PDS: A Performance Database Server

MICHAEL W. BERRY!, JACK J. DONGARRA!2, BRIAN H. LAROSE!, AND TODD A. LETSCHE!

'Department of Computer Science, University of Tennessee, Knoxville, TN 37996
*Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

ABSTRACT

The process of gathering, archiving, and distributing computer benchmark data is a
cumbersome task usually performed by computer users and vendors with little coordi-
nation. Most important, there is no publicly available central depository of performance
data for all ranges of machines from personal computers to supercomputers. We
present an Internet-accessible performance database server (PDS) that can be used to
extract current benchmark data and literature. As an extension to the X-Windows-based
user interface (Xnetlib) to the Netlib archival system, PDS provides an on-line catalog of
public domain computer benchmarks such as the LINPACK benchmark, Perfect
benchmarks, and the NAS parallel benchmarks. PDS does not reformat or present the
benchmark data in any way that conflicts with the original methodology of any particu-
lar benchmark; it is thereby devoid of any subjective interpretations of machine perfor-
mance. We believe that all branches (research laboratories, academia, and industry) of
the general computing community can use this facility to archive performance metrics
and make them readily available to the public. PDS can provide a more manageable
approach to the development and support of a large dynamic database of published

performance metrics. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

Given the current evolution of computer hardware
technologv. computer vendors are consistently
producing more advanced versions of current ma-
chines as well as introducing new architectures
that can cause significant increases in svstem per-
formance. This seemingly exponential growth in
machine performance is accompanied by new va-
rieties of computer benchmarks to track this
growth. Until recently. serial benchmarks [1! have

been the primary available measures of processor
[)

performance. With the advent of parallel bench-

Received July 1993

Revised November 1993

© 1994 by John Wiley & Sons. Inc.

Scientific Programming. Vol. 3. pp. 147-136 (1994
CCC 1058-9244/94/020147-10

marks [2. 3] the complexity of benchmark acqui-
sition and presentation will certainly increase. For
example. classifications of parallel benchmarks
may be based on communication characteristics.
processor utilization and load balancing. data lay-
out or mappings. and even parallel I/0 con-
structs. Hence. the number of variations of a sin-
gle parallel benchmark program can be large. The
ability to store. organize. and disseminate credible
computer benchmark data is of paramount im-
portance if we are to categorize the performance of
computers ranging from laptop computers (e.g..
Apple Powerbook) to massively parallel machines
(e.g.. Thinking Machines, CM-5).

The performance database server (PDS) devel-
oped at the University of Tennessee and Oak
Ridge National Laboratory is an initial attempt at
performance data management. This on-line
database of computer benchmarks is specifically

148 BERRY ET \AL.

designed o provide easy maintenance. data secu-
rity. and data integrity of the benchmark informa-
tion contained in a dynamic performance data-
base. In Section 2, we brielly discuss some of
the presentation formats currendy used for
benchmarks: we also give a short description of
Xnetlib [4]. which supports PDS. In Section 3.
we discuss four major categories of benchmarks
that we consider appropriate for PDS. The design
and implementation of PDS are presented in Sec-
tions 4 and 3. respectively: illustrations of sam-
ple PDS queries are also provided in Section 5.
Section 6 comprises a brief summary, a preview
of future work. and instructions for acquiring

PDS.

2 BENCHMARK PRESENTATIONS

Currently there are as many presentation formats
as there are benchmarks. Any PDS must be able
to present a variety of benchmark formats. and yet
standardize the actual storage of them. As an ex-
ample. consider the differences in the LINPACK
and Perfect benchmarks.

2.1 Extremes

The LINPACK benchmark [5] uses three num-
bers: n = 100 Mflops.* n = 1.000 Mflops. and
theoretical peak performance. The first two num-
bers reflect the solution of linear systems of order
100 and 1.000. respectively. Theoretical peak
performance is defined as the absolute upper
bound on performance that is enforced by archi-
tectural limits.

The Perfect benchmarks [6] are very different
from LINPACK. Perfect is a set of 13 scientific
application programs (over 50.000 lines of For-
tran-77) that are to be singly executed and mea-
sured for elapsed CPU time and Mflops. The per-
formance of each of the 13 programs can be
reported from an unoptimized (baseline) or opti-
mized run. Hence, there can be as many as 52
numbers produced for each machine configura-
tion considered.

LINPACK and Perfect are just two examples of
the high variability in benchmark presentations.
Nonetheless, these presentation formats are de-
rived from the very nature of the benchmarks
themselves and should be preserved at least in

* Millions of floating-point operations per second.

part. Indeed. from a database user’
it is desirable for any user mtelfd(,e to a bench-

l)(“[\[)f’("(l\(‘

mark collection to retrieve and present data in a
way consistent with the benchmark’s original de-
sign. That is. performance interpretation by the
interface should be minimized and left to the user.

To this end. we have designed PDS with a sim-
ple tabular format that involves displaying the
data in rows (machine von(i"urati()n) and columns
{(data. results. statistics. etc.). Graphical represen-
tations of tabular data. suc h as the representation
by SPEC [7] with the SPECmarks. are straightfor-
ward.

2.2 Xnetlib

The Netib software distribution system main-
tained at the University of Tennessee and Oak
Ridge National Ldl)nmton has been in develop-
ment for several vears and has established a large
database of scientific (numerical) software and lu-
erature. Netlib has over 120 different software li-
braries. as well as hundreds of articles and biblio-
graphic information.

Originally, Netlib software library access in-
\()l\ed the use of electronic mail to form and pro-
cess queries. However. in 1991, an X-windows
interface. Xnetlib. was developed by Dongarra et
al. [4 in order to provide a more immediate and
efficient access o the Netlib software libraries. To
date. there have been over 3.200 requests for the
Xnetlib tool. In turn, the number of Netlib acqui-
sitions has also escalated. In fact. there were over
86.000 Xnetlib-based transactions and over
150.000 electronic mail acquisitions from Netlib
in 1992 alone.

Before discussing the design of PDS within the
Xnetlib tool, we bneﬂ\ clas51f\ many of the most
popular benchmarks used toda}.

3 A TAXONOMY OF BENCHMARKS

Following the classification originally discussed by
Berry et al. [8], we examine benchmarks from two
perspectives: type and use.

3.1 Classification According to Type

Although there are numerous performance met-
rics, we classify them into four major categories, or
types: synthetic, kernel, algorithm, and applica-
tion.

Synthetic Benchmarks

Svnthetic benchmarks are not representative of
any real computation: rather. they exercise vari-
ous basic machine functions. 10Zone. a package
written by Bill Norcott (norcou_bill@tandem-
.com). primarily tests disk throughput by “*stress
testing’” the reading and writing of very large data
files. Dhrystones and Whetstones [1] are exam-
ples of once-popular synthetic benchmarks that
are rarely used today. Dhrystones were designed
to stress integer performance and use many string
operations. Whetstones consist of ten modules
that perform a variety of numerical computations
such that a significant portion of run-time is spent
in mathematical library routines and trigonomet-
ric functions. The use of Whetstones is on the de-
cline because they prevent vectorization and vari-
ous compiler-based optimizations.

Kernel-based Benchmarks

Kernel-based benchmarks contain sections. or
kernels. of a sample application code. A large li-
brary of routines with many different functions
may be characterized by a small code sample. An
example might be a loop that is processed millions
of times in the application. The Livermore Loops
[9] are representative of this type of benchmark.
These benchmark programs contain intensive
floating-point operations: and, as is typical of a
kernel benchmark. they stress a single functional
unit of the hardware.

Algorithm

Algorithm-based benchmarks are implementa-
tions of well-detined algorithms that vary slightly

PDs: A PERFORMANCE DATABASE SERVER 149

over different platforms. Algorithms that have
been optimized are implemented in that opti-
mized format. Because of the large number of
operations typically processed. however. small
variations in specific implementations or ma-
chine-specific calls can be masked in the long run.
Thus, barring new optimizations or radically new
approaches. these benchmarks give consistent
measures of performance over various platformns
and implementations. Examples of algorithm
benchmarks are LINPACK [5], Slalom [3]. and
the NAS Fortran kernels [10].

Application

Application benchmarks mav be complete sam-
ples of engineering. scientific, or business applica-
tions. These applications typically stress several
functional groups of the hardware. The Perfect
benchmarks [6] are examples of application
benchmarks. This benchmark suite comprises 13
different scientific and engineering applications
that can be run in predefined configurations.
Such benchmarks are especially interesting to sci-
entists whose research may closely resemble that
modeled by the benchmarks. Application ben-
chmarks are the closest performance estimation to
actually running a real engineering application on
candidate hardware.

3.2 Classification According to Use

Benchmarks can also be classified by their use
(see Table 1) in an attempt to describe operating
environments and to address performance con-
cerns within such environments. Some bench-
marks are indicative of workstation or personal
computer (PC) environments, whereas others are

Table 1. Classification by Benchmark Use

Target Machines

Benchmark
Name

Workstations/PCs

Peripheral
Devices

Supercomputers/
Parallel Computers

Linpack X
Perfect

SPEC

[0Zone
Dhrystones
Livermore Loops
Slalom

Flops
Whetstones

NAS parallel

P A e e

X
X

X

o R

150 BERRY ET AL.

intended for mainframes or supercomputers. The
Dhrystones. for example, were designed to test in-
teger performance, spend significant time in string
operations, and are therefore considered more
representative of a workstation environment. The
NAS parallel benchmarks [2]. on the other hand.
are intensively parallel and considered represen-
tative of a multiprocessor system environment.
In general, however, peripheral devices and lo-
cal area networks (LANs) generally lack adequate
benchmarks. One notable exception is the [0Zone
benchmark, which could be classified as a periph-
eral benchmark because it tests the disk perfor-
mance and I/0 bandwidth. Given the growing in-
terest in distributed programming environments
such as PVM [11] and Linda [12]. we anticipate
benchmarks for homogeneous and heterogeneous
networks of machines in the near fuwure.

4 DESIGN OF A PERFORMANCE
DATABASE

Because of the complexity and volume of the data
involved in a performance database. it is natural
to exploit a database management system (DBMS;
to archive and retrieve benchmark data. A DBMS
will help not only in managing the data. but also in
assuring that the various benchmarks are pre-
sented in some reasonable format for users: table
or spreadsheet where machines are rows and
benchmarks are columns.

Of major concern is the organization of the
data. It seems logical to organize data in the
DBMS according to the benchmarks themselves: a
LINPACK table. a Perfect table. ete. It would be
nearly impossible to force these very different pre-
sentation formats to conform to a single presenta-
tion standard just for the sake of reporting. Indi-
vidual tables preserve the display characteristics
of each benchmark. but the DBMS should allow
users to query all tables for various machines.
Loading benchmark data into these tables is
straightforward provided a customized parser is
available for each benchmark set. In the parsing
process. constructing a raw data file and building
a standard format ASCII file eases the incorpora-
tion of the data into the database.

The functionality required by PDS is not very
different from that of a standard database ap-
plication. The difference lies in the user inter-
face. Financial databases. for example, typi-
cally involve specific queries like EXTRACT ROW
ACCT_NO = R103049, in which data points are
usually discrete and the user is very familiar with

the data. The user, in this case. knows exactly
what account number to extract, and the format
of retrieved data in response to queries. With our
performance database, however, we would expect
the contrary: The user does not really know (1)
what kind of data is available, (2) how to request/
extract the data, and (3) what form to expect the
returned data. These assumptions are based on
the current lack of coordination in (public do-
main) benchmark management. The number of
benchmarks in use continues to rise with no stan-
dard format for presenting them. The number of
performance-literate users is increasing. but not
at a rate sufficient to expect proper queries from
the performance database. Quite often. users just
wish to see the best-performing machines for a
particular benchmark. Hence. a simple rank-or-
dering of the rows of machines according to a spe-
cific benchmark column may be sullicient for a
general user.

Finally. the features of the PDS user interface
should include the ability to

1. Extract specific machine and benchmark
combinations that are of interest

2. Search on multiple keywords across the en-
tire dataset

3. View cross-referenced papers and biblio-
graphic information about the benchmark
itself.

We include (3) in the list above to address the
concern of proliferating numbers without any
benchmark methodology information. PDS would
provide abstracts and complete papers related to
benchmarks and thereby provide a needed educa-
tional resource without risking improper interpre-
tation of retrieved benchmark data.

5 PDS IMPLEMENTATION

In this section. we described the PDS tool devel-
oped and maintained at the University of Tennes-
see and the Oak Ridge National Laboratory. Spe-
cific topics include the choice of DBMS. the
client-server design. and the interface. Specific
features of PDS such as Browse. Search. and
Rank-Ordering are also illustrated.

5.1 Choice of DBMS

Benchmark data is represented by Hobbe’s RDB
format [13]. This database query language offers
several advantages. It is easy to manipulate. It is

PDS: A PERFORMANCE DATABASE SERVER

Table 2. RDB Format*

01 Computer 35
02 0S/Compiler 45
03 N=100 IN
04 N=1,000 N
05 Peak N

* The first column is the field number, the second is the
field label, and the third is the field type. in (tvpe-size) format.
The default form is ASCII, and NV denotes numeric data so that
the Peak entry, for example, is a size 7 numeric field.

also efficient, being based on a perl model [14]
that uses Unix} pipes to run entirely in memory.
We have easily converted raw performance data
into RDB format using only a few perl commands.
Additionallv, RDB provides several report features
that help standardize the presentation of perfor-
mance data. The RDB format specifies that data-
base tables are defined using a schema of the form
shown in Table 2.

The contents of the data files are expected to be
in some regular grammar. usually a space-sepa-
rated columnar format. A perl script takes a de-
scription of the columns and builds a tab-sepa-
rated file. The schema is converted to a
tab-separated file using the RDB command head-
chg. The data files are appended to the end of the
schema file. and the resulting flat tab-separated
file becomes the rdb format table. RDB uses the
schema in the header to process the file. An exam-
ple from the linpack.rdb is provided below.

Computer 0S/Compiler N=100
35 45 TN N N
CRAY Y-MP C90 (16 proc. 4.2 ns) CF77 5.0
CRAY Y-MP C90 (8 proc. 4.2 ns) CF77 5.0
CRAY Y-MP C90 (4 proc. 4.2 ns) CF77 5.0
CRAY Y-MP C90 (2 proc. 4.2 ns) CF77 5.0

This rdb table may then be searched for query

matching. An example query for a Linpack

benchmark with N=100 number equal to 388 is
cat linpack.rdb | row N=100 eq 388 | ptbl

and the benchmark returned is

151

5.2 Client-Server Design

Within PDS, the database manager runs only on
the server, and the clients communicate via
Berkeley sockets to attach to the server and access
the database. This functionality was provided by
the preexisting Xnetlib tool and was extended to
provide support for the performance data. Figure
1 illustrates this client-server interface.

The Xnetlib client is an X-Windows interface
that retrieves data from the server. This client is a
view-only tool that provides the user a window
into the database yet prohibits data modifications.
The Performance button under the main xnetlib
menu will provide users access to the PDS client
tool. Users familiar with Xnetlib 3.0 will have an
easy transition to using the PDS performance
client.

5.3 PDS Features

PDS provides the following retrieval-based func-
tions for the user:

1. A browse feature to allow casual viewing
and point-and-click navigation through the
database

2. A search feature to permit multiple kevword
searches with Boolean conditions

3. A rank-ordering feature to sort and display
the results for the user

4. A few additional features that aid the user in

N=1000 Peak

-Zp -Wd-e68 479 9715 15238
-Zp -Wd-e68 468 5994 7619
-Zp -Wd-e68 388 3272 3810
-Zp -Wd-e68 387 1709 1905

acquiring benchmark documentation and
references.

Figure 2 illustrates the PDS start-up window
that appears after the user selects the Perfor-
mance button from the Xnetlib 3.3 main menu.
The user then selects from the six available ser-

Computer 0S/Compiler N=100 N=1000 Peak
CRAY Y-MP C90 (4 proc. 4.2 ns) CF77 5.0 -Zp -Wd-e68 388 3272 3810
vices (Rank Ordering, Browse, Search,

T Unix is a rademark of AT&T Bell Laboratories. Save, Papers & Notes, Bibliography).

152 BERRY ET AL.

CLIENT-SERVER DATABASE ACTIONS

x ‘
N
E |
— /’_‘\
~"The "rand" ™. L N .
DATABASE RDB TOOLS B T [Sy tocke
(written in perl) /= b Connection
performance " A g
data only) S 5
E
R
)

The Xnetiib client running
on a X Display connected
to the Internet.

” ®

FIGURE 1 The PDS client-server interface: the X workstation {a® communicates over
the Internet via Berkeley socket connection :h; to the Xnetlib server. which queries the

==

—mZom

(

database using rdb tools (¢} and returns benchmark data via the socket connection.

[co W) Iglndesﬂ Libnryj ths!ﬁutiuﬂ [search] [who] [Donlo«h [set wp]
[@Timely Message] [Conferences| [Performence] [Show in Nev Window] [Contextual Help] [Help]

Xnetlib 3.4

Rank Ordering |[Browse][Search |[save|[Papers & Notes][Bibliography|

Performance Database Server - Version 1.5
-an extension to Xnetlib version 3.4-

displays a partial list of available rank orderings
of various machines. This is merely a report of the
available published benchaark nusbers, which have been
sorted by the appropriate fields.

allows one to browse through the performance data
tree. This tree is stored in the same format as the
normal library option of xnetlib.

allovs one to specify search strings (kero
for literal text matching. This ls sini
to xnetlib’s literal keyward search

save the ascii vindov contents to a file.

to access ASCII and postscript versions of
the benchmark papers as contributed by the suthors.

Bibliography - to access a bibliography of benchsark and performance-
related 1iterature using the BibTeX fomt This
data is contributed from various sources.

If you have cossents or questions please send mail to utpdsics.utk.edu

FIGURE 2 PDS start-up window describing available services.

i [co W] fm Index] [Libnrﬂ [Classiﬂcatims] [search] [who] | oad] [Se - U]

[@ Tinely Message| [Conferences]| [Perforsance] [Show 1n New Nndov] Emtextual Help| [Help]

Xnetlib 3.4

{ Rank Ordering |[Browse |[Search |[save][Papers & Notes][Bibliography|

Rank Ordering Option
¥elcome to the Rank Ordering section of Xnetlib 3.2

Select a file to receive a zzrtial rank ordering of Machines in
that specific bencheark. is is the published data made available by
the bencheark authors. We simply sort the data by the appropriate fields.

if you have guestions or comments, please send mail to utpds@cs.utk.edu

perfarnance/rank/11npack

A rank ordering of the cosplete Linpack report, Septeaber 1, 1333
Jack Dongarra

Jack Dongarra, University of Tennessee & 0ak Ridge National Lab

e-sail to: dongarrafcs.utk.edu

performance/rank/paral 1el-11inpack
r A ad‘raic ordering of the complete MASSIVELY PARALLEL Linpack report
J

NOTE: this rank orderlng is on Rmax(Cflops) nusbers.

perfornance/rank/peak
for A rank ordering of a the PEAK Mega-flop rate as a subset of the linpack
by Jack Dongarra
& September 1, 1993
% Jack Dongarra, University of Tennessee & Oak Ridge National Lab
® email to: rradcs. utk.edu
L] NOTE: this rank ordering is on Peak nuabers.

FIGURE 3 The PDS rank-ordering feature menu.

st b
G W] [@Index] [Library] [ClessiAications] [Search] [Who] [Downioad] [Set up]
[@Tiaely 9e] [Conferences] [Perforsence] [Shov in New Findow] [Contextusl Help)

[prine] [awie]
Xnetlib 3.4

[(Rank Ordering][Browse |[Search |[Save][Papers & Notes][8ibliography]
L] Please select vendor(s) and benchmark(s) and then [Process) to viev.

r Process the current lists and returmn results]

T i,

Linoack
CERN

BIn
LJLJ

%

UL

g

ST

__Peak
Thourstone

(0 e T o)
Csarex) (wl&iflow | vAx]
T -

SRR
_J____LLL

FIGURE 4 The browse facility provided by PDS.

154 BERRY ET AL.

waetlib

[Co W] [@1ndex] [ubnrv]bfclss(ﬂmﬂmﬂ [Search] [who] [Downioad] [Set tn
[@Tinely e] [Conferences] [Perfarsence] [Show in New ¥indow] [Contextual Help]

(prine] [ouit]
Xnetlib 3.4

[(Rank Ordering][Browse |[Search |[Save][Papers & Notes](8ibliography]

Results froa FLOPS Benchsark notes: : ; flw: gd‘l;;; domain bencheark

Alfred A. Aburto sburto@nosc.mil
Naval Ocean Systess Center San Diego

3
-
d
:
2

FPU(MHZ) SCALAR_NFLOPS REF

. 2.8658
16.0 0.0057
i 6.6116
62. 3.5
9.9837
11.1603
10.9878
13.n10
15.5674
15.5820
15.5036
18.24%

f
8
iz
A
5%
§8
5y
Sz

hw e

K e
-

2.
2.
1
2

88

3.
3.
3.
3.

sy
‘i
BRABRA
ONNNN

|13

AIX
AIX
AIX
AIX
cc
3.2.
AIX
AIX

5
UL
:§§§§3

g 4488
|

£

g
S

3204
370
530
5S40
540
550
$S0
550
$50
560
950
380
int
X~S0

8Ro

S5Z8

noown

/2
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
RS/6000
Y;'Iuc Po
t 486D
40/20
4D/RPC

3

&

g
83

wrowwnol
L

e bt v
355555
i L33 3
lealiooaa
86333
ess
ENERR
wu:w%uu

 RRRRRRRARATEEEE

fagzs
=1

FIGURE 5 Sample data returned by the PDS Browse facility.

[co &) [@Index] [Library] [Classifications] [Search]| [#ho] (Download| [Set Up]
[@ Timely Message] [Conferences] [Performance] [Show in New Window] [Contextual Heip] [Help]

Xnetlib 3.4

[Rank Ordering |[Browse |[Search |[Save|[Papers & Notes](Bibliography]|

Boolean search type: [or] NNl Cossand set: [clear display|[clear search field)
search string: [rios 550 linpack Perfect | press return...

Performance Database search :

To search thr the performance database please enter a
key or series of keywords and Boolean search type. Type <return>
to begin the search.

clear display - clears the output window and prepares it for a
new search result.

clear search field - resets the search string to null.

Search information::

truly a literal search over all the data. By selecting 'and’ the
return results are ONLY records satching ALL keys. In selecting
‘or' the return results are ANY records matching ANY key.

Please NOTE: The search facility allows users to BUILD up query results

froa numerous queries in the same screen and then save thea.
To clear the search results select 'clear display’.

FIGURE 6 Specifying a kevword search using the PDS Search facility.

PDS: A PERFORMANCE DATABASE SERVER 155

>Perforsance: Database Server .

[co uul [@1ndex] [tibrary] [Classifications] [Search] [#ha] [bownload] [Set tp]

[@Tinely Messege| [Conferences] [Performance] [Show in New deoﬂ [Contextual Help] [Help]

Xnetlib 3.4

[Rank Ordering |[Broese |[Search |[save|[Papers & Notes|[Bibliography]

Boolean search type: And

Comsand set:

[clear display][clear search field]

search string: [rios 550 linpack Perfect

| press return...

Results fron Linpack Benchsark

notes: :

; Linpack Performsance Report
September 1 1993; Jack Dongarra dongarra®cs.u
University of Tennessee Knoxville

Computer

0S/Cospiler

N=100(Mflops) N=1000

IBM RISC Sys/6000-550 (42 WHz)
IBM RISC Sys/6000-550L(42 MHz)

Results fron Perfect Benchsark

v2.2.1 xIf -0 P -¥p,-ead78 26
v2.3.0 x1f -0 P —¥p,-ead78 18

Perfect Club Report

]al 1933

Dave Schneider

schneidacsrd.uiuc.edu

CSRD UIUC ITlinois

To reviev bibliography click Papers .

Name

ADN-bcpu ARC2D-bcpu BDNA-bcpu DVFESM-bcpu FLOE

38.930 310.810 99.350 21.460

FIGURE 7 Results of a keyword search using the PDS Search facility.

As denoted in Figure 3. the Rank Ordering
option in PDS allows the user to view a listing of
machines that have been ranked by a particular
performance metric such as megatlops or elapsed
CPU time. Both Rank Ordering and Papers &
Notes options are menu-driven data access paths
within PDS.

With the Browse facility in PDS (see Fig. 4).
the user first selects the vendor(s} and bench-
mark(s) of interest. then selects the large Process
button to query the performance database. The
PDS client then opens a socket connection to the
server and. using the query language (rdb}. re-
motely queries the database. The format of the
returned result is shown in Figure 5. Notice the
column headings. which will vary with each
benchmark. The returned data is displayed as an
ASCIH widget with scrollbars when needed.

The Search option in PDS is illustrated in Fig-
ures 6 and 7. This feature permits user-specified
keyword searches over the entire performance da-
tabase. Search utilizes literal case-insensitive
matching along with a moderate amount of alias-
ing. \luluple kevwords are permitted, and a Bool-
ean flag is pronded for more complicated

searches. Notice the selection of the Boolean And
option in Figure 6. Using Search. the user has the
option of entering vendor names. machine aliases.
benchmark names, or specific strings, or produc-
ing a more complicated Boolean keyword search.
The benchmarks returned from the Boolean And
search
rios 550 linpack Perfect

are shown in Figure 7. The alias terms rios 550
are associated mlh the IBM RS/6000 Model 550
series of workstations. The specification of lin-
pack and Perfect will limit the search to the LIN-
PACK and Perfect benchmarks only. Since any
retrieved data will be displayed to the screen (by
default). the Save option allows the user to store
any retrieved performance data in an ASCII file.

Finally. the Bibliography option in PDS pro-
vides a list of relevant manuscripts and other in-
formation about the benchmarks.

6 SUMMARY AND FUTURE WORK

The PDS provides an on-line catalog of available
public domain performance metrics. Built as an

156 BERRY ET AL.

extension to Xnetlib. PDS provides muliiple views
into a dynamic set of data using a simplified user
interface. As an objective reporting medium. PDS
allows users to make machine comparisons based
solely on published benchmarks. which may have
a variety ol presentation formats.

Future enhancements to PDS include the use of
more sophisticated two-dimensional graphical
displays for machine comparisons. Additional se-
rial and parallel benchmarks will be added o the
database as formal procedures for data acquisi-
tion are determined.

To receive Xnetlib with PDS support for Unix-
based machines. send the electronic mail mes-
sage send xnetlib.shar from zxnetlib 1o
netlib@ornl. gov. You can unshar the file and
compile it by answering the user-prompted ques-
tions upon installation. Use of shar will install the
full functionality of Xnetlib along with the latest
PDS client tool. Questions concerning PDS should
be sent to utpds@cs. utk. edu. The University
of Tennessee and Oak Ridge National Laboratory
will be responsible for gathering and archiving ad-
ditional (published) benchmark data.

ACKNOWLEDGMENTS

The authors would like to thank the referees for
their helpful comments and suggestions. Research
supported by NASA under grant number NAG-
5-2083, and by ARPA under grant number
DAALO03-92-G-028+4.

REFERENCES

[1] R.P. Weicker. “"An overview of common bench-
marks.” [EEE Comput.. vol. 23. pp. 65=76.
1990.

—
o

(9

110;

1]

D. Bailev. J. Barton. T. Lasinski. and L Simon.
“The NAS parallel benehmarks.” Technical Re-
port RNR-91-002. NAS Systems Division. Janu-
ary 1991.

'). Gustafson. D. Rover. S. Elbert. and M. Carter.

“Slalom updates.”™ Supercomput. Ree.. vol. +.
pp. 56—061. 1991.

i J. Dongarra. T. Rowan. and R. Wade. “Software

distribution using XNETLIB. ACM Transac-
tions on Mathematical Software. to appear.

NN Dnn-;zm'm. SUPERCOMPUTING. Springer

Lecture Notes on Computer Science No. 297,
Berlin: Springer-Verlag. 1988, pp. +56—+7+.

M. Berry et al.. The perfect elub benchmarks:
Effective performance evaluation of supercompu-
ters.” Int. J. Supercomput. Appl.. vol. 3. pp. 5=
+0. 1989.

I. Uniejewski. “SPEC benchmark suite: Designed
for today’s advanced systems.”” SPEC Newslerter,
vol. 1. 1989.

M. Berry. G. Cybenko. and I. Larson. ~“Scientific
benchmark characterizations.” Parallel Com-
put.. vol. 17, pp. 1173-1194. 1991,

F. McMahon. ~The Livermore Fortran kernels: A
test of the numerical performance range.” Tech-
nical Report. Lawrence Livermore Lab. 1986.
D. Bailey and J. Barton. “The NAS kernel
benchmark program.” Technical Report 86711,
NASA Ames Technical Memorandum. 1985,

A. Beguelin. J. Dongarra. G. Geist. R. Manchek.
and V. Sunderam. Proceedings of the Fifth SI1M
Conference on Parallel Processing. Philadelphia.
PA: SIAM. 1991. pp. 596-601.

N. Carriero and D. Gelernter. “"Linda in Con-
text.”" Communications of the ACM. vol. 32. pp.
++4—+458. 1989.

W.V. Hobbs. "RDB: A relational database man-
agement system.” Technical Report. Rand Cor-
poration. December 1991.

L. Wall and R. Schwartz. Programming Perl. se-
bastopol. CA: O'Reilly and Associates. Inc..
1990.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

