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ABSTRACT 

In this article we describe and compare several recently proposed algorithms for pre­
cise submesh allocation in a two-dimensional mesh connected system. The methods 
surveyed include various frame sliding strategies, the maximum boundary value heuris­
tic, and interval set scan techniques. In addition, a new enhancement to the interval set 
scan method is described. This enhancement results in an algorithm that has better 
allocation and run-time performance under a FCFS scheduling policy than any of the 
other proposed methods. We present results drawn from an extensive simulation study 
to illustrate the relative efficiency of the various methods. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

This article is concerned with the design and anal­
ysis of submesh allocation methods to manage the 
processors of a two-dimensional mesh connected 
system. The problem of submesh allocation is 
similar to that of "two-dimensional" memory 
management. In a multiuser mesh system, several 
tasks may be running simultaneously. Each task is 
exclusively allocated a rectangular submesh of ex­
actly the required size, and a submesh remains 
allocated to a task until the task completes. That 
is, we are concerned with precise rectangular sub­
mesh allocation in which submesh migration is 
not allowed. W'hen a task requests a rectangular 
submesh of processors, the job of the allocation 
method is to attempt to locate such a submesh 
and to do so as efficiently as possible in both of the 
following categories: 

1. Run-time efficiency measures the time re­
quired to locate a submesh of the requested 
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dimensions and consisting entirely of unal­
located processors, or to determine that 
such a submesh does not currently exist in 
the system. 

2. Allocation efficiency measures the effective­
ness with which an allocation algorithm 
manages the processors of the mesh system. 

Several submesh allocation methods have been 
proposed in the recent literature [1-7]. With the 
single exception of the binary buddy method [ 4], 
these methods all differ from their one-dimen­
sional memory management counterparts in that 
they utilize data structures to keep track of what 
has been allocated rather than what is available. 
This is because the available "space" in a mesh 
becomes fragmented into shapes that can be rep­
resented by numerous differing collections of rec­
tangular submeshes. A method that proceeds by 
managing the unallocated processors must either 
maintain several representations in the face of al­
locations and deallocations or select and enforce a 
single representation at each allocation and deal­
location. The first approach would seem to result 
in excessive algorithmic complexity and run-time 
performance whereas the second approach would 
seem to result in poor allocation performance (as 
exhibited by the binary buddy [1, 2, 4]). Thus, 
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the general scheme for submesh allocation has 
been to identify candidate submesh locations and 
to check the candidates for conflicts against what 
is already allocated, rather than to search some 
representation of what is unallocated. 

The submesh allocation methods that have ap­
peared in the literature fall into three main catego­
ries: 

1. Frame sliding: These methods proceed by 
identifying candidate submeshes that could 
satisfy a task request. The state of the mesh 
is maintained by keeping a list of currently 
allocated submeshes. This list is scanned 
once for each candidate until either a candi­
date is found that does not conflict with any 
currently allocated submeshes, or until all 
candidates have been examined. The frame 
sliding methods differ in how efficiently they 
identify candidates. Recently proposed 
frame sliding methods include the original 
method by Chuang and Tzeng [1], Ding 
and Bhuyan's [3] adaptive scan (AS) 
method, Sharma and Pradhan's [6] maxi­
mum boundary value (MBV) method, and 
the fast frame sliding (FS1) method de­
scribed by Morgenstern and Fouque [5]. 

2. Interval set scan: These methods, first intro­
duced by Morgenstern and Fouque [5], 
maintain a compressed representation of 
the state of the mesh using sets of integer 
intervals. Interval set scan (ISS) methods 
have the same or better allocation perfor­
mance as the best frame sliding methods 
but exhibit better run-time performance. 

3. 0/1 Array: Zhu [7] describes a scheme in 
which the state of the mesh is mirrored in a 
0/1 two-dimensional array, one array ele­
ment per mesh processor. If a processor is 
unallocated/ allocated then the correspond­
ing array element contains a 0/1. Allocation 
algorithms then search this array instead of 
a list of allocated submeshes. All of the 
frame sliding strategies can be implemented 
to use a 0/1 array scheme and vice versa. 

Additionally, Ding and Bhuyan [3] propose that 
mesh systems provide hardware or software sup­
port for processor address translation that would 
allow a request to be rotated 90°; i.e., a x X y 
submesh could possibly be satisfied by a y X x 
submesh. Allowing rotations to be performed 
results in a significant increase in allocation effi­
ciency. 

This article is organized as follows. Section 2 
describes the frame sliding strategy and its numer­
ous variants. Section 3 contains the presentation 
of the ISS method and enhancements. In Section 
4 the run-time efficiency of the methods is ana­
lyzed and the results of a simulation study are 
described and presented. The article concludes 
with Section 5. 

The following nutation and definitions are used 
throughout the·article. A mesh connected system, 
M(X, Y), consists of XY processors arranged in a 
X X Y two-dimensional grid. Processors are ad­
dressed as (a, b) pairs where 0 s a <X and 0 s 
b < Y. A x X y rectangular sub mesh has a qua­
druple address (a, b, c, d) where 

x=c-a+1. 

y=d-b+1. 

(a, b) specifies the upper leftmost processor and 
(c, d) specifies the lower rightmost processor. The 
(a, b) processor is called the base of the submesh 
and (c, d) is called the reverse base processor. 

2 FRAME SLIDING STRATEGIES 

Chuang and T zeng [ 1, 2] propose an allocation 
method called frame sliding, which maintains a 
list, L, of addresses of submeshes that are cur­
rently allocated in M. ~Then a task requests a sub­
mesh of dimensions x X y, a set of candidate base 
locations is checked for allocation suitability. 
Checking the suitability of a candidate base loca­
tion, (a, b), requires that the list of resident sub­
mesh addresses be scanned to determine if any of 
the processors in candidate submesh (a, b, a + 
x - 1, b + y - 1) are already allocated. Thus, if 
an allocation is possible at (a, b), then L must be 
completely scanned to determine this fact. If an 
allocation at (a, b) is not possible, then the scan 
terminates when the first conflict is encountered. 

2.1 Restricted Frame Sliding 

At one extreme, the set of candidate base loca­
tions contains all possible processor locations and 
is given by 

c1 ={(a, b) I 0 $a$ X- x, 0 $ b $ y- y}, 
(1) 

Because the use of C1 results in excessively high 



run-time complexity, Chuang and Tzeng (1, 2] 
suggest that a smaller candidate base set be used 
to restrict the search space and increase the speed 
of the search. For example, their suggested frame 
sliding method uses the set 

en = {(a, b) I 0 :5 a :5 X- X, a mod X= 0 

0 ::::: b::::: Y- y, b mod y = 0}, 
(2) 

and so it is possible for several feasible allocation 
bases to be skipped and for a request to fail even 
though an allocation is possible. The frame sliding 
method that uses e1 is denoted by FS 1 and the 
restricted version that uses e" by FS". Cse of e" is 
a compromise that trades a loss of allocation per­
formance (such as processor utilization and task 
waiting time) for a gain in run-time efficiency. 
However, Chuang and Tzeng (L 2] give the 
results of a simulation study that compares frame 
sliding to a two-dimensional buddy allocation 
strategy ( 4 J. Their study shows that FSn results in 
much better allocation performance than is possi­
ble with a buddy allocation strategy. 

To determine if a request for an X .Y submesh 
can be satisfied, Chuang and Tzeng (1, 2] suggest 
that the candidate base sets e1 and e" be defined 
as 

and 

e1 ={(a, b) I 0::::: a< X, 0::::: b < Y} 

en= {(a, b) I 0 :5 a< X, a mod X= 0 

0 ::::: b < Y, b mod .Y = 0}, 
(3) 

·when processing a request, this definition re­
quires that (X- x, 0, X- 1, Y- 1) and (0, Y- y, 
X - 1, Y - 1) be temporarily added to L because 
none of the processors in these temporary sub­
meshes can serve as a base of a submesh that 
satisfies the request. Ding and Bhuyan (3] and 
Morgenstern and Fouque (5] noted that it is more 
efficient to implement e1 and en exactly as de­
fined in Equations 1 and 2 to shrink the number 
of candidate base locations that have to be 
checked and to avoid increasing the size of L. 

2.2 FS, and AS 

Major improvements in time efficiency can be 
made when searching candidate base set e1 . Sup­
pose that candidate (i, j) is found to be infeasible 
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for j := 0 to Y - y do 
begin 

i := 0; 
while i ~ X - x do 

begin 
frame:= (i,j,i+x-l,j+y-1); 
S := {s ELI sand frame conflict}; 
if S = 0 then 

allocate frame and return(success) 
else 

i := max{c:+- II (a,j,c,d) E S} 
end 

end; 
return( failure); 

FIGURE 1 Determining if a request can be satisfied 
using AS. 

because one or more of the processors in (i, j, i + 
x- 1,) + .Y- 1) are already allocated. Let (a, b, 
c, d) be a submesh on the allocated submesh list, 
L, which has a processor in (i,j, i + x- 1,) + y-
1). Then i::::: c and candidate base locations (i + 1, 
j), ... , (c, j) can be safely skipped; i.e., base 
location (c + 1, j) can be safely tried. If c + 1 > 
X- x, then the search begins anew at (O,j + 1). 
Ding and Bhuyan (3] propose to completely scan 
L to find the conflicting submesh with the largest c 
value. Their heuristic, AS, proceeds as shown in 
Figure L 

Morgenstern and F ouque [ 5 J also noted that 
candidate base locations could be eliminated on 
the fly. Their approach, FSr, prunes more candi­
dates from e1 than AS and does so more effi­
ciently. Rather than scanning all of L, FSrstops at 
the first submesh, (a, b, c, d), encountered in L 
that has a processor in (i,j, i + x- 1,) + y- 1). 
Then as before, the next candidate base location 
tried is (c + 1 ,j). Our simulation results show that 
terminating the scan of L at the first conflict is 
much more efficient than the AS strategy of doing 
a complete scan to find the conflicting submesh 
with the largest c value. Further, if all candidate 
base locations in row j have been eliminated, then 
it is possible to safely restart the search at candi­
date (0, h) for some h 2: j + 1, where h is the 
smallest reverse base row of all conflicting sub­
meshes on L that were encountered when search­
ing row j (see Fig. 2). 

Both AS and FSr have the same allocation per­
formance as FS1 but have much better run-time 
efficiency. In fact, FSr is actually faster on some 
simulation runs than the original FSn frame sliding 
version that uses the restricted candidate set en. 
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j := 0; 
while j ::=; Y- y do 

begin 
i := 0; h := Y; 
while i ::=; X - :r; do 

begin 
frame:= (i,j, i + :r;- l,j + y- I); 
okay := true; 
for (a, b, c, d) E L st okay do 

if (a, b, c, d) and frame conflict then 
begin 

i := c +I; okay := false; 
if h > d + I then h := d + I 

end; 
if okay then allocate frame and return( success) 

end; 
j := h; 

end; 
return( failure); 

FIGURE 2 Determining if a request can be satisfied 
using FS1. 

2.3 Frame Placement and 
Best-Fit Heuristics 

In addition to the completeness of the candidate 
base set, another issue is the order in which candi­
date bases are checked. A first-fit policy has been 
implicitly assumed; the first candidate base en­
countered that does not result in a conflict with an 
already allocated submesh is the one that is used 
to satisfy a request. \Vith this assumption, is it 
possible to obtain better allocation efficiency by 
checking candidate bases in an order than the im­
plicitly assumed first-fit row-major ordering? 
Morgenstern and Fouque [5] report that frame 
placement heuristics can make a substantial dif­
ference. In particular, they note that the following 
heuristic results in a noticeable improvement of 
allocation efficiency over numerous other order­
ings (including row major): 

Order candidate set C1 so that the requested 
submesh is allocated with its largest side as 
close to an edge of the mesh as possible. 

This and other frame placement heuristics are dif­
ficult to implement efficiently using the frame slid­
ing strategy because they present an obstacle to 
''on the fly'' pruning of C1 . In the following section 
the ISS search framework is described, which does 
allow for efficient implementation of this heuristic. 

The frame sliding strategy can also be used to 
support various best-fit heuristics. However, even 
though C1 can be pruned using FS1 whi~e search-

ing for the frame with the best fit, simulation 
results show that an excessive number of frames 
are still examined, which leads to excessive run­
time. Both Zhu [7] and Sharma and Pradhan [6] 
have devised heuristics to support an intuitive no­
tion of two-dimensional best fit. Sharma and 
Pradham report that their heuristic, .\IBV. has 
better allocation performance than Zhu · s heuris­
tic. The boundary value of an unallocated node 
(a, b), in the mesh is given by the sum of the num­
ber of allocated neighbors of (a. b) and the num­
ber of mesh boundary points on which (a, b) lies. 
Comer nodes (e.g., (0, 0)) lie on two boundary 
points, horizontal and vertical. The boundary 
value of a frame is the sum of all boundan· values 
in the frame's periphery. The .\IBV heuristic pro­
ceeds by selecting the frame of the requested size 
that has the largest boundary vahw and consist,; 
entirely of unallocated proces,;ors. 

3 ISS METHODS 

A new submesh allocation algorithm called the 
ISS method is described that has the same alloca­
tion performance as the frame sliding methods 
FS1, FS1, and AS that use candidate base set C1 
[5]; i.e., if an allocation is possible then ISS "'ill 
find it. However, our simulation studies show that 
the run-time efficiency of ISS is much better than 
the frame sliding methods (even when compared 
to frame sliding using the restricted candidate 
base set Cn). Thus, the ISS method has both better 
run-time efficiency and better allocation efficiency 
than is possible using a row-major, first-fit version 
of the frame sliding strategy. In this section the 
basic ISS method is described as well as an en­
hancement to efficiently support the frame place­
ment heuristic described earlier. 

3.1 Basic ISS 

The state of the mesh is maintained by the use of a 
data structure called an interval set. Let [a, b] 
denote an interval of contiguous integers from a to 
b where a ::5 b. Two disjoint intervals, [a, b] and 
[ c, d], are said to be adjacent if b + 1 = c or d + 
1 = a. An interval set is a representation of a set of 
disjoint nonadjacent intervals on a range of con­
tiguous integers, together with the following oper­
ations: 

1. create_interval_set ():Return a new 
empty interval set. 



2. add_interval (s, i): Add interval ito set 
s, where i is assumed to be disjoint from 
intervals already in s. If i is adjacent any 
interval) ins, then i and) are merged into a 
single interval: i.e., all intervals ins are non­
adjacent after the inclusion of i. 

3. delete_ interval (s, i) : Delete the in­
terval i from s, where i is assumed to belong 
to s or to be a subinterval of an interval in s. 

An interval set can be easily implemented using an 
ordered linked list structure in which each node 
contains the endpoints of an inter.-al. Two interval 
sets, B; and R;, are associated with each row i of 
1H. Whenever submesh (a, b, c, d) is allocated, 
interval [a, c J is added to Bh and to R,J. When (a. 
b, c, d) is deallocated. [a. c J is deleted from both 
sets B, and Rr~. Thus. set 8 1, contains a represen­
tation of the '·top" row of processor addresses of 
all allocated submeshes whose base processor is 
in row b. Rr1 contains a representation of the "bot­
tom'' row of processor addresses of all allocated 
submeshes whose reverse base processor is in row 
d. For example, the nonempty base and reverse 
base interval sets corresponding to the mesh gi,·en 
in Figure 4 are: 

8 0 = {[0, 8], [10, 13]} R0 = {[0, 8]} 

81 = {[7. 8]} 

Ba = {[2, 3]} 

R:; = {[7, Sj} 

Ro = {[2, 3]} 

Rs = {[10, 13]} 

To determine if a request for ax X y submesh 
can be satisfied, a data structure similar to an in­
terval set is used, called a scan set. A scan set is 

initialize..scan(); 
j := 0; 
for r := 0 toy- 1 do addjntervaL.set(B, ); 
r := y; 
while r < Y and openjnterval(x) = -1 do 

begin 
delete_interval..set(Rj ); j := j + 1; 
addjnterval..set(B, ); r := r + 1 

end; 
i := openjnterval(x); 
if i > -1 then 

allocate at (i,j,i + x- 1,j + y- I) and return(success) 
else 

return( failure); 

FIGURE 3 Determining if a request can be ?atisfied 
using ISS. 
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used to efficiently maintain a representation of a 
collection of (possibly overlapping) intervals ob­
tained from several interval sets. Each element, 
([a, b J, p ), of a scan set consists of an interval [a, 
b J and a count p. This element represents the fact 
that p intervals, whose intersection is [a, b J, have 
been added to the scan set. The intervals belong­
ing to a scan set are all disjoint and no two adja­
cent intervals can have the same count-adjacent 
intervals with the same count are merged. A scan 
set can also be easily implemented using an or­
dered list in which each node contains a scan set 
element. The operations supported by a scan set 
include: 

1. ini tialize_scan (): Initialize the scan 
set to contain the single empty interval, ([0, 
X- 1 J, 0), where X is the width of the entire 
mesh. 

2. open_interval (x): Returns the leftmost 
(lowest) value of an interval of size at least x 
with a count of 0; i.e., if ([a, b], p) is in the 
scan set with p = 0 and b - a + 1 2:: x, then 
a is returned. If such an interval does not 
exist, then -1 is returned. 

3. add_interval_set (s): Add all intervals 
belonging to the interval sets to the scan set. 

4. delete_ interval_set (s) :Delete all in­
tervals belonging to the interval set s from 
the scan set. 

The routine given in Figure 3 shows how a scan set 
is used to determine if a request for a x X y sub­
mesh can be satisfied. \Ve maintain a "com­
pressed" representation of y contiguous mesh 
rows, ro, . . . , r:v-1, in the scan set. If (a, b, c, d) 
is an allocated submesh with r0 ::5 b ::5 ry-1 or ro ::5 

d ::5 rv-b then the interval [a, c] will have been 
added to the scan set, so no allocation will be 
made in those columns. If the scan set contains an 
element ([e,f],p) withp = 0 and/- e + 1 2:: x, 
then the request can be satisfied. Otherwise, we 
"drop" row r0 and "add" row ry; meaning that all 
intervals that correspond to a reverse base in ro are 
deleted and all intervals that correspond to a base 
in ry are added. This is illustrated in Figure 4. 

3.2 Four-Way ISS 

The simulation results reported [ 5 J indicate that 
allocating a submesh with its largest side as close 
to an edge of the mesh as possible results in near 
optimal allocation performance under a FCFS 



358 MORGENSTERN 

0 

2 

3 

4 

.'j 

6 

7 

8 

9 

0 1 2 3 4 5 6 7 8 9 10 11 12 !3 14 

Rows Scan Set 
initial {([0, 14], 0)} 

0 { ([0, 8], 1), ([9, 9], 0). ([10, 13], 1), ([14. 14], 0)} 
0,1 { ( [0, 6], 1 ), ([7, 8],2 ). ([9, 9], 0), ([10, 13]. I). ( [14, 14]. 0)} 
1,2 {([0, 6], 0), ([7, 8], I). ([9, 9], 0), ([10, 13], 1), ([14, 14], 0)} 
2,3 { ([0, 1 J. 0), ([2, 3], I), ([4, 6]. 0). ([7, 8], 1), ([9, 9]. 0), ( [10. 13]. 1 ), ( [14, 14], 0)} 
5,6 {([0, 1], 0), ([2, 3].1), ([4, 6], 0), ([7, 8], 1 ), ([9, 9], 0), ([10, 13]. 1 ), ([14, 14], 0)} 
6,7 {([0, 1], 0), ([2, 3], 1). ([4, 9],0). ([10, 13]. 1), ([14. 14]. 0)} 
7,8 {([0, 9], 0), ([10, 13]. 1), ([14, 14], 0)} 

final allocate at (0, 7, 9, 8) 

FIGURE 4 Progression of an interval scan to allocate 
a 10 x 2 request. 

scheduling policy. The allocation method used by 
Morgenstern and Fouque [5] to implement this 
heuristic was based on frame sliding and had ex­
tremely poor run-time performance. A simple en­
hancement to the basic ISS method is now de­
scribed. Called the four-way ISS (41SS), it can be 
used to efficiently implement this heuristic. 

In addition to maintaining base row and reverse 
base row interval sets, 4ISS also maintains base 
column and reverse base column interval sets. 
Each row j of M is associated with interval sets B; 
and R1 as before, and additionally each column i 
of M has interval sets B; and R; associated with it. 
Whenever submesh (a, b, c, d) is allocated, inter­
val [a, c] is added to Bb and to Rd, and interval [ b, 
d] is added to B~ and R~. When (a, b, c, d) is 
deallocated, [a, c] is deleted from both sets 8 6 and 
Rd, and [b, d] is deleted from B~ and R~. Set B~ 
contains a representation of the "left" column of 
processor addresses of all allocated submeshes 
whose base processor is in column a. R~ contains a 
representation of the "right" column of processor 
addresses of all allocated submeshes whose re­
verse base processor is in column c. For example, 
the nonempty base and reverse base column sets 
corresponding to the mesh given in Figure 4 are: 

Bo = {[0, OJ} R3 = {[3, 6]} 

B2 = {[3, 6]} R8 = {[0, 5]} 

B? = {[1, 5]} R\., = {[0, 8]} 

B1o = {[0, 8]} 

To determine if ax X y submesh request can be 
satisfied, 4ISS does alternating top and bottom 
row scans if x ~ y; otherwise, alternating left and 
right column scans are performed (using the base 
and reverse base column interval sets). A top row 
scan is just the ISS method whereas a bottom row 
scan starts at the bottom of the mesh, adds reverse 
base row interval sets to the scan set, and deletes 
base row intervals sets from the scan set. Simi­
larly, a left column scan starts at the left side of the 
mesh, adds base column interval sets to the scan 
set, and deletes reverse base column interval sets 
from the scan set. A right column scan starts at the 
right side of the mesh, adds reverse base column 
interval sets to the scan set, and deletes base 
column interval sets from the scan set. These al­
ternatives are illustrated in Figure 5. Thus, at 
each allocation attempt two scan sets are active 
(top and bottom, or left and right), and the search 
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x?_y x<y 

add base row 

drop reverse base row add base column 

drop reverse base column 

drop base column 

drop base row 

add reverse base row l 
add reverse base column 

alternate row scans alternate column scans 

FIGURE 5 Scan direction alternatives for 4ISS. 

alternates between the two scan sets one row or 
column at a time. If the two scans completely cross 
each other (bv x columns or y rows), then no allo­
cation is possible. Otherwise, as in ISS, the first 
free x X y submesh encountered is allocated. This 
free submesh will have its largest side as close to 
the edge of the mesh as is possible, and the 
amount of work required to find the sub mesh is no 
more than the worst case under ISS (when the 
largest side is x and the available submesh is near 
the bottom). 

4 ANALYSIS AND 
EXPERIMENTAL RESULTS 

The worst case running-times of the allocation 
methods are fairly easy to derive. For the analysis, 
we will assume that the mesh is square ·with X = 
Y= N. 

1. All of the frame sliding methods require a 
scan of the list of allocated submeshes, L, 
for each candidate frame at each allocation 
attempt. For a x X y request, there can be 
as many as (X - x)(Y- y) frames and so 
these methods are bounded by O((X - x) 
(Y- y) /Li). This gives an O(X 2Y2) or O(N 4 ) 

absolute worst case of when the mesh is full 
of 1 X 1 submeshes and a 1 X 1 request is 
being serviced. The time required for deal­
location is constant because the pointer into 
L can be associated with the allocated sub­
mesh during allocation and passed back to 

the deallocation routine during dealloca­
tion. 

2. The ISS methods do at most N traversals of 
interval sets and N traversals of scan sets. 
Each set can have no more than N ele­
ments, resulting in a O(N 2 ) worst case allo­
cation time. Deallocation requires two or 
four traversals of interval sets and so has a 
worst case time of O(N). 

3. Methods based on Zhu's [7] 0/1 array 
scheme will require 0(N2 ) allocation time 
because the N X N array must be copied 
and traversed at each allocation. Dealloca­
tion of ax X y submesh would require 0(xy) 
time. 

4. Sharma and Pradhan [6] describe a (com­
plex) alternative frame sliding implementa­
tion to support their MBV heuristic. Their 
implementation identifies candidate frames 
by scanning L and allocation requires 
0(/L/3 ) time or O(N6 ) absolute worst case 
time. As for frame sliding, deallocation 
takes constant time. 

From this analysis, it can be seen that when the 
mesh is sparsely populated, several of the meth­
ods will exhibit equally good run-time perfor­
mance. In this case, the pruning heuristics of FSJ 
and AS will be effective, the interval and scan sets 
of the ISS methods will be small, and the size of L 
will be small (allowing Sharma and Pradhan's al­
ternative MBV implementation to be competitive). 
One objective of our simulation study is to stress 
the methods by running them on densely popu­
lated meshes. 
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4.1 Simulation Model 

Numerous simulation runs were performed using 
the same simulation model described previously 
[ 1-3, 5]. In this model, allocation is performed 
centrally by a dispatcher that is independent of 
the mesh system. A fixed number of submesh re­
quests are queued at the dispatcher "''ith predeter­
mined side lengths and resident times that follow 
selected distributions. All of the requests are im­
mediately pending, simulating a worse case task 
interarrival time of zero. An FCFS scheduling or­
der is maintained; the dispatcher attempts to sat­
isfy the request at the head of the queue. If the 
request cannot be satisfied, then the dispatcher 
reattempts after an allocated submesh has been 
released. This continues until the request at the 
head of the queue has been satisfied, at which 
time the head request is dequeued and the next 
request serviced. 

The main parameters needed to perform a sim­
ulation run are: the allocation method, the mesh 
dimensions, the submesh side range and distribu­
tion, the submesh resident time range and distri­
bution, the number of submesh requests to be 
queued at the dispatcher, and whether or not to 
allow submesh requests to be rotated. \Vhen com­
paring methods, we used the same queue of sub­
mesh requests; i.e., we used the same random 
number stream seeds and only altered the alloca­
tion method parameter. In all the simulation runs 
that we report, the submesh resident times (task 
service times) were real values uniformly distrib­
uted in the range of 5 to 30. The precise values 
used for the other simulation parameters are de­
scribed later. With this simulation model, we de­
termined allocation efficiency of the various allo­
cation schemes by making the following measures: 

1. The simulated time required to completely 
service all requests. This is the simulated 
time at which the final allocated submesh 
gets released; called completion time. 

2. The percentage of a processor in the mesh 
that is utilized per unit of simulated time; 
called processor utilization. 

3. The percentage of total processors of a re­
quested submesh over the total number of 
processors in the mesh at each allocation 
failure, in which the number of available 
processors at the time of failure is at least as 
large as the number of requested proces­
sors; called external fragmentation. 

4. The percentage of total processors .of a re-

quested submesh over the total number of 
processors in the mesh at each "feasible" 
allocation failure; called migration frag­
mentation. An allocation failure is feasible if 
an allocation is possible by rearranging or 
migrating the currently allocated sub­
meshes. Because deciding whether or not an 
allocation failure is feasible requires an ex­
ponential search, this measure could not be 
taken on all of the simulation runs-the de­
cision algorithm was intractable when the 
number of allocated submeshes was larger 
than 10. 

4.2 Methods Tested 

The allocation methods that we tested ~rP sum­
marized below: 

1. ISS: interval set scan (first fit). 
2. 4ISS: four-way interval set scan (first fit. al­

locates a submesh with its largest side as 
close to the edge of the mesh as possible). 

3. FSn: restricted frame sliding (first fit, uses 
candidate set Cn)· 

4. FSr fast frame sliding (first fit, prunes can­
didate base set cl ). 

5. AS: adaptive scan (first fit, prunes candi­
date base set C 1 ). 

6. MBV: maximum boundary value (best fit, 
uses FS1 to allocate a submesh with maxi­
mum boundary value). 

7. MIG: This method attempts to allocate by 
first using FS1. If FS/ fails to allocate, then 
attempt to allocate by rearranging or mi­
grating the currently allocated submeshes 
so as to make room for the pending request. 
Although this is not a practical allocation 
method, it is included for comparison pur­
poses. Its completion time and processor 
utilization measures are the best possible 
under an FCFS scheduling order. By defini­
tion, this method does not have migration 
fragmentation. 

In addition, we performed two sets of simula­
tions runs for each method, one in which rotations 
were not allowed and one in which the methods 
could rotate a submesh request. Both Ding and 
Bhuyan [3] and Sharma and Pradhan [6] incor­
porated rotations in the implementations of their 
methods but did not allow the methods that they 
compared against to do rotations. Rotations result 
in a substantial increase in allocation perfor-



mance, and so it is important to isolate the effect 
of allowing rotations in all methods tested. ·when 
running the MIG method and "·hen deriving mi­
gration fragmentation values under rotations. we 
adapted the rule that, once allocated. a submesh 
could be migrated but not rotated. This results in 
lower processor utilization and higher completion 
time values for the MIG method, but was neces­
sary to make the search tractable. Similarly, the 
migration fragmentation values are higher than 
they would be without this rule. 

Run-time efficiency was measured by counting 
the number of nodes touched in the linked data 
structures used bv each method. For each 
method, a single step is performed when a pointer 
is dereferenced. The actual cpu time of the simu­
lation runs followed the trends indicated by the 
step counts-the step counts serve to better illus­
trate the differences in run-time efficiency. In fact, 
the frame sliding methods exhibited a slightly 
worse run-time efficiencv ratio to other methods if 
actual cpu time is considered. Three run-time 
measures are given: the average number of steps 
needed to make a successful allocation, the aver­
age number of steps needed to decide that an allo­
cation is not possible (i.e., a failed allocation), and 
the average number of steps taken per attempted 
allocation whether successful or not. 

PRECISE SCB:\IESH ALLOCATIO!'." 361 

4.3 Results 

Table 1 is reprinted from .Morgenstern and 
F ouque [ 5 J and contains the average of the results 
of five independent simulation runs per distribu­
tion on a 256 X 256 processor mesh in which 
1000 sub mesh requests were queued at the dis­
patcher for each run. This table is augmented to 
include the results of running AS, 4ISS, and MBV 
using the same simulation parameters that were 
used to produce the results for the other methods. 
The side lengths of submesh requests were made 
over uniform and normal distributions, using two 
random number streams, one stream per side. 
Lnder the uniform distribution, submesh side 
lengths were generated over the range 1 to 256. 
Under the normal distribution. the mean was 128 
and the standard deviation was set to 43 [2, 5]. As 
can be observed from Table 1, 4ISS and MBV 
have the best allocation efficiencv. Under a uni­
form side distribution, 4ISS performs so well that 
little improvement is possible. As might be ex­
pected, our implementation of MBV suffers from 
excessive run-time complexity. It should be noted 
that Sharma and Pradhan's [6] O(ILI3 ) implemen­
tation would have a running-time similar to the 
other fast methods because the mesh is so 
sparsely populated. 1\"ext in allocation efficiency 

Table 1. Allocation Performance in a 256 x 256 Mesh (Without Rotations) 

Completion Processor External ~ligration Steps per Steps per Steps per 
Method Time Utilization Fragmentation Fragmentation Success Failure Attempt 

Uniform distribution 
MIG 8367.9 53.90 32.6 0.0 
4ISS 8637.5 52.27 32.9 24.9 4.10 10.61 7.20 
MBV 8755.4 51.56 33.5 30.9 8275.0 2.40 4138.6 
ISS 9020.0 50.06 33.7 30.7 3.22 5.34 4.26 
FS1 9020.0 50.06 33.7 30.7 3.82 2.28 3.06 
AS 9020.0 50.06 33.7 30.7 100.3 208.8 155.1 
FS1 9020.0 50.06 33.7 30.7 5553.6 9195.2 7371.5 
FSn 10837.5 41.64 33.2 28.9 10.68 6.38 7.56 

Normal distribution 
MIG 8575.6 50.58 29.7 0.0 
4ISS 8914.3 48.66 29.6 24.6 3.27 11.77 7.53 
MBV 9078.7 47.78 29.9 26.4 3928.5 3.11 1964.2 
ISS 9527.9 45.56 29.8 25.8 2.84 5.94 4.38 
FS1 9527.9 45.56 29.8 25.8 3.26 2.72 2.98 
AS 9527.9 45.56 29.8 25.8 90.1 252.8 171.5 
FS1 9527.9 45.56 29.8 25.8 5558.7 14438.2 9993.2 
FSn 12265.7 35.36 28.6 24.6 2.84 3.62 3.76 
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Table 2. Allocation Performance in a 256 x 256 Mesh (With Rotations) 

Completion Processor External .\ligration Steps per Steps per Steps per 
Method Time Utilization Fragmentation Fragmentation Success Failure Attempt 

Uniform distribution 
MIG 7465.0 60.48 33.4 0.0 
4ISS 7720.5 58.46 33.3 28.1 7.36 17.96 12.68 
MBV 7881.5 57.28 34.2 31.9 7194.4 4.44 3600.5 
ISS 8104.5 55.72 35.2 33.6 5.00 10.01 7.48 

Normal distribution 
MIG 7684.5 55.46 29.7 0.0 
4ISS 7917.9 54.80 29.5 23.7 6.34 23.00 14.66 
MBV 8055.3 53.88 29.9 26.4 3334.5 5.94 1669.8 
ISS 8495.5 51.06 30.6 26.3 4.66 12.44 8.56 

are the four allocation-equivalent methods, ISS, 
FSr, AS, and FSh that all do a row-major search 
of the C1 candidate base set. Of these four, only 
ISS and FSr have low time complexity and FSr 
does a much more efficient job of pruning c1 than 
AS. The results of allowing methods to rotate sub­
mesh requests are given in Table 2. Allowing rota­
tions does not change the ranking of the methods 

and an across-the-board increase in allocation ef­
ficiency is observed (the allocation efficiency val­
ues for AS, FS 1, and FSrare the same as those for 
ISS). Finally, the external and migration fragmen­
tation values are somewhat confusing. For exam­
ple, the external fragmentation values of ~IIG are 
nearly identical to the other methods, even though 
no allocation is possible without doing preemption 

Table 3. Allocation Performance in a 1024 x 1024 .Mesh 

Completion Processor Number Steps per Steps per Steps per 
Method Time Utilization Allocated Success Failure Attempt 

Submesh sides uniformly distributed between 1 and 1024 
MIG 32224.8 53.0 2.2 
4ISS 33332.7 51.3 2.0 4.3 7.5 7.5 
MBV 33763.8 50.6 2.0 139337.7 2.6 69661.4 
ISS 35069.5 48.7 1.8 3.4 5.7 4.5 
FSn 41231.5 41.5 1.4 13.9 5.1 9.5 
FS1 35069.5 48.7 1.8 3.9 2.4 3.2 

Submesh sides uniformly distributed between 1 and 512 
4ISS 7516.4 57.0 9.3 22.2 66.0 44.1 
ISS 8259.0 51.8 8.5 23.7 47.9 36.0 
FSn 10852.4 39.4 6.4 50.2 25.7 38.0 
FS1 8259.0 51.8 8.5 34.0 32.3 33.2 

Submesh sides uniformly distributed between 1 and 256 
4ISS 1697.0 63.3 41.6 130.6 441.6 286.3 
ISS 1746.4 61.5 40.5 216.5 442.2 328.9 
FSn 2563.6 41.9 27.3 271.3 246.7 259.0 
FS1 1746.4 61.5 40.5 667.9 886.5 776.7 

Submesh sides uniformly distributed between 1 and 128 
4ISS 404.6 66.9 180.8 984.2 3549.3 2279.2 
ISS 412.0 65.7 176.7 2144.6 4362.0 3234.4 
FSn 573.3 47.2 124.7 2868.4 3319.9 3031.1 
FSt 412.0 65.7 176.7 17216.6 23791.9 20448.2 

Submesh sides uniformly distributed between 1 and 64 
4ISS 110.1 62.5 769.1 6764.2 25826.7 16625.0 
ISS 109.5 62.8 731.9 12443.6 30317.3 20453.3 
FSn 138.9 49.5 556.2 47663.1 48318.5 47965.6 
FS1 109.5 62.8 731.9 465699.5 627873.2 538373.4 



when these measurements are taken. This is evi­
dence that external fragmentation (in two dimen­
sions) is a misleading measure of allocation effi­
ciency under an FCFS scheduling policy. 

To further distinguish between the perfor­
mance of the faster methods, -iiSS, ISS, FS1, and 
FSn, we tested them with another set of simulation 
runs designed to stress their run-time efficiency. 
Table 3 contain;; the results of five simulation runs 
on a 1024 X 1024 mesh in which 4000 sub mesh 
requests were queued at the dispatcher for each 
run. The side lengths of subme;;h requests were 
drawn from a uniform distribution over ranges 
that varied from 1 to 64 up to 1 to 1 02-!:. The 
smaller ranges resulted in a large number of resi­
dent submeshes: the average number of allocated 
submeshes per allocation attempt is given in the 
fourth column of the table. The efficiencv of the 
ISS strategy is seen. Its compact representation of 
the mesh allows it to quickly process allocation 
requests in a mesh that is already dense with resi­
dent submeshes. On the other hand. as the sub­
mesh side request range shrinks, both FS1 and FS" 
have a run-time performance that approaches 
that of FS 1 • The MBV method, either as imple­
mented here or using Sharma and Pradhan' s [ 6] 
O(ILr~J implementation. would also exhibit ex­
tremely large allocation times on dense meshes. 

Finally, several other submesh side request and 
resident time distributions were used and mesh 
sizes of up to 4096 X 4096 were tested. The 
results included here are representative of numer­
ous other results not reported here due to space 
limitations. In particular, the ranking of the meth­
ods did not change from what is implied by the 
results in T abies 1 , 2, and 3. 

5 CONCLUSIONS 

This article presented a comprehensive evaluation 
of several of the submesh allocation methods that 
have appeared in the literature. A completely new 
method that uses interval sets was also intro­
duced. From the results, the methods can be 
ranked as follows: 

5.1 Allocation Time Performance 

Sparse Mesh 

In a sparsely populated mesh, several of the meth­
ods have near identical allocation time.s. 4ISS, 
ISS, MBV (Sharma and Pradhan's [6] implemen-
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tation), and FS1 are all efficient. Implementations 
using Zhu's [7], E>(XY), 0/1 array scheme will not 
be competitive on sparse meshes. 

Dense Mesh 

Of the methods we tested, 41SS and ISS domi­
nated allocation time performance on dense 
meshes. Because the ISS methods approach their 
O(XY) worse case .running-time on these meshes, 
it is likely that implementations that use Zhu's 
0/1 array scheme will also be competitive. 

5.2 Allocation Efficiency Performance 

Sparse Mesh 

4ISS dominates .\IBV, which clearly dominates 
the allocation equivalent methods ISS, FS1, AS, 
and FS1. There is no need for the allocation/ time 
efficiency compromise embodied in FSn. 

Dense Mesh 

Our results show that 4ISS again dominates on the 
methods tested. It is not known for certain what 
the allocation performance of MBV would be rela­
tive to 4ISS on very dense meshes, but the trends 
indicate that 4ISS would be slightly more efficient. 

The main conclusions that we can make from 
our study are that: 

1. First-fit methods can outperform best-fit 
methods provided that the candidate 
frames are searched in the proper order. 

2. Rotation of submesh requests increases the 
allocation efficiency of all allocation meth­
ods by nearly the same amount. 

3. Of all the methods tested and analyzed, 
only 4ISS dominates in both allocation effi­
ciency and allocation time performance on 
both sparse and densely populated meshes. 

However, much work remains to be done in this 
area-in particular other scheduling policies be­
sides FCFS need to be examined. 
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