
Compiler Technology for
Parallel Scientific Computation

CAN OZTURAN, BALARAM SINHAROY, AND BOLESLAW K. SZYMANSKI

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180-3590

ABSTRACT

There is a need for compiler technology that, given the source program, will generate
efficient parallel codes for different architectures with minimal user involvement. Paral­
lel computation is becoming indispensable in solving large-scale problems in science
and engineering. Yet, the use of parallel computation is limited by the high costs of
developing the needed software. To overcome this difficulty we advocate a comprehen­
sive approach to the development of scalable architecture-independent software for
scientific computation based on our experience with equational programming language
(EPL). Our approach is based on a program decomposition, parallel code synthesis,
and run-time support for parallel scientific computation. The program decomposition is
guided by the source program annotations provided by the user. The synthesis of paral­
lel code is based on configurations that describe the overall computation as a set of
interacting components. Run-time support is provided by the compiler-generated code
that redistributes computation and data during object program execution. The gener­
ated parallel code is optimized using techniques of data alignment, operator place­
ment, wavefront determination, and memory optimization. In this article we discuss
annotations, configurations, parallel code generation, and run-time support suitable for
parallel programs written in the functional parallel programming language EPL and in
Fortran. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

With a constant need to solve scientific and engi­
neering problems of ever-growing complexity,
there is an increasing need for software tools that
provide solutions with minimal user involvement.

Received l\ovember 1992
Revised April 1994

Balaram Sinharoy is currently with IBM Corporation, P.O.
Box 950, Poughkeepsie, NY 12602.

The authors can be reached through the following e-mail
addresses: ozturanc@cs.rpi.edu, balaram@vnet.ibm.com and
szymansk@cs.rpi.edu

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 3, pp. 201-225 (1994)
CCC 1058-9244/94/030201-25

Parallel computation is becoming indispensable
in the solution of the large-scale problems that
arise in science and engineering. Although the use
of parallel computation has been increasing, its
widespread application has been hampered by the
level of effort required to develop and implement
the needed software. Parallel software often must
be tuned to a particular parallel architecture to
execute efficiently; thus, it often requires costly
redesign when ported to new machines. Parallel
program correctness requires the results to be in­
dependent of the number and speed of the pro­
cessors. This requirement can be satisfied only if
the parallel tasks are independent of each other or
properly synchronized when a dependence exists.
Designing proper synchronization is a major

202 OZTCRA:'>. SI:'>HAROY. Al\'D SZY"'1A~SKI

source of difficultv in ensuring parallel program
correctness. Different categories of parallel archi­
tectures have led to a proliferation of dialects of
standard computer languages. Varying parallel
programming primitives for different parallel lan­
guage dialects greatly limit parallel software porta­
bility. Poor portability of parallel programs has re­
sulted in a duplication of efforts and has limited
the use of developed systems.

Parallel computation can be viewed as an inter­
woven description of operations that are to be ap­
plied to data distributed over the processors, and
of data mapping and synchronization that dictate
the data movements and the computation order.
The traditional programming languages, such as
Fortran, C, or C++, cope well with the task of
prescribing operations to be performed. However,
the description of data mapping and synchroniza­
tion in such languages is often introduced by ad
hoc architecture-dependent extensions. Exam­
ples are various synchronization constructs like
busy-wait, locks, or barriers that are used in pro­
grams for shared-memory machines, send andre­
ceive with different semantics employed by pro­
grams for message-passing architectures. and
dimension projection and data broadcast popular
in programs for single instruction multiple data
(SIMD) computers. To avoid such architecture­
dependent language definitions, we propose to
separate the description of operations to be per­
formed on the data values from the definition of
data mapping and synchronization needed to
supply these data values to the proper processor
at the proper instance of the program execution.

With this goal in mind, we developed tools [1.
2] that (i) decompose, at least partially, the paral­
lel program into the two (nearly) orthogonal parts
described above, (ii) translate the necessary data
movements into optimal form customized for the
target architecture, and (iii) synthesize an overall
parallel computation. using these tools the user
can describe high-level features of a program and
synthesize parallel computation from numerical
algorithms, program fragments .. and data struc­
tures that are implemented separately. The tools
support (i) parallel task generation and their allo­
cation to the processors, (ii) distribution of data to
the processors. (iii) run-time optimization, and
(iv) rapid prototyping of different parallel imple­
mentations.

Through the application of transformation
techniques, different versions of the same pro­
gram can be generated from decomposed compo­
nents. The synthesized computation uses load as-

signment, data distribution, and synchronization
appropriate to the size and type of target parallel
architecture. The computation synthesis is guided
by conditional dependence graphs that represent
externally accessible information in each of the
synthesized fragments. Csage of conditional infor­
mation in data flow analysis and parallelization
significantly increase efficiency of the generated
parallel code.

The summary view of our approach is given in
Figure 1. Program components are created by an­
notating source programs in Fortran or in the
functional parallel equational programming lan­
guage (EPL) [3 J. Fortran programs are trans­
formed into an equational form before decompo­
sition. The configuration definition guides the
synthesis of the components into a parallel com­
putation. The synthesized computation together
with the architecture description is used by the
code generator to produce an object code custom­
ized for the target architecture. In Figure 1, con­
tinuous lines describe system paths that have
been implemented, broken lines represent paths
currently under development, and dotted lines
correspond to paths at an early stage of investiga­
tion.

This article is intended as an overview of the
research done towards implementing software
tools as envisioned in Figure 1. More technical
discussion can be found elsewhere [3-10].

A brief description of the EPL language, its an­
notations, and configurations is given in Section
2. The relationship of EPL constructs and tools to
different levels of parallelism is discussed in Sec­
tion 3. The EPL compiler is discussed in Section
4: in particular Section '±.4 includes an overview
of our approach to scalable parallel code genera­
tion. A dynamic load management strategy for
adaptive scientific computation on SL\1D archi­
tecture is the topic of Section 5. Finally. conclu­
sions and comparison to other approaches are
given in Section 6.

2 OVERVIEW OF THE EPL LANGUAGE

EPL is a simple nonstrict functional language with
a type inference designed for scientific computa­
tion. Although computationally vast, scientific
computations are typically quite regular both in
terms of control flow patterns and employed data
structures. The data structures used are usuallv
some variations of multidimensional arrays
(sparse matrices, grids, jagged-edge arrays. and

PARALLEL SCIEJ\:TIFIC cmtPLTATIO:\ 203

(..._ __ P_r_ec_o_m_p_ile_r ____) <-------

l
Program Components:
Program Fragments, Data

FIGURE 1 Software tools and their uses.

even some hierarchical structures can be viewed
as such). Correspondingly, the EPL language is
defined in terms of just a few constructs: general­
ized arrays and subscripts for data structures, re­
current equations for program specification, ports
for process communication, and virtual proces­
sors to facilitate mapping of computation onto
processors and load balancing.

A computation is viewed in EPL as a collection
of cooperating processes. A process is described
by an EPL program that consists of only data dec­
larations and annotated conditional equations.
The canonical data structure is a tree with nodes
that can repeat and with leaves of primitive types.
In its simplest form such a tree can be viewed as a
multidimensional array, with each level of a tree
corresponding to a new dimension of the corre­
sponding array. Structured files are provided for
communication with an external environment (in
records) and with other processes (through ports).
EPL enforces a single-assignment rule, i.e., each
data element should be defined exactly once (the
EPL compilec however, is free to produce multi­
ple-assignment object codes). Thus equations,
though syntactically reminiscent of assignment

statements, are best viewed as assertions of
equality.

The EPL programmer also defines the process
interconnection network (the graph obtained by
representing processes as nodes and port inter­
connections as edges) in the configuration file.
Processes along with the configuration files are
provided by the user to facilitate the compiler in
extracting the coarse grain parallelism in the com­
putation by generating processes and interprocess
communication constructs. Configurations also
allow the programmer to reuse the same process in
different computations.

2. 1 Iterations

An iteration is a staple of scientific computing. In
EPL, iterations are programmed using subscripts.
A subscript assumes a range of integers as its
value. Subscripts give EPL a dual flavor. In the
definitional view, they may be treated as universal
quantifiers and equations can be viewed as logical
predicates. In the operational view, they can be
seen as loop control variables and each equation

204 OZTURAN, SINHAROY, AND SZYMAI\"SKI

can be seen as a statement nested in loops implied
by its subscripts.

There is a special class of indirect indexes,
called sublinear subscripts, that is used in scien­
tific applications so often that a special construct
devoted to it has been introduced in EPL. For­
mally, an indirect index s defined over the sub­
script i is sublinear to this subscript if it satisfies
the following property:

(0:::::: s[1] :::::: 1) and (s[i] :::::: s[i + 1] :::::: s[i] + 1)
fori= 1, 2, ..

It immediately follows from this definition that the
sub linear subscript s [i] starts with the value of
either 1 or 0 and then, with each increase of i, it is
either incremented by 1 or kept unchanged. Typi­
cally, there is a condition associated with each
sublinear subscript. The condition dictates when
the subscript increases. This is the way a sublin­
ear subscript is defined in EPL. For example, a
sparse matrix S that is a row-major representation
of a matrix D can be defined in EPL using a sub­
linear subscript col[j] as follows:

subscript: col is sublinearj: D[i,j] i= 0;

S[i, col] = D[i,j]

Sublinear subscripts have an implicit range deter­
mined by the number of times the defining condi­
tion yields true.

The sublinear subscripts are convenient in ex­
pressing such operations as creating a list of se­
lected elements, operating on sparse matrices, or
defining a subset of the given set. Even more im­
portant is the fact that in the implementation of a
process no new iteration has to be created for
computation associated with the sublinear sub­
scripts. Instead, all necessary computation can be
nested in the iterations created for subscripts in
terms of which the considered sublinear subscript
has been defined. Sublinear subscripts are also
useful in defining dynamic distribution of data to
processors at run-time. An example of such a defi­
nition is given in Section 5.2.

2.2 Reduction

A computation that frequently occurs in scientific
applications is to apply a binary operation over an
entire vector and store the result in the last ele­
ment of the vector. For example, in scientific com­
putation there is often a need to apply an associa-

tive operator (such as +, *, max, min, etc.) selec­
tively on the elements of an array. Scan and re­
duce are language constructs in EPL and other
parallel languages that allow such operations to be
succinctly written. Reduce applied to a vector of
values produces a scalar result whereas scan
results in a vector of partial results. For example,
consider a matrix A multiplied by a vector X with
the result placed in a vector r. This operation can
be written in EPL as:

Temp[i,j] =if j==1 then A[i,j]*X[j]
else Temp[i,j-1]+A[i,j]*X[j];

r[i] = Temp[i,range.j];

or, even shorter as

r[i] = scan(+,A[i,j]*X[j],j);

Such operations result in references of the form
V[... range.i, ...], where range.i indicates
the range of the reduced/ scanned dimension of a
multidimensional array V. (In general, the EPL
range variable prefix denotes the size of its suffix.)
The presence of such references in the program is
explored by memory optimization and scheduling,
which are discussed later. A more detailed de­
scription of the language is given bv Szyman­
ski [3].

2.3 Configurations

In our approach a parallel computation is viewed
as a collection of cooperating processes, which are
defined as functional programs. Process coopera­
tion is described by a simple macro data flow
specification, called a configuration. Configura­
tions support programming-in-the-large. The
user can experiment with various configurations
to find the one that results in the most efficient
code.

The configurator uses the dependence graph
created during configuration analysis to generate
an architecture-independent parallel description
that is fed to the code generator. Configurations
define processes (and their aggregates) and ports.
Statements of the configuration represent rela­
tions between ports in different processes. They
are supplied by the user to direct integration of the
processes into a parallel computation. Processes
created dynamically can communicate with ports
located at parent, child, and sibling processes;
each of those processes is just a copy of the same

PARALLEL SCIENTIFIC COMPUTATION 205

process: mvm; m: inf; out: ouf;

file: inf,
int n, double A[*,*L
record iter[*], double x[*];

file: ouf,

/* first record with n * n matrix A *I
I* sequence of records with vector x *I

record appr[*], doubler[*];
subscripts: ij,k;

/* sequence of result vectors r *I

range.A=n; range.A[i]=n; range.x=n; range.r=n;
r[k,i]=scan(+,A[ij] * x[kj]j);

FIGURE 2 Matrix-vector multiplication in EPL.

program, except the parent process that can be
arbitrary.

Consider as an example an iterative solver of
linear equations Ax = b that uses the following
recursion:

rk = Axk-1

. b- rk .
Xk[l] = A[i, i] + Xk-dl]

The first part of the recursion is a matrix-vector
multiplication that may form a separate process,
as shown in Figure 2.

Note that there are no explicit input/ output
statements and the order of equations is irrelevant
because all variables are singly valued. If we as­
sume that the separate process, let's call it XC,
calculates the new approximation of the vector x
and monitors convergence and the third process,

Configuration file:

Input: P: MAIN-> inf -> P:MVM

Output: P: XC-> xf -> P: MAIN

P:XC -> inf -> P: MVM -> ouf -> P:XC

(a)

MAIN, provides final input/output, then the cor­
responding configuration is shown in Figure 3.
The textual definition lists data flow paths that
cover a configuration graph. The graphical defini­
tion is built from process boxes and file edges. It is
augmented with file structure information pro­
vided by the EPL system (see Fig. 3b).

2.4 Program Decomposition
Through Annotations

Annotations provide an efficient way of introduc­
ing the user's directives that assist the compiler in
program parallelization. Annotations have been
proposed in many systems by various researchers
[11-15] and are used mainly as compiler direc­
tives. In our approach annotations limit the feasi­
ble mappings of computation onto the processors.
Hence, they are used only during the decomposi-

xf

xf

MVM XC

ouf

(b)

FIGURE 3 Configuration for an iterative solver in (a) textual and (b) graphical form.

206 OZTURA:\'. SI:\'IIAROY. Al"D SZYMA.'\SKI

tion of a process into smaller fragments. This kind
of annotation is similar to the ON clause as used in
the Kali compiler [11], Fortran D [12], or Vienna
Fortran [13].

Annotation does not have anv effect on the
result computed by a program. Consequently, se­
quential programs that have manifested their cor­
rectness over many years of usage are good candi­
dates for parallelization through annotations.
Being orthogonal to the program description, an­
notations support rapid prototyping of different
parallel solutions for the same problem, which can
be helpful in performance turning.

In EPL, each equation can be annotated with
the name of an array of virtual processors on
which it is to be mapped. Virtual processors can
be indexed by the equation's subscripts to identify
instances of equations assigned to individual vir­
tual processors. Such instances constitute the
smallest granule of parallel computation. For ex­
ample, for the process .\1VM the following annota­
tion:

P[i]: r[k,i] scan(+ ,A[i,j]*x[k,j] ,j):

will cause the compiler to consider only the tasks
that define a sequence of vectors r[* , i]. Each
task will locally store one row of array A but the
vectors x [k, *] must be broadcast to all of those
tasks.

The above partitioning allocates a slice of the
equation defined by a single subscript value. The
resultant granularity may be too fine for a target
architecture. However, when an annotation is in­
dexed by a sublinear subscript, then the corre­
sponding sublinear expression dictates how the
annotated equations are clustered onto the virtual
processors. For example, let p be a sublinear sub­
script of i, and range.p be the number of physical
or virtual processors. (This number may be a sys­
tem constant not even known explicitly to the
user; it may depend on the architecture, system
load, or it may be defined by the user or compiler
directive.) Considering again the previous exam­
ple of a matrix-vector multiplication, we can use
an annotation:

P[p]: r[k,i] = reduce(+ ,A[i,j]*x[k,j],j):

It will distribute (or partition) one dimension of r
and A over range.p processors in a block fashion

(each processor will hold lf, J or If, l columns of r
and rows of A). In Section .S. 2 there is an exam­
ple in which a different distribution is achieved
using a sublinear subscript in an annotation.
This distribution balances the load on the pro­
cessors.

There are similarities as well as differences be­
tween the EPL annotations and the Fortran Ian­
guage extensions that have been introduced in
many systems, e.g., Vienna Fortran [13, 16, 17],
Fortran D [12, 18, 19], and SCPERB [20]. Vi­
enna Fortran provides directives for array-like
processor structure definition. The distribution of
arrays can be specified at compile time through
the use of a DIST directive with BLOCK or
CYCLIC options. INDIRECT directives can be
added to indicate run-time distribution. Such a
distribution may have a range of valid distribu­
tions defined in its declaration. It uses an explicit
mapping array to assign a distribution by an exe­
cutable statement. The assigned distribution can
be part of the condition in the source program. In
addition to direct distribution definition, an array
in Vienna Fortran can inherit a distribution from
the definition of its alignment relative to some
other array (and vice versa). Directive DIST can
be used with options like =A, TRANSPOSE(A),
PERMUTE(A, PERM) to align an array with, re­
spectively, another array B. transposed array A.
or array A with indices permuted according to the
given vector PERM.

Fortran D directives are similar to Vienna For­
tran, however distribution is separated from align­
ment. In Fortran D, first the DECOMPOSITION
statement is used to declare a problem domain for
each computation. The ALIGN statement is then
used to describe problem mapping that defines
the alignment of arrays with respect to each other.
Finally, the DISTRIBUTE statement is used to
map the problem and its associated arrays to the
physical machine.

In EPL, by subscripting the annotated virtual
process names and defining the appropriate
ranges for the subscripts, the user can distribute
the arrays in blocks, columns, or rows. The arrays
can also be transposed by permuting the sub­
scripts of annotated virtual processors. Cnlike
Vienna Fortran and Fortran D. EPL does not pro­
vide the user with directives to do manual align­
ment of data. Instead, data alignment algorithms
have been developed to facilitate this task auto­
matically (see "Data Alignment'' in Section 4.4).
Hence alignment directives embedded in a source
program are not necessary.

3 PARALLELISM EXTRACTION IN EPL

In EPL. compile time parallelism is sought on
three levels:

1. Coarse grain parallelism is sought by creat­
ing tasks that are primarily imposed by the
user-defined processes and process inter­
connection network described in the config­
uration files. The process interconnection
network is decomposed into parallelizable
tasks by the compiler. Because the optimal
decomposition is NP-hard for machines
having more than three processors [211, the
EPL compiler uses heuristics.

2. Medium grain parallelism is sought at the
level of equation clusters. Several equations
in a program can be clustered into a group.
Separate tasks are generated for each of the
clusters. A cluster can run concurrently with
other clusters in the same program. Pro­
grammers can assist the compiler in deter­
mining such clusters by annotating each
equation by a virtual processor name. To
minimize interprocess communication the
compiler uses an heuristic to impose a hier­
archy among the generated tasks (see Sec­
tion 4.2).

3. Fine grain parallelism is explored at the
level of individual instances of equations or
their clusters. This source of parallelism is

Granularity Coarse Grain

Type of (Control Parallelism
Parallelism

(Configurator

Compile-Time Developed (Scheduler
Tools

c

Problems (Synchronization
Addressed (

Developed (
Run-Time

Tools

PARALLEL SCIE:\TIFIC CO~lPl.TATIO:\ 207

of the greatest importance in massively par­
allel SIMD architectures. Mapping arrays on
to the processors dictates communication
costs of fetching the arguments and storing
the results of operations. The problem of
finding the mapping optimal in this respect
is known as the data alignment problem (see
·'Data Alignment" in Section 4.4). Another
problem arises in connection with mapping
operators on to processors. The solution to
the latter problem is discussed in "Array
Operator Placement'' in Section 4.4. The
order of evaluation of the array elements is
important for SIMD code efficiency. A com­
pile-time method of determining an efficient
order, known as wavefront determination, is
discussed in "\Vavefront Determination'' in
Section 4.4.

Figure 4 shows the tools that have been devel­
oped and their correspondence to various models
of parallel computations. The control-parallel
model assumes that there are separate, relatively
independent processes or functions that can be
executed simultaneously. This model requires the
user to handle the error-prone and difficult task of
synchronizing these independent processes. The
configurator eases the burden of programming for
control parallelism by automating the definition of
interprocess coordination.

Data parallelism, popular in massively parallel

Medium Grain Fine Grain

) (Loop Parallelism) (Data Parallelism)

) (Annotations)(Data Alignment)
) (Memory Optimization) €avefront Determinatio~

Partitioning Algorithms)

) (Matrix Computations
Direct Solvers

Kecurrence tJquations)
Iterative Solvers

Load Balancing)

Dynamic Load Balancing)

Problems c Adaptive Solution of Partial Differential Equations)
Addressed

FIGURE 4 Developed tools and their relationships to issues in parallel scientific com­

putation.

208 OZTURAN, SINHAROY, AND SZYMANSKI

systems, assumes that there are large data struc­
tures to be processed and that each element of
every structure can be assigned to a single proces­
sor (either virtual or real). The same sequence of
instructions is applied simultaneously to all ele­
ments of the processed structures. It is also neces­
sary to decide which elements of the different
structures should be placed on the same processor
to minimize the cost of fetching arguments for op­
erations involving those elements. Data alignment
tools described in this article can find suboptimal
solutions to this problem without user involve­
ment.

Annotations, relevant mainly to loop parallel­
ism, provide the user with the means of rapid­
prototyping altemative parallelizations of the
program. For example, supplying proper annota­
tions, the user can experiment with various com­
binations of column and rowwise parallelizations
of the matrix operations in a program.

A load-balancing problem surfaces at all three
levels of parallelism. In Section 5 we describe how
the partitioning tools developed for the presented
compiler can be used to do either static or dy­
namic load balancing on linear or rectangular ar­
rays of processors. The partitioning tool is appli­
cable to irregular computations that result from
using adaptive solvers of partial differential equa­
tions on either homogeneous or heterogeneous
processors.

In EPL, the programmer can assist the com­
piler in extracting coarse- and medium-level par­
allelism. As described earlier, coarse grain paral­
lelism is ~btained by creating tasks from the
processes and their interconnection network as
specified in the configuration files. The program­
mer can help in determining the medium grain
parallelism by annotating the equations in the
source program. After determining the coarse and
medium grain parallelism, the parallel program is
synthesized with the help of the configurator.

4 EPL COMPILER

The basic techniques used in EPL compilation
are data-dependence and data-attribute propa­
gation. In a single program, the dependencies are
represented in the compact form by the condi­
tional array graph. A similar dependence graph is
also created for a configuration. It shows the data
dependencies among processes of the computa­
tion and is used for scheduling processes and
mapping them on to the processors. Figure 5 de-

picts the structure of the EPL compiler by showing
part of Figure 1 in more detail. In particular, all
components of annotation processing, precompi­
ler, and scalable code generator are explicitly
shown. The major stages of the EPL compilation
are:

1. Array graph construction, which transforms
the source code into its intermediate form.
The main components of this form are the
array graph and the symbol table. The array
graph nodes represent the variables and the
equations. Each array graph edge repre­
sents the dependence between the nodes
and is labeled by its attributes such as the
associated subscript expressions, depen­
dence type, and conditions under which the
dependence holds.

2. Dimension propagation, which checks cor­
rectness and assigns dimensionality to each
EPL variable.

3. Type checking, which verifies that all vari­
ables and expressions have or can be as­
signed consistent types.

4. Completeness verification, which performs
various semantic checks and verifies that
each variable is defined over its entire do­
main.

5. Range propagation, which finds equiva­
lences between ranges of variables and
equations. The EPL compiler uses the con­
cept of a range set as an object to which all
equivalent ranges are linked. Range propa­
gation links all dimensions that share a
common limit into a range set.

6. Condition analysis, which establishes
equivalence or exclusiveness of predicates
used in conditional equations. The found
relations of predicates are used in schedul­
ing and verification.

7. Scheduler, which finds an array graph eval­
uation order that is minimal among all or­
ders preserving the program semantics.
Scheduler also defines the scopes and nest­
ing of the loops in the object program. The
output generated by the scheduler is used
by the schedule optimizer and the code gen­
erator.

8. Schedule optimization, which is an archi­
tecture-dependent step that customizes the
generated schedule to the target architec­
ture (see McKenney and Szymanski [10] for
SIMD specific optimizations).

9. Annotation processing, configuration pro-

Annotated

EPL Source

Parsing

and Syntax
Checking

PARALLEL SCIE!\TIFIC COMPUTATIO~ 209

-------+--
Precompiler

:- ~0~~0~ - ~ •

: Processing

--------'

Annotation

Processor

I
1 Annotation
1 Process

~ _9~:_ra.!!oE _ ..!

Intra-Port

Array
Graph

Construction

Dimension
Propagation

Range

Propagation

Dependence --- Scheduling
Anal sis

--- -------~ ~-- ~-~ ~-/
: Configuration I '

1 Dependence 1

~ _9e_n':a~o~ _ _I ,

-
Type

Inference

Condition

Analysis

Schedule

Optimization

Code

Generation

Completeness

Verification

Architecture

Description

Object Code

Synthesizer Scalable Code Generator

FIGURE 5 The structure of the EPL compiler.

cessing, and code generation are discussed
in Sections 4.2, 4.3, and 4.4, respedively.

4.1 Single Assignment Fortran

Through extensions and annotations, imperative
languages, particularly Fortran, have maintained
their dominance in scientific computation over
such nontraditional languages as data flow, logic,
or functional. Nevertheless, languages based on
the single assignment rule have proven to be a
convenient basis for developing sophisticated pro­
gram optimizations. EPL research has centered
its program optimization techniques on the array
graph representation of recurrence equations. We
believe that by-transforming the Fortran programs
to array graph representation, a wider spectrum of
program optimization and parallel code genera­
tion methods can be applied to the transformed
programs than to their Fortran source.

An important step towards an efficient parallel­
ization of Fortran programs with the help of the
EPL compiler involves an equational transforma­
tion during which the equational equivalent of the

program is generated [2]. The transformed pro­
grams obey the single assignment rule and do not
contain any control statements [22]. The trans­
formation is done in the following two steps:

1. Program expansion, during which the vari­
ables are expanded to enforce the single as­
signment rule. In particular, the reassign­
ments elimination involves replacing the
reassigned variables by vector (additional
dimension)-inside loops and by variants­
in "if" branches and basic blocks.

2. Program optimization, which consists of:
Condition analysis: Conditions in the trans­

formed program are analyzed using a
Sup-Inf inequality prover [4 J and the
Kaufl variable elimination method [23] to
find pairwise equivalent or exclusive con­
ditions.

Variable's variants elimination: Variants
created in equivalent and exclusive con­
ditions are merged into a single variable.

Additional dimension elimination: During
scheduling and code generation for indi-

210 OZTCRA~, Sll'\HAROY. A~D SZYMA~SKI

vidual processes, memory optimization is
performed to replace entire dimensions
by windows of a few elements for multidi­
mensional variables [7]. This step re­
stores the memory efficiency of the origi­
nal program.

The transformed Fortran program is then com­
patible with the programs produced by annotating
EPL programs.

4.2 Annotation Processing

Each virtual processor produces data typically
used by other virtual processors, and in turn con­
sumes data produced by others. By performing
data-dependence analysis in a style of PTRAK
[24 J, the annotation processor can find the de­
pendencies local to each virtual processor as well
as data structures produced and consumed by
this processor. All data produced by the processor
become local to it and are placed in its local mem­
ory. The created parallel tasks are supplied with
communication statements needed to move non­
local data. Parallel tasks associated with virtual
processors at the bottom of the block hierarchy
are the smallest components used in the program
synthesis. Hence, annotation processing includes:

1. Creating parallel tasks defined by annotated
fragments of the original program.

2. Declaring ports needed to interconnect
created tasks into a network.

3. Interconnecting ports according to the task
communication graph to preserve data
dependencies between created tasks.

Each annotated fragment of the source program
becomes a separate task. All data elements de­
fined in the task are local to it.* All used but not
local data must be sent in from the other tasks.
The annotation processor builds the task com­
munication graph. Then, it augments the code of
each task by port declarations and send and
receive statements that are needed to implement
the required intertask data flow. To minimize the
communication generated by the added state-

* We refer to this principle as Executor Owns rule. it is an
inverse of the more commonly used Owner Computes rule. In
Sinharoy and Szymanski [8: we have shown an example of
computation for which neither of the two rules results in an
optimal solution.

ments, the annotation processor embeds a tree in
the task communication graph.

Let G(V, E) be a task communication graph
with a set of nodes V representing tasks and a set
of edges E ~ V X V representing intertask com­
munication. Each edge e1.J E E has the associated
cost, c(e1-Jl, that represents the volume of data be­
ing sent from task ito taskj. In a spanning tree T,
the distance JT(e,) defines the minimum length
path from task ito taskj. Csing these definitions,
the cost of the spanning tree T can be defined as:

C(T) = 2: c(e1.;) * JT(eij)
e1 1Ef"'

To minimize the total communication cost, proper
cut-tree must be found. It can be done in O(IVI-1)
steps [25] by solving lVI maximal flow problems.

To embed the tree, we developed an heuristic
that selects the embedding using the following cri­
teria:

1. Dimension nesting: If two tasks with differ­
ent dimensionalities are connected in the
task communication graph, the task with
more dimensions should be located lower in
the spanning tree.

2. Range nesting: Whenever possible, tasks
sharing the same range should be clustered
together in the spanning tree. Variables that
share ranges usually appear in the same
equations. Thus, clustering such variables
together decreases the number of inter­
process references to distributed variables.

3. Data flow: The total communication cost of
the selected spanning tree should be the
smallest among all spanning trees satisfying
the above two criteria.

Trees created from an annotation of the matrix
vector multiplication program are shown in Figure
6. The double outcoming arrows indicate scatter­
ing the data from a task to a group of tasks. The
double incoming arrows represent an inverse op­
eration of gathering the data. For example, pro­
cess IWAIN scatters the vector x [0] among proces­
sors P[i]. On the other hand, process XC gathers
the vector r[k] by collecting individual elements
r[k, i] from processors P[i].

4.3 Program Synthesis with
the Configurator

The goal of configuration processing is to establish
scheduling constraints for the overall computa-

I

I init iter

P[i]

' ' '

MAIN

I
1 i-range

1 cluster
I

r[k,i]

,./ MVM

X

XC

FIGURE 6 Communication tree for matrix-vector
multiplication.

tion. In the parallel computation, individual pro­
cess correctness is a necessarv but not sufficient
condition for the correctness o.f the entire compu­
tation. If a task has input and output ports that
belong to a cycle in the configuration graph, then
this task's input messages are dependent on the
output messages. Such dependencies (in addition
to dependencies imposed by the statements of a
task) have to be taken into account in generating
the object program for individual tasks; otherwise,
loss of messages, process blocking, or even a
deadlock can arise.

Tasks that belong to a cycle in the task com­
munication graph can execute concurrently onlv if
they are all enclosed in the. same loop in-cluding
the respective send and receive statements. Such
tasks are called atomic because they cannot be
broken into parts without splitting the loop. For
example, if a send statement is executed in a sep­
arate loop from the matching receive statement,
then all messages will be sent before any one can
be received, and the successors of such ~onatomic
tasks cannot start until its predecessors in the task
communication graph finish sending messages.

The algorithm for finding external data depen­
dencies has been presented by Spier and Szy­
manski [6]. The analysis starts by inspecting all
atomic processes and then propagates transitive
dependencies along the paths of the task com­
munication graph restricted to atomic processes.
As a result, a configuration-dependence file is cre­
ated and later used by the synthesizer and the
code generator. This fiie conta.ins a list of the ad­
ditional externally imposed data dependencies
(edges and their dimension types) that need to be
added to the task array graph. One task may have

PARALLEL SCIE~TIFIC COMPUTA TIO!'\ 211

several such files, each associated with a different
configuration in which this task participates.

Each edge in the configuration-dependence file
may have the following effects on the program
generated from the array graph:

1. An additional constraint is imposed by an
edge if there is no equal or stronger internal
dependency between the considered nodes.

2. An error is discovered when there are inter­
nal dependencies incompatible with the
edge.

Hence, as shown in Figure 7, the dependence
analysis for the synthesized computation has to be
done in two stages.

4.4 Code Generation and Optimization
for Massively Parallel Architectures

Data structures used in scientific computation can
be viewed as a function o from an index domain I
to a value domain V. An index domain, in general
a set of tuples of integers (i1, i2, . . . , i,), is often
a subset of the Cartesian product of integer inter­
vals for regular n-dimensional arrays. For exam­
ple, I = /1 X /2 X · · · X In, where f; = [L lma.r.Jl·
Often an inverse function o- 1 does not exist. Fol­
lowing the standard higher-level programming
language notation, we denote the value of the
function o at point (i~, ... , i,) as v[i1,
in].

Program execution can be seen as an evalua­
tion of the arravs at various index points (elements

FIGURE 7 Two-stage dependence analysis.

212 OZTURAN, SINHAROY, AND SZYMANSKI

T- lime domain

P- processor domain

M - virtual memory

L- limited (real) memory

w : A• TxPxM
wavefront

Tx PxM

qJ value domain

I o : I - V data structure

index domain

a: I- A alignment

virtual architecture

'',data-driven scheduling

J1: M- L memory optimization
TxPxL

FIGURE 8 Functional view of code generation.

of the index domain). The order of execution is
restricted only by data dependencies that rarely
impose the total order.

Figure 8 shows the conceptual stages of map­
ping the index domain of a variable to the Carte­
sian product of the processor domain, their local
memory domains, and the time domain. The goal
is to find a mapping that results in the minimum
execution time. In Figure 8, A represents a virtual
architecture. It is defined by the computer inter­
connection network. For example, in a k-dimen­
sional mesh-connected architecture of size N,
processors can be thought of as arranged in a
k-dimensional array, with A = [1, n 1] X [1,
n2] X · · · X [1, nk], where N = n 1 * n 2 * · · · * nk.
The processor p [/1, /2, . . . , lk] is connected with
processorsp[/1, ... ,l;± 1, ... ,lk], 1 :=;j:=;k
provided that processor p [/1, . . . , ~ ± 1, . . . ,
lk] exists (~ ± 1 mod n;, in the case of torus-con­
nected architecture). To facilitate data alignment
and time scheduling, we assume that a virtual ar­
chitecture A is compatible with the domain /. Lo­
cal memory domain L can be viewed as a multidi­
mensional cube with the volume equal to the
actual local memory available on each processor.
Virtual memory domain M is of the same structure
as the domain L, except that it has unlimited
memory size. The execution time steps are repre­
sented by time domain T = [1, lmax], where lmax is
the total number of time steps needed to complete
the computation.

In such a view, there are three major problems
that need to be solved for generating optimized
code for massively parallel architectures: data
alignment, time scheduling, and memory optimi­
zation.

Data alignment is discussed in some detail in
the next section. Time scheduling of iterative
computations is usually done either through data-

driven scheduling or wavefront determination.
Both methods explore the fact that iterative com­
putations often allow the simultaneous evaluation
of many array elements. Data-driven scheduling
starts the execution of an index point as soon as
all data that this point is dependent on become
available. However, data dependencies often hold
under conditions that involve input data and
therefore can be resolved only in run-time. Conse­
quently, data-driven scheduling typically relies on
run-time distributed synchronization. In the case
of functional programs with single assignment and
recurrent relations, the compile-time data-driven
scheduling is decidable [26]. Such a scheduler
has been implemented in the compiler for EPL
language [7] and is not discussed here. Wavefront
determination is presented below.

Programs written in EPL or transformed from
Fortran obey the single assignment rule. A vari­
able that is reassigned in a procedural language is
seen as a vector of values with a different subscript
value for each assignment. This extra temporal
dimension allows the program to be specified
without any reassignments but, unless optimized,
may require an exorbitant amount of memory.
The EPL compiler can often reduce the memory
requirement of a program by replacing the entire
dimension of an array by a few elements [7]. How­
ever, Sinharoy and Szymanski [27] have proven
that the problem of finding the optimum replace­
ment is equivalent to the well-known NP-hard
problem of determining the maximum weight
clique problem. Consequently, the EPL compiler
uses heuristics to determine a good loop arrange­
ment for memory optimization.

Delta Alignment

In a distributed memory parallel computer, a sig­
nificant speedup can be achieved by distributing
(or mapping) data structures in a program on to
the processors. One processor is allocated (at least
conceptually) to each array element or composite
data structure. Operations on elements of two
data structures can be performed entirely locally if
the elements are allocated to the same processor;
otherwise, processor communication has to be in­
volved. The cost of communication depends on
the relative position of the two processors involved
and the architecture under consideration. One of
the major challenges in programming distributed
memory parallel computers is to distribute data
structures among the processors so that the com­
munication cost is minimized.

The problem is particularly acute when the
communication is synchronous, such as in the
case of SIMD machines. In addition, different
alignments of multidimensional arrays on a grid­
connected SIMD architecture result in different
communication patterns during parallel program
execution. The usual approach to this problem
[28, 29] is to select the best alignment for each
array in the program independently of other ar­
rays. Hence, such an approach does not succeed
when the independently found alignments conflict
with each other. Similarly, the algorithm pre­
sented by Gilbert and Schreiber [30] finds the
minimum communication cost of evaluating an
expression over a distributed processor array but
only for a single expression. Given the initial allo­
cation of data, the algorithm determines the pro­
cessors at which the temporary variables should
reside and a subexpression evaluation should take
place to minimize the communication cost.

Szymanski and Sinharoy [31] have shown that
the data alignment problem for an entire program
is NP-hard for all communication cost metrics.
They [8] proposed an heuristic that starts with an
integer approximation of the rational minimum of
the cost function when the distance is defined by
the second (Euclidean) norm. The initial solution
is then iteratively improved by following the steep­
est decline direction of the cost function. Results
of using this algorithm on random graphs are en­
couraging [8] .

Here, we focus on the definition of the problem
and its impact on the code generation. Let's con­
sider an equation eu, . .. ,h} defined over k subscripts
/ 1 , ... , h (such an equation corresponds to a state­
ment nested in k iterations):

, Sk]
· Vr[/1, /2, · · · ,Jk] · · ·

where each simple indexing expression s1 on the
left side of the equation is an affine function of the
corresponding subscript f;, and each indexing ex­
pression jj on the right side is a function over pos­
sibly many subscripts. A large class of parallel sci­
entific computations can be expressed as regular
iterative algorithms (RIA) [32] in which all index­
ing expressions are of the form "I + c", where I is
a subscript and c is an integer constant.

To generate efficient code for SL\1D machines,
one or two dimensions of a data array should be
projected along the processor array [10]. For the
i-th projected dimension of each array (each
equation), we define an alignment function a, that

PARALLEL SCIENTIFIC COMPUTATION 213

maps the index of that dimension into the position
of the virtual processor that stores (executes) its
value. We consider the simplest but also the most
useful form of the alignment function defined as a
constant shift, e.g., for variable v1,

a1(l;) = I; + ali

Hence, the equation e with alignment shifts can be
written as:

eu,, .. ,hl: v1[Ib · · · , h]
= ... Vr[/1 + c1, ... , h + ck] (1)

This equation incurs the communication cost:

c = L y * d(iae1 - av1 + Cv11, . . . '
for all v's in e

where d is a distance metric, y denotes the time
needed for sending a unit message between two
directly connected processors, and n is the dimen­
sionality of the communication network. The dis­
tance metric is defined by the interconnection of
the processors in the considered parallel architec­
ture. Thus, the problem is to find alignment func­
tions a's for each of the variables and equations
such that the communication cost C for the given
set of assignments is minimal. Figure 9 shows the
communication among the processors executing
the i-th instance of Equation 1 along a single di­
mension. Contrary to the well known Owner Com­
putes rule, to minimize communication costs, the
processor executing the i-th instance of the equa­
tion may be different from the processor that
stores the i-th element of the array defined by this
equation.

Array Operator Placement

Proper assignment of array operators to proces­
sors in large scientific computations executed on a
distributed memory machine can reduce total
computation time significantly. For example, con­
sider the following computationt evaluated over
the rectangular stencil. Let n1, n2 stand for the
lengths of the sides of the stencil and let p 1, P2 be
the offsets (measured from the lower left comer of
the stencil) of the desired position of the result.

t This example is based on the computation arising in
modeling ecosystem on the MasPar [33].

214 OZTLRA.\1. Sl.\IHAHOY. A.\10 SZY.\IA.\ISKI

for i=l to ...

e { i } : v,[... , i, .. .] ... v,[... ,i+c, ...] ...

Processor Nun1be~--~

B----B-----B----0
Local

Memory

r,[i + c]

~-:re-el
v,.[i + .z:,.]

e[i]

1 ~,1
I'] [i]

FIGURE 9 Communication cost of exPcuting equation e.

Let s;.J be a data structure distributed over the
two-dimensional processor array and (m, q) be the
coordinates of the processor that should receive
the result. The computation is defined as:

m+nt-pt q+nz-pl

result= L L f(s"''l' s;.;)
i=m-pt j=q-p'l.

The above computation is evaluated repeatedly
for each rectangular stencil in the processor array.
Hence, it is likely to dominate the total execution
time. The above computation is an example of a
reduction evaluated simultaneously over many
overlapping continuous sections of an array.
Other examples of usage of such operations are
likely to be found in cluster recognition, fractal
dimension computation in biological modeling
[34], or in modeling physical phenomena (e.g.,
solvers of partial differential equations character­
izing fluid flow).

Simultaneous reduction is evaluated over a
one-dimensional consecutive section of an arrav.
called here an array interval; each array element is
used as an operand to many reductions evaluated
simultaneously over different overlapping inter­
vals. This is distinct from what is usuallv referred
to as parallel reduction, which involves the paral­
lel evaluation of a single reduction [35] or its vari­
ants. An algorithm for standard parallel reduction
that uses a balanced binary tree implementation
for mesh-connected architectures has been pre­
sented [36 J. Another standard parallel reduction

algorithm has been introduced [37] for tree topol­
ogies of arbitrary but bounded fan-in and arbi­
trary tree depth. The segmented prefix problem is
a variant of parallel reduction that subdivides a
single dimension of processors into nonoverlap­
ping contiguous regions of varying size. A multiple
prefix algorithm that reduces noncontiguous re­
gions simultaneously for this variant has been
solved by Sanz and Cypher [38].]\one of the pub­
lished algorithms cope with the overlapping of the
regions being reduced.

Efficiencv of the simultaneous reduction has
been discussed elsewhere [39]. It can be ex­
pressed as a function of (i) operation count: i.e ..
the number of required reduction operation steps.
(ii) communication cost: i.e., a function of the
number of messages sent (message count). the
distances traveled by messages (hop count). and
the length of the messages (message size), and (iii)
memory count: i.e .. the number of memory loca­
tions used to store intermediate results at each
processor. The lower bounds for the above counts
are: [log2n] for the operation, message, and mem­
ory counts, n - 1 for the hop count, and 1 for the
message size. For the interval of size n = 2k and
an arbitrary offset p, a modification of the well­
known parallel prefix algorithm [35] achieves the
above bounds. The modification defines the di­
rection of the message transfer in each step by the
corresponding bit of the binary representation of
the offset p.

For an arbitrary interval size n and an arbitrary

offset p we have designed an algorithm called in­
tersect, which achieves the lower bound of com­
munication and memory counts and is within a
factor of 1.5 of the lower bound of operation
count. For an arbitrary interval size nand an arbi­
trary offset p, we have designed an algorithm
called split, which produces the result with the
memory, hop, and message counts equal to their
lower bounds. The operation count and themes­
sage size are at most twice the value of the corre­
sponding lower bound. Depending on the relative
cost of the increased message size and operation
count versus the smaller hop count, this algorithm
may or may not outperform intersect for the given
interval and offset.

For an arbitrary interval size we have designed
two algorithms that require asymptotically small
operation and message counts: both counts are
log2n + 2 if the reduction's binary operator has an
inverse and log2 n + 2(log2 n)' + o((log2n)'), where
c = log12 6 = 0.721057 ... , otherwise.

Wavefront Determination

One of the most common forms of parallelism
available in a scientific computation is data paral­
lelism, in which the same operation is performed
on manv elements in an n-dimensional data ar­
ray. In computation over such an array, a wave­
front of computation can be defined as an (n - 1)­
dimensional subarray whose elements are all
evaluated simultaneously. Different wavefronts
result in different performance, so the question
arises how to determine the wavefront that results
in the minimum computation time. Wavefront de­
termination should also define which wavefront
elements are to be computed by each processor at
every execution step. This type of scheduling is
appropriate for single program multiple data
(SPMD) [40, 41] implementation on distributed
memory architecture or for data parallelism on
SIMD architectures. SP~D implementation. in
general, requires larger parallel granules than
SIMD implementation; therefore, it is more effi­
cient provided that the computations at each in­
dex point are fairly complex (i.e., involve compu­
tationally intensive function evaluation).

Figure 10 illustrates how the choice of a partic­
ular wavefront can affect the performance of an
algorithm. A two-dimensional array E is to be
evaluated on a one-dimensional (logically) pro­
cessor array. The elements are defined by the fol­
lowing equation (elements that are beyond the ar­
ray boundary are considered to be zero):

PARALLEL SCIE:\TIFIC COMPlT>\TIO:\ 215

E[x1, x2] = j(E[x1 - 2, x2 + 2],
E[x1 - 4, x2- 2]) (2)

A data-dependence vector of an equation is any
vector that connects two index points. The end
point of this vector is an index point at which the
equation is executed and the starting point of the
vector is an index point at which some value used
in the definition is evaluated. For RIA [32] ex­
pressed in EPL, the dependence vectors are de­
fined by the difference between the corresponding
subscript expressions used in the left and right
side of the equation. In the above computation,
there are just two dependence vectors: OA ([4, 2])
and OB([2, -2]).

In general, let D = {d1, d2, . . . , dk} be the set
of dependence vectors in a program (i.e., a set
dependence vector for all equations in the EPL
program). Variables can be evaluated simulta­
neously at all index points on a wavefront h, if and
only if h · J, > 0 for all dependence vectors J,.
Intuitively, this condition requires __that all index
points reachable from a wavefront h are known at
the time of execution of this wavefront or, in other
words, all array elements in an appropriate side of
the wavefront have already been evaluated. In
Figure 10 all dependence vectors are on one side
of the lines EH, E' H', and E"H", so all of them are
wavefronts. Evidently, any line between OB and
OA (traversed clockwise) in Figure 10 may be a
wavefront because for these and only these lines
are the dependence vectors on one side of the line.
However, such a wavefront does not always exist.
For example, when data dependences are differ­
ent at different regions of the index domain, there
may be no single wavefront with the required
property in the entire index domain.

Two parallel wavefronts form a strip of compu­
tation that can be divided among a number of
processors for execution. The separation between
the wavefronts can be made such that once all
packets (containing array elements evaluated by
other processors) reach their destination, no more
communication is needed to complete the evalua­
tion of all the array elements between the two
wavefronts. In Figure 10, EFGH, E'F'G'H', and
E"F"G"H" are three such strips. Because EFGH
covers a bigger area than E"F''G"H", computation
along this wavefront results in less frequent com­
munication and synchronization. Wavefront EH
can be preferred to E"fl" for another reason;
namely, the smaller distance that data must travel
(compare projection of OA on E"H" with the pro­
jection of OA on EH). Wavefront EH can be parti-

216 OZTURAN, SINHAROY, AND SZYMANSKI

F'

F"

G' G H G"

\
\ I

I /

"o
/ I\

// I \
I / I \

d4, 2)/'
\ " I
) " I

/ \

E" E' F E

H"

H'

FIGURE 10 Different wavefronts to evaluate array E.

tioned into more sections than E"H" with the simi­
lar computation-to-communication ratio, leading
to a higher degree of parallelism.

Even if there are no restrictions on the number
of available processors, it is not straightforward to
determine how the wavefronts should be optimally
partitioned and mapped to the processors. A
small partition increases communication time be­
cause most of the input array elements needed to
evaluate a particular index point may reside out­
side the evaluating processor's local memory. For
certain dependence vectors and the sizes of the
partitions, input array elements may be quite a
few processors away. On the other hand, the pro­
cessors may be underutilized if a large partition of
the wavefront is assigned to a single processor.

The wavefront approach to finding the set of
index points at which evaluation can proceed si­
multaneously was originally proposed by Lamport

0 0 0 0

0 0 0 0

0

[42]. However, to find the wavefront minimizing
the total execution time, an NP-hard integer pro­
gramming problem has to be solved. This original
result has been extended by many researchers
over the years [43-46]; however, the proposed
solutions still are NP-hard because they can be
reduced to an instance of the integer-program­
ming problem.

Assuming that the space-time representation
of an algorithm is a con~nuous domain, we can
determine the wavefront h with the minimum exe­
cution time with polynomial complexity. This
result holds for two-dimensional arrays processed
on a linear, arbitrary large array of processors. It is
valid for two different models of communication:
(i) individual element transfer and (ii) packet
transfer. In the first case, we have proven, under
the above simplifying assumptions, that the only
wavefronts that can be optimal are those that are
either perpendicular to one of the dependence
vectors or parallel to the y-axis. This property
leads to a simple but efficient procedure for find­
ing an optimal wavefront by just inspecting all po­
tentially optimal wavefronts (complexity of this
procedure is linear in the size of the input).

For the example in Figure 10, there are only
three angles of a wavefront to consider: Y1 = n/2,
Y2 =arctan(-2), Y3 = n/4. The wavefronts with Y1
and y2 are shown in Figure 11. In a single execu­
tion step with the wavefront defined by Y1, each
processor evaluates four index points and needs
to receive eight values from the neighboring pro­
cessors. However, for Y2 wavefront, the number of
evaluated points and received messages is at most
three. The number of steps needed is also differ­
ent for these two wavefronts because they move in
different directions. If we assume that the compu-

FIGURE 11 Optimal wavefronts for array E.

tation is defined over a rectangle with corners at
the points (0, 0), (0, Y), (X, 0), (X, Y); X= 100, Y =

10, then the number of steps made by the first
wavefront is 50 and by the second one is 105. The
corresponding total computation times for all
three discussed wavefronts will be T1 = 315e +
315c, T2 = 200e + 400c, T3 = 630e + 630c,
where e is the cost of execution at each index point
and c is the cost of communicating one datum
between neighboring processors. Depending on
th8 value of c/ e, the first or the second angle
should be selected (see Fig. 11).

Usually, array elements are not passed individ­
ually, but several of them are grouped together
and sent in a single packet. This method is com­
monly used in the communication model known
as block SIMD. In this model, off-processor values
required to compute a designated block of parallel
code are obtained immediately before the begin­
ning of the block, and all off-processor values
generated within the block are communicated im­
mediately after the end of the block [4 7]. Typi­
cally, packets of values are formed for communi­
cation and transferred between nonneighboring
processors by means of hopping.

The wavefront strip is partitioned among the
processors and the width of each partition impacts
the total computation time. With too small a
width, processors spend less time computing and
more time communicating because less relevant
information is available in the local memory. On
the other hand, a large width enables processors
to spend more time computing between data
transfers, resulting in a smaller communication
cost. Beyond a certain width, the communication
cost does not decrease any further with an in­
crease in the partition width. If the partitions are
too large, the available parallelism may not be ex­
ploited fully.

As in the previous case, we have proved that the
optimal wavefront can only be at certain angles to
the dependence vectors (the number of possible
angles is limited by the square of the number of
dependence vectors). Once again the proof leads
to an efficient enumeration procedure.

In our analysis we have assumed a continuum
of data element in an array. In reality, arrays are
discrete so the analysis is approximate. For exam­
ple, in mapping a computation on to a linear array
of processors, the algorithm provides a good
wavefront when the longest projections (on each
side) of the data-dependence vectors on the se­
lected wavefront are much larger than the length
of packets sent along the wavefront.

PARALLEL SCIENTIFIC COMPLTATIO~ 217

The methods described here can be applied to
any set of uncoupled recurrence equations. To
decrease the communication cost, a good align­
ment of all arrays in the program should be deter­
mined first [8, 48]. Many methods described in
the literature [43-46] determine the actual map­
ping of the computation on to the processors, once
the wavefront is determined by solving an integer
programming optimization problem. These algo­
rithms can be used for the wavefronts obtained by
our method.

There are many open problems in this area.
One major issue concerns finding an efficient al­
gorithm to determine a good wavefront when a set
of recurrence equations involving m-dimensional
arrays are to be computed on an n-dimensional
array of processors (m ;::: n). Another important
question is how to generate the packets of conve­
nient sizes and shapes efficiently, once their size
and orientation are known.

5 RUN-TIME SUPPORT

As discussed earlier the main problem of efficient
parallelization is to properly map addresses of val­
ues being computed on to the computer proces­
sors. Pure compiler techniques have been suc­
cessful in cases when the data addresses are input
independent and can be established at compile
time. However, many important applications in­
volve sparse matrix computations, adaptive nu­
merical algorithms, or computations over irregular
meshes and therefore do not belong to this cate­
gory.

Traditionally supported compiler optimizations
for parallel computation involve subscript analysis
or directives for regular problem decompositions
and distribution. Language and software tools for
dealing with irregularity in parallel computation
rely either on user-provided partitioning algo­
rithms, e.g., dynamic distributions in Vienna For­
tran [17], or the tracing of sample executions,
e.g., Kali compiler [11, 49] and the PARTI library
[50, 51]). Communication patterns of many ad­
vanced parallel computations are rarely known at
compile time. However, transferring individual
data is expensive because of the usually large la­
tency of multiple instruction multiple data (MIMD)
architecture communication. Fortunately, often
communication patterns change with each input
data but remain constant inside the loop at run­
time. Therefore, both the Kali compiler and the
PARTI library attempt to group messages. Entire

218 OZTURAI", SINHAROY, A.\ID SZY:\IA:\'SKI

blocks of data that must be sent to the single pro­
cessor are assembled into a single message in loop
preprocessing done at run-time [49, 50].

In adaptive computation, the run-time support
is needed because the workload distribution
among the subregions of the computational do­
main changes during run-time. Therefore, there is
a need for run-time task reallocation of adaptive
computation executed on massively parallel dis­
tributed memory machines. Such task realloca­
tion requires different methods than the large
grain, few-processor approaches discussed in the
literature [52]. We have proposed a new type of
so-called density workload problems appropriate
for such environments [5].

5.1 Run-Time Task Distribution

One of the most challenging problems encoun­
tered while implementing adaptive scientific com­
putations on distributed memory machines is
run-time mapping of a dynamically changing
computational load on to the parallel processors.
In Nicol [53], the following rectilinear partitioning
problem (RPP) has been proposed and solved:

Partition the given n X m workload matrix into
(N + 1) X (M + 1) rectangles with N + M
rectilinear cuts in such a wav that the maximum
workload among rectangles is minimized

Such optimization is appropriate for adaptive fi­
nite element computations on architectures with
local communication that is faster than the global
one. Because balanced partitions tend to increase
the volume of local versus global communication,
the overall communication cost can be decreased
by using the optimum rectilinear partition.

Ozturan et al. [5] investigated the balancing of
an adaptive scientific computation on SIMD ma­
chines: This is the problem with similar motiva­
tion and applications as the RPP problem. In
RPP, the sum of the weights is taken as the cost of
a rectangle, whereas in our problem the cost is
expressed as the workload density, i.e., the ratio
of the workload to the area with which this work­
load is associated. The area is proportional to the
number of processors active in it. Such cost defi­
nition is motivated by the mesh refinement tech­
niques used in adaptive numerical methods. Each
entry in the workload matrix represents the solu­
tion error obtained by an error estimation proce­
dure [54]. The high-error regions need recomput­
ing and the needed work is proportional to the

a

error distribution in the soluuon

/
I

b

processor array

c

~
I

d

FIGURE 12 Example of one-dimensional partition­
ing.

magnitude of the error. Hence, the number of pro­
cessors reassigned to each solution region should
be proportional to the refinement factor.

Consider a load-balancing problem as illus­
trated in Figure 12 for a one-dimensional prob­
lem. The uniform mesh yields the solution with a
high error in the interval b ::s x ::s c and within the
required accuracy in intervals a ::s x ::s b and c ::s
x ::s d. Taking the magnitude of an error as an
estimate of the work W; for each element i =

1, . . . , n, we assign a small weight e ~ max;{w,}
to work the estimate in regions a ::s x ::S b and c ::s
x ::S d. To balance the workload. the majority of
the processors should be assigned the interval b ::s
X ::S C.

In adaptive solutions of partial differential
equations, parallel tasks perform basically the
same computation over different spatial subdo­
mains (intervals for one-dimensional problems)
and with a different discretization parameter ax.
Let K denote the number of such tasks. It is im­
portant to keep this number small for the following
reasons. The subdomain interactions are propor­
tional to the number of existing subdomains and
in higher dimensions such interactions require ex­
pensive global communications. In each time step
of the subdomain computation, a fraction of exe­
cuted code is subdomain specific (e.g .. in hyper­
bolic equations the time step has to be set differ­
ently in each subdomain). For purely SI:\1D
machines, execution of this code fraction has to
be done in K consecutive stages. In each stage,
processors in one subdomain are executing while
processors belonging to the remaining K - 1 sub­
domains remain idle.:j: Therefore, each subdo-

:j: For more general MIMD architectures that support coor­
dinated parallelism (i.e., CM -.'>). all K sub domains can execute
this fraction of code in parallel.

main associated with a parallel task should repre­
sent a localized structure in the solution domain.

Figure 13a shows an example of the more diffi­
cult two-dimensional case in which a coarse mesh
is trivially mapped to the processor mesh. In re­
gions A and B, the mesh must be refined due to
the presence of high errors. Hence, we have to
spread subdomains A and B over bigger rectangu­
lar subsets of processors to improve load balanc­
ing as in Figure 13b,c.

If mesh-movement or static rezone techniques
are used, the mesh elements are moved into high­
error regions. A global solution strategy will refine
the high -error regions and repeat the entire step of
the iteration. Consequently, a reassignment of
processors is needed. A local solution strategy, on
the other hand, repeats the iteration only where it
is needed. Hence, local refinement results in less
direct computation and enables more processors
to be assigned to regions A and B. However, local
refinement requires more interactions between the
local and global solutions. Such interactions in­
volve global communication that can outweigh the
benefits of an adaptive procedure. Global solu­
tions and mesh-movement techniques require less
interactions of this kind. Careful buffering of the
high-error regions can increase the number of it­
erations executed before regridding or mesh
movement is needed. This will, in turn, decrease
the frequency of the needed load balancing. It is

c c

if
E B

A

D
D

(a) (b)

A B E

(c) (d)

FIGURE 13 (a) Coarse mesh with high-error regions
A and B. (b) Repartitioning with global refinement. (c)
Repartitioning with local refinement. (d) l\'icol's parti­
tioning.

PARALLEL SCIE:"JTlFlC COMPLTA TI0:\1 219

Table 1. Instances of Problem Represented by
Equation (3)

Problem EB 0 f(k)

One-dimensional
partitioning [53 J mm max 1

Density type for
PDEs min max (xk- Xk-1 +

Shortest path with k
arcs min + 1

Partitioning for heter-
ogeneous proces-
sors min max Sk

1)

these global mesh-refinement and mesh-move­
ment techniques executed on a mesh-connected
architecture that motivated us to develop density­
type partitioning.

It should be noted that applying RPP partition­
ing to the example shown in Figure 13d results in
assigning unnecessary processors to regions C and
D. To avoid such a waste, partitioning methodol­
ogy cannot be restricted to rectilinear cuts extend­
ing across the whole domain in both dimensions.
Hence, in our problem definition and solution [5],
we require that the selected rectangles cover the
whole domain. The heuristics for the two-dimen­
sional case projects the weights to one dimension
and results in rectilinear cuts extending across the
whole dimension in one direction. Figure 13b
shows an example of this kind of partition.

To give a brief formal treatment of a one­
dimensional case, let PK be the set of all K parti­
tions of a one-dimensional workload array w;, i =

1, . . . , n into K subintervals (xk-1, Xk), where
1 ::5 Xk-1 ::5 Xk ::5 n, k = 1, . . . , K. The one­
dimensional workload partitioning problem can
then be stated as:

(3)

As shown in Table 1, selecting a different
meaning for operations E9 and Q9 yields different
optimization problems. For E9 = min, Q9 = max,
andf(k) = 1, an instance of RPP is obtained that
can be solved in O(Kn) or O(n + (Klogn)2) steps
[53].

The problem of load balancing for adaptive
PDE solvers on machines where the number of
processors exceeds the number of tasks can be
obtained by putting EB = min, Q9 = max, and
/(k) = (xk- Xk-1 + 1), i.e., when the sum of the

220 OZTURAN, SINHAROY, AND SZYMANSKI

process:spa.rse_multipl:v: out: out.pfile: in : infile:

file: infile.

int n. np, colend[*]. colma.p[*. *]./*number of rows. processors, column ends, non-zeroes in each row* f
double x[*].S[*, *] /* vector and sparse matrix in major-column format * f

file: outfile. double r[*] ; /* output vector * /

subs: i,j:

range.S = n; range.colend = n; range.h = n:
ra.nge.S[i] = colend[i]: range.colmap[i] = colend[i]:

P[p]: r[i] = reduce(+.S[i,j]*x[colmap[i.j]] . j):

/*** optional user statements and declarations for run-time load balancing *** f
int. tload. load[*]: /* total load. cumulative load * f
subs: pis sublinear i: load[i] ! = load[i-1]:

tload = reduce(+.colend[i]. i):
load[i] = (scan(+.colend[i]. i)*np+tload-1)/tload):

FIGURE 14 Sparse matrix-vector multiplication with dynamic load balancing.

workloads in each partition is divided by the inter­
val length (i.e., the number of processors). If there
are K heterogeneous processors, each with a dif­
ferent speed sk, k = 1, ... , K, thenf(k), EEl, and
~ can be instantiated according to the fourth row
of Table 1. The RPP algorithm can handle only
the case with the monotonically increasing cost
function ~~,;x•- 1 W;. In contrast, our algorithm can
solve more complicated problems with an arbi­
trary cost function ~~~xk- 1 w;lf(k) in O(Kn3

) steps.
There is a similarity between the weighted inde­

pendent set for interval graphs and our problem
[55]. The interval graph for our problem can be
created as follows. Each possible subinterval
(xk-1, xk) is represented by a node of the interval
graph. The weight of the node representing (xk-1,
Xk) is set to ~~~x._ 1 w;lf(k). In such a graph, the
independent set of size K, which covers the whole
interval, 1, . . . , n, gives the solution to the orig­
inal problem. The interval graph can be converted
to a directed acyclic graph (DAG). The shortest
path algorithm applied to this DAG will find the
minimum weight dominating set [56 J. This ap­
proach results in the optimal algorithm for the
one-dimensional case and also leads to an heuris­
tic algorithm that can be easily generalized to two
dimensions (by projecting the workloads to one
dimension).

5.2 Run-Time Array Distribution in EPL

To illustrate the run-time support provided in the
EPL compiler, consider the sparse matrix-vector

multiplication. This operation lies at the heart of
many numerical algorithms, such as the conjugate
gradient algorithm for the solution of linear sys­
tems of equations. The corresponding computa­
tion is:

r =Ax

Let S be the row-major representation of the
sparse n X n matrix A, colend[i] be the number of
nonzero entries in each row (i ::5 n), and colmap[i,
j] be the column number for each nonzero entry.
The variable-sized rows of S must be mapped on
toP processors where P < n. The total execution
time of such a computation is defined by the exe­
cution time on the processor with the largest num­
ber of nonzero elements (because processors syn­
chronize after each multiplication step in an
iterative solver). Hence, it is important that rows of
S are distributed in such a way that processors are
load balanced, i.e., each has about the same
number of nonzero elements to evaluate. The cor­
responding EPL program is shown in Figure 14.

The load-balancing scheme can be imple­
mented solely on the basis of the ranges of rows in
S. The scheduler implemented in the EPL com­
piler [3 J detects that the ranges of the rows in S
must be available before the matrix-vector multi­
plication loop starts. Hence, the last two state­
ments in the above EPL program that explicitly
implement a simple load-balancing algorithm will
always be scheduled before the loop body. The
rows of S are then distributed accordingly to the

PARALLEL SCIENTIFIC COMPUTATION 221

Table 2. Mesh Characteristics and Execution Times for Test Runs on the
MasPar for 1,000 Iterations

Method/ Constant 3elt viking6 fs_760_1 nnc1374 pores_2

Mesh characteristics
Number of rows 4,720 6,000 760 1,374 1,224
Number of nonzeroes 27,444 73,734 5,976 8,606 9,613

Multiplication timings
t (s)

Block distribution 33.6
Load balance 28.5
100% *balanced/block 85%

run-time defined sizes. If these load-balancing
statements are not given explicitly, then the block
distribution will result, with each processor having
the same (or nearly the same) number of rows,
independently of the number of nonzero elements
in those rows.

The program for distributing arrays was run on
several benchmarks including meshes originally
used by Hammond [57] and test cases from the
Harwell-Boeing sparse matrix collection [58]. The
characteristics of the tests are given in Table 2.
The first test case is an unstructured triangular
mesh around a three-component airfoil whereas
the second test is a portion of a larger mesh repre­
senting an unstructured tetrahedral mesh about a
Lockheed S-3A Viking aircraft. The third test case
arises from a mixed kinetics diffusion problem
(specifically, the study of ionization in the strato­
sphere with 38 chemical species). The fourth
mesh is derived from a model of a gas cooled nu­
clear reactor core and the fifth test was generated
using a package for reservoir modeling.

10

20

30

SUBROUTINE PMULT (... }

DO 30 I 1,N

IBGN = IA(I}

IEND = IA(I+1}-1

SUM= O.ODO

IF (IBGN.GT.IEND} GO TO 20

DO 10 J = IBGN,IEND

JAJJ = JA(J}

SUM= SUM+A(J}*X(JAJJ}

CONTINUE

W(I} = SUM

CONTINUE

RETURN

t (s) t (s) t (s) t (s)
92.8 63.8 59.6 64.5
79.8 50.5 52.8 55.3
86% 79% 88% 86%

The most straightforward implementation of
the sparse matrix-vector multiplication used in
the ITPACK library [59] is shown in Figure 15a. It
multiplies each nonzero element by the corre­
sponding vector element that is fetched through
communication, if necessary. The results of sev­
eral runs of the sparse vector multiplication are
given in Table 2. The rows labeled "block" and
"load balance" give times for runs of the multipli­
cation with a standard block distribution and with
the block distribution adjusted by the load-bal­
ancing step, respectively. Results from executions
presented in Table 2 showed up to a 21% cost
reduction for the MP-1.

6 CONCLUSION AND COMPARISON
WITH OTHER APPROACHES

In this section we characterize EPL in terms of
criteria that identify important properties of paral­
lel languages [60 J .

----------------X X X

X X X
_x __ ~ _____ x ______ _

X X X X

X X X X

X X X X

X X X X

X X X X X

X X
X X X ----------------X X

X X X

A

X

X

X

X

X

X

X

X

X

X

partition K

(~ (b)

FIGURE 15 (a) ITPACK matrix-vector multiplication code and (b) ordered array partitioning.

222 OZTliRAN, SINHAROY, A~D SZY.VIA'ISKI

6.1 Architecture Independence

The same source code is used bv the EPL com­
piler to produce different parallel executables for
different architectures. Currentlv. the EPL com­
piler includes code generators for ,WPL and C*
languages for SIMD architectures (MasPar and
CM-200), Dynix C for the shared memory Se­
quent Balance, and message-passing C for the
Stardent computer. There is ongoing work on C
code generators for the C:.\1-5 and SPl architec­
tures. Nevertheless, the user may still prefer to use
different annotations or even different EPL pro­
grams for different architectures to achieve the
optimal performance.

6.2 Parallelism Specification

A high-level language should shield the user from
having to specify each and every detail of parallel
execution. Below we discuss the level of user in­
volvement in defining parallel execution of EPL
programs.

1. Specifying data and program decomposi­
tion: Only partial specification is expected
from the user. An EPL computation con­
sists of cooperating functional processes
that define an initial decomposition of the
program. Parallel tasks are created by the
EPL system through merging and splitting
EPL processes based on the communica­
tion-to-computation ratio on the target ar­
chitecture. The programmer can use ex­
plicit anotations to define the part of the
EPL process that is to be assigned to a sin­
gle virtual processor. The annotations de­
fine the lower limit on the granularity of de­
composed tasks to improve the efficiency of
generating program decomposition. If, dur­
ing the process decomposition, a task is cre­
ated that includes all computation desig­
nated to some virtual process, this task will
not be further divided bv the EPL svstem. . .

2. Specifying mapping: :\lapping of the paral­
lel task (created from processes by the EPL
system) to the physical processors is done
entirely by the EPL system. However, the
quality of the mapping is decided by the
quality of the decomposition which, in tum
(see point above), is partially defined by the
user who defines the EPL processes.

3. Defining communication: At each process
description there is no difference between
communication and regular input/output;
both are seen as externally providing input

to the process. The necessary communica­
tion code is generated by the EPL compiler.

4. Defining synchronization: Again, the user is
shielded from this aspect of parallel pro­
gramming. The synchronization generated
by the EPL compiler is derived from the
data dependency imposed by the EPL pro­
cesses.

6.3 Software Development Methodology

EPL relies on functional decomposition of the
computation into processes. Processes are de­
scribed in an equatorial language and their coop­
eration is described as a configuration. Programs
describing processes are compiled by the EPL
compiler and a configuration is processed by the
configurator, i.e., the compiler for the configura­
tion language. Hence, there is a separation of pro­
gramming-in-the-large from programming-in­
the-small. The process written as a functional
program may be refined by user-supplied annota­
tions. The parallel code is generated through a
series of transformations. First, the flow of control
is established and minimum synchronization nec­
essary for preserving correctness is found (in EPL
terms, a schedule of a process is created). which is
still architecture independent. Then, the decom­
position and mapping take place (creating an­
other, equivalent form, of the source program).
Finally, input/output and communication state­
ments specific to the target architecture are gener­
ated and the final parallel code is produced.

1. Structure of the development process: In
EPL, the equational program for a process
is written very independently from the pro­
grams of other processes. Only clearly de­
fined interfaces (data structures exchange
with the environment) are of concern for the
process program writer.

2. Exposition of the decision points: Preparing
a configuration for the overall computation
forces the user to decide on the method of
writing the program at the global level with­
out considering low-level details.

3. Record of constructs: Thanks to their con­
ciseness and lack of implementation details
(i.e., input/output, communication. flow of
control), computation configuration and
equational programs for its processes form a
good basis for program documentation.

4. Preservation of correctness: The parallel
code is produced in three major transforma­
tions that were designed to be correctness
preserving.

5. Limit of proofs to derivation system: Proof
of the correctness-preserving properties of
the EPL transformation has not been made
formally yet, however these properties
strongly influence their design and imple­
mentation.

6.4 Cost Measures

There is a part of the system, called the timer, that
provides the user with the execution time esti­
mates for equational programs. As shown previ­
ously [61], the timer relies on a set of architecture
measurements that can be established by running
initiation programs of the timer on the given archi­
tecture. However, we do not have a mechanism for
determining the overall computation execution
cost (i.e., execution cost at the level of a configu­
ration) at this time. For SPMD models. the timer is
sufficient: however, in a more general setting
there's a need for a better tool. Timer drives trans­
formations of equational programs into schedules
and the stage of decomposition and mapping.

6.5 No Preferred Scale of Granularity

There is no upper or lower limit on the grain size in
EPL with the exception of the statement instance:
i.e., EPL does not explore parallelism on the level
of expressions and below.

6.6 Efficiently lmplementable

Our experience with the current EPL implementa­
tion indicates that the EPL-generated code is no
more than 20-50% slower than the equivalent
hand-written code. However, we have not yet
measured the efficiency of larger applications (or
even a large number of smaller ones).

Program decomposition through annotations
and computation synthesis through configura­
tions can support efficient parallel code genera­
tion for domain-specific computation. Annota­
tions support rapid prototyping and performance
tuning of a parallel program. Adaptivity, with its
associated error estimates and the shrewd use of
computation resources only in regions where ac­
curacy requirements are not satisfied, can provide
the needed numerical reliabilitv and efficiencv to
parallel computation. In the EPL system, adaptiv­
ity is supported through run-time task distribu­
tion.

There are several premises underpinning our
approach, among the most important ones are:

PARALLEL SCIEJ'\TIFIC cmiPlTA TIO!\ 223

1. Annotations provide an easy and efficient
way to parallelize existing codes.

2. Large parallel programs consist of intercon­
nected processes that represent logical par­
titions of the program.

3. Absence of control statements simplifies
program analysis and increases compiler's
ability to produce an efficient parallel code.

4. Most parallel code optimization problems
are 1\"P-hard; hence, development of proper
heuristics is important.

5. A hierarchical view of parallel computation
is helpful in extracting functional parallel­
ism.

Our research on scalable program synthesis has
left many interesting issues unexplored. Future
work on program synthesis that we intend to un­
dertake includes parallelization of dynamic task
distribution and run-time support for irregular
computation. Efficiency of our methods will be
measured for large applications, such as finite dif­
ference and finite element formulations for vari­
ous scientific computations.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous review­
ers and Prof. Hans Zima, Associate Editor, for
their valuable comments on the earlier versions of
this article. Special thanks are also due to Louis
Ziantz for assistance with running the EPL tests
on the MasPar and to Joyce Brock for help in pre­
paring the manuscript. This work was partially
supported by the Office of Naval Research under
grant N00014-93-1-0076, by the National Sci­
ence Foundation under grants CCR-9216053
and ASC-9318184, and by the IBM Corp. Devel­
opment Grant. The content of this entry does not
necessarily reflect the position or policy of the C. S.
Government-no official endorsements should be
inferred or implied.

REFERENCES

[1] R. Govindaraju, B. Szymanski, Proceedings of
Scalable High Performance Computing Confer­
ence 1992, Williamsburg-, Washington, DC: IEEE
Computer Science Press, 1992, pp. 228-231.

[2] B. Szymanski. Software for Parallel Computa­
tion. Berlin: Springer \"erlag. 1994, vol. 106,
NATO ASI Series F, pp. 76-90.

[3] B. Szymanski, Parallel Functional Languages

224 OZTURAN, SINHAROY, AND SZYMANSKI

and Environments. New York, NY: ACM Press,
1991, pp. 51-104.

[4] J. BIUno, B. Szymanski, Proceedings of the
Third Supercomputing Conference 1988, Bos­
ton. Tampa, FL: Supercomputing Institute,
1988, pp. 358-365.

[5] C. Ozturan, B. Szymanski, J. E. Flaherty, Pro­
ceedings of the Scalable High Performance Com­
puting Conference 1992, Williamsburg, Wash­
ington, DC: IEEE Computer Science Press, 1992,
pp. 409-415.

[6] K. Spier, B. Szymanski, CONPAR-90. Lecture
Notes in Computer Science. Berlin: Springer­
Veda& 1990,pp. 324-335.

[7] B. Szymanski, N. Prywes, "Efficient handling of
data stiUctures in definitional languages," Sci.
Comput. Program., vol. 10, pp. 221-245, 1988.

[8] B. Sinharoy, and B. Szymanski, "Data and task
alignment in distributed memory architectures,''
J. Parallel Distributed Comput., vol. 21, pp. 61-
74, 1994.

[9] B. Sinharoy, B. Szymanski, "Finding optimal
wavefront for parallel computation,"]. Parallel
Algorithms Appl., vol. 2, pp. 1-22, 1994.

[10] B. McKenney, B. Szymanski, "Generating paral­
lel code for SIMD machines," ACM Let. Program.
Languages Systems, vol. 1, pp. 37-46, 1992.

[11] P. Mehrotra, J. Van Rosendale, Advances in Lan­
guages and Compilers for Parallel Processing.
Cambridge, MA: MIT Press, 1991, pp. 364-384.

[12] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C. Tseng, W. Wu, "Fortran D lan­
guage specification," Technical Report COMP
TR90079, Department of Computer Science,
Rice University, Houston, TX, March 1991.

[13] B. M. Chapman, P. Mehrotra, H. P. Zima, Lan­
guages Compilers and Run- Time Environments
for Distributed Memory Afachines. Amsterdam:
Elsevier, 1992, pp. 39-62.

[14] P. Hudak, Parallel Functional Languages and
Environments. New York: NY: ACM Press, 1991,
pp. 159-196.

[15] B. Chapman, H. Zima, "Programming in Vienna
Fortran," Sci. Program. vol. 1, pp. 31-50, 1992.

[16] H. Zima, P. Brezany, B. Chapman, P. Mehrotra,
A. Schwald, "Vienna Fortran-a language specifi­
cation version 1. 1," Technical Report Interim 21,
ICASE, NASA, Hampton, VA, March 1992.

[17] S. Benkner, B. Chapman, H. Zima, Proceedings
of the Scalable High Performance Computing
Conference 1992, Williamsburg. Washington,
DC: IEEE Computer Science Press, 1992, pp.
51-59.

[18] S. Hiranandani, K. Kennedy, C. Tseng, Lan­
guages, Compilers and Run- Time Environments
for Distributed Memory Machines. Amsterdam:
Elsevier, 1992, pp. 139-176.

[19] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre­
mer, C. W. Tseng, Fourth Workshop on Lan-

guages and Compilers for Parallel Computing.
Berlin: Springer-Verlag, 1991, pp. 18-34.

[20] M. Gemcft, H. P. Zima, Languages Compilers
and Run- Time Environments for Distributed
Memory Machines. Amsterdam: Elsevier, 1992,
pp. 1-15.

[21] S. Bokhari, "A shortest tree algorithm for optimal
assignments across space and time in a distrib­
uted process system," IEEE Trans. Soft. Eng.,
vol. SE-7, pp. 583-589, 1981.

[22] X. Ge, N. Prywes, Proceedings of the Ftfth Jeru­
salem Conference on Information Technology
1990, Jerusalem. Washington, DC: IEEE Com­
puter Science Press, 1990, pp. 731-742.

[23] T. Kaufl, Ninth International Conference on Au­
tomated Deduction, Aragon, IL. Heidelberg:
Springer-Verlag, 1988, pp. 563-572.

[24] V. Sarkar, Parallel Functional Languages and
Compilers. New York, NY: ACM Press, 1991, pp.
309-391.

[25] R. Gomory, T. Hu, "Multi-terminal network
flows," SIAM]. Appl. Math., vol. 9, pp. 551-
570, 1961.

[26] A. Pnueli, N. Prywes, R. Zahri, Automatic Pro­
gram Construction Techniques New York, NY:
McMillan, 1984, pp. 273-287.

[27] B. Sinharoy, B. Szymanski, Abstracts of Interna­
tional Meeting on Vector and Parallel Processing,
Porto, Portugal. Porto, Portugal: CICA, 1993,
p. 36. (submitted to Comput. StiUctures Eng.)

[28] M. O'Boyle, G. Hedayat, Proceedings of the Scal­
able High Performance Computing Conference
1992, Williamsburg, Washington, DC: IEEE
Computer Science Press, 1992, pp,. 366-371.

[29] K. Knobe, J. Lukas, G. Steele Jr., ~'Data optimi­
zation: Allocation of arrays to reduce communi­
cation on SIMD machines,"]. Parallel Distrib­
uted Comput., vol. 8, pp. 112-118,1990.

[30] J. Gilbert, R. Schreiber, "Optimal expression
evaluation for data parallel architectures,''].
Parallel Distributed Comput., vol. 13, pp. 58-
64, September 1991.

[31] B. Szymanski, B. Sinharoy, "Complexity of the
closest vector problem in a lattice generated by
(0, 1)-matrix," Information Processing Lett., vol.
42,pp. 141-146,1992.

[32] S. K. Rao, "Regular Iterative Algorithms and their
Implementations on Processor Arrays,'' PhD the­
sis, Department of Electrical Engineering, Stan­
ford University, Stanford, CA, 1985.

[33] B. Maniatty, B. Szymanski, B. Sinharoy, "Effi­
ciency of data alignment on MasPar," SIGPLAN
Notices, vol. 28, pp. 48-51, 1993.

[34] B. Szymanski, T. Caraco, "Spatial analysis of
vector-home disease: A four species model,''
Evol. Ecol., vol. 8, pp. 299-314, 1994.

[35] G. Andrews, Concurrent Programming: Princi­
ples and Practice. Redwood City, CA: Benjamin/
Cummings Publishing Company Inc., 1991.

[36] A. Gibbons, R. Ziani, "The balanced binary tree
technique on mesh-connected computers.," In­
formation Processing Lett., vol. 37, pp. 101-
109, 1991.

[37] S. Miguet, Y. Robert, "Reduction operators on a
distributed memory machine with a reconfigura­
ble interconnection," IEEE Trans. Parallel Dis­
tributed Systems, vol. 3, pp. 501-512, 1992.

[38] J. L. C. Sanz, R. Cypher, "Data reduction and
fast routing: A strategy for efficient algorithms for
message-passing parallel computers,'' Al­
gorithmica, vol. 7, pp. 77-89, 1992.

[39] B. Szymanski, B. Maniatty, B. Sinharoy, "Simul­
taneous parallel reduction," Technical Report CS
92-31, Computer Science Department, Rensse­
laer Polytechnic Institute, Troy, NY, September
1992 (submitted to Parallel Processing Lett.).

[40] F. Darema-Rogers, V. Norton, G. Pfister, "A VM
parallel environment," Technial Report RC
11225, IBM Corp., Yorktown Heights, NY, 1985.

[41 J H. Jordan, "Parallel computation with the
Force," Technical Report 84-45, I CASE, NASA,
Hampton, VA, 1985.

[42] L. Lamport, "The parallel execution of do
loops," Communications ACM, vol. 17, pp. 83-
93, 1974.

[43] D. I. Moldovan, "Partitioning and mapping algo­
rithms into fixed size systolic arrays," IEEE
Trans. Comput., vol. C-35, pp. 1-12, 1986.

[44] J.-P. Sheu, T.-H. Tai, "Partitioning and mapping
nested loops on multiprocessor systems," IEEE
Trans. Parallel Distributed Systems, vol. 2, pp.
430-439, 1991.

[45] P.-Z. Lee, Z. M. Kedem, "Synthesizing linear ar­
ray algorithms from nested for loop algorithms,"
IEEE Trans. Comput., vol. 37, pp. 1578-1598,
1988.

[46] P.-Z. Lee, Z . .\1. Kedem, "Mapping nested loop
algorithms into multidimensional systolic ar­
rays," IEEE Trans. Parallel Distributed Process­
ing, vol. 1, pp. 64-76, 1990.

[47] M. Rosing, R. B. Schnabel, R. P. Weaver, Lan­
guages, Compilers and Run- Time Environments
for Distributed Memory Machines. Amsterdam:
Elsevier, 1992, pp. 17-37.

[48] J. Li, M. Chen, "The data alignment phase in
compiling programs for distributed-memory ma­
chines," J. Parallel Distributed Comput., vol. 13,
pp. 213-221, 1991.

PARALLEL SCIENTIFIC CO.'VIPLTATION 225

[49] C. Koelbel, P. Mehrotra, "Compiling global
name-space parallel loops for distributed execu­
tion," IEEE Trans. Parallel Distributed Systems,
vol. 2, pp. 440-451, 1991.

[50] S. Hiranandani, J. Saltz, M. Piyush, H. Berry­
man, "Performance of hashed cache data migra­
tion schemes on multicomputers," J. Parallel
Distributed Comput., vol. 12, pp. 315-422,
1991.

[51] J. Wu, J. Saltz, H. Berryman, S. Hiranandani,
"Distributed memory compiler design for sparse
problems," Technical Report TR91-13, !CASE,
Hampton, VA, January 1991.

[52] M. Berger, S. Bokhari, "A partitioning strategy for
nonuniform problems on multiprocessors," IEEE
Trans. Comput., vol. C-36, pp. 570-580, 1987.

[53] D. M. Nicol, "Rectilinear partitioning of irregular
data parallel computations," Technical Report
91-55, ICASE, Hampton, VA, 1991.

[54] J. E. Flaherty, P. J. Paslow, M. Shephard, J. D.
Vasilakis, eds., Adaptive Methods for Partial Dif­
ferential Equations. Philadelphia: SIAM, 1989.

[55] M. Golumbic, Algorithmic Graph Theory and
Perfect Graphs. New York, NY: Academic Press,
1980.

[56] A. Bertossi, A. Gori, "Total domination and irre­
dundance in weighted interval graphs," SIAM J.
Disc. Mathematics, vol. 1, pp. 317-327, 1988.

[57] S. W. Hammond, "Mapping Cnstructured Grid
Computations to Massively Parallel Computers,''
PhD thesis, Computer Science Department, Re­
nsselaer Polytechnic Institute, Troy, NY, 1991.

[58] I. Duff, R. Grimes, J. Lewis, User's Guide for the
Harwell-Boeing Sparse Matrix Collection.
CERFACS, Toulouse Cedex, France, first ed.,
1992.

[59] D. R. Kincaid, R. Respess, D. Young, R. Grimes,
"ITPACK 2C: A Fortran package for solving large
sparse linear systems by adaptive accelerated it­
erative methods,"' ACM Trans. Math. Software,
vol. 8, pp. 302-322, 1982.

[60] D. Skillicorn, A Model for Practical Parallelism.
Cambridge, U.K.: Cambridge Cniversity Press,
1994 (in press).

[61] T. Fahringer, R. Blasb, H. Zima, ACM Interna­
tional Conference on Supercomputing, Washing­
ton, D.C. New York: ACM Press, 1992, pp. 347-
356.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

