension infor­
mation) may be required. When this is the case, 
we utilize the FIDA description information by 
substituting references to formal parameters with 
their corresponding actuals. 

In the PTRAN system, dependence analysis is 
performed on demand as determined bv a cost 
model of the target architecture. Under .this ap­
proach only dependencies that will provide useful 
parallelism if disproven are tested. If breaking a 
dependence will not result in any useful parallel­
ism, the dependence is not tested. For example, 
once a loop is marked sequential due to either 
insufficient granularity or some other dependence 
that cannot be disproven, dependence analysis 
of other loop-carried dependencies is not benefi­
cial and is not performed. 

This technique increases the efficiency of de­
pendence analysis by eliminating some de pen­
dencies from consideration. It is also beneficial in 
the context of FIDA, as descriptor translation is 
directly tied to dependence analysis. If depen­
dence analysis information is not required for a 
particular call site, translation is not performed. 

* Currently the FIDA algorithm is limited to Fortran 77 as it 
does not handle recursion. However. as it is similar to AI. we 
anticipate that techniques to handle recursion with this ap­
proach [16l will apply. as well as those mentioned in Havlak 
and Kennedy f12]. 
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For each routine, P, in a bottom-up traversal of the 
call graph: 

1. Def/Use Generation 

• For each call site in P: 
Create a FIDA def (use) for each array ar­
gument and global variable if it is in the 
P MOD (PU SE) set for the called routine. 

2. Dependence Analysis (Performed on de­
mand) 

• If a FIDA def/use is involved: 
Translate the FIDA (call site or access) de­
scriptor(s) to the call site environment us­
ing the appropriate arguments. This may 
require propagating through multiple call 
site descriptors. 

3. Summarization 

• For each non-local array reference: 
Create an access descriptor (subscript ex­
pressions, loop bound and nesting informa­
tion, and dimension information). 

• For each call site with a summarized non­
local array reference: 
Create a call site descriptor (argument ex­
pressions, loop bound and nesting informa­
tion, and dimension information). 

• Collect the FIDA descriptors created in 
the previous two steps into lists associated 
with each non-local array variable. 

FIGURE 5 An overview of the FIDA algorithm. 

This characteristic distinguishes FIDA from all 
other previous methods. For each routine, trans­
lated descriptors are cached to avoid redundant 
translations. 

During the summarization phase the "context" 
for each nonlocal (formal or global) array access is 
captured in a F IDA descriptor (access or call site). 
An access descriptor represents an explicit refer­
ence. A call site descriptor represents an implicit 
reference via a call site. 

Callahan [9] states that the amount of sum­
mary information can grow exponentially with the 
depth of the call graph. We avoid this potential 
exponential increase of storage by postponing the 
propagation of call site descriptors until the infor­
mation is required by dependence analysis. Thus, 
the number of FIDA descriptors can grow (at 
worst) linearly with respect to the program. 
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4 THE EXPERIMENT 

The PTRAN parallelization system [1-3] was used 
for our experiment. In addition to detecting paral­
lelism, PTRAN has also been shown to be a useful 
vehicle for gathering experimental data [26 J. We 
ran several Fortran benchmarks, varying the lev­
els of interprocedural analysis and recording vari­
ous metrics. 

The benchmarks we ran are: 

1. Perfect [27]: The Perfect Club benchmarks 
are a collection of applications that were 
contributed by various large system vendors 
and that have been used to characterize su­
percomputer performance. 

2. SPEC [28]: The System Performance Eval­
uation Cooperative benchmark programs 
are designed to establish a fair method of 
evaluating workstation performance on typ­
ical customer applications. The experiment 
includes members of the Fortran subset of 
Release 1. 

3. LINPACK [29]: The LINPACK library is a 
collection of linear algebra subroutines. We 
modified the main subroutines to give val­
ues to their parameters if they are used in a 
dimension statement. 

As the environment in which an experiment is 
performed affects the results obtained, we present 
an overview of our environment in the next sec­
tion. 

4.1 The Environment 

PTRAN takes a Fortran 77 program and automati­
cally detects parallelism, producing a parallel For­
tran program. In this section we describe the envi­
ronment by specifying the target model, the 
analysis and transformations performed by 
PTRAN, and two Fortran 77 language issues. 

Parallelism Model 

The PTRAN target model of parallelism allows 
loops to be designated as parallel (DOALL) or se­
quential. In addition to loop-level parallelism, 
nonloop parallelism is allowed in a 1 1 cobe­
gin ... coend 1 1 style, with a DAG of sequencing 
constraints allowed among parallel begin ... end 
blocks [30]. IBM Parallel Fortran [31] andPCF 
[32] are examples of languages that fit our model. 

Analysis 

The PTRAN system includes a rich collection of 
pro~am analyses. As a description of these analy­
ses IS beyond the scope of this article, we refer the 
reader to the cited articles for details, and list a 
summary below: 

1. lnterprocedural analysis [ 1 J: alias analysis 
(see "Standard Fortran Versus Fortran 
Practice" in Section 4), constant propaga­
tion, and mod and exposed use 

2. Program dependence graph for nonloop 
parallelism [33] 

3. SSA-based data flow analysis [34] and the 
sparse evaluation graph [35 J 

4. Demand-driven dependence analysis 
5. Dependence tests using the Burke-Cytron 

hierarchical framework [18]: GCD, Baner­
jee-Wolfe, Trapezoidal Banerjee-Wolfe [24, 
25] 

6. Standard intraprocedural analysis: con­
stant propagation, induction variable anal­
ysis, loop normalization 

7. Static cost analysis for architecture-specific 
effective parallelization [3] 

In Section 4.3 we describe how the cost analysis 
phase is used in one of the metrics. 

Transformations 

Privatization is the only transformation (other 
than constant propagation) implemented in the 
version of PTRAN used in the experiment. t This 
fact, combined with our target loop model, implies 
~hat only loo~s that are parallelizable in their orig­
mal form (With the aid of loop privatization) are 
marked parallel. 

Scalar privatization for loops and nonloops is 
performed [30, 37]. To enhance the effect of pri­
vatization, interprocedural analysis includes flow­
sensitive kill information for formal parameters. 
We also perform array privatization when depen­
dence analysis can prove its legality.:j: This privat­
ization may require run-time support or addi­
tional storage to ensure proper "copy out" 
semantics. 

t Although a general loop distribution algorithm has been 
implemented in PTRAN [36], its interface with the cost model is 
not complete. Thus, it is not included in this experiment. 

:j: This is not as powerful as the element-level data flow 
analysis for arrays previously described [38-41 J. 



Standard Fortran Versus Fortran 
Practice 

The benchmarks we measure are written in For­
tran 77. Although the Fortran 77 standard does 
not allow them, two well-known programming 
practices appear in these benchmarks. The first 
makes use of the underlying storage model most 
often implemented by Fortran compilers, which 
allow arrays to exceed their declared bounds. Al­
though this is not legal Fortran 77, it is neverthe­
less done in practice. 

Fortran 77 also prohibits assignment to an in­
terprocedurally ali~sed parameter or common 
variable [42]. Several examples in the Fortran 77 
benchmarks violate this prohibition. 

A parallelizing compiler for Fortran 77 must 
make a decision whether to recognize the stan­
dard or to accept common practices that are pro­
hibited by it. PTRAN handles this problem by de­
fining two switches that can be set to allow either 
of these features. As these features are present in 
the test programs we analyze, we allow both fea­
tures in this experiment. 

4.2 lnterprocedural Analysis Parameters 

The PTRAN system computes classical mod/ ex­
posed use interprocedural analysis by default. For 
our experiments we implemented two additional 
levels of interprocedural analysis. The levels of in­
terprocedural analysis are: 

1. Pessimistic: No interprocedural information 
is known. To uphold safety; all globals and 
formal parameters are assumed to be both 
modified and used by a called routine. 
Likewise, conservative alias information is 
assumed (see "Standard Fortran Versus 
Fortran Practice"). 

2. Classical: Flow-insensitive mod and flow­
sensitive use analysis is performed on each 
called routine before call sites are processed 
as described in Section 2. 

3. FIDA: The precise scheme for arrays de­
scribed in Section 3. Classical interproce­
dural analysis is used for scalars. 

4.3 Metrics 

Because the goal of the experiment is to measure 
the effectiveness and efficiency of various ap­
proaches, our metrics fall into two categories: 
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those that measure parallelism detection and 
those that measure compilation overhead. We de­
scribe each in the next two sections. 

EHectiveness lor Paral/elization 

We utilize two metrics to measure the effectiveness 
of all levels of interprocedural array analysis and a 
third metric to measure the effectiveness of FIDA. 
The first two metrics are the number of parallel­
ized loops and the ideal speedup. 

Ideal speedup is a static measure of the paral­
lelized program, which disregards the costs asso­
ciated with parallelism overhead (startup and 
management) and assumes an unlimited number 
of processors. It is found by statically estimating 
the cost of instructions along the critical path in 
both sequential and parallel cases and computing 
the ratio of the two [3]. Therefore, it is an upper 
bound on the amount of obtainable speedup. 

To obtain a more detailed measure of effective­
ness, we inspect the results of dependence analy­
sis. Of particular interest are those dependence 
tests where the information provided by our in­
terprocedural analyses differ-dependence can­
didates involving call site array accesses. We refer 
to these candidates as the target dependence can­
didates. These candidates are used in our third 
effectiveness metric, the independence success 
rate, which is defined as the number of target de­
pendence candidates proven independent divided 
by the number of target dependence candidates. 

As dependence testing in our experiment is the 
same for all forms of interprocedural array analy­
sis, only the precision of the input information can 
affect its result. In the case of the target depen­
dence candidates, both pessimistic and classical 
analyses are not precise enough to prove indepen­
dence. This results in a success rate of 0% for 
these approaches. In contrast, FIDA can provide 
enough information to prove independence, mak­
ing a non-zero success rate achievable. Thus, this 
metric captures how often precise information is 
potentially beneficial. Unlike the previous metrics, 
it is not dependent on the transformations that are 
performed. 

EHidency 

We measure two types of efficiency for FIDA: stor­
age and time. We assess storage efficiency by 
measuring: the number of access descriptors for 
formal parameters, the number of access descrip-
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tors for common blocks, and the number of call 
site descriptors. 

These metrics give an estimate of the amount of 
storage required by this technique regardless of 
whether the information is used or not. Recall that 
the number of access descriptors corresponds to 
the total number of definitions and uses to nonlo­
cal arrays in the program. A call site descriptor is 
created when a nonlocal array is accessed through 
a call. This number is bounded by the number of 
call sites in the program. 

We capture time efficiency by recording two 
pairs for each nonlocal array variable, the maxi­
mum and average length of all access lists and the 
examined part of all access lists. 

The first pair of metrics describes the amount 
of information associated with a FIDA clef/use. 
This information is composed of a list of access 
descriptors linked by call site descriptors. The 
maximum length represents an upper bound on 
the amount of translation that can be performed 
for any definition or use in the program. The aver­
age length represents the average upper bound on 
translation for the definitions and uses of the pro­
gram. 

The second pair of metrics identifies how much 
of this information is actually processed. As FIDA 
performs both the translation of arguments to for­
mal parameters and dependence analysis with the 
resulting information, on demand, the second pair 
of metrics is a good measure of the time efficiency 
of our approach. 

4.4 Results 

In this section we present the results of our experi­
ment using the parameters and metrics described 
in the previous section.§ We ran the Perfect, SPEC, 
and LINPACK benchmarks and report the results 
in two parts: effectiveness and efficiency. Three 
programs that are not included are FPPPP (unre­
lated compilation error) and SPICE (irreducible 
flow graph) in the SPEC benchmarks, and SPEC77 
(storage overflow) in the Perfect benchmarks. 

EHectiveness 

The second column of Table 1 reports the number 
of loops in each program. The next three columns 
describe how many of these loops are parallelized 
using the three forms of interprocedural analysis. 
A comparison of the results of the first two forms 

§ These results correct an earlier version of this article [ 43". 

of analysis seems to suggest an error, as in some 
cases the difference in the number of parallelized 
loops is greater than the number of loops with 
calls. However, recall that the pessimistic analysis 
does not capture any interprocedural information. 
Thus, not only must it assume that all call sites 
modify their arguments and global variables, but 
also that worst case aliasing exists (see "Standard 
Fortran Versus Fortran Practice"). As the num­
bers suggest, this conservative aliasing assump­
tion has a drastic effect on the number of paral­
lelizable loops. 

Excluding pessimistic analysis, the levels of in­
terprocedural analysis differ only in how they 
summarize interprocedurally accessed arrays. As 
interprocedural accesses arise only at call sites, 
only loops with calls are affected by whether clas­
sical interprocedural analysis or FIDA is per­
formed. Thus, these loops represent an upper 
bound on the potential increase of parallelized 
loops due to a more precise interprocedural analy­
sis. The sixth column of Table 1 identifies the 
number of loops that contain subroutine or func­
tion calls. To the right of this column is the num­
ber of these loops that are parallelized for the 
three levels of interprocedural array analysis. 

Comparing the classical approach (where ar­
rays are treated like scalars) with F IDA, we see 
three routines in the LINPACK benchmarks where 
additional parallel loops are detected: SGEDL 
SPODI, and SSVDC. Each of these loops contains 
calls to the much documented routine SAXPY, 
where independent columns of a matrix are modi­
fied on different loop iterations.ll 

The number of parallel loops can be a mislead­
ing metric, as some loops are more critical to the 
running time of a program than others. Table 2 
presents ideal speedup .figures for the three in­
terprocedural analysis techniques. Although some 
programs exhibited a dramatic increase in the 
number of parallel loops between pessimistic and 
classical analysis, the increase in ideal speedup is 
sometimes more modest. We attribute this to the 
fact that some loops that are parallelized are not 
critical to a program's execution. Nevertheless, 
some programs show a substantial increase 
(FL052Q, DYFESM) in ideal speedup when clas­
sical interprocedural analysis is used. Once again, 
the benefit of a precise technique is limited to the 

II A slight modification to the SAXPY code was performed to 
simulate constant folding of the value returned by the YIOD 
built-in function. Similar modifications were made in [11. 12:. 
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Table 1. Number of Parallel Loops for the Perfect Club, SPEC, and LINPACK 
Benchmarks 

No. 
Parallel Loops 

No. Loops 
Parallel Loops 

Program Loops Pess Class FIDA w/Calls Pess Class FIDA 

Perfect 
ARC2D 219 1 104 104 1 0 0 0 
BDNA 219 13 67 67 9 0 0 0 
DYFESM 203 9 67 67 21 0 0 0 
FL052Q 186 22 135 135 9 0 7 7 
MDG 52 9 11 11 7 0 0 0 
MG3 155 2 3 3 12 0 0 0 
OCEAN 135 45 73 73 12 0 0 0 
QCD2 157 25 87 87 40 0 0 0 
TRACK 87 16 39 39 18 0 1 1 
TRFD 38 1 1 1 6 0 0 0 

SPEC 
DODUC 280 17 220 220 19 0 2 2 
MATRIX300 17 2 5 5 11 0 0 0 
NASA7 130 3 48 48 8 0 0 0 
TOMCATV 19 12 12 12 0 0 0 0 

LINPACK 
SGBCO 27 2 8 8 7 0 0 0 
SGBFA 13 3 6 6 2 0 0 0 
SGECO 24 2 5 5 7 0 0 0 
SGEDI 15 1 4 6 4 0 0 2 
SGEFA 10 0 3 3 2 0 0 0* 
SGESL 10 0 3 3 4 0 0 0 
SPBCO 24 3 9 9 7 0 0 0 
SPOCO 24 3 9 9 7 0 0 0 
SPODI 11 0 3 5 4 0 0 2 
SPPCO 24 2 8 8 7 0 0 0 
SQRDC 19 0 4 4 4 0 1 1 
SSIDI 17 0 3 3 3 0 0 0 
SSIFA 13 0 0 0 2 0 0 0 
SSPCO 26 2 5 5 3 0 0 0 
SSVDC 36 8 11 13 11 0 0 2 
STRCO 15 2 8 8 3 0 0 0 
STRDI 11 0 3 3 4 0 0 0 

* One parallel loop can be found using range analysis on the function call isamax. 

three LINPACK programs, two of which show sig­
nificant improvement. 

Table 3 illustrates the effect of FIDA on target 
dependence candidates, i.e., dependencies in­
volving a call site where the corresponding formal 
or common block element is an array. This table 
reports the number of target dependence candi­
dates (CAND) and the number of these proven in­
dependent due to the additional information pro­
vided by FIDA. The last column gives the success 
rate. As no subscript information is present using 
the pessimistic or classical approach, each of 
these candidates would be classified as a depen­
dence (success rate = 0% ). 

In 6 of the 32 programs a nonzero success rate 
is found; dependencies were eliminated solely due 
to the more precise array access information pro­
vided by FIDA. However, in three of these pro­
grams, the removal of these dependencies did not 
result in an increase in parallelism. 

In 26 of the 32 programs, using a precise in­
terprocedural analysis technique does not en­
hance automatic parallelization. This does not 
imply that automatic parallelization of these pro­
grams cannot benefit from precise interprocedural 
array analysis. By transforming loops with depen­
dencies, parallelization can often be obtained. For 
example, in Blume and Eigenmann [44] the au-
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Table 2. Ideal Speedup for the Perfect Club, 
SPEC, and LINPACK Benchmarks 

No. 
Ideal Speedup 

Program Stmts Pess Class FIDA 

Perfect 
ARC2D 2,544 1.13 1.95 1.95 
BDNA 3,825 3.46 3.87 3.87 
DYFESM 2,619 1.05 11.39 11.39 
FL052Q 2,325 1.17 1,322.81 1,322.81 
MDG 1,049 1.22 2.23 2.23 
MG3 2,550 1.01 1.02 1.02 
OCEAN 2,050 1.02 1.49 1.49 
QCD2 1,987 1.06 1.23 1.23 
TRACK 1,823 1.08 1.13 1.13 
TRFD 384 1.04 1.04 1.04 

SPEC 
DODUC 5,066 1.34 2.97 2.97 
MATRIX300 208 1.11 4.17 4.17 
NASA7 773 1.03 1.37 1.37 
TOMCATV 225 48.71 48.71 48.71 

LINPACK 
SGBCO 400 1.12 1.45 1.45 
SGBFA 183 1.09 1.15 1.15 
SGECO 346 1.08 1.28 1.28 
SGEDI 191 1.09 1.15 37.70 
SGEFA 149 1.06 1.10 1.10 
SGESL 130 1.09 1.55 1.55 
SPBCO 316 1.13 1.18 1.18 
SPOCO 295 1.12 1.17 1.17 
SPODI 135 1.07 1.13 74.96 
SPPCO 314 1.13 1.17 1.17 
SQRDC 334 1.13 1.30 1.30 
SSICO 544 1.10 1.27 1.27 
SSIDI 168 1.10 1.12 1.12 
SSIFA 249 1.06 1.11 1.11 
SSPCO 603 1.12 1.29 1.29 
SSVDC 612 1.09 1.34 1.73 
STRCO 217 1.28 3.86 3.86 
STRDI 154 1.12 1.18 1.18 

thors show significant speedup in ARC2D by per­
forming some sophisticated transformations by 
hand. To perform these transformations automat­
ically, precise interprocedural analysis is usually 
required. Simple transformations such as loop 
distribution can also benefit from precise informa­
tion [17]. 

FIDA EHiciency 

In this section we present efficiency results for 
FIDA using the metrics described in "Efficiency" 
in Section 4. The metrics concerning space are 
given in Table 4: the number of access descriptors 

and the number of call site descriptors. Access 
descriptors are divided into accesses of formal pa­
rameters (FP) and common blocks (CB). 

Recall that an access descriptor is created for 
each access to a nonlocal array. A call site de­
scriptor is created for each call site that is associ­
ated with at least one FIDA clef/use. These de­
scriptors, which are created regardless of whether 
they are used, represent the amount of space 
overhead for FIDA. The size of each access de­
scriptor is dependent on the number of dim en­
sions, the number of formal parameters occurring 
in the descriptor, and the depth of the loop nest. 
The size of the call site descriptor is dependent on 
these characteristics as well as the number of ar­
guments in the call. 

The number of access descriptors does not nec­
essarily correlate to the program size. For exam­
ple, the ratios of statements to access descriptors 
in ARC2D and OCEAN differ by about a factor of 6. 
Furthermore, the proportion between formal pa­
rameter and common block descriptors varies 
widely. This proportion is an attribute of the 
method of data communication between subrou­
tines. In ARC2D, an average of almost seven formal 
parameters per routine is found. In DYFESM, 
where common blocks are more prevalent, this ra­
tio is less than one [26 J. 

Whereas Table 4 represents information over­
head, Table 5 illustrates how this information is 
used. In the second and third columns of Table 5 
we capture the access descriptor list length associ­
ated with a particular formal parameter or com­
mon block. We report the maximum and average 
lengths. They do not correspond to any additional 
storage (except the pointer required to link them 
together), but do capture the magnitude of infor­
mation associated with each nonlocal array. 

The large list length associated with the Perfect 
program MG3 requires explanation. Through a 
chain of calls, portions of an array of 60,000 ele­
ments are passed through many routines. Each 
routine accesses parts of the array and calls sev­
eral other routines that also access it. At the end of 
these call chains is a routine, CPASSM, which 
makes 208 references to the array. As CPASSM is 
called eight times by each of several routines, the 
list of descriptors grows quickly. 

As this list comprises several duplicate sublists, 
each of which contains a potentially unique call 
site descriptor, it does not require a lot of storage. 
Thus, no storage or performance penalty is paid 
for this excessive size, unless it is examined. 
Moreover, a simple optimization can be per-
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Table 3. FIDA Independence Success Rate for the Perfect Club, SPEC, and LINPACK Benchmarks 

Total 

]';o. l"o. Independent ]';o. 
Program Candidates Independent Rate(%) Candidates 

Perfect 
ARC2D 152 0 0 139 
BDNA 197 0 0 187 
DYFESM 164 0 0 108 
FL052Q 54 0 0 34 
MDG 46 0 0 44 
MG3 64 0 0 58 
OCEAN 1,048 0 0 1,045 
QCD2 177 22 12 142 
TRACK 145 0 0 107 
TRFD 10 0 0 8 

SPEC 
DODUC 245 30 12 102 
MATRIX300 46 0 0 46 
NASA7 70 0 0 41 
TOMCATV 3 0 0 3 

LINPACK 
SGBCO 76 0 0 76 
SGBFA 10 0 20 10 
SGECO 75 0 0 75 
SGEDI 28 21 75 28 
SGEFA 7 0 0 7 
SGESL 7 0 0 7 
SPBCO 65 0 0 65 
SPOCO 65 0 0 65 
SPODI 31 24 77 31 
SPPCO 61 0 0 61 
SQRDC 11 1 9 11 
SSICO 87 0 0 87 
SSIDI 35 0 0 35 
SSIFA 9 0 0 9 
SSPCO 85 0 0 85 
SSVDC 31 6 19 31 
STRCO 19 0 0 19 
STRDI 8 0 0 8 

formed to prevent this list from growing this large 
without a loss in precision [21 J. 

As dependence analysis is performed on de­
mand, an element on the list is inspected only if all 
preceding elements have proven independence. 
The last two columns of Table 5 record the num­
ber of list elements inspected. Notice that even 
though some programs have a large list maximum, 
the length of the list that is actually inspected is 
usually small. 

This result is consistent with the effectiveness 
results reported in the previous section. Once in­
dependence cannot be proven for a F IDA refer­
ence, whatever remains of its list is not translated 
or tested. As the previous section showed that few 
programs exhibited an increase in parallelism us­
ing FIDA; a limited amount of list inspection is 
expected. This illustrates an important advantage 
of this approach when parallelization is the goal: 
much of the overhead-list traversal and transla­
tion-is incurred only when it may be beneficial. 
When independence cannot be proven, the com­
pilation performance penalty is negligible. 

An inspection of QCD2 explains the large list 

Parameters Common Blocks 

~0. Independent :\o. :'\o. Independent 
Independent Rate(%) Candidates Independent Rate(%) 

0 0 13 0 0 
0 0 10 0 0 
0 0 56 0 0 
0 0 20 0 0 
0 0 2 0 0 
0 0 6 0 0 
0 0 3 0 0 

20 14 35 2 6 
0 0 38 0 0 
0 0 2 0 0 

0 0 143 30 21 
0 0 0 0 0 
0 0 29 0 0 
0 0 0 0 0 

0 0 0 0 0 
2 20 0 0 0 
0 0 0 0 0 

21 75 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

24 77 0 0 0 
0 0 0 0 0 
1 9 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
6 19 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

length examined. In addition to the maximum list 
of 193, list of 108 elements exists and is fully ex­
amined. This program contains a subroutine 
(MULT) with three array parameters of size 18 
(A,B,C). In the subroutine, C is computed as a 
function of A and B. Although this computation 
could have been performed in a nest of loops, it 
was written as 18 assignment statements, each of 
which contained six uses to both arrays A and B. 

As each of these references generates an access 
descriptor, 108 descriptors are created for each of 
the arrays A and B. 

This routine is then called twice within a loop 
(in routine ROTMEA). The first column of an 18 by 
2 matrix is written by the first call, and the second 
column is written in the second call. As no overlap 
exists between these two calls, each of the 108 
references of both lists is translated and tested. 
Although this results in an exorbitant number of 
dependence tests, a simple program transforma­
tion could reduce both lists to one element. This 
transformation would not only reduce the number 
of translations and dependence tests (by a factor 
of 108 to 2 and 1, respectively), but also reduce 
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Table 4. FIDA Storage Efficiency for the Perfect Club, SPEC, 
and LINPACK Benchmarks 

1\o. 
Program Statements Parm 

Perfect 
ARC2D 2544 1.449 
BONA 3.825 1.015 
DYFESM 2,619 154 
FL052Q 2,325 665 
MDG 1,049 230 
MG3 2550 1~590 

OCEAN 2,050 
QCD2 1,987 
TRACK 1,823 
TRFD 384 

SPEC 
DODUC 5.066 
MATRIX300 208 
NASA7 773 
TOMCATV 225 

LINPACK 
SGBCO 400 
SGBFA 183 
SGECO 346 
SGEDI 191 
SGEFA 149 
SGESL 130 
SPBCO 316 
SPOCO 295 
SPODI 135 
SPPCO 314 
SQRDC 334 
SSICO 544 
SSIDI 309 
SSIFA 249 
SSPCO 603 
SSVDC 612 
STRCO 217 
STRDI 154 

the list size, and hence, the number of access de­
scriptors from 108 to 1. 

Consider the results for LINPACK in Table 5. In 
2 of the 17 routines (SGEDI and SPODI), the aver­
age examined list length is relatively close to the 
average list length. This contrasts to the other pro­
grams, where the average length examined is close 
to one. Tables 1 to 3 show that independence and 
new parallelism are detected for these two routines 
although it is not for the other 16. Once again, the 
extra processing implied by examining the access 
lists is only paid when it might be beneficial. 

189 
495 
501 

41 

130 
9 

76 
1 

76 
38 
73 
52 
38 
32 
59 
59 
32 
59 
79 

119 
70 
44 

119 
91 
40 
32 

No. Descriptors 

Access 
Total 

Call Call 
CB Total Site Sites 

177 1~626 35 5:3 
694 1.709 74 87 
512 666 98 127 
210 875 13 94 

37 267 20 .34 
16 1.606 42 ;);) 

18 207 37 242 
152 647 41 109 
284 785 22 68 

14 55 1 13 

2.109 2,239 42 117 
0 9 10 27 

374 450 17 24 
0 1 0 8 

0 76 3 20 
0 38 0 3 
0 73 3 20 
0 52 0 4 
0 38 0 3 
0 32 0 4 
0 59 1 18 
0 59 1 18 
0 32 0 4 
0 59 1 18 
0 79 0 9 
0 119 7 27 
0 70 0 14 
0 44 0 7 
0 119 7 18 
0 91 0 24 
0 40 0 8 
0 32 0 4 

To further assess the frequency of dependence 
tests involving interprocedurally accessed array 
references, we provide two additional tables. Ta­
ble 6 records the number of interprocedural de­
pendence candidates involving arrays, partition­
ing these into arrays passed by parameters and 
arrays that reside in common blocks. 

The second column reports the total number of 
dependence candidates tested in our demand­
driven approach. The third and fourth columns 
give the number of dependence candidates for 
formal parameters and common blocks, respec-
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Table 5. FIDA Performance Efficiency for the Perfect 
Club, SPEC, and LINPACK Benchmarks 

List Length 
Examined 

List Length 

Program Maximum 

Perfect 
ARC2D 305 
BONA 761 
DYFESM 16 
FL052Q 88 
MDG 243 
MG3 6.682 
OCEAN 56 
QCD2 193 
TRACK 82 
TRFD 2 

SPEC 
DODUC 140 
MATRIX300 24 
NASA7 97 
TOMCATV 1 

LINPACK 
SGBCO 19 
SGBFA 7 
SGECO 17 
SGEDI 7 
SGEFA 7 
SGESL 7 
SPBCO 8 
SPOCO 8 
SPODI 7 
SPPCO 8 
SQRDC 13 
SSICO 8 
SSIDI 9 
SSIFA 6 
SSP CO 8 
SSVDC 13 
STRCO 8 
STRDI 7 

tively, duplicating these columns from Table 3. 
The percentage of interprocedural arrays tested is 
small. This illustrates that the earlv focus on intra­
procedural dependence analysis has been justi­
fied. 

To better judge the magnitude of the FIDA suc­
cess ratios, Table 7 reports the success ratios for 
dependence tests with at least one FIDA reference 
and those with no FIDA references. 

4.5 Discussion 

The results of the previous two sections illustrate 
two points: (1) Precise interprocedural analysis, 

Average .\1aximum Average 

13.7 1 1.0 
11.4 15 1.1 
3.9 8 1.2 
8.3 3 1.1 

11.6 10 1.9 
475.7 361 6.5 

7.8 1 1.0 
29.3 193 - '7 0 .. 

9.7 15 2.9 
1.2 1 1.0 

19.2 91 2.8 
14.5 1 1.0 
24.7 17 1.6 

1 1 1.0 

7.4 2 1.0 
6.3 6 2.0 
7.3 3 1.1 
6.0 6 5.2 
6.4 2 1.1 
6.4 3 1.3 
7.2 2 1.0 
7.2 3 1.2 
6.1 6 5.3 
7.2 3 1.1 
7.4 6 1.3 
7.0 1 1.0 
7 .. 5 1 1.0 
5.4 1 1.0 
7.0 1 1.0 
6.5 7 2.4 
7.2 1 1.0 
6.5 1 1.0 

alone, is generally not enough to improve auto­
matic parallelization. (2) Parallelization under 
FIDA is a "pay for what you get" technique and 
therefore can be efficient. 

The sophisticated interprocedural and intra­
procedural analyses used in this experiment did 
not dramatically affect program parallelization. 
From this, we do not feel that one may conclude 
there is no reason to perform a precise interproce­
dural analysis. In fact. recent work [ 44, 45] has 
shown that advanced transformations can signifi­
cantly improve parallelization and has called for 
precise interprocedural analysis information. In 
particular, we feel that loop distribution and array 
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Table 6. Dependence Tests Using 
Interprocedurally Accessed Arrays 

Total 
IPA Arrays 

Program Candidates Parm Common 

Perfect 
ARC20 7,771 139 13 
BONA 5,937 187 10 
OYFESM 5,475 108 56 
FL052Q 6,012 34 20 
MDG 1,380 44 2 
MG3 3,567 58 6 
OCEAN 4,929 1,045 3 
QC02 4,955 142 35 
TRACK 2,796 107 38 
TRFO 303 8 2 

SPEC 
OOOUC 6,346 102 143 
MATRIX300 116 46 0 
NASA7 3,330 41 29 
TOMCATV 272 3 0 

LINPACK 
SGBCO 312 76 0 
SGBFA 125 10 0 
SGECO 264 75 0 
SGEOI 173 28 0 
SGEFA 98 7 0 
SGESL 76 7 0 
SPBCO 270 65 0 
SPOCO 245 65 0 
SPOOl 121 31 0 
SPPCO 265 61 0 
SQRDC 199 11 0 
SSICO 413 87 0 
SSIDI 169 35 0 
SSIFA 153 9 0 
SSPCO 477 85 0 
SSVDC 390 31 0 
STRCO 187 19 0 
STRDI 100 8 0 

privatization would benefit greatly from our analy­
sis. Other interprocedural transformations have 
also been suggested [ 46]. 

If a precise form of analysis is required to per­
form these transformations, the efficiency of such 
an analysis is paramount. Due to its demand­
driven implementation, FIDA is reasonably effi­
cient in the context of automatic parallelization. 

5 RELATED WORK 

In previous work [9-19], emphasis has been 
placed on improving the precision of interproce­
dural analysis for array accesses. Although exper-

imental results appear in some of these articles, 
most of it has been limited to the parallelization of 
LINPACK with little empirical results concerning 
efficiency. 

Li and Yew [ 16, 17] evaluate the effectiveness 
of their approach by reporting the number of par­
allel loops containing calls using the LINPACK 
benchmarks. No information is presented pertain­
ing to the efficiency of their approach except stat­
ing that it runs 2.6 times faster than the Para­
phrase implementation of [15]. 

Havlak and Kennedy [11, 12] evaluate their 
implementation of bounded regular sections using 
LINPACK and a collection of other programs. 
They measured the efficiency of their implemen­
tation in real-time as part of PFC. They report the 
number of calls in parallel loops as well as the 
number of dependencies removed using their ap­
proach. 

Although a direct comparison with these two 
works would be illustrative, it is not possible as 
only Li and Yew report the number of parallel 
loops with calls without loop distribution. Under 
this scenario, they report a total of six parallel 
loops in five LINPACK routines, all but one of 
which we parallelize.~ The failure to parallelize the 
loop in SGEF A is not a result of the precision of 
dependence analysis, but rather a consequence of 
PTRAN not being able to evaluate a function I SA­
MAX at compile-time. Furthermore, in programs 
SQRDC and SGEDI, we detect an additional paral­
lel loop containing a call. Both of these loops were 
not parallelized by Li and Yew [ 17]. 

The observation that more precise interproce­
dural analysis alone is not enough for effective 
parallelization was also made by lrigoin et al. [ 4 7] 
but no experimental numbers were presented. 
They call for better programming practice as well 
as new compilation techniques like array privat­
ization. 

6SUMMARY 

This work has presented an experiment designed 
to capture the effectiveness and efficiency of in­
terprocedural analysis of array accesses in the 
context of parallelization. It has shown that classi­
cal interprocedural analysis can provide a signifi­
cant improvement over pessimistic interproce-

~ Their original work incorrectly reported two additional 
loops in SSIFA as being parallel without loop distribution [Li, 
Personal Communication, 1992]. 
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Table 7. Overall Independence Success Rate for the Perfect Club, SPEC, and LINPACK Benchmarks 

Total 

)\;o. :\"o. Independent :'-io. 
Program Candidates Independent Rate(%) Candidates 

Perfect 
ARC2D 7,771 3,608 46 7,619 
BDNA 5.937 935 16 5,740 
DYFESM 5,475 2,176 40 5,311 
FL052Q 6,012 3,437 57 5,958 
MDG 1,380 93 7 1,334 
MG3 3,567 86 2 3,503 
OCEAN 4,929 297 6 3,881 
QCD2 4,955 3,217 65 4,778 
TRACK 2,796 981 35 2,651 
TRFD 303 0 0 293 

SPEC 
DODUC 6,346 790 12 6,101 
MATRIX300 116 1 1 70 
NASA7 3,330 2,627 79 3,260 
TOMCATV 272 131 48 269 

LINPACK 
SGBCO 312 47 15 236 
SGBFA 125 53 42 115 
SGECO 264 46 17 189 
SGEDI 173 80 46 145 
SGEFA 98 44 45 91 
SGESL 76 28 37 69 
SPBCO 270 67 25 205 
SPOCO 245 68 28 180 
SPODI 121 74 61 90 
SPPCO 265 66 26 204 
SQRDC 199 47 24 188 
SSICO 413 45 11 326 
SSIDI 169 9 5 134 
SSIFA 153 4 3 144 
SSPCO 477 45 9 392 
SSVDC 390 64 16 359 
STRCO 187 65 35 168 
STRDI 100 46 46 92 

dural analysis. It has also shown that a precise 
analysis (FIDA), without the support of sophisti­
cated transformations, provides a limited benefit 
over classical analysis. 

A demand-driven analysis is more efficient 
than the corresponding exhaustive analysis when 
complete information is not needed. When a de­
mand-driven analysis requires interprocedural in­
formation, FIDA is an attractive approach. For 
demand-driven dependence analysis, the perfor­
mance overhead is commensurate with benefits. 
Further improvements in efficiency can be ob­
tained by simple optimizations [21 J. 

Although FIDA was developed to test the effects 
of interprocedural analysis in the context of auto­
matic parallelization, it can also be used in other 
contexts. Wherever subscript analysis is required, 
FIDA can be used to capture precise interproce­
dural information. Some other applications are: 
analysis to reduce communication costs in distrib­
uted memory machines [ 48-50], automatic data 
partitioning for distributed memory machines 
[51], array privatization [38-40], and analysis of 
locality to benefit cache performance [52, 53]. 

:\"on-FIDA FIDA 

:\"o. Independent :\"o. :\"o. Independent 
Independent Rate(%) Candidates Independent Rate(%) 

3,608 47 152 0 0 
935 16 197 0 0 

2,176 41 164 0 0 
3,437 58 54 0 0 

93 7 46 0 0 
86 2 64 0 0 

297 8 1,048 0 0 
3,195 67 177 22 12 

981 37 145 0 0 
0 0 10 0 0 

760 12 245 30 12 
1 1 46 0 0 

2,627 81 70 0 0 
131 49 3 0 0 

47 20 76 0 0 
51 44 10 2 20 
46 24 75 0 0 
59 41 28 21 75 
44 48 7 0 0 
28 41 7 0 0 
67 33 65 0 0 
68 38 65 0 0 
50 56 31 24 77 
66 32 61 0 0 
46 24 11 1 9 
45 14 87 0 0 

9 7 35 0 0 
4 3 9 0 0 

45 11 85 0 0 
58 16 31 6 19 
65 39 19 0 0 
46 50 8 0 0 

Determining the effectiveness and efficiency of 
these applications of FIDA. 
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