
Methods for Precise Submesh Allocation

CRAIG MORGENSTERN

Department of Computer Science, Texas Christian University, Fort Worth, TX 76129

ABSTRACT

In this article we describe and compare several recently proposed algorithms for pre­
cise submesh allocation in a two-dimensional mesh connected system. The methods
surveyed include various frame sliding strategies, the maximum boundary value heuris­
tic, and interval set scan techniques. In addition, a new enhancement to the interval set
scan method is described. This enhancement results in an algorithm that has better
allocation and run-time performance under a FCFS scheduling policy than any of the
other proposed methods. We present results drawn from an extensive simulation study
to illustrate the relative efficiency of the various methods. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

This article is concerned with the design and anal­
ysis of submesh allocation methods to manage the
processors of a two-dimensional mesh connected
system. The problem of submesh allocation is
similar to that of "two-dimensional" memory
management. In a multiuser mesh system, several
tasks may be running simultaneously. Each task is
exclusively allocated a rectangular submesh of ex­
actly the required size, and a submesh remains
allocated to a task until the task completes. That
is, we are concerned with precise rectangular sub­
mesh allocation in which submesh migration is
not allowed. W'hen a task requests a rectangular
submesh of processors, the job of the allocation
method is to attempt to locate such a submesh
and to do so as efficiently as possible in both of the
following categories:

1. Run-time efficiency measures the time re­
quired to locate a submesh of the requested

Received April 1994
Revised May 1994

Cl 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 3, pp. 353-364 (1994)
CCC 1058-9244/94/040353-12

dimensions and consisting entirely of unal­
located processors, or to determine that
such a submesh does not currently exist in
the system.

2. Allocation efficiency measures the effective­
ness with which an allocation algorithm
manages the processors of the mesh system.

Several submesh allocation methods have been
proposed in the recent literature [1-7]. With the
single exception of the binary buddy method [4],
these methods all differ from their one-dimen­
sional memory management counterparts in that
they utilize data structures to keep track of what
has been allocated rather than what is available.
This is because the available "space" in a mesh
becomes fragmented into shapes that can be rep­
resented by numerous differing collections of rec­
tangular submeshes. A method that proceeds by
managing the unallocated processors must either
maintain several representations in the face of al­
locations and deallocations or select and enforce a
single representation at each allocation and deal­
location. The first approach would seem to result
in excessive algorithmic complexity and run-time
performance whereas the second approach would
seem to result in poor allocation performance (as
exhibited by the binary buddy [1, 2, 4]). Thus,

354 MORGE~STER~

the general scheme for submesh allocation has
been to identify candidate submesh locations and
to check the candidates for conflicts against what
is already allocated, rather than to search some
representation of what is unallocated.

The submesh allocation methods that have ap­
peared in the literature fall into three main catego­
ries:

1. Frame sliding: These methods proceed by
identifying candidate submeshes that could
satisfy a task request. The state of the mesh
is maintained by keeping a list of currently
allocated submeshes. This list is scanned
once for each candidate until either a candi­
date is found that does not conflict with any
currently allocated submeshes, or until all
candidates have been examined. The frame
sliding methods differ in how efficiently they
identify candidates. Recently proposed
frame sliding methods include the original
method by Chuang and Tzeng [1], Ding
and Bhuyan's [3] adaptive scan (AS)
method, Sharma and Pradhan's [6] maxi­
mum boundary value (MBV) method, and
the fast frame sliding (FS1) method de­
scribed by Morgenstern and Fouque [5].

2. Interval set scan: These methods, first intro­
duced by Morgenstern and Fouque [5],
maintain a compressed representation of
the state of the mesh using sets of integer
intervals. Interval set scan (ISS) methods
have the same or better allocation perfor­
mance as the best frame sliding methods
but exhibit better run-time performance.

3. 0/1 Array: Zhu [7] describes a scheme in
which the state of the mesh is mirrored in a
0/1 two-dimensional array, one array ele­
ment per mesh processor. If a processor is
unallocated/ allocated then the correspond­
ing array element contains a 0/1. Allocation
algorithms then search this array instead of
a list of allocated submeshes. All of the
frame sliding strategies can be implemented
to use a 0/1 array scheme and vice versa.

Additionally, Ding and Bhuyan [3] propose that
mesh systems provide hardware or software sup­
port for processor address translation that would
allow a request to be rotated 90°; i.e., a x X y
submesh could possibly be satisfied by a y X x
submesh. Allowing rotations to be performed
results in a significant increase in allocation effi­
ciency.

This article is organized as follows. Section 2
describes the frame sliding strategy and its numer­
ous variants. Section 3 contains the presentation
of the ISS method and enhancements. In Section
4 the run-time efficiency of the methods is ana­
lyzed and the results of a simulation study are
described and presented. The article concludes
with Section 5.

The following nutation and definitions are used
throughout the·article. A mesh connected system,
M(X, Y), consists of XY processors arranged in a
X X Y two-dimensional grid. Processors are ad­
dressed as (a, b) pairs where 0 s a <X and 0 s
b < Y. A x X y rectangular sub mesh has a qua­
druple address (a, b, c, d) where

x=c-a+1.

y=d-b+1.

(a, b) specifies the upper leftmost processor and
(c, d) specifies the lower rightmost processor. The
(a, b) processor is called the base of the submesh
and (c, d) is called the reverse base processor.

2 FRAME SLIDING STRATEGIES

Chuang and T zeng [1, 2] propose an allocation
method called frame sliding, which maintains a
list, L, of addresses of submeshes that are cur­
rently allocated in M. ~Then a task requests a sub­
mesh of dimensions x X y, a set of candidate base
locations is checked for allocation suitability.
Checking the suitability of a candidate base loca­
tion, (a, b), requires that the list of resident sub­
mesh addresses be scanned to determine if any of
the processors in candidate submesh (a, b, a +
x - 1, b + y - 1) are already allocated. Thus, if
an allocation is possible at (a, b), then L must be
completely scanned to determine this fact. If an
allocation at (a, b) is not possible, then the scan
terminates when the first conflict is encountered.

2.1 Restricted Frame Sliding

At one extreme, the set of candidate base loca­
tions contains all possible processor locations and
is given by

c1 ={(a, b) I 0 a X- x, 0 $ b $ y- y},
(1)

Because the use of C1 results in excessively high

run-time complexity, Chuang and Tzeng (1, 2]
suggest that a smaller candidate base set be used
to restrict the search space and increase the speed
of the search. For example, their suggested frame
sliding method uses the set

en = {(a, b) I 0 :5 a :5 X- X, a mod X= 0

0 ::::: b::::: Y- y, b mod y = 0},
(2)

and so it is possible for several feasible allocation
bases to be skipped and for a request to fail even
though an allocation is possible. The frame sliding
method that uses e1 is denoted by FS 1 and the
restricted version that uses e" by FS". Cse of e" is
a compromise that trades a loss of allocation per­
formance (such as processor utilization and task
waiting time) for a gain in run-time efficiency.
However, Chuang and Tzeng (L 2] give the
results of a simulation study that compares frame
sliding to a two-dimensional buddy allocation
strategy (4 J. Their study shows that FSn results in
much better allocation performance than is possi­
ble with a buddy allocation strategy.

To determine if a request for an X .Y submesh
can be satisfied, Chuang and Tzeng (1, 2] suggest
that the candidate base sets e1 and e" be defined
as

and

e1 ={(a, b) I 0::::: a< X, 0::::: b < Y}

en= {(a, b) I 0 :5 a< X, a mod X= 0

0 ::::: b < Y, b mod .Y = 0},
(3)

·when processing a request, this definition re­
quires that (X- x, 0, X- 1, Y- 1) and (0, Y- y,
X - 1, Y - 1) be temporarily added to L because
none of the processors in these temporary sub­
meshes can serve as a base of a submesh that
satisfies the request. Ding and Bhuyan (3] and
Morgenstern and Fouque (5] noted that it is more
efficient to implement e1 and en exactly as de­
fined in Equations 1 and 2 to shrink the number
of candidate base locations that have to be
checked and to avoid increasing the size of L.

2.2 FS, and AS

Major improvements in time efficiency can be
made when searching candidate base set e1 . Sup­
pose that candidate (i, j) is found to be infeasible

PRECISE SCB~IESI I ALLOCA TIO~ 355

for j := 0 to Y - y do
begin

i := 0;
while i ~ X - x do

begin
frame:= (i,j,i+x-l,j+y-1);
S := {s ELI sand frame conflict};
if S = 0 then

allocate frame and return(success)
else

i := max{c:+- II (a,j,c,d) E S}
end

end;
return(failure);

FIGURE 1 Determining if a request can be satisfied
using AS.

because one or more of the processors in (i, j, i +
x- 1,) + .Y- 1) are already allocated. Let (a, b,
c, d) be a submesh on the allocated submesh list,
L, which has a processor in (i,j, i + x- 1,) + y-
1). Then i::::: c and candidate base locations (i + 1,
j), ... , (c, j) can be safely skipped; i.e., base
location (c + 1, j) can be safely tried. If c + 1 >
X- x, then the search begins anew at (O,j + 1).
Ding and Bhuyan (3] propose to completely scan
L to find the conflicting submesh with the largest c
value. Their heuristic, AS, proceeds as shown in
Figure L

Morgenstern and F ouque [5 J also noted that
candidate base locations could be eliminated on
the fly. Their approach, FSr, prunes more candi­
dates from e1 than AS and does so more effi­
ciently. Rather than scanning all of L, FSrstops at
the first submesh, (a, b, c, d), encountered in L
that has a processor in (i,j, i + x- 1,) + y- 1).
Then as before, the next candidate base location
tried is (c + 1 ,j). Our simulation results show that
terminating the scan of L at the first conflict is
much more efficient than the AS strategy of doing
a complete scan to find the conflicting submesh
with the largest c value. Further, if all candidate
base locations in row j have been eliminated, then
it is possible to safely restart the search at candi­
date (0, h) for some h 2: j + 1, where h is the
smallest reverse base row of all conflicting sub­
meshes on L that were encountered when search­
ing row j (see Fig. 2).

Both AS and FSr have the same allocation per­
formance as FS1 but have much better run-time
efficiency. In fact, FSr is actually faster on some
simulation runs than the original FSn frame sliding
version that uses the restricted candidate set en.

356 MORGE!'.'STERJ\'

j := 0;
while j ::=; Y- y do

begin
i := 0; h := Y;
while i ::=; X - :r; do

begin
frame:= (i,j, i + :r;- l,j + y- I);
okay := true;
for (a, b, c, d) E L st okay do

if (a, b, c, d) and frame conflict then
begin

i := c +I; okay := false;
if h > d + I then h := d + I

end;
if okay then allocate frame and return(success)

end;
j := h;

end;
return(failure);

FIGURE 2 Determining if a request can be satisfied
using FS1.

2.3 Frame Placement and
Best-Fit Heuristics

In addition to the completeness of the candidate
base set, another issue is the order in which candi­
date bases are checked. A first-fit policy has been
implicitly assumed; the first candidate base en­
countered that does not result in a conflict with an
already allocated submesh is the one that is used
to satisfy a request. \Vith this assumption, is it
possible to obtain better allocation efficiency by
checking candidate bases in an order than the im­
plicitly assumed first-fit row-major ordering?
Morgenstern and Fouque [5] report that frame
placement heuristics can make a substantial dif­
ference. In particular, they note that the following
heuristic results in a noticeable improvement of
allocation efficiency over numerous other order­
ings (including row major):

Order candidate set C1 so that the requested
submesh is allocated with its largest side as
close to an edge of the mesh as possible.

This and other frame placement heuristics are dif­
ficult to implement efficiently using the frame slid­
ing strategy because they present an obstacle to
''on the fly'' pruning of C1 . In the following section
the ISS search framework is described, which does
allow for efficient implementation of this heuristic.

The frame sliding strategy can also be used to
support various best-fit heuristics. However, even
though C1 can be pruned using FS1 whi~e search-

ing for the frame with the best fit, simulation
results show that an excessive number of frames
are still examined, which leads to excessive run­
time. Both Zhu [7] and Sharma and Pradhan [6]
have devised heuristics to support an intuitive no­
tion of two-dimensional best fit. Sharma and
Pradham report that their heuristic, .\IBV. has
better allocation performance than Zhu · s heuris­
tic. The boundary value of an unallocated node
(a, b), in the mesh is given by the sum of the num­
ber of allocated neighbors of (a. b) and the num­
ber of mesh boundary points on which (a, b) lies.
Comer nodes (e.g., (0, 0)) lie on two boundary
points, horizontal and vertical. The boundary
value of a frame is the sum of all boundan· values
in the frame's periphery. The .\IBV heuristic pro­
ceeds by selecting the frame of the requested size
that has the largest boundary vahw and consist,;
entirely of unallocated proces,;ors.

3 ISS METHODS

A new submesh allocation algorithm called the
ISS method is described that has the same alloca­
tion performance as the frame sliding methods
FS1, FS1, and AS that use candidate base set C1
[5]; i.e., if an allocation is possible then ISS "'ill
find it. However, our simulation studies show that
the run-time efficiency of ISS is much better than
the frame sliding methods (even when compared
to frame sliding using the restricted candidate
base set Cn). Thus, the ISS method has both better
run-time efficiency and better allocation efficiency
than is possible using a row-major, first-fit version
of the frame sliding strategy. In this section the
basic ISS method is described as well as an en­
hancement to efficiently support the frame place­
ment heuristic described earlier.

3.1 Basic ISS

The state of the mesh is maintained by the use of a
data structure called an interval set. Let [a, b]
denote an interval of contiguous integers from a to
b where a ::5 b. Two disjoint intervals, [a, b] and
[c, d], are said to be adjacent if b + 1 = c or d +
1 = a. An interval set is a representation of a set of
disjoint nonadjacent intervals on a range of con­
tiguous integers, together with the following oper­
ations:

1. create_interval_set ():Return a new
empty interval set.

2. add_interval (s, i): Add interval ito set
s, where i is assumed to be disjoint from
intervals already in s. If i is adjacent any
interval) ins, then i and) are merged into a
single interval: i.e., all intervals ins are non­
adjacent after the inclusion of i.

3. delete_ interval (s, i) : Delete the in­
terval i from s, where i is assumed to belong
to s or to be a subinterval of an interval in s.

An interval set can be easily implemented using an
ordered linked list structure in which each node
contains the endpoints of an inter.-al. Two interval
sets, B; and R;, are associated with each row i of
1H. Whenever submesh (a, b, c, d) is allocated,
interval [a, c J is added to Bh and to R,J. When (a.
b, c, d) is deallocated. [a. c J is deleted from both
sets B, and Rr~. Thus. set 8 1, contains a represen­
tation of the '·top" row of processor addresses of
all allocated submeshes whose base processor is
in row b. Rr1 contains a representation of the "bot­
tom'' row of processor addresses of all allocated
submeshes whose reverse base processor is in row
d. For example, the nonempty base and reverse
base interval sets corresponding to the mesh gi,·en
in Figure 4 are:

8 0 = {[0, 8], [10, 13]} R0 = {[0, 8]}

81 = {[7. 8]}

Ba = {[2, 3]}

R:; = {[7, Sj}

Ro = {[2, 3]}

Rs = {[10, 13]}

To determine if a request for ax X y submesh
can be satisfied, a data structure similar to an in­
terval set is used, called a scan set. A scan set is

initialize..scan();
j := 0;
for r := 0 toy- 1 do addjntervaL.set(B,);
r := y;
while r < Y and openjnterval(x) = -1 do

begin
delete_interval..set(Rj); j := j + 1;
addjnterval..set(B,); r := r + 1

end;
i := openjnterval(x);
if i > -1 then

allocate at (i,j,i + x- 1,j + y- I) and return(success)
else

return(failure);

FIGURE 3 Determining if a request can be ?atisfied
using ISS.

PRECISE SCB~IESH ALLOCA TIO!\" 357

used to efficiently maintain a representation of a
collection of (possibly overlapping) intervals ob­
tained from several interval sets. Each element,
([a, b J, p), of a scan set consists of an interval [a,
b J and a count p. This element represents the fact
that p intervals, whose intersection is [a, b J, have
been added to the scan set. The intervals belong­
ing to a scan set are all disjoint and no two adja­
cent intervals can have the same count-adjacent
intervals with the same count are merged. A scan
set can also be easily implemented using an or­
dered list in which each node contains a scan set
element. The operations supported by a scan set
include:

1. ini tialize_scan (): Initialize the scan
set to contain the single empty interval, ([0,
X- 1 J, 0), where X is the width of the entire
mesh.

2. open_interval (x): Returns the leftmost
(lowest) value of an interval of size at least x
with a count of 0; i.e., if ([a, b], p) is in the
scan set with p = 0 and b - a + 1 2:: x, then
a is returned. If such an interval does not
exist, then -1 is returned.

3. add_interval_set (s): Add all intervals
belonging to the interval sets to the scan set.

4. delete_ interval_set (s) :Delete all in­
tervals belonging to the interval set s from
the scan set.

The routine given in Figure 3 shows how a scan set
is used to determine if a request for a x X y sub­
mesh can be satisfied. \Ve maintain a "com­
pressed" representation of y contiguous mesh
rows, ro, . . . , r:v-1, in the scan set. If (a, b, c, d)
is an allocated submesh with r0 ::5 b ::5 ry-1 or ro ::5

d ::5 rv-b then the interval [a, c] will have been
added to the scan set, so no allocation will be
made in those columns. If the scan set contains an
element ([e,f],p) withp = 0 and/- e + 1 2:: x,
then the request can be satisfied. Otherwise, we
"drop" row r0 and "add" row ry; meaning that all
intervals that correspond to a reverse base in ro are
deleted and all intervals that correspond to a base
in ry are added. This is illustrated in Figure 4.

3.2 Four-Way ISS

The simulation results reported [5 J indicate that
allocating a submesh with its largest side as close
to an edge of the mesh as possible results in near
optimal allocation performance under a FCFS

358 MORGENSTERN

0

2

3

4

.'j

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 !3 14

Rows Scan Set
initial {([0, 14], 0)}

0 { ([0, 8], 1), ([9, 9], 0). ([10, 13], 1), ([14. 14], 0)}
0,1 { ([0, 6], 1), ([7, 8],2). ([9, 9], 0), ([10, 13]. I). ([14, 14]. 0)}
1,2 {([0, 6], 0), ([7, 8], I). ([9, 9], 0), ([10, 13], 1), ([14, 14], 0)}
2,3 { ([0, 1 J. 0), ([2, 3], I), ([4, 6]. 0). ([7, 8], 1), ([9, 9]. 0), ([10. 13]. 1), ([14, 14], 0)}
5,6 {([0, 1], 0), ([2, 3].1), ([4, 6], 0), ([7, 8], 1), ([9, 9], 0), ([10, 13]. 1), ([14, 14], 0)}
6,7 {([0, 1], 0), ([2, 3], 1). ([4, 9],0). ([10, 13]. 1), ([14. 14]. 0)}
7,8 {([0, 9], 0), ([10, 13]. 1), ([14, 14], 0)}

final allocate at (0, 7, 9, 8)

FIGURE 4 Progression of an interval scan to allocate
a 10 x 2 request.

scheduling policy. The allocation method used by
Morgenstern and Fouque [5] to implement this
heuristic was based on frame sliding and had ex­
tremely poor run-time performance. A simple en­
hancement to the basic ISS method is now de­
scribed. Called the four-way ISS (41SS), it can be
used to efficiently implement this heuristic.

In addition to maintaining base row and reverse
base row interval sets, 4ISS also maintains base
column and reverse base column interval sets.
Each row j of M is associated with interval sets B;
and R1 as before, and additionally each column i
of M has interval sets B; and R; associated with it.
Whenever submesh (a, b, c, d) is allocated, inter­
val [a, c] is added to Bb and to Rd, and interval [b,
d] is added to B~ and R~. When (a, b, c, d) is
deallocated, [a, c] is deleted from both sets 8 6 and
Rd, and [b, d] is deleted from B~ and R~. Set B~
contains a representation of the "left" column of
processor addresses of all allocated submeshes
whose base processor is in column a. R~ contains a
representation of the "right" column of processor
addresses of all allocated submeshes whose re­
verse base processor is in column c. For example,
the nonempty base and reverse base column sets
corresponding to the mesh given in Figure 4 are:

Bo = {[0, OJ} R3 = {[3, 6]}

B2 = {[3, 6]} R8 = {[0, 5]}

B? = {[1, 5]} R\., = {[0, 8]}

B1o = {[0, 8]}

To determine if ax X y submesh request can be
satisfied, 4ISS does alternating top and bottom
row scans if x ~ y; otherwise, alternating left and
right column scans are performed (using the base
and reverse base column interval sets). A top row
scan is just the ISS method whereas a bottom row
scan starts at the bottom of the mesh, adds reverse
base row interval sets to the scan set, and deletes
base row intervals sets from the scan set. Simi­
larly, a left column scan starts at the left side of the
mesh, adds base column interval sets to the scan
set, and deletes reverse base column interval sets
from the scan set. A right column scan starts at the
right side of the mesh, adds reverse base column
interval sets to the scan set, and deletes base
column interval sets from the scan set. These al­
ternatives are illustrated in Figure 5. Thus, at
each allocation attempt two scan sets are active
(top and bottom, or left and right), and the search

PRECISE SCB.\IESH ALLOCATlO~ 359

x?_y x<y

add base row

drop reverse base row add base column

drop reverse base column

drop base column

drop base row

add reverse base row l
add reverse base column

alternate row scans alternate column scans

FIGURE 5 Scan direction alternatives for 4ISS.

alternates between the two scan sets one row or
column at a time. If the two scans completely cross
each other (bv x columns or y rows), then no allo­
cation is possible. Otherwise, as in ISS, the first
free x X y submesh encountered is allocated. This
free submesh will have its largest side as close to
the edge of the mesh as is possible, and the
amount of work required to find the sub mesh is no
more than the worst case under ISS (when the
largest side is x and the available submesh is near
the bottom).

4 ANALYSIS AND
EXPERIMENTAL RESULTS

The worst case running-times of the allocation
methods are fairly easy to derive. For the analysis,
we will assume that the mesh is square ·with X =
Y= N.

1. All of the frame sliding methods require a
scan of the list of allocated submeshes, L,
for each candidate frame at each allocation
attempt. For a x X y request, there can be
as many as (X - x)(Y- y) frames and so
these methods are bounded by O((X - x)
(Y- y) /Li). This gives an O(X 2Y2) or O(N 4)

absolute worst case of when the mesh is full
of 1 X 1 submeshes and a 1 X 1 request is
being serviced. The time required for deal­
location is constant because the pointer into
L can be associated with the allocated sub­
mesh during allocation and passed back to

the deallocation routine during dealloca­
tion.

2. The ISS methods do at most N traversals of
interval sets and N traversals of scan sets.
Each set can have no more than N ele­
ments, resulting in a O(N 2) worst case allo­
cation time. Deallocation requires two or
four traversals of interval sets and so has a
worst case time of O(N).

3. Methods based on Zhu's [7] 0/1 array
scheme will require 0(N2) allocation time
because the N X N array must be copied
and traversed at each allocation. Dealloca­
tion of ax X y submesh would require 0(xy)
time.

4. Sharma and Pradhan [6] describe a (com­
plex) alternative frame sliding implementa­
tion to support their MBV heuristic. Their
implementation identifies candidate frames
by scanning L and allocation requires
0(/L/3) time or O(N6) absolute worst case
time. As for frame sliding, deallocation
takes constant time.

From this analysis, it can be seen that when the
mesh is sparsely populated, several of the meth­
ods will exhibit equally good run-time perfor­
mance. In this case, the pruning heuristics of FSJ
and AS will be effective, the interval and scan sets
of the ISS methods will be small, and the size of L
will be small (allowing Sharma and Pradhan's al­
ternative MBV implementation to be competitive).
One objective of our simulation study is to stress
the methods by running them on densely popu­
lated meshes.

360 MORGENSTERN

4.1 Simulation Model

Numerous simulation runs were performed using
the same simulation model described previously
[1-3, 5]. In this model, allocation is performed
centrally by a dispatcher that is independent of
the mesh system. A fixed number of submesh re­
quests are queued at the dispatcher "''ith predeter­
mined side lengths and resident times that follow
selected distributions. All of the requests are im­
mediately pending, simulating a worse case task
interarrival time of zero. An FCFS scheduling or­
der is maintained; the dispatcher attempts to sat­
isfy the request at the head of the queue. If the
request cannot be satisfied, then the dispatcher
reattempts after an allocated submesh has been
released. This continues until the request at the
head of the queue has been satisfied, at which
time the head request is dequeued and the next
request serviced.

The main parameters needed to perform a sim­
ulation run are: the allocation method, the mesh
dimensions, the submesh side range and distribu­
tion, the submesh resident time range and distri­
bution, the number of submesh requests to be
queued at the dispatcher, and whether or not to
allow submesh requests to be rotated. \Vhen com­
paring methods, we used the same queue of sub­
mesh requests; i.e., we used the same random
number stream seeds and only altered the alloca­
tion method parameter. In all the simulation runs
that we report, the submesh resident times (task
service times) were real values uniformly distrib­
uted in the range of 5 to 30. The precise values
used for the other simulation parameters are de­
scribed later. With this simulation model, we de­
termined allocation efficiency of the various allo­
cation schemes by making the following measures:

1. The simulated time required to completely
service all requests. This is the simulated
time at which the final allocated submesh
gets released; called completion time.

2. The percentage of a processor in the mesh
that is utilized per unit of simulated time;
called processor utilization.

3. The percentage of total processors of a re­
quested submesh over the total number of
processors in the mesh at each allocation
failure, in which the number of available
processors at the time of failure is at least as
large as the number of requested proces­
sors; called external fragmentation.

4. The percentage of total processors .of a re-

quested submesh over the total number of
processors in the mesh at each "feasible"
allocation failure; called migration frag­
mentation. An allocation failure is feasible if
an allocation is possible by rearranging or
migrating the currently allocated sub­
meshes. Because deciding whether or not an
allocation failure is feasible requires an ex­
ponential search, this measure could not be
taken on all of the simulation runs-the de­
cision algorithm was intractable when the
number of allocated submeshes was larger
than 10.

4.2 Methods Tested

The allocation methods that we tested ~rP sum­
marized below:

1. ISS: interval set scan (first fit).
2. 4ISS: four-way interval set scan (first fit. al­

locates a submesh with its largest side as
close to the edge of the mesh as possible).

3. FSn: restricted frame sliding (first fit, uses
candidate set Cn)·

4. FSr fast frame sliding (first fit, prunes can­
didate base set cl).

5. AS: adaptive scan (first fit, prunes candi­
date base set C 1).

6. MBV: maximum boundary value (best fit,
uses FS1 to allocate a submesh with maxi­
mum boundary value).

7. MIG: This method attempts to allocate by
first using FS1. If FS/ fails to allocate, then
attempt to allocate by rearranging or mi­
grating the currently allocated submeshes
so as to make room for the pending request.
Although this is not a practical allocation
method, it is included for comparison pur­
poses. Its completion time and processor
utilization measures are the best possible
under an FCFS scheduling order. By defini­
tion, this method does not have migration
fragmentation.

In addition, we performed two sets of simula­
tions runs for each method, one in which rotations
were not allowed and one in which the methods
could rotate a submesh request. Both Ding and
Bhuyan [3] and Sharma and Pradhan [6] incor­
porated rotations in the implementations of their
methods but did not allow the methods that they
compared against to do rotations. Rotations result
in a substantial increase in allocation perfor-

mance, and so it is important to isolate the effect
of allowing rotations in all methods tested. ·when
running the MIG method and "·hen deriving mi­
gration fragmentation values under rotations. we
adapted the rule that, once allocated. a submesh
could be migrated but not rotated. This results in
lower processor utilization and higher completion
time values for the MIG method, but was neces­
sary to make the search tractable. Similarly, the
migration fragmentation values are higher than
they would be without this rule.

Run-time efficiency was measured by counting
the number of nodes touched in the linked data
structures used bv each method. For each
method, a single step is performed when a pointer
is dereferenced. The actual cpu time of the simu­
lation runs followed the trends indicated by the
step counts-the step counts serve to better illus­
trate the differences in run-time efficiency. In fact,
the frame sliding methods exhibited a slightly
worse run-time efficiencv ratio to other methods if
actual cpu time is considered. Three run-time
measures are given: the average number of steps
needed to make a successful allocation, the aver­
age number of steps needed to decide that an allo­
cation is not possible (i.e., a failed allocation), and
the average number of steps taken per attempted
allocation whether successful or not.

PRECISE SCB:\IESH ALLOCATIO!'." 361

4.3 Results

Table 1 is reprinted from .Morgenstern and
F ouque [5 J and contains the average of the results
of five independent simulation runs per distribu­
tion on a 256 X 256 processor mesh in which
1000 sub mesh requests were queued at the dis­
patcher for each run. This table is augmented to
include the results of running AS, 4ISS, and MBV
using the same simulation parameters that were
used to produce the results for the other methods.
The side lengths of submesh requests were made
over uniform and normal distributions, using two
random number streams, one stream per side.
Lnder the uniform distribution, submesh side
lengths were generated over the range 1 to 256.
Under the normal distribution. the mean was 128
and the standard deviation was set to 43 [2, 5]. As
can be observed from Table 1, 4ISS and MBV
have the best allocation efficiencv. Under a uni­
form side distribution, 4ISS performs so well that
little improvement is possible. As might be ex­
pected, our implementation of MBV suffers from
excessive run-time complexity. It should be noted
that Sharma and Pradhan's [6] O(ILI3) implemen­
tation would have a running-time similar to the
other fast methods because the mesh is so
sparsely populated. 1\"ext in allocation efficiency

Table 1. Allocation Performance in a 256 x 256 Mesh (Without Rotations)

Completion Processor External ~ligration Steps per Steps per Steps per
Method Time Utilization Fragmentation Fragmentation Success Failure Attempt

Uniform distribution
MIG 8367.9 53.90 32.6 0.0
4ISS 8637.5 52.27 32.9 24.9 4.10 10.61 7.20
MBV 8755.4 51.56 33.5 30.9 8275.0 2.40 4138.6
ISS 9020.0 50.06 33.7 30.7 3.22 5.34 4.26
FS1 9020.0 50.06 33.7 30.7 3.82 2.28 3.06
AS 9020.0 50.06 33.7 30.7 100.3 208.8 155.1
FS1 9020.0 50.06 33.7 30.7 5553.6 9195.2 7371.5
FSn 10837.5 41.64 33.2 28.9 10.68 6.38 7.56

Normal distribution
MIG 8575.6 50.58 29.7 0.0
4ISS 8914.3 48.66 29.6 24.6 3.27 11.77 7.53
MBV 9078.7 47.78 29.9 26.4 3928.5 3.11 1964.2
ISS 9527.9 45.56 29.8 25.8 2.84 5.94 4.38
FS1 9527.9 45.56 29.8 25.8 3.26 2.72 2.98
AS 9527.9 45.56 29.8 25.8 90.1 252.8 171.5
FS1 9527.9 45.56 29.8 25.8 5558.7 14438.2 9993.2
FSn 12265.7 35.36 28.6 24.6 2.84 3.62 3.76

362 MORGENSTERN

Table 2. Allocation Performance in a 256 x 256 Mesh (With Rotations)

Completion Processor External .\ligration Steps per Steps per Steps per
Method Time Utilization Fragmentation Fragmentation Success Failure Attempt

Uniform distribution
MIG 7465.0 60.48 33.4 0.0
4ISS 7720.5 58.46 33.3 28.1 7.36 17.96 12.68
MBV 7881.5 57.28 34.2 31.9 7194.4 4.44 3600.5
ISS 8104.5 55.72 35.2 33.6 5.00 10.01 7.48

Normal distribution
MIG 7684.5 55.46 29.7 0.0
4ISS 7917.9 54.80 29.5 23.7 6.34 23.00 14.66
MBV 8055.3 53.88 29.9 26.4 3334.5 5.94 1669.8
ISS 8495.5 51.06 30.6 26.3 4.66 12.44 8.56

are the four allocation-equivalent methods, ISS,
FSr, AS, and FSh that all do a row-major search
of the C1 candidate base set. Of these four, only
ISS and FSr have low time complexity and FSr
does a much more efficient job of pruning c1 than
AS. The results of allowing methods to rotate sub­
mesh requests are given in Table 2. Allowing rota­
tions does not change the ranking of the methods

and an across-the-board increase in allocation ef­
ficiency is observed (the allocation efficiency val­
ues for AS, FS 1, and FSrare the same as those for
ISS). Finally, the external and migration fragmen­
tation values are somewhat confusing. For exam­
ple, the external fragmentation values of ~IIG are
nearly identical to the other methods, even though
no allocation is possible without doing preemption

Table 3. Allocation Performance in a 1024 x 1024 .Mesh

Completion Processor Number Steps per Steps per Steps per
Method Time Utilization Allocated Success Failure Attempt

Submesh sides uniformly distributed between 1 and 1024
MIG 32224.8 53.0 2.2
4ISS 33332.7 51.3 2.0 4.3 7.5 7.5
MBV 33763.8 50.6 2.0 139337.7 2.6 69661.4
ISS 35069.5 48.7 1.8 3.4 5.7 4.5
FSn 41231.5 41.5 1.4 13.9 5.1 9.5
FS1 35069.5 48.7 1.8 3.9 2.4 3.2

Submesh sides uniformly distributed between 1 and 512
4ISS 7516.4 57.0 9.3 22.2 66.0 44.1
ISS 8259.0 51.8 8.5 23.7 47.9 36.0
FSn 10852.4 39.4 6.4 50.2 25.7 38.0
FS1 8259.0 51.8 8.5 34.0 32.3 33.2

Submesh sides uniformly distributed between 1 and 256
4ISS 1697.0 63.3 41.6 130.6 441.6 286.3
ISS 1746.4 61.5 40.5 216.5 442.2 328.9
FSn 2563.6 41.9 27.3 271.3 246.7 259.0
FS1 1746.4 61.5 40.5 667.9 886.5 776.7

Submesh sides uniformly distributed between 1 and 128
4ISS 404.6 66.9 180.8 984.2 3549.3 2279.2
ISS 412.0 65.7 176.7 2144.6 4362.0 3234.4
FSn 573.3 47.2 124.7 2868.4 3319.9 3031.1
FSt 412.0 65.7 176.7 17216.6 23791.9 20448.2

Submesh sides uniformly distributed between 1 and 64
4ISS 110.1 62.5 769.1 6764.2 25826.7 16625.0
ISS 109.5 62.8 731.9 12443.6 30317.3 20453.3
FSn 138.9 49.5 556.2 47663.1 48318.5 47965.6
FS1 109.5 62.8 731.9 465699.5 627873.2 538373.4

when these measurements are taken. This is evi­
dence that external fragmentation (in two dimen­
sions) is a misleading measure of allocation effi­
ciency under an FCFS scheduling policy.

To further distinguish between the perfor­
mance of the faster methods, -iiSS, ISS, FS1, and
FSn, we tested them with another set of simulation
runs designed to stress their run-time efficiency.
Table 3 contain;; the results of five simulation runs
on a 1024 X 1024 mesh in which 4000 sub mesh
requests were queued at the dispatcher for each
run. The side lengths of subme;;h requests were
drawn from a uniform distribution over ranges
that varied from 1 to 64 up to 1 to 1 02-!:. The
smaller ranges resulted in a large number of resi­
dent submeshes: the average number of allocated
submeshes per allocation attempt is given in the
fourth column of the table. The efficiencv of the
ISS strategy is seen. Its compact representation of
the mesh allows it to quickly process allocation
requests in a mesh that is already dense with resi­
dent submeshes. On the other hand. as the sub­
mesh side request range shrinks, both FS1 and FS"
have a run-time performance that approaches
that of FS 1 • The MBV method, either as imple­
mented here or using Sharma and Pradhan' s [6]
O(ILr~J implementation. would also exhibit ex­
tremely large allocation times on dense meshes.

Finally, several other submesh side request and
resident time distributions were used and mesh
sizes of up to 4096 X 4096 were tested. The
results included here are representative of numer­
ous other results not reported here due to space
limitations. In particular, the ranking of the meth­
ods did not change from what is implied by the
results in T abies 1 , 2, and 3.

5 CONCLUSIONS

This article presented a comprehensive evaluation
of several of the submesh allocation methods that
have appeared in the literature. A completely new
method that uses interval sets was also intro­
duced. From the results, the methods can be
ranked as follows:

5.1 Allocation Time Performance

Sparse Mesh

In a sparsely populated mesh, several of the meth­
ods have near identical allocation time.s. 4ISS,
ISS, MBV (Sharma and Pradhan's [6] implemen-

PRECISE SCB~IESH ALLOCA TIO:\' 363

tation), and FS1 are all efficient. Implementations
using Zhu's [7], E>(XY), 0/1 array scheme will not
be competitive on sparse meshes.

Dense Mesh

Of the methods we tested, 41SS and ISS domi­
nated allocation time performance on dense
meshes. Because the ISS methods approach their
O(XY) worse case .running-time on these meshes,
it is likely that implementations that use Zhu's
0/1 array scheme will also be competitive.

5.2 Allocation Efficiency Performance

Sparse Mesh

4ISS dominates .\IBV, which clearly dominates
the allocation equivalent methods ISS, FS1, AS,
and FS1. There is no need for the allocation/ time
efficiency compromise embodied in FSn.

Dense Mesh

Our results show that 4ISS again dominates on the
methods tested. It is not known for certain what
the allocation performance of MBV would be rela­
tive to 4ISS on very dense meshes, but the trends
indicate that 4ISS would be slightly more efficient.

The main conclusions that we can make from
our study are that:

1. First-fit methods can outperform best-fit
methods provided that the candidate
frames are searched in the proper order.

2. Rotation of submesh requests increases the
allocation efficiency of all allocation meth­
ods by nearly the same amount.

3. Of all the methods tested and analyzed,
only 4ISS dominates in both allocation effi­
ciency and allocation time performance on
both sparse and densely populated meshes.

However, much work remains to be done in this
area-in particular other scheduling policies be­
sides FCFS need to be examined.

REFERENCES

(1] P.-J. Chuang and N.-F. Tzeng, Proceedings of the
11th International Conference on Distributed
Computing Systems. Los Alamitos, CA: IEEE
Computer Society Press, 1991, pp. 256-263.

(2] P.-J. Chuang and N.-F. Tzeng, "Allocating precise

364 MORGENSTERN

sub meshes in mesh connected systems," IEEE
Trans. Parallel Distrib. Systems, vol. 5, pp. 211-
216, 1994.

[3] J. Ding and L. Bhuyan, Proceedings of the 1993
International Conference on Parallel Processing.
Boca Raton, FL: CRC Press, 1993, vol. II, pp.
193-200.

[4] K. Li and K.-H. Cheng, "A two dimensional buddy
system for dynamic allocation in a partitionable
mesh connected system," J. Parallel Distrib.
Comput., vol. 12, pp. 79-83, 1991.

[5] C. Morgenstern and P. Fouque, Proceedings of the
27th Hawaii International Conference of System
Sciences. Los Alamitos, CA: IEEE Computer Soci­
ety Press, 1994, vol. II, pp. 493-501.

[6] D.-D. Sharma and D. Pradhan, Proceedings of the
5th IEEE Symposium on Parallel and Distributed
Processing. Los Alamitos, CA: IEEE Computer So­
ciety Press, 1993, pp. 682-689.

[7] Y. Zhu, "Efficient processor allocation strategies
for mesh-connected parallel computer!S," J. Paral­
lel Distrib. Comput., vol. 16, pp. 328-337, 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

