
An Empirical Study of Precise lnterprocedural
Array Analysis

MICHAEL HIND 1•2 , MICHAEL BURKE2 , PAUL CARINI2 , AND SAM MIDKIFF2

1State University of New York, New Paltz, NY 12561
2/BM T.]. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598

ABSTRACT

In this article we examine the role played by the interprocedural analysis of array
accesses in the automatic parallelization of Fortran programs. We use the PTRAN sys­
tem to provide measurements of several benchmarks to compare different methods of
representing interprocedurally accessed arrays. We examine issues concerning the ef­
fectiveness of automatic parallelization using these methods and the efficiency of a
precise summarization method. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

Effective program parallelization, like any com­
piler optimization, can benefit from increased
precision during its analysis phase. However, in­
creased precision often implies an increase in
compilation time and/ or storage, forcing a trade­
off between precision and efficiency. If the bene­
fits of increased precision outweigh the degrada­
tion in efficiency, a precise analysis should be
utilized.

In this article we assess the effectiveness and
efficiency of a precise form of interprocedural ar­
ray analysis for automatic parallelization. Specifi­
cally, we examine a method employed to represent
the interprocedural accesses of arrays. Csing the
PTRAN system [1-3 J, we introduce a number of
metrics to help ascertain:

1. How much additional parallelism can be
obtained from a precise array access repre­
sentation?

Received November 1992
Revised May 1994

© 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 3, pp. 2.55-271 (1994)
CCC 10.58-9244/94/03025.5-17

2. How much time and space overhead is in­
curred by this technique?

In Section 2 we provide the background for our
experiment. Section 3 describes our precise ap­
proach and how it differs from previous ap­
proaches. In Section 4 we present our experiment
and discuss the results. Section 5 describes re­
lated work and Section 6 contains our conclusions
and discusses future work.

2 BACKGROUND

Traditionally, compilers have processed programs
at the subroutine level. In the absence of subrou­
tine calls, standard intraprocedural analysis tech­
niques [4, 5] can be applied. However, due to the
use of modular programming techniques, pro­
grams are often written with multiple subroutines.
When an intraprocedural analysis encounters a
subroutine call, information regarding how the
called routine accesses its parameters and global
variables is absent. Without this information, con­
servative assumptions must be made. For a paral­
lelizing compiler, this can imply superfluous de­
pendencies that lead to a loss of parallelism.

256 HIND ET AL.

Thus, it seems imperative that as much informa­
tion as possible be captured regarding the side
effects of subroutine calls. lnterprocedural analy­
sis attempts to provide this information.

Procedure integration or inlining can be viewed
as an alternative to interprocedural analysis.
When inlining is performed, the body of a called
subroutine is substituted for the call statement
with appropriate changes made to the naming of
the formal parameters. Although selectively per­
forming inlining can be beneficial, the cost of an
enlarged program renders it infeasible as a general
solution to handling all subroutines calls [6, 7].
Thus, inlining is used as a complement, rather
than an alternative, to interprocedural analysis.
The relationship between inlining and our precise
summary method is discussed in Section 3. 1 .

Traditionally, to determine the side effects of a
call statement, two prior analyses of the called
routine are performed. For definitions, a flow-in­
sensitive analysis is computed for the routine, re­
cording nonlocal variables that may be defined. In
contrast, to determine what uses should be cre­
ated by a call, a flow-sensitive analysis is em­
ployed to find upward-exposed uses (a use on a
definition-free path from the subroutine entry) of
nonlocal variables in the called routine [8]. A
flow-sensitive analysis of definitions, which can
determine which variables must be defined, can
be used to supplement the flow-insensitive
analysis.

The results of these side-effect analyses are
represented by two sets for each routine. The
PMOD(P) set contains all global variables and pa­
rameters of routine P that may be defined. The
PUSE(P) set contains all global variables and pa­
rameters of routine P that have an upward­
exposed use.

This approach is illustrated in Figure 1. As
subroutine P contains definitions of the formal pa­
rameter A and the global B, calls to P assume that
both of these variables are modified (PMOD(P) =

{A, B}). Although both variables are referenced in
subroutine P, only A is upward exposed with re­
spect to the subroutine entry; no definition-free
path exists from the subroutine entry to the use of
B. Thus, a use is created for A, but not B, at the
call site of P (PUSE(P) = {A}).

Consider the example in Figure 2 where A and
B are arrays. Because an array access only refer­
ences one element of the array, array definitions
are treated as preserving, i.e., they do not kill any
definitions that reach them. Thus, the use of B is
viewed as upward exposed in P.

Common// B

Call P(A)

Subroutine P(A)
Common// B

Return
End

=A
B=

A=B

P MOD(P) = {A, B}

PUSE(P) ={A}

FIGURE 1 Scalar interprocedural Mod and Use.

In the interest of efficiency, classical in­
terprocedural analysis represents array accesses
by treating them in the same manner as scalars.
Thus, it regards an access to an element of the
array as an access to the whole array. Although
this method retains efficiency, it suffers a loss of
precision.

For example, in Figure 2 only the first element
of A is used, while a proper subset (1, . . . , 100)
of the elements are defined. Likewise, parts of B
are neither modified (odd elements) nor refer­
enced (elements> 100) in P. Because A and Bare
arrays, simply stating that they are modified or
used disregards subscript information describing
which part of the array is accessed.

To address the loss in precision of the classical
approach, several approaches have been sug­
gested to represent portions of an accessed array.
These techniques differ in the amount of precision
they provide, as well as the storage and time re­
quired in processing the suggested representa­
tions. The spectrum of Figure 3 summarizes these

Common// B(200)
Dimension A(200)

Call P(A)

Subroutine P(A)
Common// B(200)
Dimension A(200)

= A(1)
Do 10, i = 1, 100

B(2 * i) =
A(i) = B(i)

10 Continue
Return
End

PMOD(P) = {A(•), B(•)}

PUSE(P) = {A(•), B(•)}

FIGURE 2 Classical array interprocedural Mod and
Use.

Efficiency Precision

I
Pess Classical AS DAD Reg AI

lin

IOmega

FIDA

FIGURE 3 The interprocedural array summary spec­
trum (spacing is not significant).

methods. Movement to the right on the spectrum
represents improved precision as well as dimin­
ished efficiency. The following is a list of the tech­
niques, with a brief description of each in terms of
precision:

1. RS-Regular Sections [9-12] : Several vari­
ants have been described, some of which
include strides and bounds information us­
ing triplet notation. Others allow for diago­
nal references and triangular sections.

2. DAD-Data Access Descriptors [13, 14]:
More general than all RS variants because
trapezoidal shapes can be represented.

3. Reg-Regions [15] : Allows more general
shapes than DAD by using linear inequali­
ties to describe the shape's boundaries.

4. AI-Atom Images [9, 16, 17]: Represents
full subscript information for each dim en­
sion as a linear combination of iteration
variables and formal parameters. Loop
bounds are also retained.

5. Lin-Linearization [18]: Similar to AI ex­
cept all subscripts are linearized into one
dimension.

6. IOmega-lnterprocedural Omega Test
[19]: Full subscript information is captured
in the form of an integer programming pro­
jection so that the Omega exact dependence
test [20] can be applied. Although multiple
projections are rp.erged into a single projec­
tion, the size of the integer projection is in­
creased by adding extra variables.

7. FIDA-Full lnterprocedural Dependence
Analysis [21]: Combines AI and Lin tech­
niques.

In addition to these techniques, and the classi­
cal technique just discussed, we include a pessi­
mistic approach in our spectrum, which performs
no interprocedural analysis. For correctness, it as­
sumes that each routine modifies and uses all pa-

INTERPROCEDURAL ARRAY ANALYSIS 257

rameters and global variables. Although this
scheme is imprecise, it can be highly efficient be­
cause no summary information needs to be re­
corded. In fact, most production compilers per­
form this type of analysis by default. Furthermore,
this method must be selectively employed when
some routines of a program are not available for
analysis.

To the right of the pessimistic approach is the
classical mod/ exposed-use approach utilized for
scalars [8] and described above. In our experi­
ment we compare these two approaches with a
more precise, but less efficient, approach called
FIDA [21]. An overview of FIDA is given in Sec­
tion 3.

A number of advanced techniques (RS, DAD,
Reg) lie between classical and FIDA on the spec­
trum. These techniques offer more precision (at
the cost of less efficiency) than the classical ap­
proach, yet they are more efficient (and less pre­
cise) than the more precise techniques (AI, Lin,
IOmega, FIDA).

The key difference between these two groups of
advanced techniques is how they handle multiple
accesses to the same array in a routine. Informa­
tion about each access is retained in full with the
precise techniques. For AI, Lin, and FIDA, this
information is represented by a list of descriptors.
For IOmega it is represented by modifying the pro­
jection function. By contrast, the more efficient
advanced techniques represent multiple accesses
with one descriptor. Thus, no matter how many
accesses to a variable are made in a routine, only
one descriptor is retained. However, there are two
disadvantages to the less efficient techniques. For
efficiency, they place more restrictive constraints
on the expressiveness of their descriptors than
what is employed for intraprocedural array ac­
cesses. This results in a less precise representation
than is used for intraprocedural accesses. More­
over, the union of two descriptors cannot always
be performed precisely (i.e., union is not closed
over the descriptors). Representing the union ap­
proximately introduces further imprecision.

The FIDA approach combines the functionality
of Lin proposed by Burke and Cytron [18] and AI
suggested by Li and Yew [16, 17, 22, 23]. It is
more precise than these two approaches because
it draws from the benefits of both: simultaneity by
coupling subscript positions (Lin) and more op­
portunities for proving independence by recording
subscript expressions separately (AI). The distin­
guishing characteristic between each of these ap­
proaches and the previous ones is that multiple

258 HIND ET AL.

access descriptors are not combined, thereby
making the union operation closed. Although this
improves precision, it also implies that a list of
accesses is associated with a call site. The result is
that a dependence test of a particular variable be­
tween two calls can require 1 1 * 1 2 dependence
tests, where /1 and /2 are the descriptor list lengths
corresponding to the first and second calls, re­
spectively.

3 FIDA

FIDA, like Lin [18] and AI [16, 171. is a precise
interprocedural array summary scheme motivated
by the information required for standard depen­
dence analysis. Our motivation for developing
FIDA is to assess an upper bound on precision
and efficiency of array access repreentations. This
approach captures the same type of dependence
information that is available intraprocedurally.
This allows all array accesses to be analyzed in a
uniform manner regardless of whether they are in­
traprocedural or interprocedural. In particular,
standard dependence analysis techniques can be
employed. The next section describes the infor­
mation retained in each descriptor. In Section 3.2
we present some of the implementation highlights
of FIDA in the PTRAN system, leaving the full de­
tails to Hind [21].

3.1 Functionality

As mentioned in Section 2, each nonlocal array
access is described by an access descriptor. An
access descriptor contains information about:
subscripts, loop nests and bounds, and the de­
clared shape of the array. As with intraprocedural
dependence analysis in PTRAN, we allow a linear
combination of induction variables in the sub­
scripts and loop bounds. To capture the effects of
arguments, we also allow a linear combination of
unmodified formal parameters in the subscripts
and loops bounds, and in the dimension state­
ment defining the shape of the accessed array.
When processing a call site, the corresponding ar­
guments will be substituted for these formal pa­
rameters.

Consider Figure 4a where subroutine P con­
tains a definition of the array parameter A. When
summarizingP, the context of this definition (sub­
scripts, loop nest and bounds, and dimension in­
formation) is retained. At a call site of P, this

Do 30, i = 2, 100
Call P(A, i)

= A(i-1, 3)
30 Continue

Subroutine P(A, K)
Dimension A(100, 100)
A(K, 1) =
Do 20, i = 1, 50

20 Continue
Return
End

(a)

Do 30, i 1 = 2, 100
A(i1 , 1) =
Do 20, i2 = 1, 50

A(ilt 2 * i2) =
20 Continue

=A(i1 -1,3)
30 Continue

(b)

FIGURE 4 FIDA functionalitv.

information is propagated. substituting actual pa­
rameters for their corresponding formals. This
method provides functionally similar information
to that obtained from data dependence analysis
after inlining. It differs in that only the information
of interest is "inlined": superfluous information
(for the purposes of the dependence test) is not
collected.

Figure 4b represents a functional view of the
information that would be present using FIDA.
(No code modification is actually performed.) By
using FIDA, we can detect that the outer loop sur­
rounding the call in Figure 4a can be executed in
parallel. Less precise interprocedural analysis
would force serial execution of this loop.

Where the shapes of references are consistenL
both Lin and subscript-by-subscript analysis are
performed. Furthermore, Lin [18] is employed to
handle cases where array dimensions and sizes
are not consistent across routines, or where offsets
into array arguments are used.

l\"ote that this method allows traditional depen­
dence testing schemes to be employed. In particu­
lar, we utilize the Burke-Cytron hierarchical de­
pendence method [18] as well as the following
dependence tests: GCD, Banerjee-Wolfe. and trap­
ezoidal Banerjee-Wolfe [24, 25].

3.2 Implementation Highlights

In this section we present a high level description
ofFIDA (Fig. 5), which is broken into three phases
for each routine being analyzed.* A FIDA descrip­
tor is one of two types: access or call site. An ac­
cess descriptor represents an actual reference
(read or write) to the array. A call site descriptor is
created when a nonlocal arrav access exists due to
a call site, i.e., an access descriptor exists at a call
site.

During the clef/use generation phase, defini­
tions (uses) are created at call sites in the classical
manner using the PMOD(PUSE) set. However,
when a definition (use corresponds to a variable
for which FIDA descriptors exist, this definition
(use) is marked as a special FIDA clef (use). This
maintains the number of definitions (uses) as the
same number as in the classical approach, leaving
data flow analysis unaffected by FIDA.

A FIDA clef (use) is used to communicate with
the dependence analysis phase. During this
phase, the context of a FIDA descriptor (subscript
reference, loop information, and dimension infor­
mation) may be required. When this is the case,
we utilize the FIDA description information by
substituting references to formal parameters with
their corresponding actuals.

In the PTRAN system, dependence analysis is
performed on demand as determined bv a cost
model of the target architecture. Under .this ap­
proach only dependencies that will provide useful
parallelism if disproven are tested. If breaking a
dependence will not result in any useful parallel­
ism, the dependence is not tested. For example,
once a loop is marked sequential due to either
insufficient granularity or some other dependence
that cannot be disproven, dependence analysis
of other loop-carried dependencies is not benefi­
cial and is not performed.

This technique increases the efficiency of de­
pendence analysis by eliminating some de pen­
dencies from consideration. It is also beneficial in
the context of FIDA, as descriptor translation is
directly tied to dependence analysis. If depen­
dence analysis information is not required for a
particular call site, translation is not performed.

* Currently the FIDA algorithm is limited to Fortran 77 as it
does not handle recursion. However. as it is similar to AI. we
anticipate that techniques to handle recursion with this ap­
proach [16l will apply. as well as those mentioned in Havlak
and Kennedy f12].

I0:TERPROCEDLRAL ARRAY ANALYSIS 259

For each routine, P, in a bottom-up traversal of the
call graph:

1. Def/Use Generation

• For each call site in P:
Create a FIDA def (use) for each array ar­
gument and global variable if it is in the
P MOD (PU SE) set for the called routine.

2. Dependence Analysis (Performed on de­
mand)

• If a FIDA def/use is involved:
Translate the FIDA (call site or access) de­
scriptor(s) to the call site environment us­
ing the appropriate arguments. This may
require propagating through multiple call
site descriptors.

3. Summarization

• For each non-local array reference:
Create an access descriptor (subscript ex­
pressions, loop bound and nesting informa­
tion, and dimension information).

• For each call site with a summarized non­
local array reference:
Create a call site descriptor (argument ex­
pressions, loop bound and nesting informa­
tion, and dimension information).

• Collect the FIDA descriptors created in
the previous two steps into lists associated
with each non-local array variable.

FIGURE 5 An overview of the FIDA algorithm.

This characteristic distinguishes FIDA from all
other previous methods. For each routine, trans­
lated descriptors are cached to avoid redundant
translations.

During the summarization phase the "context"
for each nonlocal (formal or global) array access is
captured in a F IDA descriptor (access or call site).
An access descriptor represents an explicit refer­
ence. A call site descriptor represents an implicit
reference via a call site.

Callahan [9] states that the amount of sum­
mary information can grow exponentially with the
depth of the call graph. We avoid this potential
exponential increase of storage by postponing the
propagation of call site descriptors until the infor­
mation is required by dependence analysis. Thus,
the number of FIDA descriptors can grow (at
worst) linearly with respect to the program.

260 HIND ET AL.

4 THE EXPERIMENT

The PTRAN parallelization system [1-3] was used
for our experiment. In addition to detecting paral­
lelism, PTRAN has also been shown to be a useful
vehicle for gathering experimental data [26 J. We
ran several Fortran benchmarks, varying the lev­
els of interprocedural analysis and recording vari­
ous metrics.

The benchmarks we ran are:

1. Perfect [27]: The Perfect Club benchmarks
are a collection of applications that were
contributed by various large system vendors
and that have been used to characterize su­
percomputer performance.

2. SPEC [28]: The System Performance Eval­
uation Cooperative benchmark programs
are designed to establish a fair method of
evaluating workstation performance on typ­
ical customer applications. The experiment
includes members of the Fortran subset of
Release 1.

3. LINPACK [29]: The LINPACK library is a
collection of linear algebra subroutines. We
modified the main subroutines to give val­
ues to their parameters if they are used in a
dimension statement.

As the environment in which an experiment is
performed affects the results obtained, we present
an overview of our environment in the next sec­
tion.

4.1 The Environment

PTRAN takes a Fortran 77 program and automati­
cally detects parallelism, producing a parallel For­
tran program. In this section we describe the envi­
ronment by specifying the target model, the
analysis and transformations performed by
PTRAN, and two Fortran 77 language issues.

Parallelism Model

The PTRAN target model of parallelism allows
loops to be designated as parallel (DOALL) or se­
quential. In addition to loop-level parallelism,
nonloop parallelism is allowed in a 1 1 cobe­
gin ... coend 1 1 style, with a DAG of sequencing
constraints allowed among parallel begin ... end
blocks [30]. IBM Parallel Fortran [31] andPCF
[32] are examples of languages that fit our model.

Analysis

The PTRAN system includes a rich collection of
pro~am analyses. As a description of these analy­
ses IS beyond the scope of this article, we refer the
reader to the cited articles for details, and list a
summary below:

1. lnterprocedural analysis [1 J: alias analysis
(see "Standard Fortran Versus Fortran
Practice" in Section 4), constant propaga­
tion, and mod and exposed use

2. Program dependence graph for nonloop
parallelism [33]

3. SSA-based data flow analysis [34] and the
sparse evaluation graph [35 J

4. Demand-driven dependence analysis
5. Dependence tests using the Burke-Cytron

hierarchical framework [18]: GCD, Baner­
jee-Wolfe, Trapezoidal Banerjee-Wolfe [24,
25]

6. Standard intraprocedural analysis: con­
stant propagation, induction variable anal­
ysis, loop normalization

7. Static cost analysis for architecture-specific
effective parallelization [3]

In Section 4.3 we describe how the cost analysis
phase is used in one of the metrics.

Transformations

Privatization is the only transformation (other
than constant propagation) implemented in the
version of PTRAN used in the experiment. t This
fact, combined with our target loop model, implies
~hat only loo~s that are parallelizable in their orig­
mal form (With the aid of loop privatization) are
marked parallel.

Scalar privatization for loops and nonloops is
performed [30, 37]. To enhance the effect of pri­
vatization, interprocedural analysis includes flow­
sensitive kill information for formal parameters.
We also perform array privatization when depen­
dence analysis can prove its legality.:j: This privat­
ization may require run-time support or addi­
tional storage to ensure proper "copy out"
semantics.

t Although a general loop distribution algorithm has been
implemented in PTRAN [36], its interface with the cost model is
not complete. Thus, it is not included in this experiment.

:j: This is not as powerful as the element-level data flow
analysis for arrays previously described [38-41 J.

Standard Fortran Versus Fortran
Practice

The benchmarks we measure are written in For­
tran 77. Although the Fortran 77 standard does
not allow them, two well-known programming
practices appear in these benchmarks. The first
makes use of the underlying storage model most
often implemented by Fortran compilers, which
allow arrays to exceed their declared bounds. Al­
though this is not legal Fortran 77, it is neverthe­
less done in practice.

Fortran 77 also prohibits assignment to an in­
terprocedurally ali~sed parameter or common
variable [42]. Several examples in the Fortran 77
benchmarks violate this prohibition.

A parallelizing compiler for Fortran 77 must
make a decision whether to recognize the stan­
dard or to accept common practices that are pro­
hibited by it. PTRAN handles this problem by de­
fining two switches that can be set to allow either
of these features. As these features are present in
the test programs we analyze, we allow both fea­
tures in this experiment.

4.2 lnterprocedural Analysis Parameters

The PTRAN system computes classical mod/ ex­
posed use interprocedural analysis by default. For
our experiments we implemented two additional
levels of interprocedural analysis. The levels of in­
terprocedural analysis are:

1. Pessimistic: No interprocedural information
is known. To uphold safety; all globals and
formal parameters are assumed to be both
modified and used by a called routine.
Likewise, conservative alias information is
assumed (see "Standard Fortran Versus
Fortran Practice").

2. Classical: Flow-insensitive mod and flow­
sensitive use analysis is performed on each
called routine before call sites are processed
as described in Section 2.

3. FIDA: The precise scheme for arrays de­
scribed in Section 3. Classical interproce­
dural analysis is used for scalars.

4.3 Metrics

Because the goal of the experiment is to measure
the effectiveness and efficiency of various ap­
proaches, our metrics fall into two categories:

INTERPROCEDURAL ARRAY ANALYSIS 261

those that measure parallelism detection and
those that measure compilation overhead. We de­
scribe each in the next two sections.

EHectiveness lor Paral/elization

We utilize two metrics to measure the effectiveness
of all levels of interprocedural array analysis and a
third metric to measure the effectiveness of FIDA.
The first two metrics are the number of parallel­
ized loops and the ideal speedup.

Ideal speedup is a static measure of the paral­
lelized program, which disregards the costs asso­
ciated with parallelism overhead (startup and
management) and assumes an unlimited number
of processors. It is found by statically estimating
the cost of instructions along the critical path in
both sequential and parallel cases and computing
the ratio of the two [3]. Therefore, it is an upper
bound on the amount of obtainable speedup.

To obtain a more detailed measure of effective­
ness, we inspect the results of dependence analy­
sis. Of particular interest are those dependence
tests where the information provided by our in­
terprocedural analyses differ-dependence can­
didates involving call site array accesses. We refer
to these candidates as the target dependence can­
didates. These candidates are used in our third
effectiveness metric, the independence success
rate, which is defined as the number of target de­
pendence candidates proven independent divided
by the number of target dependence candidates.

As dependence testing in our experiment is the
same for all forms of interprocedural array analy­
sis, only the precision of the input information can
affect its result. In the case of the target depen­
dence candidates, both pessimistic and classical
analyses are not precise enough to prove indepen­
dence. This results in a success rate of 0% for
these approaches. In contrast, FIDA can provide
enough information to prove independence, mak­
ing a non-zero success rate achievable. Thus, this
metric captures how often precise information is
potentially beneficial. Unlike the previous metrics,
it is not dependent on the transformations that are
performed.

EHidency

We measure two types of efficiency for FIDA: stor­
age and time. We assess storage efficiency by
measuring: the number of access descriptors for
formal parameters, the number of access descrip-

262 HIND ET AL.

tors for common blocks, and the number of call
site descriptors.

These metrics give an estimate of the amount of
storage required by this technique regardless of
whether the information is used or not. Recall that
the number of access descriptors corresponds to
the total number of definitions and uses to nonlo­
cal arrays in the program. A call site descriptor is
created when a nonlocal array is accessed through
a call. This number is bounded by the number of
call sites in the program.

We capture time efficiency by recording two
pairs for each nonlocal array variable, the maxi­
mum and average length of all access lists and the
examined part of all access lists.

The first pair of metrics describes the amount
of information associated with a FIDA clef/use.
This information is composed of a list of access
descriptors linked by call site descriptors. The
maximum length represents an upper bound on
the amount of translation that can be performed
for any definition or use in the program. The aver­
age length represents the average upper bound on
translation for the definitions and uses of the pro­
gram.

The second pair of metrics identifies how much
of this information is actually processed. As FIDA
performs both the translation of arguments to for­
mal parameters and dependence analysis with the
resulting information, on demand, the second pair
of metrics is a good measure of the time efficiency
of our approach.

4.4 Results

In this section we present the results of our experi­
ment using the parameters and metrics described
in the previous section.§ We ran the Perfect, SPEC,
and LINPACK benchmarks and report the results
in two parts: effectiveness and efficiency. Three
programs that are not included are FPPPP (unre­
lated compilation error) and SPICE (irreducible
flow graph) in the SPEC benchmarks, and SPEC77
(storage overflow) in the Perfect benchmarks.

EHectiveness

The second column of Table 1 reports the number
of loops in each program. The next three columns
describe how many of these loops are parallelized
using the three forms of interprocedural analysis.
A comparison of the results of the first two forms

§ These results correct an earlier version of this article [43".

of analysis seems to suggest an error, as in some
cases the difference in the number of parallelized
loops is greater than the number of loops with
calls. However, recall that the pessimistic analysis
does not capture any interprocedural information.
Thus, not only must it assume that all call sites
modify their arguments and global variables, but
also that worst case aliasing exists (see "Standard
Fortran Versus Fortran Practice"). As the num­
bers suggest, this conservative aliasing assump­
tion has a drastic effect on the number of paral­
lelizable loops.

Excluding pessimistic analysis, the levels of in­
terprocedural analysis differ only in how they
summarize interprocedurally accessed arrays. As
interprocedural accesses arise only at call sites,
only loops with calls are affected by whether clas­
sical interprocedural analysis or FIDA is per­
formed. Thus, these loops represent an upper
bound on the potential increase of parallelized
loops due to a more precise interprocedural analy­
sis. The sixth column of Table 1 identifies the
number of loops that contain subroutine or func­
tion calls. To the right of this column is the num­
ber of these loops that are parallelized for the
three levels of interprocedural array analysis.

Comparing the classical approach (where ar­
rays are treated like scalars) with F IDA, we see
three routines in the LINPACK benchmarks where
additional parallel loops are detected: SGEDL
SPODI, and SSVDC. Each of these loops contains
calls to the much documented routine SAXPY,
where independent columns of a matrix are modi­
fied on different loop iterations.ll

The number of parallel loops can be a mislead­
ing metric, as some loops are more critical to the
running time of a program than others. Table 2
presents ideal speedup .figures for the three in­
terprocedural analysis techniques. Although some
programs exhibited a dramatic increase in the
number of parallel loops between pessimistic and
classical analysis, the increase in ideal speedup is
sometimes more modest. We attribute this to the
fact that some loops that are parallelized are not
critical to a program's execution. Nevertheless,
some programs show a substantial increase
(FL052Q, DYFESM) in ideal speedup when clas­
sical interprocedural analysis is used. Once again,
the benefit of a precise technique is limited to the

II A slight modification to the SAXPY code was performed to
simulate constant folding of the value returned by the YIOD
built-in function. Similar modifications were made in [11. 12:.

INTERPROCEDURAL ARRAY ANALYSIS 263

Table 1. Number of Parallel Loops for the Perfect Club, SPEC, and LINPACK
Benchmarks

No.
Parallel Loops

No. Loops
Parallel Loops

Program Loops Pess Class FIDA w/Calls Pess Class FIDA

Perfect
ARC2D 219 1 104 104 1 0 0 0
BDNA 219 13 67 67 9 0 0 0
DYFESM 203 9 67 67 21 0 0 0
FL052Q 186 22 135 135 9 0 7 7
MDG 52 9 11 11 7 0 0 0
MG3 155 2 3 3 12 0 0 0
OCEAN 135 45 73 73 12 0 0 0
QCD2 157 25 87 87 40 0 0 0
TRACK 87 16 39 39 18 0 1 1
TRFD 38 1 1 1 6 0 0 0

SPEC
DODUC 280 17 220 220 19 0 2 2
MATRIX300 17 2 5 5 11 0 0 0
NASA7 130 3 48 48 8 0 0 0
TOMCATV 19 12 12 12 0 0 0 0

LINPACK
SGBCO 27 2 8 8 7 0 0 0
SGBFA 13 3 6 6 2 0 0 0
SGECO 24 2 5 5 7 0 0 0
SGEDI 15 1 4 6 4 0 0 2
SGEFA 10 0 3 3 2 0 0 0*
SGESL 10 0 3 3 4 0 0 0
SPBCO 24 3 9 9 7 0 0 0
SPOCO 24 3 9 9 7 0 0 0
SPODI 11 0 3 5 4 0 0 2
SPPCO 24 2 8 8 7 0 0 0
SQRDC 19 0 4 4 4 0 1 1
SSIDI 17 0 3 3 3 0 0 0
SSIFA 13 0 0 0 2 0 0 0
SSPCO 26 2 5 5 3 0 0 0
SSVDC 36 8 11 13 11 0 0 2
STRCO 15 2 8 8 3 0 0 0
STRDI 11 0 3 3 4 0 0 0

* One parallel loop can be found using range analysis on the function call isamax.

three LINPACK programs, two of which show sig­
nificant improvement.

Table 3 illustrates the effect of FIDA on target
dependence candidates, i.e., dependencies in­
volving a call site where the corresponding formal
or common block element is an array. This table
reports the number of target dependence candi­
dates (CAND) and the number of these proven in­
dependent due to the additional information pro­
vided by FIDA. The last column gives the success
rate. As no subscript information is present using
the pessimistic or classical approach, each of
these candidates would be classified as a depen­
dence (success rate = 0%).

In 6 of the 32 programs a nonzero success rate
is found; dependencies were eliminated solely due
to the more precise array access information pro­
vided by FIDA. However, in three of these pro­
grams, the removal of these dependencies did not
result in an increase in parallelism.

In 26 of the 32 programs, using a precise in­
terprocedural analysis technique does not en­
hance automatic parallelization. This does not
imply that automatic parallelization of these pro­
grams cannot benefit from precise interprocedural
array analysis. By transforming loops with depen­
dencies, parallelization can often be obtained. For
example, in Blume and Eigenmann [44] the au-

264 HIND ET AL.

Table 2. Ideal Speedup for the Perfect Club,
SPEC, and LINPACK Benchmarks

No.
Ideal Speedup

Program Stmts Pess Class FIDA

Perfect
ARC2D 2,544 1.13 1.95 1.95
BDNA 3,825 3.46 3.87 3.87
DYFESM 2,619 1.05 11.39 11.39
FL052Q 2,325 1.17 1,322.81 1,322.81
MDG 1,049 1.22 2.23 2.23
MG3 2,550 1.01 1.02 1.02
OCEAN 2,050 1.02 1.49 1.49
QCD2 1,987 1.06 1.23 1.23
TRACK 1,823 1.08 1.13 1.13
TRFD 384 1.04 1.04 1.04

SPEC
DODUC 5,066 1.34 2.97 2.97
MATRIX300 208 1.11 4.17 4.17
NASA7 773 1.03 1.37 1.37
TOMCATV 225 48.71 48.71 48.71

LINPACK
SGBCO 400 1.12 1.45 1.45
SGBFA 183 1.09 1.15 1.15
SGECO 346 1.08 1.28 1.28
SGEDI 191 1.09 1.15 37.70
SGEFA 149 1.06 1.10 1.10
SGESL 130 1.09 1.55 1.55
SPBCO 316 1.13 1.18 1.18
SPOCO 295 1.12 1.17 1.17
SPODI 135 1.07 1.13 74.96
SPPCO 314 1.13 1.17 1.17
SQRDC 334 1.13 1.30 1.30
SSICO 544 1.10 1.27 1.27
SSIDI 168 1.10 1.12 1.12
SSIFA 249 1.06 1.11 1.11
SSPCO 603 1.12 1.29 1.29
SSVDC 612 1.09 1.34 1.73
STRCO 217 1.28 3.86 3.86
STRDI 154 1.12 1.18 1.18

thors show significant speedup in ARC2D by per­
forming some sophisticated transformations by
hand. To perform these transformations automat­
ically, precise interprocedural analysis is usually
required. Simple transformations such as loop
distribution can also benefit from precise informa­
tion [17].

FIDA EHiciency

In this section we present efficiency results for
FIDA using the metrics described in "Efficiency"
in Section 4. The metrics concerning space are
given in Table 4: the number of access descriptors

and the number of call site descriptors. Access
descriptors are divided into accesses of formal pa­
rameters (FP) and common blocks (CB).

Recall that an access descriptor is created for
each access to a nonlocal array. A call site de­
scriptor is created for each call site that is associ­
ated with at least one FIDA clef/use. These de­
scriptors, which are created regardless of whether
they are used, represent the amount of space
overhead for FIDA. The size of each access de­
scriptor is dependent on the number of dim en­
sions, the number of formal parameters occurring
in the descriptor, and the depth of the loop nest.
The size of the call site descriptor is dependent on
these characteristics as well as the number of ar­
guments in the call.

The number of access descriptors does not nec­
essarily correlate to the program size. For exam­
ple, the ratios of statements to access descriptors
in ARC2D and OCEAN differ by about a factor of 6.
Furthermore, the proportion between formal pa­
rameter and common block descriptors varies
widely. This proportion is an attribute of the
method of data communication between subrou­
tines. In ARC2D, an average of almost seven formal
parameters per routine is found. In DYFESM,
where common blocks are more prevalent, this ra­
tio is less than one [26 J.

Whereas Table 4 represents information over­
head, Table 5 illustrates how this information is
used. In the second and third columns of Table 5
we capture the access descriptor list length associ­
ated with a particular formal parameter or com­
mon block. We report the maximum and average
lengths. They do not correspond to any additional
storage (except the pointer required to link them
together), but do capture the magnitude of infor­
mation associated with each nonlocal array.

The large list length associated with the Perfect
program MG3 requires explanation. Through a
chain of calls, portions of an array of 60,000 ele­
ments are passed through many routines. Each
routine accesses parts of the array and calls sev­
eral other routines that also access it. At the end of
these call chains is a routine, CPASSM, which
makes 208 references to the array. As CPASSM is
called eight times by each of several routines, the
list of descriptors grows quickly.

As this list comprises several duplicate sublists,
each of which contains a potentially unique call
site descriptor, it does not require a lot of storage.
Thus, no storage or performance penalty is paid
for this excessive size, unless it is examined.
Moreover, a simple optimization can be per-

INTERPROCEDURAL ARRAY ANALYSIS 265

Table 3. FIDA Independence Success Rate for the Perfect Club, SPEC, and LINPACK Benchmarks

Total

]';o. l"o. Independent]';o.
Program Candidates Independent Rate(%) Candidates

Perfect
ARC2D 152 0 0 139
BDNA 197 0 0 187
DYFESM 164 0 0 108
FL052Q 54 0 0 34
MDG 46 0 0 44
MG3 64 0 0 58
OCEAN 1,048 0 0 1,045
QCD2 177 22 12 142
TRACK 145 0 0 107
TRFD 10 0 0 8

SPEC
DODUC 245 30 12 102
MATRIX300 46 0 0 46
NASA7 70 0 0 41
TOMCATV 3 0 0 3

LINPACK
SGBCO 76 0 0 76
SGBFA 10 0 20 10
SGECO 75 0 0 75
SGEDI 28 21 75 28
SGEFA 7 0 0 7
SGESL 7 0 0 7
SPBCO 65 0 0 65
SPOCO 65 0 0 65
SPODI 31 24 77 31
SPPCO 61 0 0 61
SQRDC 11 1 9 11
SSICO 87 0 0 87
SSIDI 35 0 0 35
SSIFA 9 0 0 9
SSPCO 85 0 0 85
SSVDC 31 6 19 31
STRCO 19 0 0 19
STRDI 8 0 0 8

formed to prevent this list from growing this large
without a loss in precision [21 J.

As dependence analysis is performed on de­
mand, an element on the list is inspected only if all
preceding elements have proven independence.
The last two columns of Table 5 record the num­
ber of list elements inspected. Notice that even
though some programs have a large list maximum,
the length of the list that is actually inspected is
usually small.

This result is consistent with the effectiveness
results reported in the previous section. Once in­
dependence cannot be proven for a F IDA refer­
ence, whatever remains of its list is not translated
or tested. As the previous section showed that few
programs exhibited an increase in parallelism us­
ing FIDA; a limited amount of list inspection is
expected. This illustrates an important advantage
of this approach when parallelization is the goal:
much of the overhead-list traversal and transla­
tion-is incurred only when it may be beneficial.
When independence cannot be proven, the com­
pilation performance penalty is negligible.

An inspection of QCD2 explains the large list

Parameters Common Blocks

~0. Independent :\o. :'\o. Independent
Independent Rate(%) Candidates Independent Rate(%)

0 0 13 0 0
0 0 10 0 0
0 0 56 0 0
0 0 20 0 0
0 0 2 0 0
0 0 6 0 0
0 0 3 0 0

20 14 35 2 6
0 0 38 0 0
0 0 2 0 0

0 0 143 30 21
0 0 0 0 0
0 0 29 0 0
0 0 0 0 0

0 0 0 0 0
2 20 0 0 0
0 0 0 0 0

21 75 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

24 77 0 0 0
0 0 0 0 0
1 9 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
6 19 0 0 0
0 0 0 0 0
0 0 0 0 0

length examined. In addition to the maximum list
of 193, list of 108 elements exists and is fully ex­
amined. This program contains a subroutine
(MULT) with three array parameters of size 18
(A,B,C). In the subroutine, C is computed as a
function of A and B. Although this computation
could have been performed in a nest of loops, it
was written as 18 assignment statements, each of
which contained six uses to both arrays A and B.

As each of these references generates an access
descriptor, 108 descriptors are created for each of
the arrays A and B.

This routine is then called twice within a loop
(in routine ROTMEA). The first column of an 18 by
2 matrix is written by the first call, and the second
column is written in the second call. As no overlap
exists between these two calls, each of the 108
references of both lists is translated and tested.
Although this results in an exorbitant number of
dependence tests, a simple program transforma­
tion could reduce both lists to one element. This
transformation would not only reduce the number
of translations and dependence tests (by a factor
of 108 to 2 and 1, respectively), but also reduce

266 HIND ET AL.

Table 4. FIDA Storage Efficiency for the Perfect Club, SPEC,
and LINPACK Benchmarks

1\o.
Program Statements Parm

Perfect
ARC2D 2544 1.449
BONA 3.825 1.015
DYFESM 2,619 154
FL052Q 2,325 665
MDG 1,049 230
MG3 2550 1~590

OCEAN 2,050
QCD2 1,987
TRACK 1,823
TRFD 384

SPEC
DODUC 5.066
MATRIX300 208
NASA7 773
TOMCATV 225

LINPACK
SGBCO 400
SGBFA 183
SGECO 346
SGEDI 191
SGEFA 149
SGESL 130
SPBCO 316
SPOCO 295
SPODI 135
SPPCO 314
SQRDC 334
SSICO 544
SSIDI 309
SSIFA 249
SSPCO 603
SSVDC 612
STRCO 217
STRDI 154

the list size, and hence, the number of access de­
scriptors from 108 to 1.

Consider the results for LINPACK in Table 5. In
2 of the 17 routines (SGEDI and SPODI), the aver­
age examined list length is relatively close to the
average list length. This contrasts to the other pro­
grams, where the average length examined is close
to one. Tables 1 to 3 show that independence and
new parallelism are detected for these two routines
although it is not for the other 16. Once again, the
extra processing implied by examining the access
lists is only paid when it might be beneficial.

189
495
501

41

130
9

76
1

76
38
73
52
38
32
59
59
32
59
79

119
70
44

119
91
40
32

No. Descriptors

Access
Total

Call Call
CB Total Site Sites

177 1~626 35 5:3
694 1.709 74 87
512 666 98 127
210 875 13 94

37 267 20 .34
16 1.606 42 ;);)

18 207 37 242
152 647 41 109
284 785 22 68

14 55 1 13

2.109 2,239 42 117
0 9 10 27

374 450 17 24
0 1 0 8

0 76 3 20
0 38 0 3
0 73 3 20
0 52 0 4
0 38 0 3
0 32 0 4
0 59 1 18
0 59 1 18
0 32 0 4
0 59 1 18
0 79 0 9
0 119 7 27
0 70 0 14
0 44 0 7
0 119 7 18
0 91 0 24
0 40 0 8
0 32 0 4

To further assess the frequency of dependence
tests involving interprocedurally accessed array
references, we provide two additional tables. Ta­
ble 6 records the number of interprocedural de­
pendence candidates involving arrays, partition­
ing these into arrays passed by parameters and
arrays that reside in common blocks.

The second column reports the total number of
dependence candidates tested in our demand­
driven approach. The third and fourth columns
give the number of dependence candidates for
formal parameters and common blocks, respec-

Il\TERPROCEDURAL ARRAY ANALYSIS 267

Table 5. FIDA Performance Efficiency for the Perfect
Club, SPEC, and LINPACK Benchmarks

List Length
Examined

List Length

Program Maximum

Perfect
ARC2D 305
BONA 761
DYFESM 16
FL052Q 88
MDG 243
MG3 6.682
OCEAN 56
QCD2 193
TRACK 82
TRFD 2

SPEC
DODUC 140
MATRIX300 24
NASA7 97
TOMCATV 1

LINPACK
SGBCO 19
SGBFA 7
SGECO 17
SGEDI 7
SGEFA 7
SGESL 7
SPBCO 8
SPOCO 8
SPODI 7
SPPCO 8
SQRDC 13
SSICO 8
SSIDI 9
SSIFA 6
SSP CO 8
SSVDC 13
STRCO 8
STRDI 7

tively, duplicating these columns from Table 3.
The percentage of interprocedural arrays tested is
small. This illustrates that the earlv focus on intra­
procedural dependence analysis has been justi­
fied.

To better judge the magnitude of the FIDA suc­
cess ratios, Table 7 reports the success ratios for
dependence tests with at least one FIDA reference
and those with no FIDA references.

4.5 Discussion

The results of the previous two sections illustrate
two points: (1) Precise interprocedural analysis,

Average .\1aximum Average

13.7 1 1.0
11.4 15 1.1
3.9 8 1.2
8.3 3 1.1

11.6 10 1.9
475.7 361 6.5

7.8 1 1.0
29.3 193 - '7 0 ..

9.7 15 2.9
1.2 1 1.0

19.2 91 2.8
14.5 1 1.0
24.7 17 1.6

1 1 1.0

7.4 2 1.0
6.3 6 2.0
7.3 3 1.1
6.0 6 5.2
6.4 2 1.1
6.4 3 1.3
7.2 2 1.0
7.2 3 1.2
6.1 6 5.3
7.2 3 1.1
7.4 6 1.3
7.0 1 1.0
7 .. 5 1 1.0
5.4 1 1.0
7.0 1 1.0
6.5 7 2.4
7.2 1 1.0
6.5 1 1.0

alone, is generally not enough to improve auto­
matic parallelization. (2) Parallelization under
FIDA is a "pay for what you get" technique and
therefore can be efficient.

The sophisticated interprocedural and intra­
procedural analyses used in this experiment did
not dramatically affect program parallelization.
From this, we do not feel that one may conclude
there is no reason to perform a precise interproce­
dural analysis. In fact. recent work [44, 45] has
shown that advanced transformations can signifi­
cantly improve parallelization and has called for
precise interprocedural analysis information. In
particular, we feel that loop distribution and array

268 HIND ET AL.

Table 6. Dependence Tests Using
Interprocedurally Accessed Arrays

Total
IPA Arrays

Program Candidates Parm Common

Perfect
ARC20 7,771 139 13
BONA 5,937 187 10
OYFESM 5,475 108 56
FL052Q 6,012 34 20
MDG 1,380 44 2
MG3 3,567 58 6
OCEAN 4,929 1,045 3
QC02 4,955 142 35
TRACK 2,796 107 38
TRFO 303 8 2

SPEC
OOOUC 6,346 102 143
MATRIX300 116 46 0
NASA7 3,330 41 29
TOMCATV 272 3 0

LINPACK
SGBCO 312 76 0
SGBFA 125 10 0
SGECO 264 75 0
SGEOI 173 28 0
SGEFA 98 7 0
SGESL 76 7 0
SPBCO 270 65 0
SPOCO 245 65 0
SPOOl 121 31 0
SPPCO 265 61 0
SQRDC 199 11 0
SSICO 413 87 0
SSIDI 169 35 0
SSIFA 153 9 0
SSPCO 477 85 0
SSVDC 390 31 0
STRCO 187 19 0
STRDI 100 8 0

privatization would benefit greatly from our analy­
sis. Other interprocedural transformations have
also been suggested [46].

If a precise form of analysis is required to per­
form these transformations, the efficiency of such
an analysis is paramount. Due to its demand­
driven implementation, FIDA is reasonably effi­
cient in the context of automatic parallelization.

5 RELATED WORK

In previous work [9-19], emphasis has been
placed on improving the precision of interproce­
dural analysis for array accesses. Although exper-

imental results appear in some of these articles,
most of it has been limited to the parallelization of
LINPACK with little empirical results concerning
efficiency.

Li and Yew [16, 17] evaluate the effectiveness
of their approach by reporting the number of par­
allel loops containing calls using the LINPACK
benchmarks. No information is presented pertain­
ing to the efficiency of their approach except stat­
ing that it runs 2.6 times faster than the Para­
phrase implementation of [15].

Havlak and Kennedy [11, 12] evaluate their
implementation of bounded regular sections using
LINPACK and a collection of other programs.
They measured the efficiency of their implemen­
tation in real-time as part of PFC. They report the
number of calls in parallel loops as well as the
number of dependencies removed using their ap­
proach.

Although a direct comparison with these two
works would be illustrative, it is not possible as
only Li and Yew report the number of parallel
loops with calls without loop distribution. Under
this scenario, they report a total of six parallel
loops in five LINPACK routines, all but one of
which we parallelize.~ The failure to parallelize the
loop in SGEF A is not a result of the precision of
dependence analysis, but rather a consequence of
PTRAN not being able to evaluate a function I SA­
MAX at compile-time. Furthermore, in programs
SQRDC and SGEDI, we detect an additional paral­
lel loop containing a call. Both of these loops were
not parallelized by Li and Yew [17].

The observation that more precise interproce­
dural analysis alone is not enough for effective
parallelization was also made by lrigoin et al. [4 7]
but no experimental numbers were presented.
They call for better programming practice as well
as new compilation techniques like array privat­
ization.

6SUMMARY

This work has presented an experiment designed
to capture the effectiveness and efficiency of in­
terprocedural analysis of array accesses in the
context of parallelization. It has shown that classi­
cal interprocedural analysis can provide a signifi­
cant improvement over pessimistic interproce-

~ Their original work incorrectly reported two additional
loops in SSIFA as being parallel without loop distribution [Li,
Personal Communication, 1992].

INTERPROCEDURAL ARRAY ANALYSIS 269

Table 7. Overall Independence Success Rate for the Perfect Club, SPEC, and LINPACK Benchmarks

Total

)\;o. :\"o. Independent :'-io.
Program Candidates Independent Rate(%) Candidates

Perfect
ARC2D 7,771 3,608 46 7,619
BDNA 5.937 935 16 5,740
DYFESM 5,475 2,176 40 5,311
FL052Q 6,012 3,437 57 5,958
MDG 1,380 93 7 1,334
MG3 3,567 86 2 3,503
OCEAN 4,929 297 6 3,881
QCD2 4,955 3,217 65 4,778
TRACK 2,796 981 35 2,651
TRFD 303 0 0 293

SPEC
DODUC 6,346 790 12 6,101
MATRIX300 116 1 1 70
NASA7 3,330 2,627 79 3,260
TOMCATV 272 131 48 269

LINPACK
SGBCO 312 47 15 236
SGBFA 125 53 42 115
SGECO 264 46 17 189
SGEDI 173 80 46 145
SGEFA 98 44 45 91
SGESL 76 28 37 69
SPBCO 270 67 25 205
SPOCO 245 68 28 180
SPODI 121 74 61 90
SPPCO 265 66 26 204
SQRDC 199 47 24 188
SSICO 413 45 11 326
SSIDI 169 9 5 134
SSIFA 153 4 3 144
SSPCO 477 45 9 392
SSVDC 390 64 16 359
STRCO 187 65 35 168
STRDI 100 46 46 92

dural analysis. It has also shown that a precise
analysis (FIDA), without the support of sophisti­
cated transformations, provides a limited benefit
over classical analysis.

A demand-driven analysis is more efficient
than the corresponding exhaustive analysis when
complete information is not needed. When a de­
mand-driven analysis requires interprocedural in­
formation, FIDA is an attractive approach. For
demand-driven dependence analysis, the perfor­
mance overhead is commensurate with benefits.
Further improvements in efficiency can be ob­
tained by simple optimizations [21 J.

Although FIDA was developed to test the effects
of interprocedural analysis in the context of auto­
matic parallelization, it can also be used in other
contexts. Wherever subscript analysis is required,
FIDA can be used to capture precise interproce­
dural information. Some other applications are:
analysis to reduce communication costs in distrib­
uted memory machines [48-50], automatic data
partitioning for distributed memory machines
[51], array privatization [38-40], and analysis of
locality to benefit cache performance [52, 53].

:\"on-FIDA FIDA

:\"o. Independent :\"o. :\"o. Independent
Independent Rate(%) Candidates Independent Rate(%)

3,608 47 152 0 0
935 16 197 0 0

2,176 41 164 0 0
3,437 58 54 0 0

93 7 46 0 0
86 2 64 0 0

297 8 1,048 0 0
3,195 67 177 22 12

981 37 145 0 0
0 0 10 0 0

760 12 245 30 12
1 1 46 0 0

2,627 81 70 0 0
131 49 3 0 0

47 20 76 0 0
51 44 10 2 20
46 24 75 0 0
59 41 28 21 75
44 48 7 0 0
28 41 7 0 0
67 33 65 0 0
68 38 65 0 0
50 56 31 24 77
66 32 61 0 0
46 24 11 1 9
45 14 87 0 0

9 7 35 0 0
4 3 9 0 0

45 11 85 0 0
58 16 31 6 19
65 39 19 0 0
46 50 8 0 0

Determining the effectiveness and efficiency of
these applications of FIDA.

ACKNOWLEDGMENTS

The authors thank Fran Allen for her encourage­
ment and support of this work. The PTRAN system
served as a useful vehicle for our experiments. We
wish to thank all members, past and present, of
the PTRAN team. We would also like to thank the
referees for their useful comments.

REFERENCES

[1]

[2]

F. Allen, M. Burke, P. Charles, R. Cytron, and J.
Ferrante, 1987 International Conference on Su­
percomputing. New York, NY: Springer-Verlag,
1987, pp. 194-211. (Also published in]. Paral­
lel Distributed Comput., vol. 55, pp. 617-640,
1988.
F. Allen, M. Burke, P. Charles, R. Cvtron, J. Fer­
rante, V. Sarkar, D. Shields, The 4th Interna­
tional Conference of Supercomputing. Santa

270 HIND ET AL.

Clara, CA: International Supercomputing Insti­
tute, Inc., 1989, pp. 89-93. Extended Abstract.

[3] V. Sarkar, Parallel Functional Programming
Languages and Compilers. l"<ew York: ACYl Press
Frontier Series, 1991, pp. 309-391.

[4] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Prin­
ciples, Techniques, and Tools. Reading, MA: Ad­
dison-Wesley, 1986, pp. 653-660.

[5] K. Kennedy,ProgramFlowAnalysis: Theory and
Applications. Englewood Cliffs, NJ: Prentice­
Hall, Inc., 1981, pp. 5-54.

[6] S. Richardson, M. Ganapathi, "lnterprocedural
analysis versus procedure integration," Informa­
tion Processing Lett., vol. 32, pp. 137-142,
1989.

[7] K.D. Cooper, M.W. Hall, L. Torczon, "Unex­
pected side effects of inline substitution: A case
study," A CM Lett. Programming Languages Sys­
tems, vol. 1, pp. 22-32, 1992.

[8] J. Banning, "A method for determining the side
effects of procedure calls." PhD thesis, Stanford,
University, 1978.

[9] D. Callahan, "A global approach to detection of
parallelism." PhD thesis, Rice University, Rice
COMP TR87 -50, April 1987.

[10] D. Callahan, K. Kennedy, 1987 International
Conference on Supercomputing. :\lew York, NY:
Springer-Verlag, 1987. (Also published in]. Par­
allel Distributed Comput., vol. 55, pp. 517-550,
1988.

[11] P. Havlak, K. Kennedy, Supercomputing '90.
IEEE Computer Society and ACM SIGARCII. Los
Alamitos, CA: IEEE Computer Society Press.
1990, pp. 952-961.

[12] P. Havlak, K. Kennedy, "An implementation of
interprocedural bounded regular section analy­
sis." IEEE Trans. Parallel Distributed Systems,
vol. 2, pp. 350-360, 1991.

[13] V. Balasundaram, K. Kennedy, SIGPLAN '89
Conference on Programming Language Design
and Implementation. Portland, Oregon: ACM,
1989, pp. 41-53.

[14] V. Balasundaram, "A mechanism for keeping
useful internal information in parallel program­
ming tools: The data access descriptor.'']. Paral­
lel Distributed Comput., vol. 9, pp. 154-170,
1990.

[15] R. Triolet, F. lrigoin, P. Feautrier. SIGPLAN '86
Symposium on Compiler Construction. Palo Alto,
CA: ACM, 1986, pp. 176-185.

[16] Z. Li, "lntraprocedural and interprocedural data
dependence analysis for parallel computing,"
PhD thesis, University of Illinois, CSRD Report
No. 910, 1989.

[17] Z. Li, and P.-C. Yew, ACMISIGPLAN PPEALS
Conference. New Haven, CT: ACM, 1988, pp.
85-99.

[18] M. Burke, R. Cytron, SIGPLAN '86 Symposium

on Compiler Construction. Palo Alto, CA: ACM.
1986, pp. 162-175.

[19] P. Tang, 1993 International Conference on Su­
percomputing. Tokyo, Japan: AC~1, 1993, pp.
137-146.

[20] W. Pugh, "A practical algorithm for exact array
dependence analysis," Communications A CJ1,
vol. 35, pp. 102-115, 1992.

[21] M. Hind, "Full interprocedural dependence anal­
ysis." Technical Report, IBM T.J. Watson Re­
search Center, 1994. In preparation.

[22] Z. Li, P.-C. Yew, International Conference on
Parallel Processing. Cniversity Park, PA: Penn­
sylvania State University Press, 1988, pp. 221-
228.

[23] Z. Li, P.-C. Yew, "Program parallelization with
interprocedural analysis,"]. Supercomput., vol.
2, pp. 225-244, 1988. (Also at the 1988 Work­
shop on Programming Languages and Compilers
for Parallel Computing.)

[24 J U. Banerjee, Dependence Analysis for Supercom­
puting. The Kluwer International Series in Engi­
neering and Computer Science. Boston, ~1A: Klu­
wer Academic Publishers, 1988, pp. 101-148.

[25] M.J. Wolfe, Optimizing Supercompilers for Su­
percomputers. Cambridge, MA: MIT Press, 1989,
pp. 6-53.

[26] M. Burke, P. Carini, "Compile-time measure­
ments of interprocedural data-sharing in Fortran
programs." Technical Report RC 17389 76684,
IBM - T .J. Watson Research Center, l'\ovember
1991.

[27] .\1. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y.
Pang, R. Roloff, A Sameh, E. Clementi, S. Chin,
D. Schneider, G. Fox, P. Messina, D. Waler. C.
Hsiung, J. Schwarzmeier. K. Lue, S. Orszag, F.
Seidl, 0. Johnson, G. Swanson, R. Goodrum,].
Martin, "The Perfect Club benchmarks: Effective
performance evaluation of supercomputers.
Technical Report, University of Illinois at Gr­
bana-Champaign - Center for Supercomputing
Research & Development, l'\ovember 1988.

[28] J. Gniejewski, "SPEC benchmark suite: Designed
for today's advanced systems." Technical Re­
port, Systems Performance Evaluation Coopera­
tive, Fall 1989. SPEC :\Tewsletter, Volume 1. Is­
sue 1.

[29] J.J. Dongarra, J.R. Bunch. C.B. Moler. G.W. Ste­
wart, Linpack Users' Guide. Philadelphia, PA:
SIAM Press, 1979, pp. 1.1-11.23.

[30] R. Cytron, M. Hind, W. Hsieh, SIGPLAN '89
Conference on Programming Language Design
and Implementation, Portland, Oregon: AC.VL
1989, pp. 54-68.

[31] IBM, Parallel Fortran - Language and Library·
Reference. Armonk, NY: IBM, March 1988, pp.
1-474. First Edition.

[32] Parallel Computing Forum, "PCF parallel For-

tran extensions," Fortran Forum, l\ew York:
ACM Press, vol. 10, 199L pp. 1-57.

[33] J. Ferrante, K.J. Ottenstein, J. Warren, "The pro­
gram dependence graph and its use in optimiza­
tion," AC!l1 Trans. Programming Languages
Systems, vol. 9, no. 3, pp. 319-349, 1987.

[34] R. Cytron, J. Ferrante, B.K. Rosen, M.l\.
Wegman, F.K. Zadeck, "An efficient method for
computing static single assignment form and the
control dependence graph," AC:l1 Trans. Pro­
gramming Languages Systems, vol. 14, pp. 451-
490, 1991.

[35] J.-D. Choi, R. Cytron, J. Ferrante, 18th Annual
ACM Symposium on the Principles of Program­
ming Languages. Orlando, FL: AC.\1, 199L pp.
55-66.

[36 J B.M. Hsieh, M. Hind, R. Cytron, Supercomputing
'92, Minneapolis, Ml\: IEEE Computer Society
Press, ~ovember 1992, pp. 204-213.

[37] M. Burke, R. Cytron, J. Ferrante, W. Hsieh, "Au­
tomatic generation of nested, fork-join parallel­
ism,"]. Supercomput. vol. 2, pp. 71-88, 1989.

[38] P. Feautrier, 1988 International Conference on
Supercomputing. St. Malo, France: ACM, 1988,
pp. 429-441.

[39] Z. Li, 1992 International Conference on Super­
computing. Washington, DC: ACM, 1992, pp.
313-322.

[40] D.E. Maydan, S.P. Amarsighe, M.S. Lam, "5th
Workshop on Languages and Compilers for Par­
allel Computing." Technical Report YALEU/
DCS/RR-915, Yale Cniversity, August 1992.

[41] P. Tu, D. Padua, 6th Workshop on Languages
and Compilers for Parallel Computing, Portland,
Oregon: Springer-Verlag, 1993, pp. 500-521.

[42] American .'<ational Standards Institute: "Pro­
gramming Language Fortran." Technical Report.
ANSI X3.9-1978. American :'1/ational Standards
Institute, January 1978.

[43] M. Hind, M. Burke, P. Carini, S. Midkiff, 3rd
Workshop on Compilers for Parallel Computers,
Volume 2. Vienna: University of Vienna, 1992.

ll\TERPROCEDURAL ARRAY ANALYSIS 271

[44] W. Blume, R. Eigenmann, "Performance analysis
of parallelizing compilers on the perfect bench­
marks programs." Technical Report, University
of Illinois at Urbana-Champaign, May 1992. (To
appear in IEEE. Trans. Parallel Distributed Sys­
tems.)

[45] R. Eigenmann, J. Hoeflinger, Z. Li, D. Padua,
Languages and Compilers for Parallel Comput­
ing. Santa Clara, CA: Springer-Verlag, 1991, pp.
65-83.

[46] M.W. Hall, K. Kennedy, K.S. McKinley, Super­
computing '91. Albuquerque, l\M: IEEE Com­
puter Society Press, 1991, pp. 424-434.

[47] F. lrigoin, P. Jouvelot, R. Triolet, 1991 Interna­
tional Conference on Supercomputing. Cologne,
Germany: ACM Press, 1991, pp. 244-251.

[48] K. Knobe, J.D. Lukas, G.L. Steele Jr, "Data opti­
mization: Allocation of arrays to reduce commun­
ication on SIMD machines,"]. Parallel Distrib­
utedComput., vol. 8, pp. 102-118,1990.

[49] J. Li, M. Chen, "Compiling communication-effi­
cient programs for massively parallel machines,"
IEEE Trans. Parallel Distributed Systems, vol. 2,
pp. 361-376, 1991.

[50] M. Gupta, E. Schonberg, 6th Workshop on Lan­
guages and Compilers for Parallel Computing,
Portland, Oregon: Springer-Verlag, 1993, pp.
216-233.

[51 J M. Gupta, P. Banerjee, "Demonstration of auto­
matic data partitioning techniques for paralleliz­
ing compilers for multicomputers," IEEE Trans.
Parallel Distributed Systems, vol. 3, pp. 179-
193, 1992.

[52] J. Ferrante, V. Sarkar, W. Thrash, Lecture :'1/otes
in Computer Science, no. 589, 1991. Proceed­
ings of the Fourth International Workshop on
Languages and Compilers for Parallel Comput­
ing, Santa Clara, Califomia, August 1991.

[53] M.E. Wolf, M.S. Lam, SIGPLAN '91 Conference
on Programming Language Design and Imple­
mentation. SIGPLAN. Toronto, Canada: ACM,
1991, pp. 30-44.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

