Flexible Language Constructs for Large

Parallel Programs

MATT ROSING! AND ROBERT SCHNABEL?

*Pacific Northwest Laboratory, Richland, WA 99352
2University of Colorado, Boulder, CO 80309

ABSTRACT

The goal of the research described in this article is to develop flexible language con-
structs for writing large data parallel numerical programs for distributed memory (mul-
tiple instruction multiple data [MIMD]) multiprocessors. Previously, several models have
been developed to support synchronization and communication. Models for global
synchronization include single instruction multiple data (SIMD), single program multiple
data (SPMD), and sequential programs annotated with data distribution statements. The
two primary models for communication include implicit communication based on
shared memory and explicit communication based on messages. None of these models
by themselves seem sufficient to permit the natural and efficient expression of the variety
of algorithms that occur in large scientific computations. In this article, we give an
overview of a new language that combines many of these programming models in a
clean manner. This is done in a modular fashion such that different models can be
combined to support large programs. Within a module, the selection of a model de-
pends on the algorithm and its efficiency requirements. In this article, we give an over-
view of the language and discuss some of the critical implementation details. © 1994

John Wiley & Sons, Inc.

1 INTRODUCTION

The goal of the research described in this article is
to develop easy-to-use, efficiently implementable
language constructs for writing large data parallel
numerical programs for distributed memory {mul-
tiple instruction multiple data [MIMD]) multipro-
cessors. By data parallel algorithms we mean
those where identical or similar operations are
performed concurrently on different sections of a
typically large data structure. Such computations

Received August 1992

Revised November 1993

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 3, pp. 169-186 (1994)
CCC 1058-9244/94/030169-18

are typical in many scientific computations, such
as computational fluid dynamics algorithms, al-
though their data parallel structure does not nec-
essarily imply that the algorithms are single in-
struction multiple data (SIMD), or that it is easy to
parallelize them efficiently [1]. Distributed mem-
ory multiprocessors appear to be the main candi-
dates for scalable, high performance parallel com-
puters. Current examples of distributed memory
machines include the Intel iPSC series of hyper-
cubes and mesh-connected machines, Thinking
Machine’s CM5, and networks of workstations
used as multiprocessors.

Although distributed memory machines show
great promise for high performance computation,
they are currently difficult to program. The diffi-
culty arises from the low level details the program-

170 ROSING AND SCHNABEL

mer must handle regarding communications, syn-
chronization, and process control. Raising the
level of these operations from the message level
sends and receives found in many current systems
to the point where most of these details are han-
dled implicitly will make programming distributed
memory machines much easier. However, the effi-
ciency of the resulting code generated from the
model must not be adversely affected or else few
programmers will be interested in using the model.
For example, simulating a uniform shared mem-
ory will likely be too inefficient.

The research described here attempts to reduce
this mismatch among the target machine, the lan-
guages used, and the underlying model of typical
data parallel algorithms. A key issue addressed in
this research is the development of a language
model that supports the expression of large, mod-
ular parallel programs. Such programs may con-
sist of multiple levels and/or multiple phases of
parallelism, and may use different models of par-
allelism in different portions of the program. Fur-
thermore, as is typical in numerical programs, the
overall efficiency of the program may depend on
the efficiency of a small portion of the code. Thus,
it is important that the user can easily switch be-
tween high level abstract models that are easy to
program but may not compile as efficiently as de-
sired, and low level models that give the user a lot
of control over the hardware. As an example,
many programs are fine tuned to make better use
of message passing facilities. Such improvements
can easily cut the execution time in half vet such
improvements are only required on a small por-
tion of the code. Thus, it is important for a lan-
guage to support multiple models in a clean man-
ner. The expression of such complex, parallel
algorithms has received little consideration so far,
with the exception of Oracle [2].

The language described here is based in part on
many recently developed languages, including our
DINO language [3], that have been proposed for
writing numerical programs on distributed mem-
ory machines (for a few of the more relevant lan-
guages see references 2, 4—13). These languages
appear to be converging in terms of the underlying
parallel programming model used [14]. This
model is primarily a data parallel one with a little
support for functional parallelism in some cases.
It has four main parts. First, single or multiple
dimensional arravs of virtual processors may be
declared in a shape that best fits the algorithm [3.
4, 15]. Second, single or multiple dimensional ar-
rays of data may be distributed (mapped) across
these virtual processors [3—5, 12]. This distrib-

uted data is usually treated as a single global ob-
ject and all accesses are made with respect to the
global name space. Third, communications are
generated by accessing the distributed objects.
The communications can be implicit, similar to
shared memory, or explicit based on sends and
receives. Finally, some model is used for specify-
ing the computation. Here there appear to be two
classes of approaches, either an annotated se-
quential program approach or an explicitly paral-
lel approach. In this language, we use the explic-
itty parallel approach, as it appears to have
greater flexibility in the models it can support on
MIMD machines.

Within the explicitly parallel approach, one op-
tion is to use a general single program multiple
data (SPMD) synchronization model. In this
method, parallelism is usually specified at a per-
task level, and communication is generally speci-
fied with explicit sends and receives but with the
low level details of message typing, buffering,
channels, and other aspects handled by the com-
piler [3]. A second option is to use an SIMD syn-
chronization model in which virtual processors ef-
fectively synchronize at all communications [16].
In this model, parallelism is generally specified at
a fully data parallel level, and all communication
is implicitly generated by the compiler.

Some languages, such as ELP [17] and Mo-
dula2* {1871, combine some aspects of both the
SIMD and SPMD models. ELP is a language de-
signed specifically to program the PASM parallel
computer [19]. an experimental machine that
supports both SIMD and MIMD computational
modes. ELP supports the ability to declare blocks
of code to run in either an SPMD or SIMD mode
and can change between the two in a single in-
struction, as this is supported in the hardware.
Parallelism in Modula2* is specified using either
SIMD or SPMD parallel loops. Modula2* supports
virtual processors and the ability to nest parallel
constructs to any depth. ELP does not support
this because the hardware does not. Modula2*
does not support any form of synchronization in
the SPMD mode so communications must be done
with libraries in this case. ELP supports a barrier
synchronization when all processors write to a
mono variable, but, based on the literature, there
is no other form of synchronization in the SPMD
mode.

One issue that the languages developed so far
do not address is writing very large programs. This
is the main issue addressed in this research. Al-
though most of the above mentioned languages
are suitable for expressing simple algorithms (up

to a few hundred lines), they are less suitable for
writing large, modular, multiple-phase parallel
programs. This is partly due to their inability to
define and tie together modules that are indepen-
dent of the rest of the program.

A large factor that contributes to the inability of
expressing large parallel programs is the restric-
tiveness of the programming model supported in
each of these languages. Almost every language
follows just one of the models described above.
Each of these models has tradeoffs among ease of
use. expressiveness, and efficiency.

For example, if the language follows the ex-
plicitly parallel SPMD model, with parallelism
specified at a per-task level, then there are two
tradeoffs the user must face when writing large
programs. First the user usually must explicitly
put in synchronization and communications. Sec-
ond, the explicitly parallel nature of the SPMD
model may cause difficulties in efficient compila-
tion if there are many more tasks than physical
processors. When there are more tasks than pro-
cessors, the compiler and run-time system must
emulate a large virtual machine. The overhead in
doing this may become prohibitive as the number
of tasks increases. To handle this, the program-
mer may have to write one task per physical pro-
cessor. Although this gives the programmer more
control of the machine, it tends to be more diffi-
cult to do.

On the other hand. if the language follows the
explicitly parallel SIMD model, with parallelism
specified at a fully data parallel level, then the
user has the advantages of simple synchronization
and of being able to efficiently specify large num-
bers of processes that maich the data parallelism
and are independent of the target machine. The
SIMD model provides the compiler with more in-
formation than the SPMD model to efficiently
contract many virtual processes into fewer real
processes, thus overcoming the constraint of
knowing the number of available processors. But
this model is significantly limited in its expressive-
ness, due to the lock step execution enforced by
the SIMD model, and is therefore insufficient for
expressing many parallel algorithms.

Finally, the sequential model using only dis-
tributed data annotations has the advantage that
the programmer does not specify any communica-
tions or synchronization, and the disadvantage
that it sometimes may be hard to obtain an effi-
cient parallel program from the sequential specifi-
cation. First, it is still an open research question to
determine how effectively and broadly one can de-
rive efficient parallel programs from sequential

FLEXIBLE LANGUAGE CONSTRUCTS 171

specifications, using dependency analysis and
data distribution annotations. Second, there are
some efficient parallel algorithms, such as pipe-
lined algorithms with nonunit block sizes, that ap-
pear to be especially difficult to express in or de-
rive from a sequential program.

The tradeoffs between efficiency and ease of
use described above are typical decisions that
must be made in developing computationally in-
tensive numerical programs. These tradeoffs are
caused, in part, by the inability of optimizing
compilers to generate code that is as efficient as
that of the user. The typical solution to this type of
problem is to use the high level model for the bulk
of the computation, where the efficiency is not
that critical and the quality of the optimized code
is acceptable, and use a lower level model for the
portion of code where the resulting efficiency is
very important. Examples of this two-model tech-
niques include using assembly code in Fortran,
using Fortran within HPF, and using vector state-
ments within Fortran vectorizing compilers. One
of the goals of this research is to support multiple
models having various ease of use and efficiency
tradeoffs, and also support an easy transition be-
tween the various models.

Another reason for supporting multiple models
in a single language is that many large numerical
programs have modules that fit different models.
For example, many kernels of numerical pro-
grams are highly structured, fine grained compu-
tations that fit the explicitly parallel SIMD model,
whereas the overall computation structure as well
as selected kernels mav be less structured and fit
the coarse grained, explicitly parallel SPMD
model.

For these reasons, it appears to us that a lan-
guage for specifying large, modular parallel nu-
merical programs needs to support at least two
types of models, an SPMD model for coarse
grained parallel computations, and some model
that efficiently expresses fine grained data parallel
computations. Such a language should also sup-
port both implicit and explicit models of commun-
ication. Most importantly, though, it must also
provide an easy method of switching between
these models. This is a critical factor in making
the language flexible enough to handle a wide
range of programming models and to give the user
control over the machine where a high degree of
efficiency is required. These needs form the main
motivation for this research.

This article describes a language that supports
these models. The methodology used by the pro-
grammer is centered around the large data struc-

172 ROSING AND SCHNABEL

tures that are typically the source of computa-
tionally intensive scientific programs. The
programmer first identifies the data structures to
be operated on in parallel and the nature of this
parallelism. This defines a virtual machine and
how the major data structures are distributed onto
it, and is described in Section 2. Next, based on
the parallel operations that are to be applied to the
data, the user decides which synchronization
model to use. For operations that are very tightly
synchronized, the SIMD model is used. For other,
less synchronous models, the SPMD model is
used. The SPMD model can also be further re-
fined using different types of variables. This is de-
scribed more fully in Section 4. Each module built
using this methodology is encapsulated by a spe-
cial type of composite procedure that includes the
virtual machine, the distributed data structures,
the synchronization model, and the code executed
by each processor. The final task of the program-
mer is to combine composite procedures in a
structured framework to support a complex virtual
machine that may include the nesting of parallel
modules, combining different modules to execute
concurrently, and changing between parallel
modules for different phases of the algorithm.
This is described in Section 3.

This article gives an overview of a new lan-
guage, called Dino2, that addresses these issues.
Dino2 is a successor to the DINO language [3],
and shares with it the fact that it is a superset of
the C language. The two languages also have simi-
lar capabilities for expressing distributed data and
arrays of virtual processors, but their methods for
expressing parallel computations, communica-
tions, and synchronization are very different.

The remainder of the article is organized as fol-
lows. Section 2 describes the basic concepts of a
Dino2 module, and Section 3 describes how mod-
ules can be combined to form large complex pro-
grams. Section 4 describes the different synchro-
nization models that are supported for the
modules, whereas Section 5 describes the lan-
guage support for these constructs. Section 6 de-
scribes some implementation details for these syn-
chronization models and for communication.
Section 7 offers some brief conclusions. More de-
tails of the language and potential implementation
issues are provided in Rosing [20].

2 VIRTUAL PARALLEL MACHINES

A Dino2 module is built around a virtual parallel
machine defined by the user. A virtual machine

consists of a single virtual processor or a single or
multiple dimensional array of virtual processors,
and defines the parallelism of the module. It is
encapsulated in a construct called a composite
procedure. The virtual machine is used as a
framework onto which data, communications,
and code are placed. All virtual processors within
a composite procedure contain the same code, but
generally, different portions of the distributed
data structures. Conceptually, each virtual pro-
cessor in a composite procedure executes in par-
allel when the composite procedure is invoked.
Composite procedures are similar to parallel loops
found in other languages but have important dif-
ferences that will be described below. However,
there is no inherent reason why parallel loops
could not be adapted to have the same semantics
as composite procedures.

Figure 1 is an example program that contains a
composite procedure that increments every ele-
ment in a matrix by a parameterized amount. Ex-
ecution starts in procedure main that contains
one virtual processor. The call to brighten cre-
ates N2 virtual processors, each of which executes
the body of the procedure. The value of N is
passed into the module as a parameter. The ac-
tual parameter A is distributed across the new vir-
tual machine using the mapping function ele-
ment; this results in each virtual processor
containing one element of the matrix. (Mapping
functions in Dino2 are similar to those originally
defined in DINO [21], and other languages, such
as Fortran D, and are not described in detail in
this article. The basic capability is the mapping of
any axis of a distributed data structure to any axis
of a virtual parallel machine, using block, cyclic,
or overlapped mappings.) Within each virtual pro-
cessor of brighten, the constants idx and idy
denote the indices of that virtual processor in the
structure of processors. These indices are used in
the expression image [idx] [idy] to specify the
local element of image. Each element of image is
augmented by the value of the variable inten-
sity. At the end of the call to brighten the N?
virtual processors are terminated and execution
continues on the virtual processor running main.

Implementing data parallelism using composite
procedures has similarities and differences com-
pared with using do loops. It is similar in that both
describe the full parallelism of the algorithm and
are independent of the machine. This naturally
allows the user to define one task per data element
instead of one per processor and is an important
abstraction for developing modular, machine in-
dependent code.

#define N 1024
map element () =

synch composite brighten (image,

float remote image [n] [n]
int remote intensity;
int n;
{

image [idx] [idy] += intensity;

main () {
float A[N] [N};

[block] [block];

map element () ;
/*mapped to all virtual processorsx*/
/*size of virtual machine and array*/

FLEXIBLE LANGUAGE CONSTRUCTS 173

intensity, n) [n: idx] [n: idy]

/*distributed array*/

read (A) ; /*stub procedurex*/
brighten (A, 1, N);
display (A); /*stub procedure*/

}

FIGURE 1 A simple composite procedure.

The differences are equally important in devel-
oping numerical programs. The first of these, lo-
cality, is an extremely important issue in develop-
ing computationally intensive programs. This
language supports locality by allowing the user to
specify how each composite procedure is mapped
to the target machine. This is done using a mecha-
nism similar to how data is mapped to a virtual
machine. The mapping functions supported in-
clude all of those used to map data to virtual ma-
chines (block, cyclic, etc.) and also one that dy-
namically allocates virtual processors to real
processors for imbalanced tasks. This ability to
specify where tasks are executed is important for
the user to control load balancing and minimize
communication. The location of task execution in
many other languages follows the ““owner com-
putes’’ rule [5, 12] and is less flexible than explic-
itly controlling the placement. Another option
used is the on clause [4].

Another reason for using composite procedures
instead of do loops is that we find that the com-
posite procedure better encompasses all of the
parts related to parallel computation that must be
specified. This includes a set of tasks to be exe-
cuted and how these are mapped to the target ma-
chine, the synchronization model the tasks will
follow, the data to be operated on and how it is
mapped to the tasks, and how the tasks can com-
municate with each other. Although this could
easily be done using do loops with the appropriate
syntactical changes, we find it easier to place this

in a construct like a procedure where it is possible
to use the scoping and parameter mechanisms to
change from one model to another.

The independence between modules supported
by composite procedures is important for isolating
synchronization models. Each module executes
within either a SIMD or SPMD synchronization
model and the semantics of the synchronization
model are independent of the procedure that
called the module. The module will also not affect
the synchronization model of any modules that it
might invoke. This independence supports flexi-
bility and structure when combining modules hav-
ing widely varying types of communication and
synchronization techniques. An example where
this is used is in a nonlinear optimization algo-
rithm where the outer algorithm is SIMD but in-
cludes a finite difference gradient evaluation
where each virtual processor performs a nonlinear
function evaluation independently and asyn-
chronously. Synchronization models are de-
scribed fully in Section 4, whereas methods to
combine modules are described in the next sec-
tion.

Modular independence also supports writing
more machine dependent algorithms that must be
efficient. For example, the programmer can
choose to specify that there is one virtual proces-
sor per physical processor if this makes it easier to
describe the parallel algorithm. This might be de-
sirable in cases such as some block parallel com-
putations, where to specify the parallel algorithm

174 ROSING AND SCHNABEL

correctly one may need to express it in terms of the
actual parallelism of the machine. Specifying one
task per physical processor will also be important
where extreme efficiency requirements prohibit
the overhead associated with contracting many
virtual processors onto a single processor. Al-
though the contraction can be done quite well, the
compiler will never be able to do it as well as the
programmer. This is discussed more fully in Sec-
tion 6.

3 COMBINING MODULES TO FORM
COMPLEX PARALLEL PROGRAMS

As mentioned above, there are several types of
modules in Dino2. These include SIMD composite
procedures, SPMD composite procedures, and
normal procedures. From these basic modules, a
more complex parallel program can be created
through various combinations of calls to compos-
ite procedures and/or normal procedures. Con-
ceptually, this creates a more complex parallel
virtual machine whose size, shape, and synchro-
nization characteristics describe the parallel na-
ture of the program. The methods for combining
modules are described in this section.

In the simplest case, a normal procedure can
call a SIMD or SPMD composite procedure. This
is the basic mechanism for generating parallelism,
and results in changing the virtual machine from a
single virtual processor into a set of virtual proces-
sors, one for each element of the composite proce-
dure. An example of this was previously shown in
Figure 1.

A similar transformation occurs when one com-
posite procedure calls another. That is, suppose
each element of a composite procedure with n vir-
tual processors calls another composite procedure
with m virtual processors. This is called nested
parallelism, and results in a parallel virtual ma-
chine with nm virtual processors. Nested parallel-
ism may be used to refine parallel operations on
complex data structures. A simple example of this
is solving a block diagonal system of equations. At
the highest level there is a virtual machine consist-
ing of a virtual processor for each block. At a finer
level there may be a virtual processor for each row
of each block. As in all the combinations. it is
permissible for the two composite procedures to
have the same or different synchronization
models.

Another combination is called phased parallel-
ism. This occurs when an entire virtual machine of

n elements is replaced by a virtual machine with
either a different number of elements, or a differ-
ent synchronization model, or both (and then
back again). This is analogous, in a sequential
language, to having one procedure call another. In
a sequential language, when one procedure calls
another, the calling procedure is temporarily
halted and saved on a stack while the new proce-
dure is executed. In phased parallelism, the entire
composite procedure is temporarily halted while
the new procedure is called. This supports struc-
tured programming techniques for parallel con-
structs, much like procedures support structure in
sequential programs.

An example of phased parallelism occurs in
solving block bordered systems of equations,
where the natural degree of parallelism changes
between the phase of the algorithm that operates
on the diagonal blocks and the phase that oper-
ates on the bottom block. Another example is in
solving a system of linear equations by using a
parallel LU decomposition followed by a pipelined
backsolve; here the virtual machine changes from
an SIMD model for the LU phase to an SPMD
model for the pipelined backsolve, and the num-
ber of virtual processors may change from the
number of equations to the number of actual pro-
cessors. Finally, a temporary change in modules
may be required to replace an abstract model with
a highly efficient, machine dependent model.

Phased parallelism, like nested parallelism, is
implemented in Dino2 by having one composite
procedure call another, but with the second com-
posite procedure call placed within a ‘‘barrier
statement.”” A barrier statement consists of the
keyword barrier and a C compound statement.
When executed within the context of a composite
procedure, a barrier synchronizes all the virtual
processors associated with the composite proce-
dure and temporarily replaces them by a single
virtual processor that executes the compound
statement. An example of a parallel language that
uses a barrier statement in this manner is the
Force [6]. If the statement within the barrier is a
call to a composite procedure, then the net effect
is a change in parallelism from that of the original
composite procedure to that of the called compos-
ite procedure, and then back again after the bar-
rier is exited.

A final combination for generating complex vir-
tual machines consists of taking two virtual ma-
chines and combining them into a single virtual
machine. This is implemented with the "::" state-
ment and is similar to a “*cobegin.”” This construct

allows for a functional type of parallelism, as op-
posed to data parallelism. Generally, when this is
used in numerical computation it is at a high level
within a program. For example, functional paral-
lelism allows a program to operate concurrently on
two different data structures. This construct also
can be used to create more irregular parallel pro-
grams, such as programs that use a master/slave
model to service a set of independent tasks.

An important aspect in developing efficient
programs using these constructs is to minimize
communication when changing the parallelism of
the virtual machine. The virtual machine con-
structs imply that data will be remapped from one
virtual machine to another when a program moves
between modules. However, when implementing
the different forms of parallelism, the compiler will
only move data if the mapping to the physical pro-
cessors changes. That is, although the data will be
moved based on a change in the virtual machine,
due to the mapping of the virtual machine to the
physical machine, there often will be no change in
the mapping to the physical machine. Detecting
that the physical mapping does not change is
fairly straightforward at composite procedure
boundaries but may be more difficult for state-
ments within a barrier statement, depending on
the mapping of the data used. In the following
example, although there are a number of changes
in the virtual machine, the data never needs to be
physically moved.

An example of a numerical algorithm that in-
volves both nested and phased parallelism is
shown in Figures 2 and 3. This is a procedure
used to solve a block bordered system of linear
equations. Such systems, which are common in

FLEXIBLE LANGUAGE CONSTRUCTS 175

numerical computation, involve a block diagonal
matrix augmented by a relatively small, possibly
dense final set of rows and columns. In our exam-
ple, we assume there are Q diagonal blocks, each
NXN, followed by bottom and right borders of M
possibly dense rows and columns. Thus, the main
data structures consist of the Q NXN diagonal
blocks, contained in A, the lower right diagonal
block, which is of size MXM and is represented by
P, and the remainders of the row and column bor-
ders, which are of size NXM and MXN, respectively,
and are represented by B and C. The diagonal
blocks in A are distributed so that one block is on
each of the Q virtual processors, and the borders B
and C are distributed correspondingly. (This is
done using the user-defined ‘““Slice”” mapping,
which partitions along the first index.) The final
diagonal block P is distributed by columns using
cyclic mapping.

The first part of the computation consists of
factoring each of the Q diagonal blocks, contained
in A, and making some corresponding calculations
involving the border B and the right hand side f.
This implies parallelism of degree Q, the number
of diagonal blocks, and of virtual processors in
block_solve. Within this procedure, however,
two of the main steps involve each of the Q virtual
processors themselves calling composite proce-
dures 1u and solve, that have parallelism N, to
perform computations on the individual NXN ma-
trices. This is an example of nested parallelism,
and increases the parallelism to QN during these
parts of the computation. After the completion of
this portion of the algorithm, the results are used
to modify P (using the border blocks), P is fac-
tored, and the final M components of the solution,

- J
° ° °
° . . =
L4 Ld e —
A()—l B()-l Xo-1 f()—l
Col C1 1% leee (104 P xqp fqp

FIGURE 2 Block bordered linear equations.

176 ROSING AND SCHNABEL

composite block_solve

(in A, in B, in C, in P, in f, in fqgp, out x, out xqp) [Q:id] map Block()
double private A[Q] [N] [N] map Slice();/*Slice distributes data structures */
double private B[Q] [N] [M] map Slice();/* along their first index */
double private C[Q] [M] [N] map Slice();

double private P[M] [M] map WrapCol ();

double private f [Q*N] map Block();

double private fqp[M] map Block();

double private x[Q*N] map Block();

double private xqp[M];

{

double private p[M] map Wrap();

double p1[N];

double private b[M] map Block();

double private sumCWwW[M] [M] map WrapCol ();

double private sumCZ[M] map Block();

double private w[Q] [N] [M] map Slice(); /* = A*—1 B*/

double private z[Q*N] map Block();

int private i;

double private tempB[N];

Q from block _solve, N from lu */

/* z = A1 f */

/* nested parallelism QN */

lu(A[id], p1,N); /* nested parallelism QN,
solve (A[id], &z[id*N], &f[id*N], pl,N);
for (i=0; i<M; i++) { /*parallelism is

tempB[] = B[id] [][1i];

solve (A[id], tempW, tempB, pl, N);

wiid] []1[i] = tempW[];

}

barrier { /* phased parallelism */

Q*/ /* W= A"-1B */

elism is Q*/

/* P =P — sum CwW*/

/* Xqp = P"—1 b*/ /*Parallelism M*/

form_sums (C, sumCW, sumCz); /*parall
sub_vec (P[id], P[id], sumCW[id], M);
sub_vec (b, fqp, sumCz,M); /* b = fgp — sum Cz*/
lu(P, p, M); /*factor P*/
solve(P, xqp, b, p, M);
}
/* X = z — wxxXqp */ /*parallelism is Q,

for (r=0; r<=N-1; r++){
x[id*N+r] = 0;
for(¢=0; c<=M—-1; c+t)
X[id*N+r] += W[id] [r] [c]*xqgp(c];
}
neg_vec (&x[id*N],
add_vec (&x[id*N],

}

N);

&z [id*N], N);

parallelism of block _solve*/

/*nested parallelism QN*/
/*nested parallelism QN*/

FIGURE 3 Block bordered linear equations—nested and phased parallelism.

xqp, are computed. These steps all have parallel-
ism M, and therefore the Q virtual processors used
in the remainder of the computation are tempo-
rarily transformed into M virtual processors. This
is done using the barrier statement, and is an ex-
ample of phased parallelism. (Note that 1u and
solve are called with a different number of vir-
tual processors, M, in the second call than in the
first.) After the barrier statement, the algorithm
returns to a third phase that calculates the re-
mainder of the solution, x, and reverts to parallel-
ism of degree Q. It again involves calls that use
nested parallelism to expand the parallelism to
degree QN. Although this example may seem com-
plex, it is not artificial [22].

4 SYNCHRONIZATION MODELS

The other important high level aspect of describ-
ing a Dino2 module, after specifying the virtual
machine upon which it is based, is to describe how
the virtual processors synchronize and communi-
cate with each other. There are four synchroniza-
tion models that are supported in the language.
These include the SIMD and SPMD models that
were mentioned briefly earlier, a chaotic version of
the SPMD model in which there is communication
between virtual processors but no synchroniza-
tion, and an independent model in which there is
no communication or synchronization between
virtual processors. In this section we describe
these four synchronization models. The syntax of
how to build these synchronization models is de-
scribed in the next section.

In a purely SIMD model virtual processors
would synchronize at every operation. Two major
advantages of this model are that the user does
not need to explicitly specify synchronization, and
that communication can easily be made implicit.
Therefore, it is probably the easiest method of
programming multiprocessor computers. It is not
necessary to use send or receive primitives to
transmit data because global synchronization is
specified at every operator, and therefore the dis-
tributed data structures, which are used for com-
munication, can be viewed as shared memory,
and the communication can be deduced by the
compiler and run time system.

The SIMD model that is used in Dino2 differs
from this pure SIMD model in two important ways
and is similar to how other languages implement
SIMD on a MIMD machine [18, 23]. Both are the
result of the fact that the language is designed for,

FLEXIBLE LANGUAGE CONSTRUCTS 177

and executed on, an MIMD machine. First, we do
not require that the processors actually synchro-
nize after each operation or even after each com-
munication point, only that communications are
inserted that cause the execution of the module 1o
be consistent with what it would be using a pure
SIMD model. Second, as was mentioned in Sec-
tion 3, a call to a standard C function or another
module within an SIMD module does not force the
SIMD semantics onto the execution of the called
function or module. Instead, the called function or
module operates under its own synchronization
model, which can be either SIMD, SPMD, or to-
tally independent. This flexibility applies to all
calls of Dino2 modules, and is a critical aspect of
the language.

The second, more loosely synchronous model
that Dino2 supports is the SPMD model. In this
model, the only specified global synchronization is
at the start and end of the module. It is possible to
synchronize at points in between, but in these
cases the synchronization is produce-consume
synchronization that is added by using communi-
cation constructs based on distributed data struc-
tures, as deseribed in the next section. (As with all
composite procedures, communication also oc-
curs at the start and end of the module by distrib-
uting or collecting the distributed data structures
that are used as input or output parameters to the
module, respectively.) The SPMD model is partic-
ularly useful for expressing irregular or coarse
grained parallel algorithms. In practice it is often
most naturally used with a virtual machine whose
degree of parallelism corresponds to the actual
machine, but sometimes with a virtual parallel
machine whose degree of parallelism corresponds
to a main data structure (see Fig. 5).

The third model supported is an SPMD model
where there is no synchronization associated with
communication within the body of a module. We
call this model “chaotic SPMD.”” It differs from
the normal SPMD model in what synchronization
is implied when two virtual processors communi-
cate data between them. In the normal SPMD
model, a produce-consume synchronization is
implied: The receiving process blocks until a value
arrives. In this manner, messages are consumed in
a deterministic order. In the chaotic SPMD model,
the receiving process uses the most recently re-
ceived value if there is a new one, and the current
value otherwise, and does not block. This model is
similar to shared memory without any synchroni-
zation mechanisms, and allows for nondeter-
minism. It has been used in a variety of chaotic

178 ROSING AND SCHNABEL

double eigenvalue (left, right, A) /* normal C function called by SIMD

procedure */

/* results in independent parallel model */

double left, right, A[N][N];
{

}

synch composite solve_nlinear (A, values) [N:id]

double remote A[N] [N] ;
double remote value[N] map Block();

{
double remote left[N], right(N];
/*compute interval*/

/*compute eigenvalues*/

/* SIMD Procedures */

value[id] = eigenvalue (left[id], right{id], A);

}

FIGURE 4 An SIMD program calling a normal C procedure.

iterative numerical algorithms, and can also be
useful in non-numerical simulation. The SPMD
model in Modula2* is a chaotic model [18].

The final model is an independent model where
there is no communication or synchronization be-
tween processors during their parallel execution.
Often this form of execution is appropriate at low
levels of parallel algorithms (as illustrated in Fig.
4).

To illustrate how some of these models are used
in Dino2, Figure 4 shows a SIMD procedure call-
ing a normal procedure. This is a shell of a pro-
gram that computes the eigenvalues of a matrix A.
Much of this algorithm consists of algebra to find
the intervals containing each eigenvalue. This is
best modeled with the SIMD model. From this
point, an independent computation is used to find
each eigenvalue. These computations proceed in-
dependently. This is accomplished using the inde-
pendent model by calling a normal C function
from each process in the SIMD procedure.

5 LANGUAGE SUPPORT FOR
SYNCHRONIZATION AND
COMMUNICATION

The synchronization models described above are
composed by using one of two different types of
composite procedures (SIMD or SPMD), and con-
structs for generating communication between vir-
tual processors. The composite procedure types
define the global synchronization characteristics

of a module. A SPMD prccedure is declared with
the keyword composite and an SIMD procedure
is declared with the keywords synch composite.

Communication between virtual processors is
implemented by reading and writing variables in
distributed data structures that have been
mapped to the virtual parallel machine. An im-
portant feature of Dino2 is that the semantics of
communication is entirely embedded in the data
type of the distributed data structures being read
from or written to. This means that each access to
a given distributed data structure has the same
communication semantics. One alternative is to
apply special functions or operators to data struc-
tures to generate communications (such as the
DINO # operator). This means that an access to a
given element may or may not specify communi-
cation, depending on whether the operator is
used. Our experience has been this is confusing
and error prone. A second alternative is to use
libraries containing send and receive functions to
specify communications. These also tend to be
difficult to use but more importantly, by making
communication part of the language, it is possible
for the compiler to take advantage of certain hard-
ware characteristics while implementing the re-
mote reads and writes. Potentially, as will be de-
scribed in Section 6, this could lead to code that
would run faster than if the programmer used li-
braries of standard send and receive procedures.

The requirement for flexibility and the require-
ment that there not be any special operators or
functions associated with communications sug-

Table 1. Synchronization Models in Dino2

Composite Procedure Type

Communication Type SIMD SPMD
Private only Independent Independent
Remote + private SIMD Chaotic SPMD
Buffered + private (illegal) SPMD

gest that there be different types of distributed
data that have different semantics with respect to
communication. In response to this we have de-
veloped what we call a communication type that is
associated with each data structure. A communi-
cation type describes the communication seman-
tics of a variable. This is similar to data types that
are found in all languages and are associated with
every variable. The usual data type describes the
semantics of operations on a variable. For exam-
ple, the divide operator has different semantics
depending on whether the operands are integers
or floats. Similarly, the communication type de-
scribes the semantics of the communications as-
sociated with reads and writes of a variable.

A variable in Dino2 may have one of three com-
munication types: private, remote, or buffered re-
mote (specified by the keywords private, re-
mote, and buffered). Table 1 summarizes how
these combine with the two types of composite
procedures to form the synchronization models
discussed in Section 4. This is explained in the
next three paragraphs.

Private variables can be used in any procedure
(SIMD, SPMD, or normal), and can only be read
or written by the virtual process that contains the
variable. That is, no communication is associated
with these variables. When only private variables
are used in a composite procedure, orin a C func-
tion called from a composite procedure, the inde-
pendent model results.

The role of remote and buffered remote vari-
ables varies with the type of procedure in which
the variable is used, although their communica-
tion semantics are unchanged. Within an SIMD
composite procedure, only remote (i.e., not buf-
fered remote) variables can be used. Remote vari-
ables can be accessed by any virtual process in the
composite procedure where they are declared and
the accesses are nonbuffered, meaning that the
value most recently assigned to a variable by any
virtual process is used when the variable is read.
In conjunction with the implicit global synchroni-
zation semantics specified by the SIMD composite

FLEXIBLE LANGUAGE CONSTRUCTS 179

procedure type, this defines the SIMD synchroni-
zation model described in the previous section.

Within SPMD composite procedures, either re-
mote or buffered remote variables can be used.
Remote variables have the same semantics in
SPMD as in SIMD composite procedures. When
used in the context of an SPMD composite proce-
dure, however, these variables lead to the chaotic
SPMD synchronization model discussed in Sec-
tion 4 because, in contrast to the SIMD model,
there is no global synchronization between virtual
processors. Buffered remote variables are similar
to remote variables except that they have a buf-
fered implementation. That is, all writes to the
variable are buffered by each virtual process that
may require them in the order in which they ar-
rive, and reads to the variable block until a value
is present in the buffer, at which point that value is
used and removed from the buffer. Using buffered
remote variables in conjunction with SPMD com-
posite procedures leads to the SPMD synchroni-
zation model described in Section 4.

Figure 5 is an example of an SPMD procedure.
This procedure does a pipelined solve of a linear
system of equations involving a banded, lower tri-
angular matrix of the type that arises in some dif-
ferential equation algorithms on two-dimensional
N XN grids. The matrix consists of the main diago-
nal of N2 ones (which are not stored); a diagonal
immediately below the main diagonal of N*—1 ele-
ments, stored in al, of which each Nthe element is
zero due to the border affects of the grid; and a
diagonal N rows below the main diagonal, with N?
—N elements, stored in an. (The vectors al and an
are padded with 1 and N leading zeroes, respec-
tively, so that their element with index i corre-
sponds to row i of the matrix.) Due to the zeroes
in al, a pipelined type of parallelism can be used
to perform the solve. At step 1, yyis computed. At
step 2, y1 and yn are computed. At step 3, yg,
¥n+1. and yon are computed. At step 4, ¥3, Yv+2,
yav+1, and ysy are computed, and so on. These
dependencies suggest that N virtual processors
should be used, and the two vectors al and an
should be mapped cyclically onto the virtual
machine. Each y; is computed by rhs; — y;.1 *
al;-1 — yi—ny * an,_y. The first and third terms are
computed locally because the processor that con-
tains y; also contains rhs;, yi-y, and an; y. The
product y;—1 * al;_y is received from the neighbor-
ing processor by reading pipe[id]. This read will
block until the value has arrived because pipe
has a buffered communication type. This product
is sent to the neighboring processor in the write to

180 ROSING AND SCHNABEL

composite
private float y[N*N] map wrap ();
private float rhs[N*N]
private float al [N*N] map wrap () ;
private float an[N*N] map wrap () ;

{

int 1i;

buffered float pipe([N] map block{();

for (i=id; i<id+N* (N-1); i+=N)
y[i] = rhs{i];
for (i=id; i<id#N* (N-1); i+=N) {
if (id>1)
y[i] —= pipe[id];
/*y[1] is now evaluated*/

if (id<WN—1)
pipe[id+1]

if (i<N* (N-1))
y[itN] — y[i]*an[i];

}

ylil*all[i];

map wrap () ;

pipe_solve (y,rhs, al, an) [N: id]

/*the off diagonal*/
/*the far off, by N, diagonal*/

/*used to implement pipe*/

/*¥1if not the first stage in pipe*/
/*wait for y([i—1]*al[i-1]*/

/*1f not the last stage in pipe*/
/*compute value and send to next stage*/
/*if not in last wave*/

/*compute last term for y[i+N]*/

FIGURE 5 A pipelined solve—an example of an SPMD procedure.

pipe[id+1]. Each variable pipe[i] is used re-
peatedly to send messages from processor i—1 to
processor i, but the semantics of buffered remote
variables assure that the correct algorithm seman-
tics are enforced. This algorithm is subtle to un-
derstand and perhaps to program, but parallel al-
gorithms like this are important for efficient
parallel numerical computation, and appear to re-
quire an SPMD model to express accurately and
efficiently.

In keeping with the goal of supporting modular-
ity for large parallel programs, the communication
type of a variable in Dino2 may be changed in a
structured fashion between modules. A data
structure having one communication type may be
passed as a parameter to a procedure where the
corresponding formal parameter has a different
communication type. As an example, assume that
there is a distributed array of remote floats de-
clared within the body of a composite procedure,
and that it is desirable to temporarily turn off any
communications associated with the data struc-
ture. This can be done by passing the array to a
procedure where the formal parameter is a distrib-
uted array of private floats. Note that, as arrays
are passed by reference in C, there is no commun-
ication generated from this. Within the body of the
new procedure there will be no communications
generated from reads or writes of the data struc-

ture. This ability provides the user with the flexi-
bility to control the communication semantics of a
variable, but in a manner that is structured
through the use of scoping and procedure seman-
tics.

The concept of communication types for vari-
ables in parallel languages appears to be a new
contribution of this work. Communication types
give the user a great deal of flexibility in selecting
the type of communication semantics to use, and
also adds structure to the communications in a
program.

6 IMPLEMENTATION

In this section we discuss some of the more inter-
esting implementation details of compiling Dino2
programs. Although a Dino2 compiler has not
been built, the more critical components have
been built in compilers for other languages. Based
on our previous experience with writing the DINO
compiler, the areas of compilation that will effect
the efficiency of the resulting programs the most
include contracting virtual processors into pro-
cesses, communication, and the mapping of vir-
tual processors to the target machine.

The contraction of virtual processors to one
process per physical processor is probably the

most crucial aspect of the compilation of Dino2,
and must be done for each composite procedure.
The reason that this step is crucial is that the con-
traction of composite procedures needs to mini-
mize communications and the overhead of simu-
lating parallel tasks. On current parallel ma-
chines, accomplishing this is a very important
aspect of developing efficient code.

In general, it is expected that there will be more
virtual processors than actual processors. Fur-
thermore, the number of virtual processors and
actual processors will not be known until run-
time. To accommodate these variations, each
composite procedure on entry will have to com-
pute a set of integer offsets that are used to de-
scribe the virtual processors and data located on
each physical processor. These values are then
used within the body of the procedure.

The bulk of the compilation strategy used to
compile composite procedures depends on the
synchronization model and the type of communi-
cations used within the procedure. The compila-
tion of SIMD composite procedures would proba-
bly be the hardest case because of the need to
remove unnecessary synchronization points and
to vectorize communication and computation
where possible. This work has previously been
done, however, in the C* compiler on the nCUBE
(23, 24]. The C* compiler first identifies points of
communication and then, based on this informa-
tion, transforms the control constructs of the pro-
gram so the code executes on an MIMD machine
using sends and receives. From this transforma-
tion, several optimizations are performed to im-
prove the efficiency of the communications. These
include moving sends as far forward as possible in
the program and moving receives as far back as
possible. Preliminary results of the C* compiler for
the nCUBE are fairly good. For example, in a par-
allel Gaussian elimination program, the translated
code ran 30% slower than the hand coded ver-
sion.

Further results of this compilation have been
discussed [24]. This article describes measured
speedups versus the number of processors on,
among other machines, an Intel IPSC/2. All times
are compared with the best sequential time on a
single node of the processor. Although this does
not compare the speed of hand coded programs to
that of what the C* compiler can do, it does illus-
trate how well SIMD programs can be executed,
excluding communication. The results range from
a low of roughly 50% efficiency for numerical inte-
gration, 80% for the Gauss-Jordan algorithm, and

FLEXIBLE LANGUAGE CONSTRUCTS 181

a high of 98% for computing primes. Typical
results were in the 79—80% range. These results
are good and indicate that the SIMD model is via-
ble for many programs. Where the user needs bet-
ter efficiency, a more explicit model giving the user
more control over the machine, such as SPMD,
can be used.

The contraction of an SPMD composite proce-
dure is dependent on whether it contains com-
munications or not. If there is no communication
then the contraction is simply a matter of adding a
for loop around the body of the procedure. De-
tecting communication is simply a matter of look-
ing for what type of variables are read or written. If
the variables are all of type private then there will
be no communication. Alternatively, if remote or
buffered remote variables are declared and used
to generate remote communications then the com-
piler must generate code that preserves the order
implied by the communication.

SPMD procedures that use buffered remote
variables could be implemented using lightweight
processes or threads [25]. However, it should be
possible for the compiler to generate code that
simulates threads. Such code would not be inter-
rupt driven and would probably be more efficient
than a general purpose threads package. This is
possible because the compiler can generate code
specifically for a given composite procedure
whereas a run time system must handle the most
general case.

The general methodology used in the transla-
tion of an SPMD procedure with communications
is as follows. The translated program is broken
into a sequence of statements of re-entrant blocks
of code. The blocks are delimited by reads to buf-
fered variables as these are the only times that a
process can block. Variables that are declared to
be buffered remote in the Dino program will con-
sist of a list of values that have been buffered but
have not been read. In the case where virtual pro-
cesses have blocked waiting for a value, this type
of variable will point to a list of virtual processors
that have blocked reading the variable. A C switch
statement is used to simulate each block of code.
Each case statement represents one block of
code. At the end of each block, a virtual process
will either block on a remote read and stop execut-
ing, or it will continue to the next block. A while
loop around the switch statement cycles until all of
the blocks for all of the virtual processors have
completed executing. To generate blocks that are
re-entrant the compiler must generate variables
for any values that will be used in more than one

182 ROSING AND SCHNABEL

composite proc () [N:id]

{

float buff x[N] map Element () ;
float q;

S1;

x[f(O] = id;
S2;
a=x[g801;
S3;

t

FIGURE 6 An SPMD composite procedure with buf-

fered communications.

block and would normally be stored on the pro-
cessor stack. Thus, a context switch is little more
than changing an index that describes which vir-
tual processor is being executed. The simulation
of SPMD virtual processors in this manner should
be more efficient than using a general purpose
threads package.

To illustrate this approach, Figure 6 is an
SPMD composite procedure that contains three
statements separated by a remote write and a re-
mote read. A possible translation of this example
that could be performed by a compiler is given in
Figure 7. In the translated program some of the
declarations and expressions have been replaced
by comments for clarity. In this example, the N
virtual processors are contracted onto a single
physical processor. The more general situation,
where the virtual machine is contracted onto two
or more real processors, is not shown because the
example would be more complicated without add-
ing much to the basic ideas. The main difference
would be that communications between virtual
processors are slightly different.

In the translated program the buffered remote
variable x is translated into a struct of type
x_buff that is a list of values or blocked virtual
processes. The state of each virtual processor is
contained in the array proc_vp. This includes the
block of code that is to be executed next, state,
and the value of the remote read. One additional
data structure, ready_que, that is required is the
queue of ready virtual processes. This is similar to
the blocked queue associated with each buffered
variable.

The code in Figure 6 is broken into two blocks
when translated. These include everything up to
and including the read to x[g ()], and everything
after that. In this case the value of the remote read

is the only value that needs to be explicitly stored.
This value is stored in x_tval. In this example,
each virtual process starts off executing the first
block. In the first block, a remote writer buffers
the value in the buffer associated with x[f ()].
This is done in write_x and is not shown here.
After the write, a virtual processor executes S2
and then attempts to read x[g ()]. If no value
exists then the virtual processor is blocked on that
value. This is done in read_x. As soon as a write
is made to the variable that this process is block-
ing on, that value is assigned to the temporary
variable x_tval associated with the blocked pro-
cess and the process is placed back in the ready
queue. After successfully reading the value, it is
assigned to the local value of q and S3 is then
executed before the virtual processor is removed
from the ready queue. Execution ends when the
ready queue is empty.

Another case in which SPMD procedures are
contracted is the chaotic SPMD model, or where
SPMD procedures use remote variables as op-
posed to buffered remote variables. The compiler
should make some attempt to keep this “‘fair”
when executing the composite procedure on a sin-
gle real processor. The compiler could execute all
of the code for each virtual processor before exe-
cuting the code of any other processor but this
would probably not have the intended effect. A
better method would consist of breaking the code
into blocks, as if the remote variables were buf-
fered remote, and always changing to another vir-
tual process at each remote read.

The implementation of constructs that generate
communication is another critical element in the
compilation of Dino2 programs. The two types of
constructs that create communication are the re-
mapping of data between modules, and imple-
menting remote reads and writes of distributed
data. The remapping of data between modules is
implemented similarly to remote writes, and could
be handled by the compiler in a similar manner.
Therefore we do not discuss it separately. because
remote writes are discussed below. 1t would prob-
ably be advantageous to also have special libraries
to handle common remappings very efficiently.

The two types of variables that can create com-
munications are remote and buffered remote vari-
ables. Because the communication semantics are
an explicit part of the language, it is fairly easy for
the compiler to determine where in the program
communication will be generated. In the SPMD
model, it is always assumed that reading or writing
a remote or buffered remote variable will alwavs

struct x_buff {

FLEXIBLE LANGUAGE CONSTRUCTS 183

/*contains list of buffered values*/

/*or a list of blocked vps*/
b

struct proc_state{
int state;

struct proc_next *next; /*used to keep vps in ques*/
float x_tval[id]; /*values associated with remote read for each vp*/

}

proc () {

struct x_buff x[N];

float q[N];

struct proc_state proc_vp[N];
struct proc_state *ready_que;

initialize_proc_state();

/*initialize the status of each virtual process

and place in the ready queue*/

while (/*ready queue not empty*/) {

id = /*id of first element in ready queue*/

switch (proc_vp[id].state){
case 1:

S1;

write_x(f (), id);

/*put id into the buffer for x[f ()] or
put a blocked vp in ready queue*/

S2;

proc_vp[id].x_tval = read_x(g(), id);

/*1f a value is buffered for x[g()] take it and continue
else block this vp on x[g()]*/

case 2:
q[id] = proc_vp[id].x_tval,
S3;

remove_vp (id); /*remove this vp from the ready queue*/

}

FIGURE 7 Translation of an SPMD procedure with buffered communications.

generate communication. In the SIMD model, op-
timizations are used to try to avoid putting in calls
for communication where it is not needed. These
optimizations are well understood {24, 26].

The primary concern in implementing these
variables is the minimization of message startup
times, or latency. Message latency has both a
hardware and software component. The hardware
component is decreasing with newer machines. As
an example, the iPSC/860 has a hardware la-
tency of roughly 25 us and the Intel Paragon will
have a roughly 1 us hardware latency [27;. The

software latency, when based on messages, is
roughly in the range of 30—100 us. This large time
is dependent on the very general nature of the li-
brary underlying the message interface. In the
general case, these libraries must handle mes-
sages of any length arriving at any time. There is a
large opportunity to greatly reduce the software
latency by taking advantage of knowledge about
how communication is used in a program. For
communication intensive programs, it is quite rea-
sonable for a compiler to be able to generate com-
munication that runs faster than if the code were

184 ROSING AND SCHNABEL

hand coded using messages. Furthermore, as the
latency is reduced, the need to aggregate messages
will become less important.

One technique for generating efficient com-
munications would be to use a system similar to
Active Messages [28]. An active message is essen-
tially an asynchronous remote procedure call
(RPC) and consists of a procedure id and parame-
ters to the procedure. The RPC mechanism is
much more efficient than a message based system
because the system does not handle any low level
details of handling messages such as buffering or
type checking. Instead, all the system does is in-
voke the correct procedure and let the procedure
handle what needs to be done. In this manner,
only the services that are required are imple-
mented and used. On the CM5, the use of active
messages has reduced the message latency from
roughly 70 us to less than 5 us.

In this context, active messages can be used to
generate remote reads and writes in a fairly obvi-
ous manner. There are RPCs corresponding to
both remote reads and writes. Buffered variables
can be implemented with a buffer associated with
each variable. This will provide faster access than
having one large buffer consisting of tagged mes-
sages that must be interpreted for each access.

The final aspect of compilation that is of inter-
est is the placement of virtual processors onto the
target machine. This mapping is partially speci-
fied by the programmer and can be either static or
dynamic. In the static case it is assumed that each
virtual processor in a composite procedure takes
the same amount of time to execute. If this is not
an appropriate model than the programmer
should use a dynamic mapping or must use an
explicit technique to do the mapping. The map-
ping of static composite procedures is based on a
simple set of rules and a static analysis of the pro-
gram. Each composite procedure call divides the
number of virtual processors by the number of
available processors and then maps the composite
procedure based on the mapping function speci-
fied. This is done so that adjacent virtual proces-
sors in the virtual processor data structure are on
the same physical processor as often as possible,
and generally are on adjacent physical processors
otherwise. Techniques for accomplishing this for
common structures are well known and are similar
to blocking and distributing data arrays onto ar-
rays of virtual processors. It is important that the
mapping does not change throughout the execu-
tion of the procedure. By doing this, it is guaran-
teed that the distributed data will not be moved

and communication can always be sent directly to
the correct processor. Furthermore, in the cases
where there does not need to be any communica-
tion for remapping of parameters (the actual and
formal parameters have the same type of map-
ping) there does not need to be any communica-
tion generated. In this case a composite procedure
call can be implemented with a simple procedure
call.

The second type of mapping, a dynamic one,
could be supported using either a centralized or
distributed task allocation scheme such as that
found in Hsu and Liu [29] or Lin and Keller [30].
This ability to dynamically schedule tasks is simi-
lar to self-scheduled loops in Jordan [6]. A differ-
ence is that communication between processors is
only allowed, in the form of parameters, at the
start and end of the composite procedure call.
This is done because of the difficulties in imple-
menting communications in an environment
where the placement of virtual processors is not
known until they are executed. It would be diffi-
cult to implement communications because the
location of a variable would be hard to find with-
out going back through the mechanism that dis-
tributed the tasks.

7 CONCLUSION

The Dino2 language provides several new features
for writing large, modular parallel programs.
These include: (1) the provision of two synchroni-
zation models, SIMD and SPMD, that can be used
in conjunction with parallel computation mod-
ules; (2) the ability to combine SIMD modules,
SPMD modules, and normal C procedures using
nested and phased parallelism to obtain complex
parallel programs; and (3) the provision of com-
munication types for distributed variables that de-
fine the communication semantics associated with
reads and writes to these variables. These features
provide the user with a flexible and expressive
parallel programming language that still should be
easy to use and result in efficient code. By modu-
larizing the degree of parallelism, the synchroni-
zation model, and the communications, programs
can be written using a range of techniques that are
not possible to combine in other languages with-
out introducing unmanageable complexity into
some portion of the code. This flexibility to com-
bine different parallel algorithm paradigms will be
needed to write parallel programs for many large,
complex scientific computations. The modularity

should also help in writing large programs because
parallel modules can be written independently.
Finally, the characteristics of the modules have
been designed to permit efficient execution. Many
implementation considerations associated with
the language are discussed in Rosing [20], but a
full implementation of the language has not yet
been performed.

ACKNOWLEDGMENTS

Both authors supported by NSF grant ASC-
9015577, NSF grant CDA-8922510, and
AFOSR-90-0109. Rosing was also supported by
the National Aeronautics and Space Administra-
tion under NASA Contract Nos. NAS1-18605 and
NAS1-19480 while in residence at the Institute for
Computer Applications in Science and Engineer-
ing (ICASE), NASA Langley Research Center, and
currently by Pacific Northwest Laboratory, oper-
ated for the U.S. Dept. of Energy (DOE) by Bat-
telle Memorial Institute under contract DE-AC06-
76RLO 1830.

REFERENCES

[1] D. Olander and R. B. Schnabel, Proceedings of
the Scalable High Performance Computing Con-
ference. Williamsburg, VA: IEEE Computer Soci-
ety Press, 1992, pp. 276-283.

[2] W. Griswold, G. Harrison, L. Snyder, and D.
Notkin, Proceedings of the Fifth Distributed
Memory Computing Conference. 1990.

[3] M. Rosing, R. B. Schnabel, and R. P. Weaver,
“The DINO parallel programming language,” J.
Parallel Distrib. Comput., Vol. 13, pp. 30—42,
1991.

[4] C. Koelbel, P. Mehrotra, and J. Van Rosendale,
Conference on Principles and Practice of Parallel
Processing. 1990.

[5] G.Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C. Tseng, and M. Wu, “‘FortranD lan-
guage specification,” Technical Report CRPC-
TR90079, Department of Computer Science,
Rice University, 1990.

[6] H. Jordan, The Force. Boston: MIT Press, 1987.

[7] I.R. Rose and G. L. Steele Jr. C, ““An extended C
language for data parallel programming,”” Tech-
nical Report PL-5, Thinking Machines Corp.,
1987.

[8] R.J. Littlefield, ““Efficient iteration in data-paral-
lel programs with irregular and dynamically dis-
tributed data structures,’” Technical Report 90-

[15]

[16]

FLEXIBLE LANGUAGE CONSTRUCTS 185

02-06, Department of Computer
University of Washington, 1990.

L. Hamey and I-C. Wu J. Webb, Apply, a Pro-
gramming Language for Low-Level Vision on Di-
verse Parallel Architectures. Kluwer Academic
Publishers, 1987.

P.-S. Tseng, ““A parallelizing compiler for distrib-
uted memory parallel computers,”” PhD thesis,
Carnegie Mellon, May 1989.

B. Chapman, P. Mehrotra, and H. Zima, Pro-
gramming in Vienna Fortran, Sci. Prog., vol. 1,
pp- 31-50, 1992.

C. Koelbel, ““Hpff,”” Technical Report, Rice Uni-
versity, 1993.

J. K. Lee and D. Gannon, ‘*Object oriented paral-
lel programming: Experiments and results,”” Su-
percomputing, 1991.

M. Rosing, R. B. Schnabel, and R. P. Weaver,
“Scientific programming languages for distrib-
uted memory multiprocessors: Paradigms and re-
search issues,”” Technical Report CU-CS-537-
91, Univ of Colorado, Department of Computer
Science, 1991.

F. Andre, J. Pazat, and H. Thomas, Proceedings
of ACM ICS. 1990.

M. J. Quinn and P. J. Hatcher, ““Data parallel
programming on multicomputer,” IEEE Soft-
ware, pp. 69-76, 1990.

M. A. Nichols, H. J. Siegel, and H. G. Dietz, Third
Symposium on the Frontiers of Massively Parallel
Computation. 1990, pp. 397-406.

M. Philippsen, W. Tichy, and C. Herter, Proceed-
ings of the First International Conference of the
Austrian Center for Parallel Computation. 1991.
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, Jr.,
P. T. Mueller, Jr., H. E. Smalley, and S. D. Smith,
“Pasm: A partitionable simd/mimd system for
image processing and pattern recognition,”” IEEE
Transact. Comput. vol. C-30, pp. 934-947,
1981.

M. Rosing, “Efficient language constructs for
complex parallelism on distributed memory
multiprocessors,”” PhD thesis, University of Colo-
rado, Boulder, August 1991.

M. Rosing and R. B. Schnabel, Proceedings of the
Third SIAM Conference on Parallel Processing
for Scientific Computing. Los Angeles: SIAM,
1987, pp. 312-316.

X. Zhang, R. H. Byrd, and R. B. Schnabel, ‘‘Par-
allel methods for solving nonlinear block bor-
dered systems of equations,”’ SIAM J. Sci. Stat.
Comput., vol. 13, pp. 841-859.

M. J. Quinn, P. J. Hatcher, and K. C. Jourdenais,
Proceedings of ACM/SIGPLAN PPEALS, Parallel
Programming: Experience with Applications,
Languages, and Systems. ACM Press, 1987, pp.
537-65.

P. Hatcher, M. Quinn, A. Lapadula, B. Seevers,
R. Anderson, and R. Jones, ‘‘Data-parallel pro-

Science,

186

ROSING AND SCHNABEL

gramming on MIMD computers,”” [EEE Transac.
Parallel Distrib. Systems, vol. 3. 1991, pp. 377—
383.

D. Eager and J. Zahorjan, “*Chores: Enhanced
run-time support for shared-memory parallel
computing,” Technical Report 91-08-05, Uni-
versity of Washington, 1991.

S. Hiranadani, K. Kennedy, and C. Tseng. Pro-
ceedings Supercomputing 1991. 1991, pp. 86—
100.

M. Rosing and J. Saltz, **Low latency messages on
distributed memory multiprocessors,’” Technical

(28]

Report 92-25, Institute for Computer Applica-
tions in Science and Engineering, 1992.

T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser, Proceedings of the 19th Annual
International Symposium on Computer Architec-
ture. 1992, pp. 256-266.

C. H. Hsu and I. Liu, Proceedings of the 6th In-
ternationl conference on Distributed Computing
Systems. 1986.

F. C. H. Lin and R. M. Keller. Proceedings of the
6th International conference on Distributed
Computing Systems. 1986.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

