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ABSTRACT 

There is a need for compiler technology that, given the source program, will generate 
efficient parallel codes for different architectures with minimal user involvement. Paral­
lel computation is becoming indispensable in solving large-scale problems in science 
and engineering. Yet, the use of parallel computation is limited by the high costs of 
developing the needed software. To overcome this difficulty we advocate a comprehen­
sive approach to the development of scalable architecture-independent software for 
scientific computation based on our experience with equational programming language 
(EPL). Our approach is based on a program decomposition, parallel code synthesis, 
and run-time support for parallel scientific computation. The program decomposition is 
guided by the source program annotations provided by the user. The synthesis of paral­
lel code is based on configurations that describe the overall computation as a set of 
interacting components. Run-time support is provided by the compiler-generated code 
that redistributes computation and data during object program execution. The gener­
ated parallel code is optimized using techniques of data alignment, operator place­
ment, wavefront determination, and memory optimization. In this article we discuss 
annotations, configurations, parallel code generation, and run-time support suitable for 
parallel programs written in the functional parallel programming language EPL and in 
Fortran. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

With a constant need to solve scientific and engi­
neering problems of ever-growing complexity, 
there is an increasing need for software tools that 
provide solutions with minimal user involvement. 
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Parallel computation is becoming indispensable 
in the solution of the large-scale problems that 
arise in science and engineering. Although the use 
of parallel computation has been increasing, its 
widespread application has been hampered by the 
level of effort required to develop and implement 
the needed software. Parallel software often must 
be tuned to a particular parallel architecture to 
execute efficiently; thus, it often requires costly 
redesign when ported to new machines. Parallel 
program correctness requires the results to be in­
dependent of the number and speed of the pro­
cessors. This requirement can be satisfied only if 
the parallel tasks are independent of each other or 
properly synchronized when a dependence exists. 
Designing proper synchronization is a major 
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source of difficultv in ensuring parallel program 
correctness. Different categories of parallel archi­
tectures have led to a proliferation of dialects of 
standard computer languages. Varying parallel 
programming primitives for different parallel lan­
guage dialects greatly limit parallel software porta­
bility. Poor portability of parallel programs has re­
sulted in a duplication of efforts and has limited 
the use of developed systems. 

Parallel computation can be viewed as an inter­
woven description of operations that are to be ap­
plied to data distributed over the processors, and 
of data mapping and synchronization that dictate 
the data movements and the computation order. 
The traditional programming languages, such as 
Fortran, C, or C++, cope well with the task of 
prescribing operations to be performed. However, 
the description of data mapping and synchroniza­
tion in such languages is often introduced by ad 
hoc architecture-dependent extensions. Exam­
ples are various synchronization constructs like 
busy-wait, locks, or barriers that are used in pro­
grams for shared-memory machines, send andre­
ceive with different semantics employed by pro­
grams for message-passing architectures. and 
dimension projection and data broadcast popular 
in programs for single instruction multiple data 
(SIMD) computers. To avoid such architecture­
dependent language definitions, we propose to 
separate the description of operations to be per­
formed on the data values from the definition of 
data mapping and synchronization needed to 
supply these data values to the proper processor 
at the proper instance of the program execution. 

With this goal in mind, we developed tools [ 1. 
2] that (i) decompose, at least partially, the paral­
lel program into the two (nearly) orthogonal parts 
described above, (ii) translate the necessary data 
movements into optimal form customized for the 
target architecture, and (iii) synthesize an overall 
parallel computation. using these tools the user 
can describe high-level features of a program and 
synthesize parallel computation from numerical 
algorithms, program fragments .. and data struc­
tures that are implemented separately. The tools 
support (i) parallel task generation and their allo­
cation to the processors, (ii) distribution of data to 
the processors. (iii) run-time optimization, and 
(iv) rapid prototyping of different parallel imple­
mentations. 

Through the application of transformation 
techniques, different versions of the same pro­
gram can be generated from decomposed compo­
nents. The synthesized computation uses load as-

signment, data distribution, and synchronization 
appropriate to the size and type of target parallel 
architecture. The computation synthesis is guided 
by conditional dependence graphs that represent 
externally accessible information in each of the 
synthesized fragments. Csage of conditional infor­
mation in data flow analysis and parallelization 
significantly increase efficiency of the generated 
parallel code. 

The summary view of our approach is given in 
Figure 1. Program components are created by an­
notating source programs in Fortran or in the 
functional parallel equational programming lan­
guage (EPL) [ 3 J. Fortran programs are trans­
formed into an equational form before decompo­
sition. The configuration definition guides the 
synthesis of the components into a parallel com­
putation. The synthesized computation together 
with the architecture description is used by the 
code generator to produce an object code custom­
ized for the target architecture. In Figure 1, con­
tinuous lines describe system paths that have 
been implemented, broken lines represent paths 
currently under development, and dotted lines 
correspond to paths at an early stage of investiga­
tion. 

This article is intended as an overview of the 
research done towards implementing software 
tools as envisioned in Figure 1. More technical 
discussion can be found elsewhere [3-10]. 

A brief description of the EPL language, its an­
notations, and configurations is given in Section 
2. The relationship of EPL constructs and tools to 
different levels of parallelism is discussed in Sec­
tion 3. The EPL compiler is discussed in Section 
4: in particular Section '±.4 includes an overview 
of our approach to scalable parallel code genera­
tion. A dynamic load management strategy for 
adaptive scientific computation on SL\1D archi­
tecture is the topic of Section 5. Finally. conclu­
sions and comparison to other approaches are 
given in Section 6. 

2 OVERVIEW OF THE EPL LANGUAGE 

EPL is a simple nonstrict functional language with 
a type inference designed for scientific computa­
tion. Although computationally vast, scientific 
computations are typically quite regular both in 
terms of control flow patterns and employed data 
structures. The data structures used are usuallv 
some variations of multidimensional arrays 
(sparse matrices, grids, jagged-edge arrays. and 
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FIGURE 1 Software tools and their uses. 

even some hierarchical structures can be viewed 
as such). Correspondingly, the EPL language is 
defined in terms of just a few constructs: general­
ized arrays and subscripts for data structures, re­
current equations for program specification, ports 
for process communication, and virtual proces­
sors to facilitate mapping of computation onto 
processors and load balancing. 

A computation is viewed in EPL as a collection 
of cooperating processes. A process is described 
by an EPL program that consists of only data dec­
larations and annotated conditional equations. 
The canonical data structure is a tree with nodes 
that can repeat and with leaves of primitive types. 
In its simplest form such a tree can be viewed as a 
multidimensional array, with each level of a tree 
corresponding to a new dimension of the corre­
sponding array. Structured files are provided for 
communication with an external environment (in 
records) and with other processes (through ports). 
EPL enforces a single-assignment rule, i.e., each 
data element should be defined exactly once (the 
EPL compilec however, is free to produce multi­
ple-assignment object codes). Thus equations, 
though syntactically reminiscent of assignment 

statements, are best viewed as assertions of 
equality. 

The EPL programmer also defines the process 
interconnection network (the graph obtained by 
representing processes as nodes and port inter­
connections as edges) in the configuration file. 
Processes along with the configuration files are 
provided by the user to facilitate the compiler in 
extracting the coarse grain parallelism in the com­
putation by generating processes and interprocess 
communication constructs. Configurations also 
allow the programmer to reuse the same process in 
different computations. 

2. 1 Iterations 

An iteration is a staple of scientific computing. In 
EPL, iterations are programmed using subscripts. 
A subscript assumes a range of integers as its 
value. Subscripts give EPL a dual flavor. In the 
definitional view, they may be treated as universal 
quantifiers and equations can be viewed as logical 
predicates. In the operational view, they can be 
seen as loop control variables and each equation 
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can be seen as a statement nested in loops implied 
by its subscripts. 

There is a special class of indirect indexes, 
called sublinear subscripts, that is used in scien­
tific applications so often that a special construct 
devoted to it has been introduced in EPL. For­
mally, an indirect index s defined over the sub­
script i is sublinear to this subscript if it satisfies 
the following property: 

(0:::::: s[1] :::::: 1) and (s[i] :::::: s[i + 1] :::::: s[i] + 1) 
fori= 1, 2, .. 

It immediately follows from this definition that the 
sub linear subscript s [ i] starts with the value of 
either 1 or 0 and then, with each increase of i, it is 
either incremented by 1 or kept unchanged. Typi­
cally, there is a condition associated with each 
sublinear subscript. The condition dictates when 
the subscript increases. This is the way a sublin­
ear subscript is defined in EPL. For example, a 
sparse matrix S that is a row-major representation 
of a matrix D can be defined in EPL using a sub­
linear subscript col[j] as follows: 

subscript: col is sublinearj: D[i,j] i= 0; 

S[i, col] = D[i,j] 

Sublinear subscripts have an implicit range deter­
mined by the number of times the defining condi­
tion yields true. 

The sublinear subscripts are convenient in ex­
pressing such operations as creating a list of se­
lected elements, operating on sparse matrices, or 
defining a subset of the given set. Even more im­
portant is the fact that in the implementation of a 
process no new iteration has to be created for 
computation associated with the sublinear sub­
scripts. Instead, all necessary computation can be 
nested in the iterations created for subscripts in 
terms of which the considered sublinear subscript 
has been defined. Sublinear subscripts are also 
useful in defining dynamic distribution of data to 
processors at run-time. An example of such a defi­
nition is given in Section 5.2. 

2.2 Reduction 

A computation that frequently occurs in scientific 
applications is to apply a binary operation over an 
entire vector and store the result in the last ele­
ment of the vector. For example, in scientific com­
putation there is often a need to apply an associa-

tive operator (such as +, *, max, min, etc.) selec­
tively on the elements of an array. Scan and re­
duce are language constructs in EPL and other 
parallel languages that allow such operations to be 
succinctly written. Reduce applied to a vector of 
values produces a scalar result whereas scan 
results in a vector of partial results. For example, 
consider a matrix A multiplied by a vector X with 
the result placed in a vector r. This operation can 
be written in EPL as: 

Temp[i,j] =if j==1 then A[i,j]*X[j] 
else Temp[i,j-1]+A[i,j]*X[j]; 

r[i] = Temp[i,range.j]; 

or, even shorter as 

r[i] = scan(+,A[i,j]*X[j],j); 

Such operations result in references of the form 
V[ ... range.i, ... ], where range.i indicates 
the range of the reduced/ scanned dimension of a 
multidimensional array V. (In general, the EPL 
range variable prefix denotes the size of its suffix.) 
The presence of such references in the program is 
explored by memory optimization and scheduling, 
which are discussed later. A more detailed de­
scription of the language is given bv Szyman­
ski [3]. 

2.3 Configurations 

In our approach a parallel computation is viewed 
as a collection of cooperating processes, which are 
defined as functional programs. Process coopera­
tion is described by a simple macro data flow 
specification, called a configuration. Configura­
tions support programming-in-the-large. The 
user can experiment with various configurations 
to find the one that results in the most efficient 
code. 

The configurator uses the dependence graph 
created during configuration analysis to generate 
an architecture-independent parallel description 
that is fed to the code generator. Configurations 
define processes (and their aggregates) and ports. 
Statements of the configuration represent rela­
tions between ports in different processes. They 
are supplied by the user to direct integration of the 
processes into a parallel computation. Processes 
created dynamically can communicate with ports 
located at parent, child, and sibling processes; 
each of those processes is just a copy of the same 
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process: mvm; m: inf; out: ouf; 

file: inf, 
int n, double A[*,*L 
record iter[*], double x[*]; 

file: ouf, 

/* first record with n * n matrix A *I 
I* sequence of records with vector x *I 

record appr[*], doubler[*]; 
subscripts: ij,k; 

/* sequence of result vectors r *I 

range.A=n; range.A[i]=n; range.x=n; range.r=n; 
r[k,i]=scan( +,A[ij] * x[kj]j); 

FIGURE 2 Matrix-vector multiplication in EPL. 

program, except the parent process that can be 
arbitrary. 

Consider as an example an iterative solver of 
linear equations Ax = b that uses the following 
recursion: 

rk = Axk-1 

. b- rk . 
Xk[l] = A[i, i] + Xk-dl] 

The first part of the recursion is a matrix-vector 
multiplication that may form a separate process, 
as shown in Figure 2. 

Note that there are no explicit input/ output 
statements and the order of equations is irrelevant 
because all variables are singly valued. If we as­
sume that the separate process, let's call it XC, 
calculates the new approximation of the vector x 
and monitors convergence and the third process, 

Configuration file: 

Input: P: MAIN-> inf -> P:MVM 

Output: P: XC-> xf -> P: MAIN 

P:XC -> inf -> P: MVM -> ouf -> P:XC 

(a) 

MAIN, provides final input/output, then the cor­
responding configuration is shown in Figure 3. 
The textual definition lists data flow paths that 
cover a configuration graph. The graphical defini­
tion is built from process boxes and file edges. It is 
augmented with file structure information pro­
vided by the EPL system (see Fig. 3b). 

2.4 Program Decomposition 
Through Annotations 

Annotations provide an efficient way of introduc­
ing the user's directives that assist the compiler in 
program parallelization. Annotations have been 
proposed in many systems by various researchers 
[11-15] and are used mainly as compiler direc­
tives. In our approach annotations limit the feasi­
ble mappings of computation onto the processors. 
Hence, they are used only during the decomposi-

xf 

xf 

MVM XC 

ouf 

(b) 

FIGURE 3 Configuration for an iterative solver in (a) textual and (b) graphical form. 
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tion of a process into smaller fragments. This kind 
of annotation is similar to the ON clause as used in 
the Kali compiler [11], Fortran D [12], or Vienna 
Fortran [13]. 

Annotation does not have anv effect on the 
result computed by a program. Consequently, se­
quential programs that have manifested their cor­
rectness over many years of usage are good candi­
dates for parallelization through annotations. 
Being orthogonal to the program description, an­
notations support rapid prototyping of different 
parallel solutions for the same problem, which can 
be helpful in performance turning. 

In EPL, each equation can be annotated with 
the name of an array of virtual processors on 
which it is to be mapped. Virtual processors can 
be indexed by the equation's subscripts to identify 
instances of equations assigned to individual vir­
tual processors. Such instances constitute the 
smallest granule of parallel computation. For ex­
ample, for the process .\1VM the following annota­
tion: 

P[i]: r[k,i] scan(+ ,A[i,j]*x[k,j] ,j): 

will cause the compiler to consider only the tasks 
that define a sequence of vectors r[ * , i]. Each 
task will locally store one row of array A but the 
vectors x [ k, *] must be broadcast to all of those 
tasks. 

The above partitioning allocates a slice of the 
equation defined by a single subscript value. The 
resultant granularity may be too fine for a target 
architecture. However, when an annotation is in­
dexed by a sublinear subscript, then the corre­
sponding sublinear expression dictates how the 
annotated equations are clustered onto the virtual 
processors. For example, let p be a sublinear sub­
script of i, and range.p be the number of physical 
or virtual processors. (This number may be a sys­
tem constant not even known explicitly to the 
user; it may depend on the architecture, system 
load, or it may be defined by the user or compiler 
directive.) Considering again the previous exam­
ple of a matrix-vector multiplication, we can use 
an annotation: 

P[p]: r[k,i] = reduce(+ ,A[i,j]*x[k,j],j): 

It will distribute (or partition) one dimension of r 
and A over range.p processors in a block fashion 

(each processor will hold lf, J or If, l columns of r 
and rows of A). In Section .S. 2 there is an exam­
ple in which a different distribution is achieved 
using a sublinear subscript in an annotation. 
This distribution balances the load on the pro­
cessors. 

There are similarities as well as differences be­
tween the EPL annotations and the Fortran Ian­
guage extensions that have been introduced in 
many systems, e.g., Vienna Fortran [13, 16, 17], 
Fortran D [12, 18, 19], and SCPERB [20]. Vi­
enna Fortran provides directives for array-like 
processor structure definition. The distribution of 
arrays can be specified at compile time through 
the use of a DIST directive with BLOCK or 
CYCLIC options. INDIRECT directives can be 
added to indicate run-time distribution. Such a 
distribution may have a range of valid distribu­
tions defined in its declaration. It uses an explicit 
mapping array to assign a distribution by an exe­
cutable statement. The assigned distribution can 
be part of the condition in the source program. In 
addition to direct distribution definition, an array 
in Vienna Fortran can inherit a distribution from 
the definition of its alignment relative to some 
other array (and vice versa). Directive DIST can 
be used with options like =A, TRANSPOSE(A), 
PERMUTE(A, PERM) to align an array with, re­
spectively, another array B. transposed array A. 
or array A with indices permuted according to the 
given vector PERM. 

Fortran D directives are similar to Vienna For­
tran, however distribution is separated from align­
ment. In Fortran D, first the DECOMPOSITION 
statement is used to declare a problem domain for 
each computation. The ALIGN statement is then 
used to describe problem mapping that defines 
the alignment of arrays with respect to each other. 
Finally, the DISTRIBUTE statement is used to 
map the problem and its associated arrays to the 
physical machine. 

In EPL, by subscripting the annotated virtual 
process names and defining the appropriate 
ranges for the subscripts, the user can distribute 
the arrays in blocks, columns, or rows. The arrays 
can also be transposed by permuting the sub­
scripts of annotated virtual processors. Cnlike 
Vienna Fortran and Fortran D. EPL does not pro­
vide the user with directives to do manual align­
ment of data. Instead, data alignment algorithms 
have been developed to facilitate this task auto­
matically (see "Data Alignment'' in Section 4.4). 
Hence alignment directives embedded in a source 
program are not necessary. 



3 PARALLELISM EXTRACTION IN EPL 

In EPL. compile time parallelism is sought on 
three levels: 

1. Coarse grain parallelism is sought by creat­
ing tasks that are primarily imposed by the 
user-defined processes and process inter­
connection network described in the config­
uration files. The process interconnection 
network is decomposed into parallelizable 
tasks by the compiler. Because the optimal 
decomposition is NP-hard for machines 
having more than three processors [211, the 
EPL compiler uses heuristics. 

2. Medium grain parallelism is sought at the 
level of equation clusters. Several equations 
in a program can be clustered into a group. 
Separate tasks are generated for each of the 
clusters. A cluster can run concurrently with 
other clusters in the same program. Pro­
grammers can assist the compiler in deter­
mining such clusters by annotating each 
equation by a virtual processor name. To 
minimize interprocess communication the 
compiler uses an heuristic to impose a hier­
archy among the generated tasks (see Sec­
tion 4.2). 

3. Fine grain parallelism is explored at the 
level of individual instances of equations or 
their clusters. This source of parallelism is 

Granularity Coarse Grain 

Type of ( Control Parallelism 
Parallelism 

( Configurator 

Compile-Time Developed ( Scheduler 
Tools 

c 

Problems ( Synchronization 
Addressed ( 

Developed ( 
Run-Time 

Tools 
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of the greatest importance in massively par­
allel SIMD architectures. Mapping arrays on 
to the processors dictates communication 
costs of fetching the arguments and storing 
the results of operations. The problem of 
finding the mapping optimal in this respect 
is known as the data alignment problem (see 
·'Data Alignment" in Section 4.4). Another 
problem arises in connection with mapping 
operators on to processors. The solution to 
the latter problem is discussed in "Array 
Operator Placement'' in Section 4.4. The 
order of evaluation of the array elements is 
important for SIMD code efficiency. A com­
pile-time method of determining an efficient 
order, known as wavefront determination, is 
discussed in "\Vavefront Determination'' in 
Section 4.4. 

Figure 4 shows the tools that have been devel­
oped and their correspondence to various models 
of parallel computations. The control-parallel 
model assumes that there are separate, relatively 
independent processes or functions that can be 
executed simultaneously. This model requires the 
user to handle the error-prone and difficult task of 
synchronizing these independent processes. The 
configurator eases the burden of programming for 
control parallelism by automating the definition of 
interprocess coordination. 

Data parallelism, popular in massively parallel 

Medium Grain Fine Grain 

) ( Loop Parallelism ) ( Data Parallelism ) 

) ( Annotations )( Data Alignment ) 
) ( Memory Optimization) €avefront Determinatio~ 

Partitioning Algorithms ) 

) (Matrix Computations 
Direct Solvers 

Kecurrence tJquations) 
Iterative Solvers 

Load Balancing ) 

Dynamic Load Balancing ) 

Problems c Adaptive Solution of Partial Differential Equations ) 
Addressed 

FIGURE 4 Developed tools and their relationships to issues in parallel scientific com­

putation. 
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systems, assumes that there are large data struc­
tures to be processed and that each element of 
every structure can be assigned to a single proces­
sor (either virtual or real). The same sequence of 
instructions is applied simultaneously to all ele­
ments of the processed structures. It is also neces­
sary to decide which elements of the different 
structures should be placed on the same processor 
to minimize the cost of fetching arguments for op­
erations involving those elements. Data alignment 
tools described in this article can find suboptimal 
solutions to this problem without user involve­
ment. 

Annotations, relevant mainly to loop parallel­
ism, provide the user with the means of rapid­
prototyping altemative parallelizations of the 
program. For example, supplying proper annota­
tions, the user can experiment with various com­
binations of column and rowwise parallelizations 
of the matrix operations in a program. 

A load-balancing problem surfaces at all three 
levels of parallelism. In Section 5 we describe how 
the partitioning tools developed for the presented 
compiler can be used to do either static or dy­
namic load balancing on linear or rectangular ar­
rays of processors. The partitioning tool is appli­
cable to irregular computations that result from 
using adaptive solvers of partial differential equa­
tions on either homogeneous or heterogeneous 
processors. 

In EPL, the programmer can assist the com­
piler in extracting coarse- and medium-level par­
allelism. As described earlier, coarse grain paral­
lelism is ~btained by creating tasks from the 
processes and their interconnection network as 
specified in the configuration files. The program­
mer can help in determining the medium grain 
parallelism by annotating the equations in the 
source program. After determining the coarse and 
medium grain parallelism, the parallel program is 
synthesized with the help of the configurator. 

4 EPL COMPILER 

The basic techniques used in EPL compilation 
are data-dependence and data-attribute propa­
gation. In a single program, the dependencies are 
represented in the compact form by the condi­
tional array graph. A similar dependence graph is 
also created for a configuration. It shows the data 
dependencies among processes of the computa­
tion and is used for scheduling processes and 
mapping them on to the processors. Figure 5 de-

picts the structure of the EPL compiler by showing 
part of Figure 1 in more detail. In particular, all 
components of annotation processing, precompi­
ler, and scalable code generator are explicitly 
shown. The major stages of the EPL compilation 
are: 

1. Array graph construction, which transforms 
the source code into its intermediate form. 
The main components of this form are the 
array graph and the symbol table. The array 
graph nodes represent the variables and the 
equations. Each array graph edge repre­
sents the dependence between the nodes 
and is labeled by its attributes such as the 
associated subscript expressions, depen­
dence type, and conditions under which the 
dependence holds. 

2. Dimension propagation, which checks cor­
rectness and assigns dimensionality to each 
EPL variable. 

3. Type checking, which verifies that all vari­
ables and expressions have or can be as­
signed consistent types. 

4. Completeness verification, which performs 
various semantic checks and verifies that 
each variable is defined over its entire do­
main. 

5. Range propagation, which finds equiva­
lences between ranges of variables and 
equations. The EPL compiler uses the con­
cept of a range set as an object to which all 
equivalent ranges are linked. Range propa­
gation links all dimensions that share a 
common limit into a range set. 

6. Condition analysis, which establishes 
equivalence or exclusiveness of predicates 
used in conditional equations. The found 
relations of predicates are used in schedul­
ing and verification. 

7. Scheduler, which finds an array graph eval­
uation order that is minimal among all or­
ders preserving the program semantics. 
Scheduler also defines the scopes and nest­
ing of the loops in the object program. The 
output generated by the scheduler is used 
by the schedule optimizer and the code gen­
erator. 

8. Schedule optimization, which is an archi­
tecture-dependent step that customizes the 
generated schedule to the target architec­
ture (see McKenney and Szymanski [10] for 
SIMD specific optimizations). 

9. Annotation processing, configuration pro-
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FIGURE 5 The structure of the EPL compiler. 

cessing, and code generation are discussed 
in Sections 4.2, 4.3, and 4.4, respedively. 

4.1 Single Assignment Fortran 

Through extensions and annotations, imperative 
languages, particularly Fortran, have maintained 
their dominance in scientific computation over 
such nontraditional languages as data flow, logic, 
or functional. Nevertheless, languages based on 
the single assignment rule have proven to be a 
convenient basis for developing sophisticated pro­
gram optimizations. EPL research has centered 
its program optimization techniques on the array 
graph representation of recurrence equations. We 
believe that by-transforming the Fortran programs 
to array graph representation, a wider spectrum of 
program optimization and parallel code genera­
tion methods can be applied to the transformed 
programs than to their Fortran source. 

An important step towards an efficient parallel­
ization of Fortran programs with the help of the 
EPL compiler involves an equational transforma­
tion during which the equational equivalent of the 

program is generated [2]. The transformed pro­
grams obey the single assignment rule and do not 
contain any control statements [22]. The trans­
formation is done in the following two steps: 

1. Program expansion, during which the vari­
ables are expanded to enforce the single as­
signment rule. In particular, the reassign­
ments elimination involves replacing the 
reassigned variables by vector (additional 
dimension)-inside loops and by variants­
in "if" branches and basic blocks. 

2. Program optimization, which consists of: 
Condition analysis: Conditions in the trans­

formed program are analyzed using a 
Sup-Inf inequality prover [ 4 J and the 
Kaufl variable elimination method [23] to 
find pairwise equivalent or exclusive con­
ditions. 

Variable's variants elimination: Variants 
created in equivalent and exclusive con­
ditions are merged into a single variable. 

Additional dimension elimination: During 
scheduling and code generation for indi-
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vidual processes, memory optimization is 
performed to replace entire dimensions 
by windows of a few elements for multidi­
mensional variables [7]. This step re­
stores the memory efficiency of the origi­
nal program. 

The transformed Fortran program is then com­
patible with the programs produced by annotating 
EPL programs. 

4.2 Annotation Processing 

Each virtual processor produces data typically 
used by other virtual processors, and in turn con­
sumes data produced by others. By performing 
data-dependence analysis in a style of PTRAK 
[24 J, the annotation processor can find the de­
pendencies local to each virtual processor as well 
as data structures produced and consumed by 
this processor. All data produced by the processor 
become local to it and are placed in its local mem­
ory. The created parallel tasks are supplied with 
communication statements needed to move non­
local data. Parallel tasks associated with virtual 
processors at the bottom of the block hierarchy 
are the smallest components used in the program 
synthesis. Hence, annotation processing includes: 

1. Creating parallel tasks defined by annotated 
fragments of the original program. 

2. Declaring ports needed to interconnect 
created tasks into a network. 

3. Interconnecting ports according to the task 
communication graph to preserve data 
dependencies between created tasks. 

Each annotated fragment of the source program 
becomes a separate task. All data elements de­
fined in the task are local to it.* All used but not 
local data must be sent in from the other tasks. 
The annotation processor builds the task com­
munication graph. Then, it augments the code of 
each task by port declarations and send and 
receive statements that are needed to implement 
the required intertask data flow. To minimize the 
communication generated by the added state-

* We refer to this principle as Executor Owns rule. it is an 
inverse of the more commonly used Owner Computes rule. In 
Sinharoy and Szymanski [8: we have shown an example of 
computation for which neither of the two rules results in an 
optimal solution. 

ments, the annotation processor embeds a tree in 
the task communication graph. 

Let G(V, E) be a task communication graph 
with a set of nodes V representing tasks and a set 
of edges E ~ V X V representing intertask com­
munication. Each edge e1.J E E has the associated 
cost, c(e1-Jl, that represents the volume of data be­
ing sent from task ito taskj. In a spanning tree T, 
the distance JT(e,) defines the minimum length 
path from task ito taskj. Csing these definitions, 
the cost of the spanning tree T can be defined as: 

C(T) = 2: c(e1.;) * JT(eij) 
e1 1Ef"' 

To minimize the total communication cost, proper 
cut-tree must be found. It can be done in O(IVI-1) 
steps [25] by solving lVI maximal flow problems. 

To embed the tree, we developed an heuristic 
that selects the embedding using the following cri­
teria: 

1. Dimension nesting: If two tasks with differ­
ent dimensionalities are connected in the 
task communication graph, the task with 
more dimensions should be located lower in 
the spanning tree. 

2. Range nesting: Whenever possible, tasks 
sharing the same range should be clustered 
together in the spanning tree. Variables that 
share ranges usually appear in the same 
equations. Thus, clustering such variables 
together decreases the number of inter­
process references to distributed variables. 

3. Data flow: The total communication cost of 
the selected spanning tree should be the 
smallest among all spanning trees satisfying 
the above two criteria. 

Trees created from an annotation of the matrix 
vector multiplication program are shown in Figure 
6. The double outcoming arrows indicate scatter­
ing the data from a task to a group of tasks. The 
double incoming arrows represent an inverse op­
eration of gathering the data. For example, pro­
cess IWAIN scatters the vector x [ 0] among proces­
sors P[i]. On the other hand, process XC gathers 
the vector r[ k] by collecting individual elements 
r[k, i] from processors P[i]. 

4.3 Program Synthesis with 
the Configurator 

The goal of configuration processing is to establish 
scheduling constraints for the overall computa-
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FIGURE 6 Communication tree for matrix-vector 
multiplication. 

tion. In the parallel computation, individual pro­
cess correctness is a necessarv but not sufficient 
condition for the correctness o.f the entire compu­
tation. If a task has input and output ports that 
belong to a cycle in the configuration graph, then 
this task's input messages are dependent on the 
output messages. Such dependencies (in addition 
to dependencies imposed by the statements of a 
task) have to be taken into account in generating 
the object program for individual tasks; otherwise, 
loss of messages, process blocking, or even a 
deadlock can arise. 

Tasks that belong to a cycle in the task com­
munication graph can execute concurrently onlv if 
they are all enclosed in the. same loop in-cluding 
the respective send and receive statements. Such 
tasks are called atomic because they cannot be 
broken into parts without splitting the loop. For 
example, if a send statement is executed in a sep­
arate loop from the matching receive statement, 
then all messages will be sent before any one can 
be received, and the successors of such ~onatomic 
tasks cannot start until its predecessors in the task 
communication graph finish sending messages. 

The algorithm for finding external data depen­
dencies has been presented by Spier and Szy­
manski [ 6]. The analysis starts by inspecting all 
atomic processes and then propagates transitive 
dependencies along the paths of the task com­
munication graph restricted to atomic processes. 
As a result, a configuration-dependence file is cre­
ated and later used by the synthesizer and the 
code generator. This fiie conta.ins a list of the ad­
ditional externally imposed data dependencies 
(edges and their dimension types) that need to be 
added to the task array graph. One task may have 
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several such files, each associated with a different 
configuration in which this task participates. 

Each edge in the configuration-dependence file 
may have the following effects on the program 
generated from the array graph: 

1. An additional constraint is imposed by an 
edge if there is no equal or stronger internal 
dependency between the considered nodes. 

2. An error is discovered when there are inter­
nal dependencies incompatible with the 
edge. 

Hence, as shown in Figure 7, the dependence 
analysis for the synthesized computation has to be 
done in two stages. 

4.4 Code Generation and Optimization 
for Massively Parallel Architectures 

Data structures used in scientific computation can 
be viewed as a function o from an index domain I 
to a value domain V. An index domain, in general 
a set of tuples of integers (i1, i2, . . . , i,), is often 
a subset of the Cartesian product of integer inter­
vals for regular n-dimensional arrays. For exam­
ple, I = /1 X /2 X · · · X In, where f; = [L lma.r.Jl· 
Often an inverse function o- 1 does not exist. Fol­
lowing the standard higher-level programming 
language notation, we denote the value of the 
function o at point (i~, ... , i,) as v[i1, .... 
in]. 

Program execution can be seen as an evalua­
tion of the arravs at various index points (elements 

FIGURE 7 Two-stage dependence analysis. 
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FIGURE 8 Functional view of code generation. 

of the index domain). The order of execution is 
restricted only by data dependencies that rarely 
impose the total order. 

Figure 8 shows the conceptual stages of map­
ping the index domain of a variable to the Carte­
sian product of the processor domain, their local 
memory domains, and the time domain. The goal 
is to find a mapping that results in the minimum 
execution time. In Figure 8, A represents a virtual 
architecture. It is defined by the computer inter­
connection network. For example, in a k-dimen­
sional mesh-connected architecture of size N, 
processors can be thought of as arranged in a 
k-dimensional array, with A = [1, n 1 ] X [1, 
n2] X · · · X [1, nk], where N = n 1 * n 2 * · · · * nk. 
The processor p [ /1, /2, . . . , lk] is connected with 
processorsp[/1, ... ,l;± 1, ... ,lk], 1 :=;j:=;k 
provided that processor p [ /1, . . . , ~ ± 1, . . . , 
lk] exists (~ ± 1 mod n;, in the case of torus-con­
nected architecture). To facilitate data alignment 
and time scheduling, we assume that a virtual ar­
chitecture A is compatible with the domain /. Lo­
cal memory domain L can be viewed as a multidi­
mensional cube with the volume equal to the 
actual local memory available on each processor. 
Virtual memory domain M is of the same structure 
as the domain L, except that it has unlimited 
memory size. The execution time steps are repre­
sented by time domain T = [ 1, lmax], where lmax is 
the total number of time steps needed to complete 
the computation. 

In such a view, there are three major problems 
that need to be solved for generating optimized 
code for massively parallel architectures: data 
alignment, time scheduling, and memory optimi­
zation. 

Data alignment is discussed in some detail in 
the next section. Time scheduling of iterative 
computations is usually done either through data-

driven scheduling or wavefront determination. 
Both methods explore the fact that iterative com­
putations often allow the simultaneous evaluation 
of many array elements. Data-driven scheduling 
starts the execution of an index point as soon as 
all data that this point is dependent on become 
available. However, data dependencies often hold 
under conditions that involve input data and 
therefore can be resolved only in run-time. Conse­
quently, data-driven scheduling typically relies on 
run-time distributed synchronization. In the case 
of functional programs with single assignment and 
recurrent relations, the compile-time data-driven 
scheduling is decidable [26]. Such a scheduler 
has been implemented in the compiler for EPL 
language [7] and is not discussed here. Wavefront 
determination is presented below. 

Programs written in EPL or transformed from 
Fortran obey the single assignment rule. A vari­
able that is reassigned in a procedural language is 
seen as a vector of values with a different subscript 
value for each assignment. This extra temporal 
dimension allows the program to be specified 
without any reassignments but, unless optimized, 
may require an exorbitant amount of memory. 
The EPL compiler can often reduce the memory 
requirement of a program by replacing the entire 
dimension of an array by a few elements [7]. How­
ever, Sinharoy and Szymanski [27] have proven 
that the problem of finding the optimum replace­
ment is equivalent to the well-known NP-hard 
problem of determining the maximum weight 
clique problem. Consequently, the EPL compiler 
uses heuristics to determine a good loop arrange­
ment for memory optimization. 

Delta Alignment 

In a distributed memory parallel computer, a sig­
nificant speedup can be achieved by distributing 
(or mapping) data structures in a program on to 
the processors. One processor is allocated (at least 
conceptually) to each array element or composite 
data structure. Operations on elements of two 
data structures can be performed entirely locally if 
the elements are allocated to the same processor; 
otherwise, processor communication has to be in­
volved. The cost of communication depends on 
the relative position of the two processors involved 
and the architecture under consideration. One of 
the major challenges in programming distributed 
memory parallel computers is to distribute data 
structures among the processors so that the com­
munication cost is minimized. 



The problem is particularly acute when the 
communication is synchronous, such as in the 
case of SIMD machines. In addition, different 
alignments of multidimensional arrays on a grid­
connected SIMD architecture result in different 
communication patterns during parallel program 
execution. The usual approach to this problem 
[28, 29] is to select the best alignment for each 
array in the program independently of other ar­
rays. Hence, such an approach does not succeed 
when the independently found alignments conflict 
with each other. Similarly, the algorithm pre­
sented by Gilbert and Schreiber [30] finds the 
minimum communication cost of evaluating an 
expression over a distributed processor array but 
only for a single expression. Given the initial allo­
cation of data, the algorithm determines the pro­
cessors at which the temporary variables should 
reside and a subexpression evaluation should take 
place to minimize the communication cost. 

Szymanski and Sinharoy [31] have shown that 
the data alignment problem for an entire program 
is NP-hard for all communication cost metrics. 
They [8] proposed an heuristic that starts with an 
integer approximation of the rational minimum of 
the cost function when the distance is defined by 
the second (Euclidean) norm. The initial solution 
is then iteratively improved by following the steep­
est decline direction of the cost function. Results 
of using this algorithm on random graphs are en­
couraging [ 8] . 

Here, we focus on the definition of the problem 
and its impact on the code generation. Let's con­
sider an equation eu, . .. ,h} defined over k subscripts 
/ 1 , ... , h (such an equation corresponds to a state­
ment nested in k iterations): 

, Sk] 
· Vr[/1, /2, · · · ,Jk] · · · 

where each simple indexing expression s1 on the 
left side of the equation is an affine function of the 
corresponding subscript f;, and each indexing ex­
pression jj on the right side is a function over pos­
sibly many subscripts. A large class of parallel sci­
entific computations can be expressed as regular 
iterative algorithms (RIA) [32] in which all index­
ing expressions are of the form "I + c", where I is 
a subscript and c is an integer constant. 

To generate efficient code for SL\1D machines, 
one or two dimensions of a data array should be 
projected along the processor array [10]. For the 
i-th projected dimension of each array (each 
equation), we define an alignment function a, that 
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maps the index of that dimension into the position 
of the virtual processor that stores (executes) its 
value. We consider the simplest but also the most 
useful form of the alignment function defined as a 
constant shift, e.g., for variable v1, 

a1(l;) = I; + ali 

Hence, the equation e with alignment shifts can be 
written as: 

eu,, .. ,hl: v1[Ib · · · , h] 
= ... Vr[/1 + c1, ... , h + ck] (1) 

This equation incurs the communication cost: 

c = L y * d(iae1 - av1 + Cv11, . . . ' 
for all v's in e 

where d is a distance metric, y denotes the time 
needed for sending a unit message between two 
directly connected processors, and n is the dimen­
sionality of the communication network. The dis­
tance metric is defined by the interconnection of 
the processors in the considered parallel architec­
ture. Thus, the problem is to find alignment func­
tions a's for each of the variables and equations 
such that the communication cost C for the given 
set of assignments is minimal. Figure 9 shows the 
communication among the processors executing 
the i-th instance of Equation 1 along a single di­
mension. Contrary to the well known Owner Com­
putes rule, to minimize communication costs, the 
processor executing the i-th instance of the equa­
tion may be different from the processor that 
stores the i-th element of the array defined by this 
equation. 

Array Operator Placement 

Proper assignment of array operators to proces­
sors in large scientific computations executed on a 
distributed memory machine can reduce total 
computation time significantly. For example, con­
sider the following computationt evaluated over 
the rectangular stencil. Let n1, n2 stand for the 
lengths of the sides of the stencil and let p 1, P2 be 
the offsets (measured from the lower left comer of 
the stencil) of the desired position of the result. 

t This example is based on the computation arising in 
modeling ecosystem on the MasPar [33]. 
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FIGURE 9 Communication cost of exPcuting equation e. 

Let s;.J be a data structure distributed over the 
two-dimensional processor array and (m, q) be the 
coordinates of the processor that should receive 
the result. The computation is defined as: 

m+nt-pt q+nz-pl 

result= L L f(s"''l' s;.;) 
i=m-pt j=q-p'l. 

The above computation is evaluated repeatedly 
for each rectangular stencil in the processor array. 
Hence, it is likely to dominate the total execution 
time. The above computation is an example of a 
reduction evaluated simultaneously over many 
overlapping continuous sections of an array. 
Other examples of usage of such operations are 
likely to be found in cluster recognition, fractal 
dimension computation in biological modeling 
[34], or in modeling physical phenomena (e.g., 
solvers of partial differential equations character­
izing fluid flow). 

Simultaneous reduction is evaluated over a 
one-dimensional consecutive section of an arrav. 
called here an array interval; each array element is 
used as an operand to many reductions evaluated 
simultaneously over different overlapping inter­
vals. This is distinct from what is usuallv referred 
to as parallel reduction, which involves the paral­
lel evaluation of a single reduction [35] or its vari­
ants. An algorithm for standard parallel reduction 
that uses a balanced binary tree implementation 
for mesh-connected architectures has been pre­
sented [ 36 J. Another standard parallel reduction 

algorithm has been introduced [37] for tree topol­
ogies of arbitrary but bounded fan-in and arbi­
trary tree depth. The segmented prefix problem is 
a variant of parallel reduction that subdivides a 
single dimension of processors into nonoverlap­
ping contiguous regions of varying size. A multiple 
prefix algorithm that reduces noncontiguous re­
gions simultaneously for this variant has been 
solved by Sanz and Cypher [38]. ]\one of the pub­
lished algorithms cope with the overlapping of the 
regions being reduced. 

Efficiencv of the simultaneous reduction has 
been discussed elsewhere [39]. It can be ex­
pressed as a function of (i) operation count: i.e .. 
the number of required reduction operation steps. 
(ii) communication cost: i.e., a function of the 
number of messages sent (message count). the 
distances traveled by messages (hop count). and 
the length of the messages (message size), and (iii) 
memory count: i.e .. the number of memory loca­
tions used to store intermediate results at each 
processor. The lower bounds for the above counts 
are: [log2n] for the operation, message, and mem­
ory counts, n - 1 for the hop count, and 1 for the 
message size. For the interval of size n = 2k and 
an arbitrary offset p, a modification of the well­
known parallel prefix algorithm [35] achieves the 
above bounds. The modification defines the di­
rection of the message transfer in each step by the 
corresponding bit of the binary representation of 
the offset p. 

For an arbitrary interval size n and an arbitrary 



offset p we have designed an algorithm called in­
tersect, which achieves the lower bound of com­
munication and memory counts and is within a 
factor of 1.5 of the lower bound of operation 
count. For an arbitrary interval size nand an arbi­
trary offset p, we have designed an algorithm 
called split, which produces the result with the 
memory, hop, and message counts equal to their 
lower bounds. The operation count and themes­
sage size are at most twice the value of the corre­
sponding lower bound. Depending on the relative 
cost of the increased message size and operation 
count versus the smaller hop count, this algorithm 
may or may not outperform intersect for the given 
interval and offset. 

For an arbitrary interval size we have designed 
two algorithms that require asymptotically small 
operation and message counts: both counts are 
log2n + 2 if the reduction's binary operator has an 
inverse and log2 n + 2(log2 n)' + o((log2n)'), where 
c = log12 6 = 0.721057 ... , otherwise. 

Wavefront Determination 

One of the most common forms of parallelism 
available in a scientific computation is data paral­
lelism, in which the same operation is performed 
on manv elements in an n-dimensional data ar­
ray. In computation over such an array, a wave­
front of computation can be defined as an (n - 1 )­
dimensional subarray whose elements are all 
evaluated simultaneously. Different wavefronts 
result in different performance, so the question 
arises how to determine the wavefront that results 
in the minimum computation time. Wavefront de­
termination should also define which wavefront 
elements are to be computed by each processor at 
every execution step. This type of scheduling is 
appropriate for single program multiple data 
(SPMD) [40, 41] implementation on distributed 
memory architecture or for data parallelism on 
SIMD architectures. SP~D implementation. in 
general, requires larger parallel granules than 
SIMD implementation; therefore, it is more effi­
cient provided that the computations at each in­
dex point are fairly complex (i.e., involve compu­
tationally intensive function evaluation). 

Figure 10 illustrates how the choice of a partic­
ular wavefront can affect the performance of an 
algorithm. A two-dimensional array E is to be 
evaluated on a one-dimensional (logically) pro­
cessor array. The elements are defined by the fol­
lowing equation (elements that are beyond the ar­
ray boundary are considered to be zero): 
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E[x1, x2] = j(E[x1 - 2, x2 + 2], 
E[x1 - 4, x2- 2]) (2) 

A data-dependence vector of an equation is any 
vector that connects two index points. The end 
point of this vector is an index point at which the 
equation is executed and the starting point of the 
vector is an index point at which some value used 
in the definition is evaluated. For RIA [32] ex­
pressed in EPL, the dependence vectors are de­
fined by the difference between the corresponding 
subscript expressions used in the left and right 
side of the equation. In the above computation, 
there are just two dependence vectors: OA ([4, 2]) 
and OB([2, -2]). 

In general, let D = {d1, d2, . . . , dk} be the set 
of dependence vectors in a program (i.e., a set 
dependence vector for all equations in the EPL 
program). Variables can be evaluated simulta­
neously at all index points on a wavefront h, if and 
only if h · J, > 0 for all dependence vectors J,. 
Intuitively, this condition requires __that all index 
points reachable from a wavefront h are known at 
the time of execution of this wavefront or, in other 
words, all array elements in an appropriate side of 
the wavefront have already been evaluated. In 
Figure 10 all dependence vectors are on one side 
of the lines EH, E' H', and E"H", so all of them are 
wavefronts. Evidently, any line between OB and 
OA (traversed clockwise) in Figure 10 may be a 
wavefront because for these and only these lines 
are the dependence vectors on one side of the line. 
However, such a wavefront does not always exist. 
For example, when data dependences are differ­
ent at different regions of the index domain, there 
may be no single wavefront with the required 
property in the entire index domain. 

Two parallel wavefronts form a strip of compu­
tation that can be divided among a number of 
processors for execution. The separation between 
the wavefronts can be made such that once all 
packets (containing array elements evaluated by 
other processors) reach their destination, no more 
communication is needed to complete the evalua­
tion of all the array elements between the two 
wavefronts. In Figure 10, EFGH, E'F'G'H', and 
E"F"G"H" are three such strips. Because EFGH 
covers a bigger area than E"F''G"H", computation 
along this wavefront results in less frequent com­
munication and synchronization. Wavefront EH 
can be preferred to E"fl" for another reason; 
namely, the smaller distance that data must travel 
(compare projection of OA on E"H" with the pro­
jection of OA on EH). Wavefront EH can be parti-
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FIGURE 10 Different wavefronts to evaluate array E. 

tioned into more sections than E"H" with the simi­
lar computation-to-communication ratio, leading 
to a higher degree of parallelism. 

Even if there are no restrictions on the number 
of available processors, it is not straightforward to 
determine how the wavefronts should be optimally 
partitioned and mapped to the processors. A 
small partition increases communication time be­
cause most of the input array elements needed to 
evaluate a particular index point may reside out­
side the evaluating processor's local memory. For 
certain dependence vectors and the sizes of the 
partitions, input array elements may be quite a 
few processors away. On the other hand, the pro­
cessors may be underutilized if a large partition of 
the wavefront is assigned to a single processor. 

The wavefront approach to finding the set of 
index points at which evaluation can proceed si­
multaneously was originally proposed by Lamport 

0 0 0 0 

0 0 0 0 

0 

[ 42]. However, to find the wavefront minimizing 
the total execution time, an NP-hard integer pro­
gramming problem has to be solved. This original 
result has been extended by many researchers 
over the years [43-46]; however, the proposed 
solutions still are NP-hard because they can be 
reduced to an instance of the integer-program­
ming problem. 

Assuming that the space-time representation 
of an algorithm is a con~nuous domain, we can 
determine the wavefront h with the minimum exe­
cution time with polynomial complexity. This 
result holds for two-dimensional arrays processed 
on a linear, arbitrary large array of processors. It is 
valid for two different models of communication: 
(i) individual element transfer and (ii) packet 
transfer. In the first case, we have proven, under 
the above simplifying assumptions, that the only 
wavefronts that can be optimal are those that are 
either perpendicular to one of the dependence 
vectors or parallel to the y-axis. This property 
leads to a simple but efficient procedure for find­
ing an optimal wavefront by just inspecting all po­
tentially optimal wavefronts (complexity of this 
procedure is linear in the size of the input). 

For the example in Figure 10, there are only 
three angles of a wavefront to consider: Y1 = n/2, 
Y2 =arctan( -2), Y3 = n/4. The wavefronts with Y1 
and y2 are shown in Figure 11. In a single execu­
tion step with the wavefront defined by Y1, each 
processor evaluates four index points and needs 
to receive eight values from the neighboring pro­
cessors. However, for Y2 wavefront, the number of 
evaluated points and received messages is at most 
three. The number of steps needed is also differ­
ent for these two wavefronts because they move in 
different directions. If we assume that the compu-

FIGURE 11 Optimal wavefronts for array E. 



tation is defined over a rectangle with corners at 
the points (0, 0), (0, Y), (X, 0), (X, Y); X= 100, Y = 

10, then the number of steps made by the first 
wavefront is 50 and by the second one is 105. The 
corresponding total computation times for all 
three discussed wavefronts will be T1 = 315e + 
315c, T2 = 200e + 400c, T3 = 630e + 630c, 
where e is the cost of execution at each index point 
and c is the cost of communicating one datum 
between neighboring processors. Depending on 
th8 value of c/ e, the first or the second angle 
should be selected (see Fig. 11). 

Usually, array elements are not passed individ­
ually, but several of them are grouped together 
and sent in a single packet. This method is com­
monly used in the communication model known 
as block SIMD. In this model, off-processor values 
required to compute a designated block of parallel 
code are obtained immediately before the begin­
ning of the block, and all off-processor values 
generated within the block are communicated im­
mediately after the end of the block [ 4 7]. Typi­
cally, packets of values are formed for communi­
cation and transferred between nonneighboring 
processors by means of hopping. 

The wavefront strip is partitioned among the 
processors and the width of each partition impacts 
the total computation time. With too small a 
width, processors spend less time computing and 
more time communicating because less relevant 
information is available in the local memory. On 
the other hand, a large width enables processors 
to spend more time computing between data 
transfers, resulting in a smaller communication 
cost. Beyond a certain width, the communication 
cost does not decrease any further with an in­
crease in the partition width. If the partitions are 
too large, the available parallelism may not be ex­
ploited fully. 

As in the previous case, we have proved that the 
optimal wavefront can only be at certain angles to 
the dependence vectors (the number of possible 
angles is limited by the square of the number of 
dependence vectors). Once again the proof leads 
to an efficient enumeration procedure. 

In our analysis we have assumed a continuum 
of data element in an array. In reality, arrays are 
discrete so the analysis is approximate. For exam­
ple, in mapping a computation on to a linear array 
of processors, the algorithm provides a good 
wavefront when the longest projections (on each 
side) of the data-dependence vectors on the se­
lected wavefront are much larger than the length 
of packets sent along the wavefront. 
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The methods described here can be applied to 
any set of uncoupled recurrence equations. To 
decrease the communication cost, a good align­
ment of all arrays in the program should be deter­
mined first [8, 48]. Many methods described in 
the literature [ 43-46] determine the actual map­
ping of the computation on to the processors, once 
the wavefront is determined by solving an integer 
programming optimization problem. These algo­
rithms can be used for the wavefronts obtained by 
our method. 

There are many open problems in this area. 
One major issue concerns finding an efficient al­
gorithm to determine a good wavefront when a set 
of recurrence equations involving m-dimensional 
arrays are to be computed on an n-dimensional 
array of processors (m ;::: n). Another important 
question is how to generate the packets of conve­
nient sizes and shapes efficiently, once their size 
and orientation are known. 

5 RUN-TIME SUPPORT 

As discussed earlier the main problem of efficient 
parallelization is to properly map addresses of val­
ues being computed on to the computer proces­
sors. Pure compiler techniques have been suc­
cessful in cases when the data addresses are input 
independent and can be established at compile 
time. However, many important applications in­
volve sparse matrix computations, adaptive nu­
merical algorithms, or computations over irregular 
meshes and therefore do not belong to this cate­
gory. 

Traditionally supported compiler optimizations 
for parallel computation involve subscript analysis 
or directives for regular problem decompositions 
and distribution. Language and software tools for 
dealing with irregularity in parallel computation 
rely either on user-provided partitioning algo­
rithms, e.g., dynamic distributions in Vienna For­
tran [17], or the tracing of sample executions, 
e.g., Kali compiler [11, 49] and the PARTI library 
[50, 51]). Communication patterns of many ad­
vanced parallel computations are rarely known at 
compile time. However, transferring individual 
data is expensive because of the usually large la­
tency of multiple instruction multiple data (MIMD) 
architecture communication. Fortunately, often 
communication patterns change with each input 
data but remain constant inside the loop at run­
time. Therefore, both the Kali compiler and the 
PARTI library attempt to group messages. Entire 



218 OZTURAI", SINHAROY, A.\ID SZY:\IA:\'SKI 

blocks of data that must be sent to the single pro­
cessor are assembled into a single message in loop 
preprocessing done at run-time [ 49, 50]. 

In adaptive computation, the run-time support 
is needed because the workload distribution 
among the subregions of the computational do­
main changes during run-time. Therefore, there is 
a need for run-time task reallocation of adaptive 
computation executed on massively parallel dis­
tributed memory machines. Such task realloca­
tion requires different methods than the large 
grain, few-processor approaches discussed in the 
literature [52]. We have proposed a new type of 
so-called density workload problems appropriate 
for such environments [5]. 

5.1 Run-Time Task Distribution 

One of the most challenging problems encoun­
tered while implementing adaptive scientific com­
putations on distributed memory machines is 
run-time mapping of a dynamically changing 
computational load on to the parallel processors. 
In Nicol [53], the following rectilinear partitioning 
problem (RPP) has been proposed and solved: 

Partition the given n X m workload matrix into 
(N + 1) X (M + 1) rectangles with N + M 
rectilinear cuts in such a wav that the maximum 
workload among rectangles is minimized 

Such optimization is appropriate for adaptive fi­
nite element computations on architectures with 
local communication that is faster than the global 
one. Because balanced partitions tend to increase 
the volume of local versus global communication, 
the overall communication cost can be decreased 
by using the optimum rectilinear partition. 

Ozturan et al. [ 5] investigated the balancing of 
an adaptive scientific computation on SIMD ma­
chines: This is the problem with similar motiva­
tion and applications as the RPP problem. In 
RPP, the sum of the weights is taken as the cost of 
a rectangle, whereas in our problem the cost is 
expressed as the workload density, i.e., the ratio 
of the workload to the area with which this work­
load is associated. The area is proportional to the 
number of processors active in it. Such cost defi­
nition is motivated by the mesh refinement tech­
niques used in adaptive numerical methods. Each 
entry in the workload matrix represents the solu­
tion error obtained by an error estimation proce­
dure [54]. The high-error regions need recomput­
ing and the needed work is proportional to the 
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FIGURE 12 Example of one-dimensional partition­
ing. 

magnitude of the error. Hence, the number of pro­
cessors reassigned to each solution region should 
be proportional to the refinement factor. 

Consider a load-balancing problem as illus­
trated in Figure 12 for a one-dimensional prob­
lem. The uniform mesh yields the solution with a 
high error in the interval b ::s x ::s c and within the 
required accuracy in intervals a ::s x ::s b and c ::s 
x ::s d. Taking the magnitude of an error as an 
estimate of the work W; for each element i = 

1, . . . , n, we assign a small weight e ~ max;{w,} 
to work the estimate in regions a ::s x ::S b and c ::s 
x ::S d. To balance the workload. the majority of 
the processors should be assigned the interval b ::s 
X ::S C. 

In adaptive solutions of partial differential 
equations, parallel tasks perform basically the 
same computation over different spatial subdo­
mains (intervals for one-dimensional problems) 
and with a different discretization parameter ax. 
Let K denote the number of such tasks. It is im­
portant to keep this number small for the following 
reasons. The subdomain interactions are propor­
tional to the number of existing subdomains and 
in higher dimensions such interactions require ex­
pensive global communications. In each time step 
of the subdomain computation, a fraction of exe­
cuted code is subdomain specific (e.g .. in hyper­
bolic equations the time step has to be set differ­
ently in each subdomain). For purely SI:\1D 
machines, execution of this code fraction has to 
be done in K consecutive stages. In each stage, 
processors in one subdomain are executing while 
processors belonging to the remaining K - 1 sub­
domains remain idle.:j: Therefore, each subdo-

:j: For more general MIMD architectures that support coor­
dinated parallelism (i.e., CM -.'> ). all K sub domains can execute 
this fraction of code in parallel. 



main associated with a parallel task should repre­
sent a localized structure in the solution domain. 

Figure 13a shows an example of the more diffi­
cult two-dimensional case in which a coarse mesh 
is trivially mapped to the processor mesh. In re­
gions A and B, the mesh must be refined due to 
the presence of high errors. Hence, we have to 
spread subdomains A and B over bigger rectangu­
lar subsets of processors to improve load balanc­
ing as in Figure 13b,c. 

If mesh-movement or static rezone techniques 
are used, the mesh elements are moved into high­
error regions. A global solution strategy will refine 
the high -error regions and repeat the entire step of 
the iteration. Consequently, a reassignment of 
processors is needed. A local solution strategy, on 
the other hand, repeats the iteration only where it 
is needed. Hence, local refinement results in less 
direct computation and enables more processors 
to be assigned to regions A and B. However, local 
refinement requires more interactions between the 
local and global solutions. Such interactions in­
volve global communication that can outweigh the 
benefits of an adaptive procedure. Global solu­
tions and mesh-movement techniques require less 
interactions of this kind. Careful buffering of the 
high-error regions can increase the number of it­
erations executed before regridding or mesh 
movement is needed. This will, in turn, decrease 
the frequency of the needed load balancing. It is 
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FIGURE 13 (a) Coarse mesh with high-error regions 
A and B. (b) Repartitioning with global refinement. (c) 
Repartitioning with local refinement. (d) l\'icol's parti­
tioning. 
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Table 1. Instances of Problem Represented by 
Equation (3) 

Problem EB 0 f(k) 

One-dimensional 
partitioning [53 J mm max 1 

Density type for 
PDEs min max (xk- Xk-1 + 

Shortest path with k 
arcs min + 1 

Partitioning for heter-
ogeneous proces-
sors min max Sk 

1) 

these global mesh-refinement and mesh-move­
ment techniques executed on a mesh-connected 
architecture that motivated us to develop density­
type partitioning. 

It should be noted that applying RPP partition­
ing to the example shown in Figure 13d results in 
assigning unnecessary processors to regions C and 
D. To avoid such a waste, partitioning methodol­
ogy cannot be restricted to rectilinear cuts extend­
ing across the whole domain in both dimensions. 
Hence, in our problem definition and solution [5], 
we require that the selected rectangles cover the 
whole domain. The heuristics for the two-dimen­
sional case projects the weights to one dimension 
and results in rectilinear cuts extending across the 
whole dimension in one direction. Figure 13b 
shows an example of this kind of partition. 

To give a brief formal treatment of a one­
dimensional case, let PK be the set of all K parti­
tions of a one-dimensional workload array w;, i = 

1, . . . , n into K subintervals (xk-1, Xk), where 
1 ::5 Xk-1 ::5 Xk ::5 n, k = 1, . . . , K. The one­
dimensional workload partitioning problem can 
then be stated as: 

(3) 

As shown in Table 1, selecting a different 
meaning for operations E9 and Q9 yields different 
optimization problems. For E9 = min, Q9 = max, 
andf(k) = 1, an instance of RPP is obtained that 
can be solved in O(Kn) or O(n + (Klogn )2 ) steps 
[53]. 

The problem of load balancing for adaptive 
PDE solvers on machines where the number of 
processors exceeds the number of tasks can be 
obtained by putting EB = min, Q9 = max, and 
/(k) = (xk- Xk-1 + 1), i.e., when the sum of the 
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process:spa.rse_multipl:v: out: out.pfile: in : infile: 

file: infile. 

int n. np, colend[*]. colma.p[*. *]./*number of rows. processors, column ends, non-zeroes in each row* f 
double x[*].S[*, *] /* vector and sparse matrix in major-column format * f 

file: outfile. double r[*] ; /* output vector * / 

subs: i,j: 

range.S = n; range.colend = n; range.h = n: 
ra.nge.S[i] = colend[i]: range.colmap[i] = colend[i]: 

P[p]: r[i] = reduce( +.S[i,j]*x[colmap[i.j]] . j ): 

/*** optional user statements and declarations for run-time load balancing *** f 
int. tload. load[*]: /* total load. cumulative load * f 
subs: pis sublinear i: load[i] ! = load[i-1]: 

tload = reduce(+.colend[i]. i): 
load[i] = (scan( +.colend[i]. i )*np+tload-1 )/tload ): 

FIGURE 14 Sparse matrix-vector multiplication with dynamic load balancing. 

workloads in each partition is divided by the inter­
val length (i.e., the number of processors). If there 
are K heterogeneous processors, each with a dif­
ferent speed sk, k = 1, ... , K, thenf(k), EEl, and 
~ can be instantiated according to the fourth row 
of Table 1. The RPP algorithm can handle only 
the case with the monotonically increasing cost 
function ~~,;x•- 1 W;. In contrast, our algorithm can 
solve more complicated problems with an arbi­
trary cost function ~~~xk- 1 w;lf(k) in O(Kn3

) steps. 
There is a similarity between the weighted inde­

pendent set for interval graphs and our problem 
[55]. The interval graph for our problem can be 
created as follows. Each possible subinterval 
(xk-1, xk) is represented by a node of the interval 
graph. The weight of the node representing (xk-1, 
Xk) is set to ~~~x._ 1 w;lf(k). In such a graph, the 
independent set of size K, which covers the whole 
interval, 1, . . . , n, gives the solution to the orig­
inal problem. The interval graph can be converted 
to a directed acyclic graph (DAG). The shortest 
path algorithm applied to this DAG will find the 
minimum weight dominating set [56 J. This ap­
proach results in the optimal algorithm for the 
one-dimensional case and also leads to an heuris­
tic algorithm that can be easily generalized to two 
dimensions (by projecting the workloads to one 
dimension). 

5.2 Run-Time Array Distribution in EPL 

To illustrate the run-time support provided in the 
EPL compiler, consider the sparse matrix-vector 

multiplication. This operation lies at the heart of 
many numerical algorithms, such as the conjugate 
gradient algorithm for the solution of linear sys­
tems of equations. The corresponding computa­
tion is: 

r =Ax 

Let S be the row-major representation of the 
sparse n X n matrix A, colend[i] be the number of 
nonzero entries in each row (i ::5 n), and colmap[i, 
j] be the column number for each nonzero entry. 
The variable-sized rows of S must be mapped on 
toP processors where P < n. The total execution 
time of such a computation is defined by the exe­
cution time on the processor with the largest num­
ber of nonzero elements (because processors syn­
chronize after each multiplication step in an 
iterative solver). Hence, it is important that rows of 
S are distributed in such a way that processors are 
load balanced, i.e., each has about the same 
number of nonzero elements to evaluate. The cor­
responding EPL program is shown in Figure 14. 

The load-balancing scheme can be imple­
mented solely on the basis of the ranges of rows in 
S. The scheduler implemented in the EPL com­
piler [ 3 J detects that the ranges of the rows in S 
must be available before the matrix-vector multi­
plication loop starts. Hence, the last two state­
ments in the above EPL program that explicitly 
implement a simple load-balancing algorithm will 
always be scheduled before the loop body. The 
rows of S are then distributed accordingly to the 
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Table 2. Mesh Characteristics and Execution Times for Test Runs on the 
MasPar for 1,000 Iterations 

Method/ Constant 3elt viking6 fs_760_1 nnc1374 pores_2 

Mesh characteristics 
Number of rows 4,720 6,000 760 1,374 1,224 
Number of nonzeroes 27,444 73,734 5,976 8,606 9,613 

Multiplication timings 
t (s) 

Block distribution 33.6 
Load balance 28.5 
100% *balanced/block 85% 

run-time defined sizes. If these load-balancing 
statements are not given explicitly, then the block 
distribution will result, with each processor having 
the same (or nearly the same) number of rows, 
independently of the number of nonzero elements 
in those rows. 

The program for distributing arrays was run on 
several benchmarks including meshes originally 
used by Hammond [57] and test cases from the 
Harwell-Boeing sparse matrix collection [58]. The 
characteristics of the tests are given in Table 2. 
The first test case is an unstructured triangular 
mesh around a three-component airfoil whereas 
the second test is a portion of a larger mesh repre­
senting an unstructured tetrahedral mesh about a 
Lockheed S-3A Viking aircraft. The third test case 
arises from a mixed kinetics diffusion problem 
(specifically, the study of ionization in the strato­
sphere with 38 chemical species). The fourth 
mesh is derived from a model of a gas cooled nu­
clear reactor core and the fifth test was generated 
using a package for reservoir modeling. 

10 

20 

30 

SUBROUTINE PMULT ( ... } 

DO 30 I 1,N 

IBGN = IA(I} 

IEND = IA(I+1}-1 

SUM= O.ODO 

IF (IBGN.GT.IEND} GO TO 20 

DO 10 J = IBGN,IEND 

JAJJ = JA(J} 

SUM= SUM+A(J}*X(JAJJ} 

CONTINUE 

W(I} = SUM 

CONTINUE 

RETURN 

t (s) t (s) t (s) t (s) 
92.8 63.8 59.6 64.5 
79.8 50.5 52.8 55.3 
86% 79% 88% 86% 

The most straightforward implementation of 
the sparse matrix-vector multiplication used in 
the ITPACK library [59] is shown in Figure 15a. It 
multiplies each nonzero element by the corre­
sponding vector element that is fetched through 
communication, if necessary. The results of sev­
eral runs of the sparse vector multiplication are 
given in Table 2. The rows labeled "block" and 
"load balance" give times for runs of the multipli­
cation with a standard block distribution and with 
the block distribution adjusted by the load-bal­
ancing step, respectively. Results from executions 
presented in Table 2 showed up to a 21% cost 
reduction for the MP-1. 

6 CONCLUSION AND COMPARISON 
WITH OTHER APPROACHES 

In this section we characterize EPL in terms of 
criteria that identify important properties of paral­
lel languages [ 60 J . 

----------------X X X 

X X X 
_x __ ~ _____ x ______ _ 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X X 

X X 
X X X ----------------X X 

X X X 

A 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

partition K 

(~ (b) 

FIGURE 15 (a) ITPACK matrix-vector multiplication code and (b) ordered array partitioning. 
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6.1 Architecture Independence 

The same source code is used bv the EPL com­
piler to produce different parallel executables for 
different architectures. Currentlv. the EPL com­
piler includes code generators for ,WPL and C* 
languages for SIMD architectures (MasPar and 
CM-200), Dynix C for the shared memory Se­
quent Balance, and message-passing C for the 
Stardent computer. There is ongoing work on C 
code generators for the C:.\1-5 and SPl architec­
tures. Nevertheless, the user may still prefer to use 
different annotations or even different EPL pro­
grams for different architectures to achieve the 
optimal performance. 

6.2 Parallelism Specification 

A high-level language should shield the user from 
having to specify each and every detail of parallel 
execution. Below we discuss the level of user in­
volvement in defining parallel execution of EPL 
programs. 

1. Specifying data and program decomposi­
tion: Only partial specification is expected 
from the user. An EPL computation con­
sists of cooperating functional processes 
that define an initial decomposition of the 
program. Parallel tasks are created by the 
EPL system through merging and splitting 
EPL processes based on the communica­
tion-to-computation ratio on the target ar­
chitecture. The programmer can use ex­
plicit anotations to define the part of the 
EPL process that is to be assigned to a sin­
gle virtual processor. The annotations de­
fine the lower limit on the granularity of de­
composed tasks to improve the efficiency of 
generating program decomposition. If, dur­
ing the process decomposition, a task is cre­
ated that includes all computation desig­
nated to some virtual process, this task will 
not be further divided bv the EPL svstem. . . 

2. Specifying mapping: :\lapping of the paral­
lel task (created from processes by the EPL 
system) to the physical processors is done 
entirely by the EPL system. However, the 
quality of the mapping is decided by the 
quality of the decomposition which, in tum 
(see point above), is partially defined by the 
user who defines the EPL processes. 

3. Defining communication: At each process 
description there is no difference between 
communication and regular input/output; 
both are seen as externally providing input 

to the process. The necessary communica­
tion code is generated by the EPL compiler. 

4. Defining synchronization: Again, the user is 
shielded from this aspect of parallel pro­
gramming. The synchronization generated 
by the EPL compiler is derived from the 
data dependency imposed by the EPL pro­
cesses. 

6.3 Software Development Methodology 

EPL relies on functional decomposition of the 
computation into processes. Processes are de­
scribed in an equatorial language and their coop­
eration is described as a configuration. Programs 
describing processes are compiled by the EPL 
compiler and a configuration is processed by the 
configurator, i.e., the compiler for the configura­
tion language. Hence, there is a separation of pro­
gramming-in-the-large from programming-in­
the-small. The process written as a functional 
program may be refined by user-supplied annota­
tions. The parallel code is generated through a 
series of transformations. First, the flow of control 
is established and minimum synchronization nec­
essary for preserving correctness is found (in EPL 
terms, a schedule of a process is created). which is 
still architecture independent. Then, the decom­
position and mapping take place (creating an­
other, equivalent form, of the source program). 
Finally, input/output and communication state­
ments specific to the target architecture are gener­
ated and the final parallel code is produced. 

1. Structure of the development process: In 
EPL, the equational program for a process 
is written very independently from the pro­
grams of other processes. Only clearly de­
fined interfaces (data structures exchange 
with the environment) are of concern for the 
process program writer. 

2. Exposition of the decision points: Preparing 
a configuration for the overall computation 
forces the user to decide on the method of 
writing the program at the global level with­
out considering low-level details. 

3. Record of constructs: Thanks to their con­
ciseness and lack of implementation details 
(i.e., input/output, communication. flow of 
control), computation configuration and 
equational programs for its processes form a 
good basis for program documentation. 

4. Preservation of correctness: The parallel 
code is produced in three major transforma­
tions that were designed to be correctness 
preserving. 



5. Limit of proofs to derivation system: Proof 
of the correctness-preserving properties of 
the EPL transformation has not been made 
formally yet, however these properties 
strongly influence their design and imple­
mentation. 

6.4 Cost Measures 

There is a part of the system, called the timer, that 
provides the user with the execution time esti­
mates for equational programs. As shown previ­
ously [ 61], the timer relies on a set of architecture 
measurements that can be established by running 
initiation programs of the timer on the given archi­
tecture. However, we do not have a mechanism for 
determining the overall computation execution 
cost (i.e., execution cost at the level of a configu­
ration) at this time. For SPMD models. the timer is 
sufficient: however, in a more general setting 
there's a need for a better tool. Timer drives trans­
formations of equational programs into schedules 
and the stage of decomposition and mapping. 

6.5 No Preferred Scale of Granularity 

There is no upper or lower limit on the grain size in 
EPL with the exception of the statement instance: 
i.e., EPL does not explore parallelism on the level 
of expressions and below. 

6.6 Efficiently lmplementable 

Our experience with the current EPL implementa­
tion indicates that the EPL-generated code is no 
more than 20-50% slower than the equivalent 
hand-written code. However, we have not yet 
measured the efficiency of larger applications (or 
even a large number of smaller ones). 

Program decomposition through annotations 
and computation synthesis through configura­
tions can support efficient parallel code genera­
tion for domain-specific computation. Annota­
tions support rapid prototyping and performance 
tuning of a parallel program. Adaptivity, with its 
associated error estimates and the shrewd use of 
computation resources only in regions where ac­
curacy requirements are not satisfied, can provide 
the needed numerical reliabilitv and efficiencv to 
parallel computation. In the EPL system, adaptiv­
ity is supported through run-time task distribu­
tion. 

There are several premises underpinning our 
approach, among the most important ones are: 
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1. Annotations provide an easy and efficient 
way to parallelize existing codes. 

2. Large parallel programs consist of intercon­
nected processes that represent logical par­
titions of the program. 

3. Absence of control statements simplifies 
program analysis and increases compiler's 
ability to produce an efficient parallel code. 

4. Most parallel code optimization problems 
are 1\"P-hard; hence, development of proper 
heuristics is important. 

5. A hierarchical view of parallel computation 
is helpful in extracting functional parallel­
ism. 

Our research on scalable program synthesis has 
left many interesting issues unexplored. Future 
work on program synthesis that we intend to un­
dertake includes parallelization of dynamic task 
distribution and run-time support for irregular 
computation. Efficiency of our methods will be 
measured for large applications, such as finite dif­
ference and finite element formulations for vari­
ous scientific computations. 
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